

OBJECT-ORIENTATION AND INTEGRATION
FOR MODELLING WATER RESOURCE SYSTEMS

USING THE ACRU MODEL

DAVID JOHN CLARK

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Engineering

Bioresources Engineering

School of Engineering

College of Agriculture, Engineering and Science

University of KwaZulu-Natal

November 2018

Supervisor: Prof. J.C. Smithers

Co-supervisor: Prof. G.P.W. Jewitt

EXAMINER’S COPY

i

ABSTRACT

Water is a limiting resource in South Africa, with demand in many catchments exceeding

supply, necessitating transfers of water between catchments. This situation requires

detailed and integrated management of the country’s water resources, considering

environmental, social and economic aspects as outlined in the National Water Act (Act 36 of

1998). Integrated water resources management (IWRM) will require better data and

information through monitoring and integrated water resources modelling.

The ACRU hydrological model is an important repository of South African water research

and knowledge. In recent years there have been technological advances in computer

programming techniques and model integration. The thesis for this study was that the

valuable knowledge already existing in the ACRU model could be leveraged to provide a

better hydrological model to support IWRM in South Africa by: (i) restructuring the model

using object-oriented design and programming techniques, and (ii) implementing a model

interface standard.

Object-oriented restructuring of the ACRU model resulted in a more flexible model enabling

better representation of complex water resource systems. The restructuring also resulted in

a more extensible model to facilitate the inclusion of new modules and improved data

handling. A new model input structure was developed using Extensible Markup Language

(XML) to complement the object-oriented structure of the ACRU model.

It was recognised that different models have different purposes and strengths. The OpenMI

2.0 model interface standard was implemented for ACRU, enabling integration with other

OpenMI 2.0 compliant specialised models representing different domains to provide a more

holistic IWRM view of water resource systems. Model integration using OpenMI was

demonstrated by linking ACRU to the eWater Source river network model.

A case study in the upper uMngeni Catchment in South Africa demonstrated: (i) the benefits

of the object-oriented design of the restructured ACRU model, in the context of using ACRU

to create modelled catchment-scale water resource accounts, and (ii) the integration of

ACRU with another model using OpenMI. The case study also demonstrated that despite

the improvements to the ACRU model, the simulations are only as good as the model input

data.

ii

DECLARATION 1 – PLAGIARISM

I, David John Clark, declare that

(i) The research reported in this thesis, except where otherwise indicated, is my

original work;

(ii) This thesis has not been submitted for any degree or examination at any other

university;

(iii) This thesis does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other persons;

and

(iv) This thesis does not contain other persons’ writing, unless specifically

acknowledged as being sourced from other researchers. Where other written

sources have been quoted, then:

a) their words have been re-written, but the general information attributed to

them has been referenced;

b) where their exact words have been used, their writing has been placed

inside quotation marks, and referenced.

(v) This thesis does not contain text, graphics or tables copied and pasted from the

internet, unless specifically acknowledged, and the source being detailed in the

thesis and in the References section.

Signed:………………………………..

D.J. Clark

Signed:……………………………….. Signed:………………………………..

Professor J.C. Smithers Professor G.P.W. Jewitt

Supervisor Co-supervisor

iii

DECLARATION 2 – PUBLICATIONS

DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part of and/or include

research presented in this thesis (including publications submitted and published, giving

details of the contributions of each author to the research and writing of each publication):

A large part of the research presented in this thesis was completed as part of Water

Research Commission (WRC) funded research projects on which I was the principal

researcher and has been reported on in final reports reviewed and published by the WRC.

These reports each have several authors representing the research team that contributed to

the research. Some of the research has also been reported in published journal papers. In

this declaration I have tried to make it clear for each publication where portions from these

reports and papers has been reproduced in part or in full in this document and the extent to

which the research was my own work. The publications are listed below in the chronological

order in which the research and writing was done, and not by publication date.

Publication 1 - Clark et al. (2001):

Clark, DJ, Kiker, GA and Schulze, RE. 2001. Object-oriented restructuring of the ACRU

agrohydrological modelling system. Proceedings of the 10th South African National

Hydrology Symposium, Pietermaritzburg, RSA, 26-28.

In this paper the rationale for restructuring ACRU and the design of the new object-oriented

structure for ACRU 2000 are described. The paper was written by me with assistance from

Dr GA Kiker and Prof. RE Schulze. The ACRU code restructuring work was done by me

under supervision by Dr GA Kiker. Clark et al. (2001) is referenced in this document.

Publication 2 - Kiker and Clark (2001a):

Kiker, GA and Clark, DJ. 2001a. Development and testing of a natural vegetation, herbivore,

and fire model for southern African rangeland management. ASAE Paper No.

017025. ASAE, St. Joseph, Michigan, USA.

In this paper the development of the ACRU-Veld module as part of the restructured ACRU

2000 model is described. The paper was primarliy written by Dr GA Kiker. Dr GA Kiker

provided the conceptual basis and algorithms for the module, and I assisted in the coding of

the module. Kiker and Clark (2001a) is referenced in this document.

iv

Publication 3 - Kiker and Clark (2001b):

Kiker, GA and Clark, DJ. 2001b. The development of a Java-based, object-oriented

modeling system for simulation of southern African hydrology. ASAE Paper No.

012030. ASAE, St. Joseph, Michigan, USA.

In this paper the rationale for restructuring ACRU and the design of the new object-oriented

structure for ACRU 2000 are described. The paper was primarily written by Dr GA Kiker.

The ACRU code restructuring work was done by me under supervision by Dr GA Kiker.

Kiker and Clark (2001b) is referenced in this document.

Publication 4 - Kiker and Clark (2001c):

Kiker, GA and Clark, DJ. 2001c. Testing and validation of a Java-based, object-oriented

modeling system in the Mgeni River watershed, KwaZulu-Natal, South Africa. ASAE

Paper No. 012031. ASAE, St. Joseph, Michigan, USA.

In this paper the restructured ACRU 2000 version of the ACRU model was tested and

verified in the uMngeni Catchment. The testing, validation and writing of the paper was

primarily done by Dr GA Kiker. Kiker and Clark (2001c) is referenced in this document.

Publication 5 - Campbell et al. (2001):

Campbell, KL, Kiker, GA and Clark, DJ. 2001. Development and testing of a nitrogen and

phosphorus process model for Southern African water quality issues. ASAE Paper

No. 012085. ASAE, St. Joseph, Michigan, USA.

In this paper the development of the ACRU-NP module for ACRU is described. Prof. KL

Campbell did most of the coding of the ACRU-NP module. I provided advice to Prof. KL

Campbell regarding the coding of the ACRU-NP module and together with Prof. KL

Campbell and Dr GA Kiker played a key role in developing the design for representing

nutrient fluxes in ACRU as either a nutrient transport, nutrient transformation or a

combination of these. My contribution to the writing of the paper was small. Campbell et al.

(2001) is referenced in this document.

Publication 6 - Kiker et al. (2006):

Kiker, GA, Clark, DJ, Martinez, CJ and Schulze, RE. 2006. A Java-based, object-oriented

modeling system for Southern African hydrology. Transactions of the ASABE 49 (5):

1419-1433.

v

In this paper the scientific basis of the ACRU model, the object-oriented design of the ACRU

2000 version of the ACRU model, and the testing and verification of the restructured model

in the uMngeni Catchment are described. The paper was primarily written by Dr GA Kiker

and Dr CJ Martinez. The ACRU code restructuring work was done by me under supervision

by Dr GA Kiker. Kiker et al. (2006) is referenced in this document.

Publication 7 - Clark et al. (2009):

Clark, DJ, Smithers, JC, Hughes, DA, Meier, KB, Summerton, MJ and Butler, AJE. 2009.

Design and development of a hydrological decision support framework. WRC Report

No. 1490/1/09. Water Research Commission, Pretoria, South Africa.

This publication is a reviewed final report to the WRC for WRC Project K5/1490. Prof. JC

Smithers was the project leader and I was the principal researcher. The research was done

jointly by a project team from various organisations and the report was jointly authored by

the authors referenced above. Chapter 2 included the review of modelling framworks,

selection of the SPATSIM framework and its further development as the SPATSIM-HDSF

framework. The research reported in Chapter 2 was done jointly by me, Prof. DA Hughes,

Mr DA Forsysth, Mr KB Meier and Mr G Page-Wood. Chapter 3 described the development

of the ACRU 4 version of the ACRU model engine and associated utilities. The development

of the code of the ACRU 4 model engine structure were primarily my work. The initial

development of the Extensible Markup Language (XML) model input data files was primarily

my work. The initial development of the XML model configuration files was primarily my

work with some contributions by Mr SLC Thornton-Dibb. The initial concept and

development of the rule-set file and code to validate model input values was done by Mr KB

Meier and Mr G Page-Wood, but further developed by Mr SLC Thornton-Dibb and myself.

The ACRU Configuration Editor tool for editing model input files was developed by Mr SLC

Thornton-Dibb under my supervision. The TSAnalysis time series analysis tool was

developed by Mr A Lutchminarain under my supervision, based on the SPATSIM TSOFT

tool and the ACRUView tool. Clark et al. (2009) is referenced in this document.

Publication 8 - Clark et al. (2012a):

Clark, DJ, Hughes, DA, Smithers, JC, Thornton-Dibb, SLC, Lutchminarain, A and Forsyth,

DA. 2012a. Deployment, maintenance and further development of SPATSIM-HDSF:

Volume 1 - SPATSIM-HDSF modelling framework. WRC Report No. 1870/1/12.

Water Research Commission, Pretoria, South Africa.

vi

This publication is Volume 1 of a reviewed final report to the WRC for WRC Project K5/1870

funded by the former Department of Water Affair and Forestry (DWAF). Prof. JC Smithers

was the project leader. The research was done jointly by a project team from various

organisations and the report was jointly authored by the authors referenced above. Chapter

2 describes the further development of the SPATSIM-HDSF framework. The research

reported in Chapter 2 was done jointly by myself, Prof. DA Hughes and Mr DA Forsysth.

Chapter 4 described the further development of the ACRU 4 model engine and associated

utilities. The changes made to the code of the ACRU 4 model engine were primarily my

work. The minor further development of the XML model input files and XML model

configuration files was primarily my work. The development of a model input file converter

tool was primarily my work. The further development of the ACRU Configuration Editor tool

was done by Mr Thornton-Dibb under my supervision. The further development of the

TSAnalysis time series analysis tool was done by Mr A Lutchminarain under my supervision.

Clark et al. (2012a) is referenced in this document.

Publication 9 -Clark et al. (2012b):

Clark, DJ, Smithers, JC, Thornton-Dibb, SLC and Lutchminarain, A. 2012b. Deployment,

maintenance and further development of SPATSIM-HDSF: Volume 3 - ACRU

agrohydrological model. WRC Report No. 1870/3/12. Water Research Commission,

Pretoria, South Africa.

This publication is Volume 3 of a reviewed final report to the WRC for WRC Project K5/1870

funded by the former Department of Water Affair and Forestry (DWAF). Prof. JC Smithers

was the project leader. The research was done jointly by a project team from various

organisations and the report was jointly authored by the authors referenced above. Volume

3 consisted of project reports and user manuals authored jointly by the project team for the

SPATSIM-HDSF software and ACRU software utilities. Clark et al. (2012b) is referenced in

this document.

Publication 10 - Clark and Smithers (2013):

Clark, DJ and Smithers, JC. 2013. Model integration for operational water resources

planning and management. WRC Report No. 1951/1/12. Water Research

Commission, Pretoria, South Africa.

This publication is a reviewed final report to the WRC for WRC Project K5/1951 and was

edited by myself and Prof. JC Smithers, my PhD supervisor. Prof. JC Smithers was the

vii

project leader and I was the principal researcher. Individual chapters were authored by

different researchers on the project.

Chapter 2 - Thornton-Dibb et al. (2013):

Thornton-Dibb, SLC, Smithers, JC and Clark, DJ. 2013. Review and evaluation of river

network models. In: eds. Clark, DJ and Smithers, JC, Model integration for

operational water resources planning and management. WRC Report No. 1951/1/12,

Chapter 2. Water Research Commission, Pretoria, South Africa.

Chapter 2 reports on the review and evaluation of third-party river network models to identify

a suitable model to be linked to ACRU. The research and writing for this chapter was

primarily done by Mr SLC Thornton-Dibb, with supervision, advice and editing by Prof. JC

Smithers and myself. Thornton-Dibb et al. (2013) is referenced in this document.

Chapter 3 - Clark et al. (2013):

Clark, DJ, Lutchminarain, A and Smithers, JC. 2013. Review and evaluation of model

linkage mechanisms. In: eds. Clark, DJ and Smithers, JC, Model integration for

operational water resources planning and management. WRC Report No. 1951/1/12,

Chapter 3. Water Research Commission, Pretoria, South Africa.

Chapter 3 reports on the review and evaluation of approaches to model integration and third-

party model linkage systems to identify a suitable model linkage system to enable integration

of ACRU with a river network model. The preliminary literature search was conducted by Mr

A Lutchminarain, but the literature review in Section 3.1 was primarily written by me with

contributions from Mr A Lutchminarain and editing by Prof. JC Smithers. The evaluation of

shortlisted model linkage systems and the reporting of this evaluation (Section 3.2) was

done jointly by Mr A Lutchminarain and myself. Clark et al. (2013) is referenced in this

document and parts of the literature review have been summarised or reproduced in Section

4.1, Section 4.2 and Section 4.3 of this document.

Chapter 4 - Clark (2013):

Clark, DJ. 2013. ACRU model development. In: eds. Clark, DJ and Smithers, JC, Model

integration for operational water resources planning and management. WRC Report

No. 1951/1/12, Chapter 4. Water Research Commission, Pretoria, South Africa.

Chapter 4 includes some background to the development history of ACRU (Section 4.1),

changes to the XML model input file structure (Section 4.2) and changes to the model

viii

structure (Section 4.3). This chapter was written by myself with some minor editing by Prof.

JC Smithers. The design and coding of the changes to the ACRU model and model input

files was done by me based on requirements identified by myself and colleagues Mr MJC

Horan and Mr SLC Thornton-Dibb. Clark (2013) is referenced in this document and parts

have been summarised or reproduced in Chapter 2, Section 3.2, Section 3.3 and Appendix

8.1 of this document.

Chapter 5 - Clark and Lutchminarain (2013):

Clark, DJ and Lutchminarain, A. 2013. Implementation of OpenMI for model linking. In: eds.

Clark, DJ and Smithers, JC, Model integration for operational water resources

planning and management. WRC Report No. 1951/1/12, Chapter 5. Water Research

Commission, Pretoria, South Africa.

Chapter 5 describes the development of OpenMI linkable components for the ACRU and

MIKE BASIN models. This chapter was written jointly by myself and Mr A Lutchminarain

with some editing by Prof. JC Smithers. The development of the OpenMI 1.4 linkable

component for ACRU was done by myself. The development of the OpenMI 1.4 and

OpenMI 2.0 linkable components for MIKE BASIN was done by Mr A Lutchminarain with

some assistance from myself. Clark and Lutchminarain (2013) is referenced in this

document.

Publication 11 - Clark (2015a):

Clark, DJ. 2015a. Development and assessment of an integrated water resources

accounting methodology for South Africa. WRC Report 2205/1/15. Water Research

Commission (WRC), Pretoria, South Africa.

This publication is a reviewed final report to the WRC for WRC Project K5/2205 and was

edited by myself. I was the project leader and principal researcher. Individual chapters were

authored by different researchers on the project.

Chapter 2 - Clark et al. (2015):

Clark, DJ, Bastiaanssen, WGM, Smithers, JC and Jewitt, GPW. 2015. A review of water

accounting frameworks for potential application in South Africa. In: ed. Clark, DJ,

Development and assessment of an integrated water resources accounting

methodology for South Africa. WRC Report No. 2205/1/15, Chapter 2. Water

Research Commission (WRC), Pretoria, South Africa.

ix

Chapter 2 is a review of water accounting frameworks. The research and writing for this

chapter was primarily done by me, with some expert contribution from Prof. Bastiaanssen

and editing by Prof. JC Smithers and Prof GPW Jewitt. Clark et al. (2015) is referenced in

this document.

Chapter 4 - Clark (2015b):

Clark, DJ. 2015b. Development of a methodology for water use quantification and

accounting. In: ed. Clark, DJ, Development and assessment of an integrated water

resources accounting methodology for South Africa. WRC Report No. 2205/1/15,

Chapter 4. Water Research Commission (WRC), Pretoria, South Africa.

Chapter 4 describes the modifications made to the WA+ Resource Base Sheet, and the

development of a methodology to quantify water use and compile catchment-scale water

resource accounts using ACRU. The research and writing for this chapter was done by

myself. Clark (2015b) is referenced in this document and parts have been summarised or

reproduced in Section 3.4 and Appendix 8.8.

Chapter 5 - Clark (2015d):

Clark, DJ. 2015d. uMngeni Catchment case study. In: ed. Clark, DJ, Development and

assessment of an integrated water resources accounting methodology for South

Africa. WRC Report No. 2205/1/15, Chapter 5. Water Research Commission (WRC),

Pretoria, South Africa.

Chapter 5 describes the case study in the uMngeni Catchment. The research and writing for

this chapter was done by myself. Clark (2015d) is referenced in this document.

Chapter 6 - Clark (2015c):

Clark, DJ. 2015c. Sabie-Sand Catchment case study. In: ed. Clark, DJ, Development and

assessment of an integrated water resources accounting methodology for South

Africa. WRC Report No. 2205/1/15, Chapter 6. Water Research Commission (WRC),

Pretoria, South Africa.

Chapter 6 describes the case study in the Sabie-Sand Catchment. The research and writing

for this chapter was done by myself. Clark (2015c) is referenced in this document .

x

Publication 12 - Clark (2016):

Clark, DJ. 2016. Further development and assessment of an integrated water resources

accounting methodology for South Africa: Deliverable 3: Progress report - Year 1.

Unpublished report to the Water Research Commission (WRC) for Deliverable 3 of

WRC Project K5/2512. Centre for Water Resources Research (CWRR), University of

KwaZulu-Natal, Pietermaritzburg, South Africa.

This document in an unpublished progress report to the WRC for WRC Project K5/2512 and

was edited by me with contributions from various colleagues. I was the project leader and

principal researcher. The research and writing in Chapter 4 of Clark (2016) was primarily

done by myself and is referenced in this document.

Publication 13 - Clark (2017a):

Clark, DJ. 2017a. Further development and assessment of an integrated water resources

accounting methodology for South Africa: Deliverable 4: Annual report - Year 1.

Unpublished report to the Water Research Commission (WRC) for Deliverable 4 of

WRC Project K5/2512. Centre for Water Resources Research (CWRR), University of

KwaZulu-Natal, Pietermaritzburg, South Africa.

This document is an unpublished progress report to the WRC for WRC Project K5/2512 and

was edited by me with contributions from various colleagues. I was the project leader and

principal researcher. The research and writing in Chapter 3 of Clark (2017a) was primarily

done by myself and is referenced in this document.

Publication 14 - Clark (2017b):

Clark, DJ. 2017b. Further development and assessment of an integrated water resources

accounting methodology for South Africa: Deliverable 5: Progress report - Year 2.

Unpublished report to the Water Research Commission (WRC) for Deliverable 5 of

WRC Project K5/2512. Centre for Water Resources Research (CWRR), University of

KwaZulu-Natal, Pietermaritzburg, South Africa.

This document is an unpublished progress report to the WRC for WRC Project K5/2512 and

was edited by myself with contributions from various colleagues. I was the project leader

and principal researcher. The research and writing in Chapter 3 of Clark (2017b) was

primarily done by myself and is referenced in this document.

xi

Publication 15 - Clark (2018):

Clark, DJ. 2018. Investigation of satellite remotely sensed rainfall for use in hydrological

modelling in the upper uMngeni Catchment, South Africa. Paper in preparation.

Centre for Water Resources Research, University of KwaZulu-Natal,

Pietermarithburg, South Africa.

This document is a paper in preparation describing an investigation completed as part of

WRC Project K5/2512 and was written by myself.

xii

PREFACE

The work described in this thesis was carried out in the School of Engineering, University of

KwaZulu-Natal (UKZN), Pietermaritzburg, South Africa under the supervision of Professor

JC Smithers and Professor GPW Jewitt.

These studies represent original work by the author and have not otherwise been submitted

in any form for any degree or diploma to any tertiary institution. Where use has been made

of the work of others it is duly acknowledged below or in the text.

A brief background to the development of the ACRU model is included in Appendix 8.1. The

algorithms representing hydrological processes that form the basis of the ACRU model have

been developed over many years by many people. These algorithms remain largely

unchanged in the restructured ACRU model and I can make no claim to this work. With

regard to the object-oriented restructuring of the ACRU model, the initial conceptual design

including the concept of MModel, CComponent, PProcess and DData classes, the

associations between these classes and the initial skeleton code of the CNode class were

the work of Dr GA Kiker and Dr O David in 1998. This initial conceptual design was further

developed by myself, in consultation with Dr GA Kiker, who supervised the work, and to a

lesser extent with Dr O David. This further developed conceptual design was implemented

by myself under supervision by Dr GA Kiker between 1998 and 2002 to create the

restructured object-oriented ACRU 2000 version of the model. Subsequent to 2002,

changes to the design of the structure of the ACRU 2000, ACRU 4 and ACRU 5 versions of

the model are almost solely my work. Likewise, the design of the Extensible Markup

Language (XML) based model input structure for ACRU is almost solely my work, though

inevitably enhanced through the constructive criticism of colleagues. Since 2002, several

researchers and students have made changes to and created new classes representing

hydrological processes and associated variables in ACRU, but these process

representations are not part of the work reported in this document. Similarly software tools

have been developed as part of the ACRU modelling system, including the Configuration

Editor and the TSAnalysis tools, and although I supervised the development of these tools,

they are not primarily my work and are thus not reported in detail this document.

By convention of the ACRU model developers, the name ACRU is italicised. In this

document the names of software packages, classes, interfaces, attributes, methods and

XML elements are also italicised.

xiii

ACKNOWLEDGEMENTS

My sincere appreciation goes to all the people who encouraged, advised and supported me

during this study, but especially:

 My family, especially my wife Gaynor, for their love and patience, and for the many

sacrifices that they have made during this study.

 My supervisors Professor JC Smithers and Professor GPW Jewitt for their valuable

advice and guidance.

 Professor GA Kiker for his supervision during the initial restructuring of the ACRU model

into object-oriented Java.

 My current and former colleagues for their advice, guidance and encouragement,

especially Professor RE Schulze, Professor GA Kiker and Professor PWL Lyne.

My sincere appreciation also goes to the following organisations:

 The WRC for funding research projects (636, K5/1490, K5/1870, K5/1951, K5/2205 and

K5/2512) wihin which the majority of the research that contributed to this PhD study was

conducted.

 Ezemvelo KZN Wildlife for the 2011 Land Cover Dataset for KwaZulu-Natal.

 Umgeni Water for data on streamflow and the Mooi-uMngeni transfer.

 The Satellite Applications Hydrology Group at UKZN for reference potential evaporation

data.

 The Department of Water and Sanitation (DWS) for data including: streamflow, rainfall,

abstractions from Midmar Dam, the Mooi-uMngeni transfer, registered dams and rating

curves and volume-area relationships for Midmar Dam and Albert Falls Dam.

 The Agricultural Research Council (ARC) for rainfall data.

 The South African Weather Service (SAWS) for rainfall data.

xiv

TABLE OF CONTENTS

Page

ABSTRACT .. i

DECLARATION 1 – PLAGIARISM ... ii

DECLARATION 2 – PUBLICATIONS ... iii

PREFACE ... xii

ACKNOWLEDGEMENTS ... xiii

TABLE OF CONTENTS... xiv

LIST OF FIGURES .. xvii

LIST OF TABLES... xxi

LIST OF ABBREVIATIONS ... xxii

1 INTRODUCTION ... 1

1.1 Water Resources in South Africa .. 1

1.2 Water Resource System Complexity .. 2

1.3 Water Resource System Modelling ... 3

1.4 Thesis and Objectives .. 6

1.5 Overview of the Document ... 7

2 OVERVIEW OF THE ACRU MODEL .. 8

2.1 Concepts and Structure of the ACRU 3 Version ... 9

2.1.1 Representation of Physical Components ... 9

2.1.2 Representation of Hydrological Processes... 12

2.1.3 Model Input Files and Data .. 14

2.2 Rationale for the Restructuring and Proposed Further Development 15

3 OBJECT-ORIENTED RESTRUCTURING OF ACRU ... 20

3.1 Brief Overview of Object-Oriented Modelling .. 20

3.1.1 Basic Concepts of Object-Orientation .. 21

3.1.2 Suitability for Modelling Water Resources Systems 23

3.2 Design and Development of an Object-Oriented ACRU Model Structure 26

3.2.1 Initial Design of the Model Structure .. 28

3.2.2 Refined Design of the Model Structure .. 31

3.3 Design and Development of an XML ACRU Model Input Structure 48

3.3.1 ModelData Schema ... 50

3.3.2 ModelConfiguration Schema .. 51

3.4 Development of a Water Accounting Module for ACRU .. 52

3.5 Discussion .. 53

3.5.1 Object-Oriented Restructuring for Greater Flexibility 53

3.5.2 Object-Oriented Restructuring for Greater Extensibility 54

3.5.3 Object-Oriented Restructuring for Improved Data Handling 55

3.5.4 Reflections ... 56

4 MODEL INTEGRATION .. 57

4.1 Approaches to Model Integration .. 59

4.1.1 Simple Model Integration ... 60

xv

4.1.2 Model Integration Using Modelling Environments 60

4.1.3 Custom Coupling of Specific Models.. 61

4.1.4 Model Interface Specifications ... 61

4.1.5 Modular Modelling Frameworks ... 63

4.2 Selection of a Model Linkage System ... 63

4.3 Overview of the OpenMI Model Interface Standard .. 66

4.3.1 OpenMI Terminology ... 67

4.3.2 Requirements for Models to be Suitable to Implement OpenMI 68

4.3.3 The IBaseLinkableComponent Interface and Model Execution

Phases ... 68

4.3.4 Timestepping and Flow of Data in OpenMI .. 70

4.3.5 Implementations of the OpenMI Standard .. 72

4.3.6 Application of OpenMI ... 73

4.4 Development of an OpenMI Linkable Component for ACRU 73

4.5 Development of an OpenMI Linkable Component for eWater Source 80

4.6 Time Differences in Linked Models and OpenMI .. 83

4.7 Linking the ACRU and eWater Source Models Using OpenMI 84

4.8 Discussion .. 87

5 CASE STUDY - UPPER UMNGENI CATCHMENT .. 90

5.1 Overview of the upper uMngeni Catchment .. 90

5.2 Configuration of the ACRU and eWater Source Models 93

5.3 Verification of the Simulations .. 93

5.4 Application of the Restructured Object-Oriented ACRU Model 94

5.4.1 Nested Catchment Structure .. 94

5.4.2 Flexible Configuration of Subcatchments ... 95

5.4.3 Flexible Configuration of the Flow Network .. 97

5.4.4 Flexible Configuration of Engineered Flows ... 98

5.4.5 Flexible Handling of Time Series Data ... 99

5.4.6 Water Resource Accounts ... 100

5.5 Application of the Linked ACRU and eWater Source Models 105

6 DISCUSSION AND CONCLUSIONS .. 111

6.1 Summary of Study .. 111

6.1.1 Object-Oriented Restructuring for Greater Flexibility 112

6.1.2 Object-Oriented Restructuring for Greater Extensibility 113

6.1.3 Object-Oriented Restructuring for Improved Data Handling 113

6.1.4 Model Integration Using OpenMI ... 114

6.2 Conclusions .. 114

6.3 Summary of Contributions .. 115

6.4 Recommendations for Further Research and Development 116

6.5 Lessons Learnt ... 117

6.5.1 Conceptual Design and Computational Efficiency of ACRU 117

6.5.2 Application of OpenMI ... 118

6.5.3 Good Modelling Requires Good Data .. 118

7 REFERENCES .. 120

xvi

8 APPENDICES .. 140

8.1 Background to the Development of the ACRU Model ... 140

8.2 Notation Used In UML Class Diagrams .. 144

8.3 Initial Object-Oriented Design of the ACRU Model Structure 147

8.4 Refined Object-Oriented Design of the ACRU Model Structure 152

8.4.1 Java Generics Used in the DData, DData_State and RResource

classes ... 152

8.4.2 Component Classes .. 153

8.4.3 Data Classes ... 153

8.5 Design and Development of an XML ACRU Model Input File Structure and

Related Software Tools ... 157

8.5.1 ModelData Schema ... 158

8.5.2 ModelConfiguration Schema .. 164

8.5.3 XmlModelFiles Libraries ... 172

8.5.4 ModelDataAccess Library .. 175

8.5.5 Integration of the ACRU Model With Delft-FEWS................................... 176

8.6 Development of OpenMI Composition Tools... 178

8.7 Development of Tools to Configure the Linked ACRU – eWater Source

Models .. 180

8.8 Development of a Water Use Quantification and Accounting System for

South Africa .. 184

8.9 Case Study - Configuration of the ACRU and eWater Source Models 187

8.9.1 Catchment and Subcatchment Boundaries .. 187

8.9.2 Altitude .. 189

8.9.3 Rivers and River Nodes ... 189

8.9.4 Streamflow Gauges ... 190

8.9.5 Dams ... 191

8.9.6 Transfers, Abstractions and Return Flows ... 195

8.9.7 Land Cover/Use ... 196

8.9.8 Soils 199

8.9.9 Climate .. 199

8.10 Case Study - Verification of the Simulations ... 203

8.11 Description of Items in Resource Base Sheet of Water Resource Account 215

xvii

LIST OF FIGURES

Page

Figure 1-1 Overview of the document chapters ... 7

Figure 2-1 ACRU 3 vertical layer structure, fluxes and processes (after Schulze,

1984; Schulze, 1989) ... 10

Figure 2-2 Conceptual spatial subcomponents of a subcatchment in ACRU 3 11

Figure 2-3 Calculation order of subcatchments, processes and days in ACRU 3 12

Figure 2-4 Calculation order of subcatchments, processes and days in a parallel

processing approach .. 17

Figure 3-1 UML class diagram of the initial conceptual design for an object-oriented

structure for the ACRU model (after Kiker and David, 1998) 28

Figure 3-2 ACRU 5 design: main classes and interfaces ... 32

Figure 3-3 ACRU 5 design: Model classes .. 34

Figure 3-4 ACRU 5 design: main Control classes .. 35

Figure 3-5 ACRU 5 design: main Component classes ... 36

Figure 3-6 ACRU 5 design: main spatial Component classes .. 37

Figure 3-7 ACRU 5 design: CHRU subcomponent Component classes 39

Figure 3-8 ACRU 5 design: main Data classes .. 41

Figure 3-9 ACRU 5 design: main Resource classes .. 43

Figure 3-10 ACRU 5 design: main Process classes .. 46

Figure 3-11 ACRU 5 design: PProcess class and main abstract subclasses related

to the flow of water ... 46

Figure 3-12 ACRU 5 design: example of Component, Data, Process class

relationships ... 47

Figure 3-13 The Model element and main sub-elements of the ModelData schema 51

Figure 3-14 The ModelConfiguration element and main sub-elements of the

ModelConfiguration schema ... 52

Figure 4-1 Approaches to model integration .. 59

Figure 4-2 The OpenMI IBaseLinkableComponent interface (OpenMI Association,

2010c) .. 69

Figure 4-3 Different chain computation layouts (OpenMI Association, 2010d) 71

Figure 4-4 Example of OpenMI Interfaces and the flow of data between

components (Open Geospatial Consortium, 2014) 71

Figure 4-5 UML class diagram of the ACRU OpenMI 2.0 linkable component

classes ... 76

xviii

Figure 4-6 UML class diagram of the OpenMI 2.0 adapter class used to estimate

hourly runoff from daily runoff ... 79

Figure 4-7 UML class diagram of the OpenMI 2.0 linkable component class for the

AcruCSV file format .. 79

Figure 4-8 UML class diagram of the eWater Source OpenMI 2.0 linkable

component ... 82

Figure 4-9 Time in the ACRU and eWater Source models linked using OpenMI 83

Figure 4-10 The different types of connections between ACRU and eWater Source 86

Figure 5-1 Locality map and Quaternary Catchments for the upper uMngeni

Catchment .. 91

Figure 5-2 Catchments, rivers, major dams, urban areas, water transfers in the

upper uMngeni Catchment ... 92

Figure 5-3 Representation of HRUs within nested subcatchments and catchments 95

Figure 5-4 Example of more flexible configuration within subcatchments 97

Figure 5-5 Modified Resource Base Sheet for the upper uMngeni for 2010-2011 103

Figure 5-6 Modified Resource Base Sheet for the upper uMngeni for 2011-2012 104

Figure 5-7 Modified Resource Base Sheet for the upper uMngeni for 2015-2016 105

Figure 5-8 Example of daily rainfall and streamflow at gauge U2H007 (Lions River) ... 107

Figure 5-9 Example of daily rainfall and streamflow at gauge U2H013 (Mpendle) 107

Figure 5-10 Example of daily rainfall and streamflow at gauge U2H006 (Karkloof) 108

Figure 5-11 Hydrographs upstream and downstream of main river reach in the Lions

River_12 subcatchment .. 108

Figure 8-1 Notation used in UML class diagrams created using ObjectAid software 145

Figure 8-2 Notation used in UML class diagrams created using Visual Studio

software ... 146

Figure 8-3 UML notation describing relationships between classes and interfaces 146

Figure 8-4 Initial design of the ACRU model: main classes and interfaces 147

Figure 8-5 Initial design of the ACRU model: spatial Component classes 148

Figure 8-6 Initial design of the ACRU model: CLandSegment subcomponent

classes ... 149

Figure 8-7 Initial design of the ACRU model: example Data classes 150

Figure 8-8 Initial design of the ACRU model: Process classes 150

Figure 8-9 Initial design of the ACRU model: example of Component, Data,

Process class relationships .. 151

Figure 8-10 ACRU 5 design: CImperviousArea subcomponent Component classes 153

Figure 8-11 ACRU 5 design: main Data classes and associated data type

description classes ... 154

xix

Figure 8-12 ACRU 5 design: subclasses of Data classes .. 155

Figure 8-13 ACRU 5 design: time series related Data classes 156

Figure 8-14 Software and files related to the ACRU 5 version of the model 157

Figure 8-15 The Model element and main sub-elements of the ModelData schema 158

Figure 8-16 The ModelInfo element of the ModelData schema 160

Figure 8-17 The Components element in the ModelData schema 160

Figure 8-18 The Relationships element in the ModelData schema 162

Figure 8-19 The DataReferences element in the ModelData schema 162

Figure 8-20 The Data element in the ModelData schema .. 163

Figure 8-21 The ModelConfiguration element and main sub-elements of the

ModelConfiguration schema ... 165

Figure 8-22 The ModelInfo element in the ModelConfiguration schema 165

Figure 8-23 The ComponentTypes element in the ModelConfiguration schema 166

Figure 8-24 The DataDef element in the ModelConfiguration schema 167

Figure 8-25 The DataGroup element in the ModelConfiguration schema 168

Figure 8-26 The ResourceTypes and ResourceType element in the

ModelConfiguration schema ... 169

Figure 8-27 The RelationshipTypes and RelationshipType elements in the

ModelConfiguration schema ... 169

Figure 8-28 The ComponentConfiguration element in the ModelConfiguration

schema .. 170

Figure 8-29 The Units and Unit elements in the ModelConfiguration schema 171

Figure 8-30 The Lookups element in the ModelConfiguration schema 171

Figure 8-31 Simplified UML diagram of the XmlModelFiles.ModelData package 173

Figure 8-32 Simplified UML diagram of the XmlModelFiles.ModelConfiguration

package ... 174

Figure 8-33 UML diagram of new ACRU classes developed to read and write PI

XML files .. 177

Figure 8-34 Linking and execution of the ACRU model in Delft-FEWS 177

Figure 8-35 The Pipistrelle tool for creating compositions of linked models 178

Figure 8-36 XML schema diagram for the OpenMI composition information files 179

Figure 8-37 UML class diagram of classes created to work with the OpenMI

composition information files .. 180

Figure 8-38 The eWater Source graphical user interface (eWater CRC, 2017) 181

Figure 8-39 The ACRU Scenario Creator form in eWater Source 182

Figure 8-40 UML class diagram for the ACRU – eWater Source configuration tools 183

Figure 8-41 The OpenMI Composition Tools form in eWater Source 184

xx

Figure 8-42 Catchments, rivers, major dams, streamflow gauges and rain gauges in

the upper uMngeni Catchment ... 188

Figure 8-43 DEM altitudes for the upper uMngeni Catchment (after Weepener et al.,

2011e) .. 189

Figure 8-44 Dams and regions upstream or downstream of farm dams in the upper

uMngeni Catchment ... 193

Figure 8-45 Land cover/use classes in the upper uMngeni Catchment (after

Ezemvelo KZN Wildlife and GeoTerraImage, 2013) 197

Figure 8-46 Acocks Veld Types in the upper uMngeni Catchment (after Acocks,

1988) .. 198

Figure 8-47 MAP in the upper uMngeni Catchment (after Lynch, 2004) 200

Figure 8-48 Area weighted monthly rainfall depths for the upper uMngeni Catchment .. 202

Figure 8-49 Area weighted monthly ET0 depths for the upper uMngeni Catchment 202

Figure 8-50 Total monthly rainfall and streamflow depths at gauge U2H061 206

Figure 8-51 Total monthly rainfall and streamflow depths at gauge U2H007 (Lions

River) ... 207

Figure 8-52 Total monthly rainfall and streamflow depths at gauge U2H013

(Mpendle) ... 208

Figure 8-53 Total monthly rainfall and streamflow depths at gauge U2H048 (Midmar) .. 209

Figure 8-54 Mean monthly storage in Midmar Dam ... 210

Figure 8-55 Total monthly rainfall and streamflow depths at gauge U2H006

(Karkloof) ... 210

Figure 8-56 Total monthly rainfall and streamflow depths at gauge U2H014 (Albert

Falls) .. 211

Figure 8-57 Mean monthly storage in Albert Falls Dam ... 212

Figure 8-58 Daily rainfall and streamflow at gauge U2H007 (Lions River) for

2008/2009 .. 213

Figure 8-59 Daily rainfall and streamflow at gauge U2H013 (Mpendle) for 2008/2009 .. 213

Figure 8-60 Daily rainfall and streamflow at gauge U2H006 (Karkloof) for 2008/2009 ... 213

xxi

LIST OF TABLES

Page

Table 1-1 Hydrological model characteristics identified from literature 4

Table 2-1 Summarised timeline of the development of the ACRU model 8

Table 3-1 Design objectives for the restructured ACRU 5 version of the model 27

Table 4-1 Model linkage systems reviewed in Clark et al. (2013) 64

Table 8-1 Timeline summarising development of the ACRU modelling system

(Schulze and Smithers, 2004) .. 140

Table 8-2 Description of generic types used in the DData and DData_State

classes ... 152

Table 8-3 Description of generic types used in the RResource class 152

Table 8-4 Attributes of the DataDef element in the ModelConfiguration schema 168

Table 8-5 Statistics describing daily measured and simulated streamflow depths 204

Table 8-6 Statistics describing monthly measured and simulated streamflow

depths .. 204

Table 8-7 Description of items in the Resource Base Sheet 215

xxii

LIST OF ABBREVIATIONS

AAHMS ACRU Agrohydrological Modelling System

ACRU Agricultural Catchment Research Unit (former)

API Application Programming Interface

ARC 2.0 African Rainfall Climatology (Version 2)

BEEH School of Bioresources Engineering and Environmental Hydrology (former)

CCA Common Component Architecture

CMORPH Climate Prediction Center Morphing Technique

COM Component Object Model

CRC Cooperative Research Centre

CSIR Council for Scientific and Industrial Research

CSV Comma Separated Value

CWRR Centre for Water Resources Research, University of KwaZulu-Natal

Delft-FEWS Delft Flood Early Warning System

DEM Digital Elevation Model

DLL Dynamic Link Library

DOS Disk Operating System

DSO Dam Safety Office

DWA Department of Water Affairs (former)

DWAF Department of Water Affairs and Forestry (former)

DWS Department of Water and Sanitation

FAO Food and Agriculture Organisation

FEWS Famine Early Warning System

GIS Geographic Information System

GUI Graphical User Interface

HLA High Level Architecture

HRU Hydrological Response Unit

IFR In-stream Flow Requirement

IWRM Integrated Water Resource Management

JAMS Jena Adaptable Modelling System

JNI Java Native Interface

MAP Mean Annual Precipitation

MMS Modular Modelling System

NWA National Water Act

OATC OpenMI Association Technical Committee

xxiii

OGC® Open Geospatial Consortium

OMG Object Management Group

OMS Object Modelling System

OOA Object-Oriented Analysis

OOD Object-Oriented Design

OOP Object-Oriented Programming

OpenMI Open Modelling Interface

PAW Plant Available Water

PI Published Interface

RFE Rainfall Estimator

RSM Regional Simulation Model

SAHG Satellite Applications Hydrology Group

SANQCD South African National Quaternary Catchment Database

SAWS South African Weather Service

SCS Soil Conservation Service

SDK Software Development Kit

SLIM Spatial & Land Information Management

SRTM Shuttle Radar Topography Mission

TIME The Invisible Modelling Environment

TRMM Tropical Rainfall Measuring Mission

UH Unit Hydrograph

UKZN University of KwaZulu-Natal

UML Unified Modelling Language

UN United Nations

USA United States of America

USDA United States Department of Agriculture

USGS United States Geological Survey

WA+ Water Accounting Plus

WARMS Water Authorisation Registration and Management System

WMA Water Management Area

WRC Water Research Commission

WTW Water Treatment Works

WWF-SA World Wildlife Fund – South Africa

XML Extensible Markup Language

1

1 INTRODUCTION

Water plays a key role in social and economic wellbeing (Colvin et al., 2008). Increasing

demand for water as a result of population and economic growth, together with pollution of

water resources and climate change, has resulted in increased water scarcity in many

catchments. Molden et al. (2007) state that globally 1.2 billion people live in catchments

where utilisation of water resources is no longer sustainable, resulting in physical water

scarcity. In addition, a further 1.6 billion people live under conditions of economic water

scarcity, where lack of infrastructure limits access to available water due to limited human,

institutional, or financial capital (Molden et al., 2007).

1.1 Water Resources in South Africa

Both physical and economic water scarcity are prevalent in South Africa. DWA (2013) states

that South Africa is the 30th driest country in the world and, although it has higher average

rainfall than neighbouring countries, Namibia and Botswana, the per capita water availability

in South Africa is lower. The following statistics from WWF-SA (2017) provide the context to

the water situation in South Africa. South Africa is a water scarce country with an average

annual rainfall of 490 mm compared to the global average of 814 mm, with 21% of the

country receiving less than 200 mm of rainfall per year. Average potential evaporation is

1800 mm per year. The water resources are not equally distributed spatially, with the main

water source areas being just 8% of the country, but contributing 50% of the runoff.

Approximately 20% of the 49 billion m3 of mean annual runoff are available at a high

assurance (98%) (DWA, 2013). Estimated groundwater use is approximately 2 billion m3 per

annum out of an estimated high assurance potential annual yield of 7 billion m3 (DWA,

2013). Water storage infrastructure in South Africa is highly developed to assist in managing

the high intra- and inter- annual variability in rainfall and runoff. There are over 5000

registered dams (DSO, 2016) and numerous smaller farm dams. Of the registered dams,

794 are classified as large dams, having a wall height ≥ 15 m, or a wall height > 5 m and

storage capacity > 3 million m3 (DWS, 2015). These large dams have a total storage

capacity of 31 billion m3, which is approximately 63% of mean annual runoff. To augment

water resources in high demand areas, there are 29 large-scale inter-catchment transfers

with a total capacity of 7.5 billion m3 per year (DWS, 2015). There are limited additional

economically feasible sites for dams and inter-catchment transfer schemes (DWA, 2013;

DWS, 2015). WWF-SA (2017) estimates that physical water scarcity will be reached in

South Africa by as early as 2025.

2

The water situation in South Africa, described by the statistics quoted above, indicates that

South Africa is a water scarce and water stressed country that has entered an era where

options for further water infrastructure development are becoming less physically and

economically feasible, which means that water resources will need to be managed better

and innovative solutions to reducing demand will need to be sought. An Integrated Water

Resource Management (IWRM) approach will be key to providing a systems view of water

resources at a range of spatial scales including field, catchment, national and regional

scales. IWRM recognises that there are hydrological, engineering, ecological, economic,

political, social and institutional aspects to water resources management, which need to be

considered to ensure sustainable and equitable use. This paradigm has been captured in

Section 3 of the National Water Act (NWA, 1998) of South Africa (Act 36 of 1998) which

recognises “the need for the integrated management of all aspects of water resources”.

Pollard and du Toit (2008) state that IWRM is central to being able to achieve the two main

principles of the NWA, namely equity and sustainability. However, although the theory of

IWRM is widely accepted, implementation is difficult (Molina et al., 2010), and despite the

good intentions of the NWA, implementation remains a challenge. IWRM will require

multidisciplinary integrated modelling of water resource systems, however integrated water

resource modelling tools do not yet exist in South Africa. In this thesis the term “water

resource system” is used in the context of IWRM, and includes the interrelated hydrological,

engineering, ecological, economic and social aspects of water which form the whole system.

Water accounting is a field of water resource management that has developed rapidly in the

past few years, to help address the need to quantify, describe, understand, compare and

communicate the status of water resource systems. The need for better management of

stressed water resource systems and the recognition of the need for integrated assessment

have been the catalyst for the developments in water accounting. South Africa has recently

been building capacity in developing water-economic accounts at a national and Water

Management Area (WMA) scale (Maila et al., 2018), and also catchment-scale water

resource accounts (Clark, 2015a).

1.2 Water Resource System Complexity

The hydrology of catchments is complex even when they are in their natural state and

anthropogenic development within these systems adds to the complexity (Kiker et al., 2006).

It is widely recognised that water, ecological and social systems are complex in themselves

and that the interrelationships and interactions between these systems increases the

complexity (Pollard and du Toit, 2008). Pollard and du Toit (2008) explain that complex

3

systems are distinguished from simple, though potentially complicated, systems by attributes

such as non-linearity, uncertainty, scale, self-organisation and feedback loops. The complex

nature of water resources systems is largely due to their inherent spatial and temporal

variability, and it is important to consider these systems holistically as a hierarchy of

interdependent systems and sub-systems (Pollard and du Toit, 2008). Liu and Stewart

(2004) state that natural resource management is also complex, requiring communication

and consensus amongst various stakeholders who often have conflicting social, economic

and political interests. Pollard and du Toit (2008) conclude that the NWA provides an

enabling environment for the management of complex water resource systems in South

Africa.

1.3 Water Resource System Modelling

Modelling is a critical part of water resource planning and management, as models enable

complex hydrological problems to be studied (Elshorbagy and Ormsbee, 2006). There are

two broad groups of hydrological models: (i) deterministic models for which the model output

is fully determined by the model input parameters and the physical rules or mathematical

relationships on which the model is based, and (ii) stochastic models which use statistical

methods to relate measured time series variables, such as rainfall and streamflow, in terms

of probabilities (Shaw, 1994; Ghashghaei et al., 2013). Deterministic physically based

hydrological models are useful for: (i) representing locations where detailed measurements

are not available or where conditions may change with time, (ii) building understanding of

complex water resource systems, (iii) providing estimates of water resource variables that

are difficult or expensive to measure, (iv) evaluating the impact of anticipated climate

change, (v) evaluating proposed water resource policy and management strategies, and (vi)

providing forecasts of hydrological conditions using forecast meteorological driver variables.

This section, and the study as a whole, focusses on deterministic physically based

hydrological modelling.

Catchments display a wide range of heterogeneity in their spatial attributes and complexity in

response to climate inputs that vary both spatially and with time (Bian, 2007; McDonnell et

al., 2007; Kumar et al., 2010). When developing a hydrological model, it is necessary to

understand the relevant components of the catchment being modelled, the key variables

describing each component, the physical processes that take place and the interactions

between the components (Elshorbagy and Ormsbee, 2006; Javadi et al., 2009). A key

challenge in hydrological modelling is to adequately represent the complex and complicated

characteristics of catchments, which also depends on the objectives of the model or study.

4

The result is that hydrological models are a simplified representation of real catchments,

limited by: (i) our understanding of catchment processes, (ii) our ability to represent the

complex and complicated characteristics of catchments in computer code, and (iii) the

availability of data describing both discrete and continuous catchment characteristics and

phenomena (Wang et al., 2000; Silvert, 2001; Wang et al., 2005a). In the context of water

resources management it also important to be able to represent the engineered systems

consisting of water storage and transfer infrastructure in hydrological models. A key

challenge for IWRM is its multi-disciplinary nature, requiring: (i) the integration and analysis

of data from several sources, and (ii) the integration of models and analysis tools developed

by experts in different disciplines (Kokkonen et al., 2003).

From literature a list of desired characteristics for a hydrological model, for use as a tool in

IWRM, were identified for use as a broad guideline to model development. These

characteristics, focussing on the model engine and excluding the model user interface, are

briefly listed and described in Table 1-1.

Table 1-1 Hydrological model characteristics identified from literature

Characteristic Description

Representation

of complexity

 Represent the spatial variability and temporal dynamics within a catchment

(Elshorbagy and Ormsbee, 2006; Bian, 2007).

 Represent complexity in a realistic manner including both linear and non-linear

processes (Elshorbagy and Ormsbee, 2006).

 Represent interactions between processes (feedbacks) (Wang et al., 2005a;

Elshorbagy and Ormsbee, 2006).

Appropriate

simplification

 Represent complexity in as simple a manner as possible to simplify model

application (Wang et al., 2005a; Elshorbagy and Ormsbee, 2006).

Flexibility Design model to be transferrable to new situations and locations (Argent et al.,

2000; Argent and Houghton, 2001; Wang et al., 2005a).

 Support simple and advanced options for data structures and process

representation to adapt to different levels of data availability (Garrote and Becchi,

1997).

 Be suitable for application in both water resource planning and operations

contexts, including forecasting (Javadi et al., 2009; Carr and Podger, 2012; Dutta

et al., 2013; Yang et al., 2017)

Extensibility Design model such that scientific representation of physical processes can be

modified, extended or replaced separately without needing to be concerned with

the non-science aspects of model construction (Alfredsen and Saether, 2000;

Jones et al., 2001; Javadi et al., 2009).

Data handling Distributed hydrological models are data intensive, thus efficient data storage,

access and management are important (Garrote and Becchi, 1997; Alfredsen and

Saether, 2000).

 Make provision for the use of new data tools and sources, including GIS and

remote sensing (Kang and Merwade, 2011; Ghashghaei et al., 2013; Kang et al.,

2016)

5

Table 1-1 (cont.) Hydrological model characteristics identified from literature

Characteristic Description

Modern software

engineering

 Use modern software engineering practices (Elshorbagy and Ormsbee, 2006).

Integration with

other models

 Provide a means for integrating with models representing other domains to

enable integrated water resource modelling to support IWRM (Argent et al., 2000;

Argent and Houghton, 2001; Kokkonen et al., 2003; Elshorbagy and Ormsbee,

2006; Kiker et al., 2006; Carr and Podger, 2012).

Developers of environmental models are increasingly realising: (i) the benefits of adopting

modern approaches to software engineering, which have contributed greatly to the

assessment and management of water resources, and (ii) that object-orientation is at the

forefront of these approaches (Spanou and Chen, 2000; Argent et al., 2002; Javadi et al.,

2009). Barthel et al. (2006) state that assessment of complex hydrological systems often

requires detailed process-oriented models and that the object-oriented approach to model

design and implementation is ideally suited for use in this type of model and meets the need

to better model real-world complexity and the integration of models. The object-oriented

approach to modelling helps in managing complexity by representing such systems in a

more intuitive manner (Band et al., 2000; Clark et al., 2001; Kiker and Clark, 2001b ; Wang

et al., 2005b ; Kiker et al., 2006). The object-oriented modelling approach will also enable

these models to be easily extended as understanding of the modelled system develops

(Elshorbagy and Ormsbee, 2006).

Typically legacy models have been designed for specific domains within the water resource

system, such as rainfall-runoff, groundwater, urban stormflow, water quality, river network

and ecosystem models (Carr and Podger, 2012). However, water managers applying IWRM

require a new generation of models and modelling tools that enable integrated modelling

across domains by multi-disciplinary modelling teams to provide a systems perspective for

water management in both short-term operational decisions and long-term planning. (Argent

et al., 2000; Jones et al., 2001; Kiker et al., 2006; Carr and Podger, 2012). This integrated

modelling will enable trade-offs for various policy and management scenarios to be

evaluated. These models and modelling tools need to be able to handle and represent the

inherent complexity of water resources systems and the need for integrated holistic

assessment of water resource systems to enable management decisions that lead to better

water allocation and improved water use efficiency. These models could be used to

estimate components of water accounts for which measured data is not available, to

facilitate better understanding of system water resource availability and use.

6

1.4 Thesis and Objectives

The motivation for this study was the requirement for, and potential development of, a

suitable hydrological model for use as a tool to assist in IWRM in South Africa, through

adequately representing water resource system complexity and enabling integration with

other domain models for use in multi-disciplinary assessments. The ACRU agrohydrological

model, described in Schulze et al. (1995), has been developed and applied in South Africa

for over 40 years making it an important repository of local water research and knowledge.

The physical conceptual nature of the model and its versatility, has also enabled the model

to be applied internationally. However, to realise its full potential and meet the requirements

listed in Table 1-1 the ACRU model structure needed to be revised.

The thesis for this study is that the valuable knowledge already existing in the ACRU model

can be leveraged to provide a better hydrological model to support IWRM for both water

resource planning and operations in South Africa by: (i) restructuring the model using object-

oriented design and programming techniques to create a new more flexible and extensible

model structure that will facilitate more realistic representation of real-world complexity of

water resource systems, and (ii) implementing a model interface standard that will enable

ACRU to be linked to other specialised models for different domains to provide new and

improved information through a more holistic IWRM view of water resource systems.

The specific objectives for this research study were thus to:

(i) Restructure ACRU to make it more flexible, and thus to enable: (a) more realistic

representation of the physical components of complex water resource systems, (b)

better representation of engineered flows between catchments, and (c) options for

representation of hydrological processes in varying degrees of detail depending on

availability of data.

(ii) Restructure ACRU to make it more extensible, to facilitate easier inclusion of new

functionality including: (a) improved representations of hydrological processes, and

(b) new analysis tools, such as a module for compiling water resource accounts.

(iii) Restructure ACRU to make it easier to include: (a) new data sources and formats,

and (b) better handing of time series data.

(iv) Develop a means of linking ACRU with other models to facilitate integrated modelling

studies.

7

1.5 Overview of the Document

The context for the study has been provided in this chapter. In Chapter 2 an overview of the

ACRU model is provided, including a brief background to the model and a description of the

structure of the ACRU 3 version of the model that preceded the work described in this study.

Chapter 3 starts with a review of object-oriented programming in the context of water

resources modelling, and then includes a description of the design and development of an

object-oriented structure for the ACRU model and a complementary Extensible Markup

Language (XML) based model input structure. Chapter 4 includes: (i) a review of the

potential methods available for integrating models, (ii) a description of the design and

development of an Open Modelling Interface (OpenMI) wrapper for the ACRU model which

will enable it to be linked with other models and modelling tools, and (iii) a description of the

design and development of an OpenMI wrapper for the eWater Source river network model.

In Chapter 5 a case study in the upper uMngeni Catchment in KwaZulu-Natal, South Africa

is presented, demonstrating: (i) the application and some of the advantages of the

restructured object-oriented ACRU model, and (ii) the linking of the ACRU and the eWater

Source models using OpenMI. The outcome of the research is concluded in Chapter 6. The

appendices in Chapter 8 include details of the ACRU development and case study

discussed in Chapters 3 - 5. An overview of the document chapters is shown in Figure 1-1.

Figure 1-1 Overview of the document chapters

8

2 OVERVIEW OF THE ACRU MODEL

The ACRU model is described in Schulze et al. (1995) as a physical conceptual

agrohydrological model operating at a daily timestep. The ACRU model is further described

in Schulze et al. (1995) as a versatile total evaporation model that is sensitive to climate,

land cover/use and land management practices. These characteristics have resulted in

ACRU being used for a variety of purposes including: climate change assessments, land use

studies, crop yield modelling, water resource availability studies, reservoir yield analysis,

crop water requirements and design hydrology (Schulze et al., 1995). A good overview of

the development, structure, concepts and application of the ACRU modelling system up to

2002 is provided by Schulze and Smithers (2004). A summarised timeline of the

development of the ACRU model is shown in Table 2-1. A brief background to the

development of the ACRU model and a more detailed timeline summarising the history of

the development of the ACRU model can be found in Appendix 8.1. Since its inception in

the 1970s the ACRU model has continued to be widely used as an invaluable

agrohydrological modelling tool. A comprehensive list of applications of the ACRU model,

both in South Africa and internationally is provided in Schulze and Smithers (2004) and

some more recent published applications include Kienzle and Schmidt (2008), Schmidt et al.

(2009), Forbes et al. (2011), Kienzle (2011), Warburton (2011), Kienzle et al. (2012),

Smithers et al. (2013), Schütte (2014), Schulze and Schütte (2015), Aduah et al. (2017),

Kusangaya et al. (2017), Schütte and Schulze (2017), and Smithers et al. (2017).

Table 2-1 Summarised timeline of the development of the ACRU model

Time Period Version Description

Early 1970s -1984 ACRU 1 Original development the model in FORTRAN

Late 1980s - 1990 ACRU 2 Further development of the model

Early 1990s - 2002 ACRU 3 Further development of the model

1998 - 2002 ACRU 2000 Initial design and development of object-oriented version of
the model in Java

2008 - 2011 ACRU 4 Further development of object-oriented version of the model

 Design and development of XML model input file structure

2012 - 2017 ACRU 5 Further development of object-oriented version of the model

 Development of OpenMI wrappers for ACRU

In this document the term ‘ACRU model’ refers to the model engine and ‘ACRU modelling

system’ refers to the model engine together with the associated utility software developed to

assist users in configuring the model and analysing model output. The work reported in this

document focusses on the ACRU model, building on the initial design and development of

the object-oriented ACRU 2000 version of the model by: (i) refining the design, (ii)

9

developing a model input file structure using XML, and (iii) developing OpenMI wrappers to

enable linking with other models. The ACRU 3 version of the model is the reference point

from which the further development of the ACRU model and modelling system, reported in

this document, should be considered. The concepts and structure of the ACRU 3 version

will be briefly described in Section 2.1 to provide the reader with a basic understanding of

the model, and also to provide the context for the discussion in Section 2.2 and subsequent

further development of the model.

2.1 Concepts and Structure of the ACRU 3 Version

The ACRU model is physical in the sense that it explicitly represents physical hydrological

processes, and conceptual in that the significant processes characterising the hydrological

system and also the feedbacks between them are idealised (Eagleson, 1983; cited by

Schulze and Smithers, 2004). Schulze and Smithers (2004) state that ACRU is not intended

to be a parameter fitting or optimising model, and that variables representing the physical

characteristics of a catchment are used, rather than optimised parameter values.

ACRU can be used as: (i) a point model, (ii) a lumped model consisting of a single

catchment with lumped (average or dominant) climate, vegetation, land use and soil

characteristics, or (iii) a distributed cell-type model in large catchments, or catchments with

complex lands uses and soils (Schulze and Smithers, 2004). In distributed mode,

subcatchments are assumed to be homogeneous with regard to climate, vegetation, land

use and soil characteristics, and should ideally not exceed 50 km2. ACRU is a multi-level

model in the sense that, for many of the hydrological processes represented, there are

multiple options or pathways available to estimate modelled variables depending on the level

of input data available and the relative accuracy and detail required for the simulated outputs

(Schulze and Smithers, 2004). In distributed mode, individual subcatchments can be

modelled using different levels of information. This document is focussed on the use of

ACRU in distributed mode, although the catchment configuration, representation of

hydrological processes and data requirements are similar for all modes.

2.1.1 Representation of Physical Components

The ACRU 3 version of the model (Schulze, 1995a; Smithers and Schulze, 1995)

conceptually represents hydrological systems using a set of one or more subcatchments

with cascading streamflow links between them. Each subcatchment consists of a number of

layers including: a climate layer, a land cover/use layer, a topsoil layer (referred to as the A-

10

horizon), a subsoil layer (referred to as the B-horizon) and a baseflow store, as shown in

Figure 2-1.

Figure 2-1 ACRU 3 vertical layer structure, fluxes and processes (after Schulze, 1984;

Schulze, 1989)

In its simplest form each subcatchment is assumed to have homogenous climate, vegetation

and soils characteristics. More complex subcatchment configurations are conceptualised

11

through a set of options that enable each subcatchment to have the following spatial

subcomponents as shown in Figure 2-2:

 An impervious area that is adjunct to the streamflow network to which it directly

contributes runoff.

 An impervious area that is disjunct from the streamflow network and contributes runoff

to the surface of the surrounding subcatchment landscape.

 A dam, situated either: (i) at the downstream exit of the subcatchment where it

receives streamflow from the entire subcatchment and streamflow from any upstream

subcatchments, or (ii) internally, such as for smaller farm dams which receive

streamflow from only a portion of the subcatchment, or (iii) an off-channel storage

dam.

 An area of irrigated crops that receives water from run-of-river or a dam within the

subcatchment and from which return flows may be generated.

Figure 2-2 Conceptual spatial subcomponents of a subcatchment in ACRU 3

Options also exist to enable modelling of specialised wetland and riparian zone

subcatchments (Schulze, 1995a; Smithers and Schulze, 1995). Wetland subcatchments

behave similarly to normal subcatchments except that when the capacity of the river channel

is exceeded the river channel overflows onto the land portion of the subcatchment. Wetland

subcatchments would typically be modelled with a shallow dam at the exit of the

subcatchment to represent the open water portion of a wetland. Similarly, riparian zone

subcatchments also receive flood water from the river channel, but can also be configured to

receive baseflow from upslope subcatchments into the subsoil layer and then into the topsoil

layer if the subsoil layer is saturated.

12

Each subcatchment is assigned a unique integer identifier (1 - s), with the numbering starting

at the most upstream subcatchment and increasing sequentially to the most downstream

subcatchment, as shown in Figure 2-3. The streamflow network is created by specifying a

downstream catchment for each subcatchment, except the lowest catchment.

The ACRU 3 version of the model simulates one subcatchment at a time, running an ordered

list of processes for each day of the whole simulation period, before starting the simulation

for the next subcatchment. The calculation order of subcatchments, processes and days are

illustrated in Figure 2-3. The most upstream catchment (ID=1) is simulated first, followed by

other subcatchments in order of their IDs, with the most downstream subcatchment (ID=s)

being simulated last. Simulated streamflow values at the outlet of each subcatchment are

stored by writing them to a direct access file which is read when modelling downstream

catchments to enable the cascading of streamflows through the river network.

Figure 2-3 Calculation order of subcatchments, processes and days in ACRU 3

2.1.2 Representation of Hydrological Processes

The modelling of the water budget in ACRU has been designed to be sensitive to the effect

of climate variables and to land cover/use changes on soil water and runoff conditions. The

main processes represented in the ACRU 3 version of the model (Schulze, 1995a; Smithers

and Schulze, 1995) for each subcatchment for each daily timestep are shown in Figure 2-1

and briefly described in this section. In any process-based hydrological model it is

necessary to represent the hydrological processes as occurring in a set order within a model

timestep, though in reality many of these processes may be occurring simultaneously. In

13

ACRU, as described in (Schulze, 1995b), the total evaporation processes occur first,

followed by rainfall, interception, stormflow, infiltration, water movement through the soil

profile and baseflow.

The A-pan reference potential evaporation (Er), representing atmospheric demand, is

determined, either as a measured value input by the user or estimated using one of several

methods, including Penman (1948), Thornthwaite (1948), Blaney and Criddle (1950), Linacre

(1977) and Hargreaves and Samani (1985), depending on the availability of data. Any

remaining rainfall previously intercepted by the vegetation canopy or impervious surface

cover is evaporated, limited by atmospheric demand, and the atmospheric demand is

reduced accordingly. On vegetated areas the atmospheric demand is then multiplied by a

crop coefficient to determine the maximum evaporation (Em) which is partitioned into

maximum transpiration (Etm) and maximum soil water evaporation (Esm). The estimation of

soil water evaporation and transpiration is based on the method proposed by Ritchie (1972).

Soil water evaporation occurs in the topsoil horizon and a two-stage process, based on soil

water availability, is used to determine the actual soil water evaporation (Es). The actual

plant transpiration (ET) occurs from both the topsoil and subsoil horizons, based on the

distribution of roots between the two soil horizons, soil water availability and the sensitivity of

the vegetation to water stress.

After evaporation, rainfall, if any, occurs. Rainfall is first intercepted by the vegetation

canopy or impervious surface, depending on the interception characteristics of the

vegetation or impervious surface and a possible reduction in interception capacity due to any

unevaporated intercepted rainfall from the previous day. The remaining rainfall, net rainfall,

is then used in a modified version of the Soil Conservation Service (SCS) method (USDA,

1985; Schmidt and Schulze, 1987) to estimate stormflow. On days when rainfall occurs the

initial abstraction is calculated using the simulated soil water deficit and a user specified

coefficient of initial abstraction. As the SCS method is intended to be used for small

catchments (less than 30 km2) and ACRU is often used on larger catchments, the stormflow

is multiplied by a response factor to give a quickflow portion that runs off the catchment on

the same day it was generated and a delayed stormflow portion that runs off on subsequent

days. Runoff, which is the sum of quickflow, delayed stormflow and baseflow for a day, is

added to any streamflow from upstream subcatchments to determine the streamflow leaving

the catchment. If there is a dam at the exit of the subcatchment then the streamflow will

enter the dam and the streamflow leaving the subcatchment will depend on the remaining

storage capacity of the dam, seepage from the dam and releases from the dam for use by

downstream users. Streamflow then flows to the next subcatchment downstream.

14

The portion of net rainfall that is not stormflow is infiltrated into the topsoil horizon. Saturated

flow occurs from the topsoil horizon to the subsoil horizon if the soil moisture in the topsoil

horizon exceeds the drained upper limit (field capacity). Similarly saturated flow occurs from

the subsoil horizon to the baseflow store. There is also an option to model unsaturated

redistribution of water between the topsoil and subsoil horizons. Baseflow is estimated by

applying a simple decay function based on a user specified baseflow coefficient.

Although ACRU has the facility to lag and attenuate hydrographs through river and dam

reaches this is not often used as the necessary data inputs are generally not easily available

and simulations at a sub-daily timestep take a long time to complete. If the catchment

includes an irrigated area then the source of water may be from the dam within the same

subcatchment, if there is one, or from run-of-river. There is a so-called ‘loopback’ option

within ACRU that enables an irrigated area to have a dam in an upstream catchment as a

water source, however, due to the execution sequence of the ACRU model shown in Figure

2-3, this is not computationally efficient and is thus very seldom used. Other non-irrigation

engineered transfers of water into dams and out of rivers and dams are modelled in a simple

manner using 12 averaged month-of-year flow values as input.

In some cases options are provided in the ACRU model enabling users to select from two or

more methods of representing a specific hydrological process depending on the relative

accuracy and detail required with which the process is to be represented. However, the

accurate representation of processes depends on the availability and accuracy of model

input data.

This section has provided a very brief description of the main processes represented by the

ACRU model, but further details of these processes and the representation of processes

occurring in the impervious area, irrigated area, riparian zone, wetland and dam

subcomponents of a subcatchment can be found in Schulze (1995a). The representation of

hydrological processes is not covered in detail in this document as the focus of the research

is on the structure of the model, not the addition of, or improvements to, the representation

of hydrological processes.

2.1.3 Model Input Files and Data

The physical nature of the model means that it has a high input data requirement relative to

a parameter fitting type model, however, this also means that the model can be used in

15

situations where long records of measured data are not available for use in calibration, such

as in ungauged catchments and for modelling climate change scenarios. Although ACRU is

a daily timestep model, rainfall is the only input variable for which daily time series input is

required, although daily time series of other climate variables may also be used as input to

the model, if available. The more cyclic and less sensitive time varying variables such as

reference potential evaporation, air temperature and vegetation characteristics may be input

to the model as time series of 12 mean month-of-year values (Schulze and Smithers, 2004).

These mean month-of-year time series are transformed within ACRU using Fourier Analysis

to produce year-long times series of daily values (Schulze and Smithers, 2004). The

ACRU 3 version also provides for a seldom used facility enabling the values of typically

static input variables and mean month-of-year time series variables to change dynamically at

user specified months and years during the simulation period.

Each configuration of the model the ACRU 3 version (Schulze, 1995a; Smithers and

Schulze, 1995) uses a single flat text format input file (known as the “menu” file), containing

subcatchment configuration information, static variables and mean month-of-year time series

variables, and references to a set of text files, where each text file contains the daily time

series inputs for a single subcatchment. The daily time series files may be in ACRU Single,

Composite or CompositeY2K format, described by Smithers and Schulze (1995).

2.2 Rationale for the Restructuring and Proposed Further Development

In the late 1990s it was recognised that, to meet new modelling requirements and to benefit

from advances in software engineering practices, a new phase of model development was

required. Increasing pressure on water resources and the move towards implementing the

National Water Act (NWA, 1998) required new modelling capabilities and tools to enable

better understanding and more effective management of water resources (Kiker et al., 2006;

DWA, 2013). These requirements include: (i) improved input and output tools to facilitate

understanding and interpretation of hydrological information, and (ii) improved model

performance, functionality and extensibility to better represent water resources systems

(Kiker et al., 2006). In 1998 the developers of the ACRU model received funding from the

Water Research Commission (WRC) for WRC Project 636 to further develop and provide

user support for the model (Lynch and Kiker, 2001a). This funding provided the opportunity

to restructure the ACRU model and resulted in the ACRU 2000 version, referred to in Table

2-1 and Table 8-1, and described by Clark et al. (2001), Kiker (2001), Kiker and Clark

(2001b), Kiker and Clark (2001c) and Kiker et al. (2006). This restructuring of the ACRU

model forms part of the development presented in this document. The rationale for

16

restructuring the model and other further development of the model, using the model

characteristics listed in Table 1-1 as a guideline, are described in this section.

One of the main reasons for restructuring the ACRU model was to make it more extensible

(Clark et al., 2001; Kiker, 2001; Kiker and Clark, 2001b; Lynch and Kiker, 2001b; Kiker et al.,

2006). Since its inception numerous research staff and postgraduate students at the

University of KwaZulu-Natal and collaborating researchers from other institutions have made

numerous additions and enhancements to the model. The result of these many

contributions to the model over the years was a code framework within which it was

becoming increasingly more difficult to implement new additions to the model. At that time

the use of the FORTRAN 77 programming language for the model provided some

advantages with respect to computational efficiency but also resulted in disadvantages with

respect to developing a modular, easily expandable model structure (Kiker and Clark, 2001b;

Lynch and Kiker, 2001b). Clark et al. (2001) explain that a more modular structure was

required for the model such that: (i) the physical hydrological components are more explicitly

defined, (ii) hydrological processes may be easily added or changed without affecting the

rest of the model code, and (iii) new model input variables and parameters may be easily

added.

More powerful computers, more advanced computer programming tools and more advanced

remote sensing technology have made it possible to better represent real-world complexity

in computer models. The limited sub-units permitted within a subcatchment in ACRU 3,

shown in Figure 2-2, limits flexibility to represent real-world complexity. Thus, Clark et al.

(2001) state that another of the main reasons for restructuring the model was to represent

the individual spatial elements of the hydrological system being modelled more explicitly,

together with enabling more flexible configurations of these spatial elements and the order of

execution of the hydrological processes. In addition, the ACRU 3 subcatchment numbering

system does not enable subcatchments to be easily subdivided after initial configuration.

Engineered water flows, such as inter-catchment transfers, and related water supply and

demand issues are increasing in importance as catchments are developed and pressure on

available water resources increases. As described in Section 2.1.1 and shown in Figure 2-3,

each subcatchment is simulated for the entire simulation period before water is cascaded to

the downstream subcatchment. This sequence of execution is computationally efficient, but

it has limitations when representing engineered flows between different subcatchments, as

water user requirements and water source availability need to be evaluated within the same

model timestep. Clark et al. (2001) explain that a parallel processing approach was required

17

such that each process on each subcatchment is executed each day before continuing to the

next day, as shown in Figure 2-4. Related to this was a need to enable more flexible

specification of operating rules for extraction of water from rivers and dams (Kiker and Clark,

2001b; Lynch and Kiker, 2001b).

Figure 2-4 Calculation order of subcatchments, processes and days in a parallel

processing approach

The ACRU model was developed as a daily timestep model and many of the subroutines

representing hydrological processes are designed to operate at a daily timestep. The

exceptions to this are the runoff hydrograph generation and flow routing subroutines that can

be run at timesteps between 30 minutes and one day. A daily timestep makes sense, as

many of the climate driven hydrological processes have a diurnal cycle which cannot be

adequately represented using a monthly timestep and the data required to run the model at

sub-daily timesteps is seldom available, especially at a large catchment scale. However,

technologies such as remote sensing are improving the availability of daily and sub-daily

data and so the model should ideally be able to make use of data at whatever time scale is

available to suit the purpose of each individual modelling study. Some catchment

characteristics such as land cover may change periodically during long simulation periods,

and the ACRU 3 version of the model included a means to specify these dynamic changes,

but this was not integrated into the usual model input files and was thus not easy to use.

Kiker and Clark (2001b) and Lynch and Kiker (2001b) identified the need for the model

structure to enable variable timesteps and data driven model input timesteps to be used.

Clark et al. (2001) stated that the restructured model should not only enable simulation of the

same hydrological processes at the same spatial and temporal scales as the ACRU 3

18

version, but that its structure should be designed to accommodate modelling at a wider

range of spatial and temporal scales, if required in the future.

The ACRU model has traditionally been used for planning purposes. To be suitable for

operational modelling, some modification and further development would be required,

including hot-starting, persistence of state variables and better handling of time series data

to accommodate the use of near real-time remotely sensed data and climate forecasts. The

term “hot-starting” refers to the ability to initialise the model with the values of state variables

determined from measurements or from previous simulations.

Research into suitable methods of restructuring the ACRU model began in 1998 and

resulted in the decision to use object-oriented design and programming techniques. The

object-oriented design technique has grown in popularity and usage since the early 1990s

and was accepted by the ACRU developers as an intuitive way of modelling complex real-

world systems, including water resources systems, in a conceptual manner (Clark et al.,

2001). Object-orientation also lends itself to the creation of models with a modular structure

and more explicit representation of water resource system components and processes

(Clark et al., 2001). Some characteristics of object-oriented programming languages, such

as inheritance and polymorphism, facilitate model designs that make models more

extensible (Kiker et al., 2006). Clark et al. (2001) concluded that object-orientation was an

appropriate technique for designing a physical conceptual model such as ACRU. In

addition, object-orientation would facilitate the development of a program structure to meet

many of the identified development requirements identified for ACRU. The Java

programming language was relatively new in 1998, but was selected for the implementation

of the new object-oriented structure of the ACRU model, as Java was designed for object-

oriented programming and offered the additional advantage that the code could be run on a

variety of computer operating systems.

As discussed in Section 2.1.3, the ACRU model uses simple text-based model input files.

One aspect of restructuring the ACRU model that was not clearly recognised at the time of

the initial restructuring was that a new model input data structure would be required to

complement the object-oriented model structure. This became evident after restructuring,

and the Extensible Modelling Language (XML) was identified as a suitable way to structure

the new model input data files.

As stated in Section 1.3 there is a need for multidisciplinary integrated modelling tools to

support IWRM. There are two approaches to developing these integrated modelling tools,

19

either by extending the functionality of existing models, or by linking existing domain specific

models. It would be impractical to develop ACRU, or any other hydrological model, to

include all the domains present in complex water resource systems. However, it was

recognised that there would be great value in implementing a suitable model coupling

mechanism in the ACRU model, through which it could be flexibly coupled to other existing

models representing different domains (Kiker and Clark, 2001b; Lynch and Kiker, 2001b).

This chapter has provided an overview of the concepts and structure of the ACRU model,

especially the ACRU 3 version of the model, the rationale for restructuring the model and

has also proposed some potential areas for further development. The ACRU 3 version is the

reference point against which the development of the object-oriented ACRU 5 version, which

was the main subject of this research, should be evaluated. The use of the object-oriented

programming technique for developing water resources models and its use in restructuring

the ACRU model are discussed in more detail in Chapter 3.

20

3 OBJECT-ORIENTED RESTRUCTURING OF ACRU

The concepts and structure on which the ACRU 3 version of the model was based and the

rationale for restructuring the model are outlined in Chapter 2. This chapter starts with an

introduction to the basic concepts of object-orientation and a brief review of literature related

to the suitability of object-orientation for modelling water resources systems. The object-

oriented restructuring of the ACRU model and the development of a complementary new

model input structure using XML is then described.

3.1 Brief Overview of Object-Oriented Modelling

The world can, to a large extent, be perceived as being composed of discrete, physical,

interrelated objects. Each of these objects has three main characteristics: identity, state and

behaviour. Some objects may be simple, while others are complex and are composed of a

hierarchy of smaller constituent objects. In the context of modelling, object-orientation may

be described as an approach to thinking about problems using models with structures based

on real-world concepts using hierarchical collections of discrete but interrelated objects that

are characterised by both their attributes and behaviour (Rumbaugh et al., 1991; Gärtner et

al., 2001; Bian, 2003). Object-oriented modelling is the abstract representation of real

objects in computer code, as they are perceived by humans, rather than a linear sequence

of calculations (Egenhofer and Frank, 1992; Silvert, 1993; Wang et al., 2005b; Bian, 2007).

The emphasis is on design and structure rather than the coding details (Cook and Daniels,

1994; Wang et al., 2005b). Object-oriented programming is the result of an evolution in

computer programming languages that started with assembly languages, the subsequent

progression to process-oriented languages and later to object-oriented languages (Wegner,

1990). Object-orientation provides a new and versatile paradigm for thinking about and

solving problems, and Wegner (1990) states that “Its universality as a robust representation,

modelling, and abstraction technique suggests that the object-oriented paradigm is

conceptually and computationally fundamental.”.

In the literature the terms Object-Oriented Analysis (OOA), Design (OOD) and Programming

(OOP) are used. These refer to three levels of abstraction, where: (i) OOA is the

development of a conceptual model of real-world objects, relationships and events, (ii) OOD

is the definition of a formal model of these real-world objects, relationships and events, and

(iii) OOP is the code implementation of the OOD in a programming language (Bian, 2003;

Bian, 2007). Thus, object-orientation can be applied to water resource modelling as: (i) a

21

means of representing the real-world system being modelled to promote understanding, and

(ii) a programming technique for implementation in computer code (Rumbaugh et al., 1991;

Bian, 2003). Object-orientation provides an opportunity to explore new methods of

representing complex hydrological phenomena (Wang et al., 2005b).

3.1.1 Basic Concepts of Object-Orientation

A few of the basic concepts of object-orientation including objects, classes, inheritance,

aggregation, association, polymorphism and encapsulation are explained briefly in this

section. Detailed explanations of the concepts on which object-orientation is based, and the

application of these concepts, can be found in books such as those by Rumbaugh et al.

(1991) and Booch (1994).

An object is defined by Rumbaugh et al. (1991) as “a concept, abstraction, or thing with crisp

boundaries and meaning for the problem at hand”. Objects have identity, attributes which

describe their state, and behaviour which can change the state of the object (Bian, 2003;

Bian, 2007). Neither real-world nor software objects can be uniquely identified by their

attributes or behaviour, and thus require a unique identity in order to be distinguishable and

persistent (Wegner, 1990; Rumbaugh et al., 1991). Object-orientation does not provide any

strict principles of how objects and their attributes, behaviour and relationships should be

defined, thus the conceptual interpretation and definition of objects will depend on the nature

of the problem and the judgment of the modeller (Rumbaugh et al., 1991; Bian, 2007). Bian

(2007) suggests five criteria for identifying spatial entities: (i) spatial scale, (ii) the existence

of a boundary, (iii) a common set of attributes, (iv) common behaviour or processes, and (v)

type of mobility. Bian (2007) then goes on to differentiate between spatial objects, which

have clearly defined physical boundaries, and spatial regions which are a portion of

continuous space with definable but non-physical boundaries, where both spatial objects and

spatial regions may be represented by software objects. However, Bian (2007) notes that

there is a danger that object-orientation may be applied inappropriately to non-discrete

phenomena.

Objects with the same attributes and behaviour can be represented by a common class,

which is an abstraction of the objects it represents (Rumbaugh et al., 1991; Bian, 2003; Bian,

2007). In object-orientation a class represents a blueprint, template or description of a

collection of similar objects, where objects are described as being instances of a particular

class, and the act of creating an object is referred to as instantiation (Wegner, 1990; Wang

et al., 2005a). However, some classes may be declared to be abstract, where an abstract

22

class can have subclasses but may not itself be instantiated to become an object. Silvert

(1993) describes the concept of classes, which are important in object-oriented analysis,

design and programming, as one of the most intuitive and useful characteristics of this

approach. Closely related to classes is the concept of interfaces. An interface is an object-

oriented design and programming entity that specifies a behaviour set. Any class that

implements an interface is obligated to implement the behaviour specified in that interface.

Inheritance is the sharing of attributes and behaviour between classes based on a

hierarchical relationship (Rumbaugh et al., 1991). Inheritance enables classes to be

organised into a hierarchy where subclasses inherit attributes and behaviour from their

parent class, known as their superclass, helping to reduce code redundancy (Egenhofer and

Frank, 1992; Bian, 2003; Bian, 2007; Molina et al., 2010). Generalisation occurs as one

moves up the class inheritance hierarchy, and specialisation as one moves down the class

hierarchy (Egenhofer and Frank, 1992; Gärtner et al., 2001). Single inheritance is a

simplification of the real-world as it is strictly hierarchical, where each class has only one

immediate superclass and belongs to only one hierarchy, however multiple inheritance is

difficult to implement and use, as complex rules are required to resolve clashes in cases

where attributes or behaviour with the same name are inherited from both superclasses

(Egenhofer and Frank, 1992). Inheritance is a powerful means of generalising models, and

the ability to reuse and modify code through inheritance is one of main advantages of object-

oriented modelling (Silvert, 1993). Inheritance enables “type of”, “kind of” or “is a”

relationships between objects to be specified.

The concept of composition refers to the description of the way in which objects are related

to each other, or organised, through inheritance, aggregation and association (Bian, 2003;

Bian, 2007). Aggregation, refers to the fact that an object can consist of other sub-objects,

in other words, objects may be composite (Egenhofer and Frank, 1992; Bian, 2003; Bian,

2007). Aggregation results in “part of” and “consists of” relationships. Association refers to

the existence of a relationship between two or more independent objects (Egenhofer and

Frank, 1992). Association enables the specification of specialised relationships between

objects that cannot be represented by inheritance or aggregation, they are “interacts with”

relationships (Bian, 2003; Bian, 2007).

Polymorphism is the mechanism that enables the behaviour of an object to vary depending

on the class of the object being acted on, the class of object performing the action or the

information received by the object (Rumbaugh et al., 1991; Silvert, 1993). Molina et al.

(2010) describe polymorphism as enabling objects to have different natures.

23

The concept of encapsulation refers to the containment of identity, attributes and behaviour

within objects (Bian, 2003; Bian, 2007). Encapsulation provides the ability to hide some

internal details of an object, and expose only those details required for interfacing with other

objects in a controlled manner (Silvert, 1993; Molina et al., 2010).

The Unified Modelling Language (UML) is a notation developed to visually describe object-

oriented models of real-world systems to facilitate communication and enable model designs

to be documented in a manner that is independent of the computer programming language

used to implement the model. A UML specification (OMG, 2017) is maintained by the Object

Management Group (OMG). UML class diagrams provide a static view of a set of classes

including attributes, behaviour, inheritance, aggregation and association. A brief overview of

the UML notation for class diagrams used in this thesis document can be found in Appendix

8.2.

3.1.2 Suitability for Modelling Water Resources Systems

Object-orientation is a powerful and transparent approach to water resources modelling

(Simonovic et al., 1997; Ghashghaei et al., 2013) and has increasingly been used for

development of water resource management software (Leone and Chen, 2007). Object-

orientation is a modelling tool that promotes understanding of the water resource system

being represented (Gärtner et al., 2001). Alfredsen and Saether (2000) state that not only is

object-orientation well suited to representing hydrological systems, but given the increasing

requirement for integration of models within hydro-informatic systems, object-oriented

modelling should provide clear advantages in the field of hydrological modelling.

IWRM requires a systems approach, taking into account systems and subsystems consisting

of collections of related components that interact with each other. Real-world systems,

including natural hydrological and ecological systems, have a structure that can be

represented in a natural, direct and intuitive manner using the object-oriented paradigm

which has its origins in the field of system simulation (Simonovic et al., 1997; Alfredsen and

Saether, 2000; Wang et al., 2005a; Wirth, 2006). Thus, object-oriented models, where real-

world entities are represented by programming objects that combine attributes and

behaviour, have a structure that strongly resembles the system being modelled (Silvert,

1993; Lafore, 2002; Wang et al., 2005a). The object-oriented approach to modelling focuses

on identifying the interrelated objects making up the application domain, and then fitting the

functionality around them, making such models more robust as they evolve (Simonovic et

al., 1997). This is in contrast to traditional procedural approach where the focus is on data

24

and model functionality, typically implemented as a linear sequence of calculations,

describing the manner in which variables values change with time (Wegner, 1990; Silvert,

1993; Wang et al., 2005a; Wang et al., 2005b). Thus, object-oriented modelling requires a

paradigm shift in the manner hydrological processes or events are conceptualised (Wang et

al., 2005a).

Kiker et al. (2006) observe that hydrological systems are complex in themselves, are

rendered more so by engineering and agricultural developments, and that further complexity

is added when simplified abstract representations of these systems are created in computer

code. Object-oriented design is one programming technique available to try to manage this

complexity, and to model hydrological systems in a more intuitive manner (Band et al., 2000;

Clark et al., 2001; Kiker and Clark, 2001a; Wang et al., 2005b). Object-orientation has

provided researchers with an approach that enables them to model systems that would have

previously been difficult to represent (Bian, 2007), and is a powerful conceptual tool for

describing complex hydrological processes and systems (Wang et al., 2005a; Wirth, 2006).

Object-oriented model design enables complex natural systems to be more closely

replicated due to the linking of objects and their actions (Wang et al., 2005a). Wang et al.

(2005a) state that using the object-oriented approach they were able to constrain complexity

by increasing simulation flexibility, and conclude that object-oriented design and the concept

of classes is a powerful conceptual tool for describing complex hydrological processes.

Conceptually object-orientation is based on the assumption that the real-world consists of

discrete physical entities and discrete processes and this is replicated in the data model

(Reitsma and Carron, 1997; Bian, 2003). However, natural phenomena are often

conceptually continuous, and this conceptual mismatch may lead to difficulties when

formalising representations of the environment using the object-oriented approach (Bian,

2003; Bian, 2007). The representation of continuous phenomena as conceptually discrete

entities is also a challenge in Geographic Information Systems (GIS). A typical approach, in

both GIS and object-oriented modelling, is to artificially partition spatially varied

environments to create objects consisting of landscape features with similar form and

function (Bian, 2003; Galton, 2004).

The object-oriented concepts of classes, inheritance, aggregation and association enable

the development of water resource models that are modular, extensible and flexible

(Martinez et al., 2008). The application of object-oriented design principles results in models

that are inherently modular, where a well-designed class and inheritance structure: (i)

simplifies the implementation of different modules containing application or location specific

25

modelling functionality, and (ii) enables separate parallel development of different modules

within a model (Silvert, 1993; Sydelko et al., 1999; Kiker et al., 2006). Inheritance and

polymorphism make object-oriented models easier to extend, whether adding either

improved algorithms or new functionality, without changes to existing classes, thus leaving

existing functionality intact (Sydelko et al., 2001; Bian, 2003; Wang et al., 2005a; Kiker et al.,

2006; Martinez et al., 2008; Kumar et al., 2010). Inheritance also reduces code length by

reducing duplication of code (Lafore, 2002; Wang et al., 2005b). Model structures based on

interrelated objects enable more flexible configuration of models which helps in constraining

complexity and in making models more versatile (Shane et al., 1996; Sydelko et al., 2001;

Lafore, 2002; Wang et al., 2005a; Kang et al., 2016). The object-oriented approach can

simplify the design of models leading to more efficient programming and lead to improved

maintainability of model code (Lafore, 2002; Wang et al., 2005b; Kang et al., 2016). There

are thus many advantages to the use of the object-oriented approach for hydrological

models, both in terms of representation of the system being modelled and as a method of

programming.

Although there were some applications of object-oriented programming in hydrological

modelling, there are no guidelines related to object-oriented design principles and how to

implement these in hydrological models (Wang et al., 2005a; Wang et al., 2005b; Kiker et al.,

2006; Kang and Merwade, 2011; Kang et al., 2016). In addition, literature describing object-

oriented hydrological models does not include details of the designs. Some possible

reasons for this are that: (i) many established legacy models may not have been

restructured using object-oriented design principles, (ii) models are coded in an object-

oriented programming language, but do not have an object-oriented design, and (iii) the

object-oriented designs of the models have not been described in published literature as the

design is proprietary or difficult to communicate in a concise manner. A few examples from

the literature, of water resource related models that have used the object-oriented design

approach, include the following:

 HEC-HMS - the Hydrologic Engineering Centre’s Hydrologic Modelling System for

rainfall-runoff simulation (Charley et al., 1995).

 Regional Hydro-Ecological Simulation System (RHESSys) - a spatially distributed

hydro-ecological model for simulating water, carbon, and nutrient cycling and transport

in catchments at a hillslope level (Band et al., 2000; Tague and Band, 2004).

 Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and

Streamflow (IHACRES) – a catchment-scale rainfall-runoff model that uses rainfall and

temperature data to predict streamflow (Croke et al., 2005).

26

 OBJect-oriented TOPographic-based (OBJTOP) - a hydrological model based on the

concepts of TOPMODEL (Beven and Kirkby, 1979), which is described as a semi-

distributed catchment-scale hydrologic model in which topography is assumed to be

the main driver of water flow through upland catchments, together with heterogeneous

rainfall and soil type (Wang et al., 2005a; Wang et al., 2005b).

 Regional Simulation Model (RSM) - an object-oriented, physically-based, hydrologic

model designed for the South Florida region (Lal et al., 2005).

 RiverWare - a generalised, flexible modelling tool for simulation and optimisation of

river and reservoir systems (Zagona et al., 2001; Frevert et al., 2006; Valerio et al.,

2010).

 STORE DHM – a storage release, grid-based, modular, distributed hydrologic model

for application in a GIS (Kang and Merwade, 2011; Kang et al., 2016).

3.2 Design and Development of an Object-Oriented ACRU Model Structure

A list of desired characteristics for a hydrological model, for use as a tool in IWRM, were

identified from literature and summarised in Table 1-1. The rationale for restructuring the

ACRU 3 version and the decision to use object-oriented design and the Java programming

language were discussed in Section 2.2. There were three broad objectives for the

restructuring: (i) greater flexibility in model configurations, (ii) a more extensible code

structure, and (iii) better data handling. A list of more specific design objectives for the

restructured ACRU 5 version of the model are shown in Table 3-1. The development of the

design objectives for the restructured ACRU model was to some extent an iterative process,

with a better understanding of the advantages of object-orientation and the modelling

requirements for IWRM being developed over time.

During the restructuring and further development of ACRU a key consideration was always

to, as far as possible, maintain the integrity of the ACRU model by not changing the

algorithms representing hydrological processes in which trust has been built and years of

research have been invested. Another key consideration was that the design of the new

model structure should not be constrained by the limitations of the old model data input file

structure.

27

Table 3-1 Design objectives for the restructured ACRU 5 version of the model

Greater Flexibility in Model Configurations

More explicit representation of the physical components of water resources systems, including the
concept of hydrological response units (HRUs) within subcatchments.

Better representation of real-world complexity through more flexible configuration of spatial elements
and the order of execution of components and processes.

A parallel processing approach, such that each process on each subcatchment is executed each day
before continuing to the next day to enable feedbacks between systems to be simulated.

Better representation of engineered water flows within and between different subcatchments, taking
into account water user requirements and water source availability within the same model timestep.

More flexibility in the configuration operating rules for extraction of water from rivers and dams.

Inclusion of the concept of water ownership to enable representation water use allocations.

A model structure that facilitates modelling water quality processes in addition to water quantity
processes.

Suitable for both water planning and operations type modelling.

A More Extensible Code Structure

More modular code structure with explicit representation of the hydrological processes enabling the
addition of new process representations or refinements to existing process representations without
affecting the rest of the model.

Easier addition of new model input variables and parameters (and metadata describing them)
associated with new hydrological process representations.

Better Data Handling

Provision for a wider variety of time series data including breakpoint data so that periodic changes in
catchment characteristics can be modelled within a simulation period.

Data aggregation and interpolation functionality to facilitate data driven model input timesteps.

The ability for the model to be hot-started, together with persistence of state variables, to facilitate
better model initialisation, especially for use in operational modelling.

The facility for different modelling scenarios to be easily and efficiently setup and run.

The ability for water balances of individual physical components to be easily queried and checked to
facilitate the compilation of water accounts.

Provide access to model variables and appropriate model timestepping execution control by third-
party software to facilitate the implementation of a model coupling interface, such as OpenMI, to
enable ACRU to be linked to other models and modelling tools for use in integrated modelling.

The design and implementation of an object-oriented structure for the ACRU model is

described in the following sub-sections. The author’s contribution to the conceptual design

and implementation is explained in the preface to this document. There were three main

phases to the development of the design:

 Initial conceptual design by Kiker and David (1998), which is briefly described in

Section 3.2.1 to provide the background for the design described in Section 3.2.2.

 Refinement of the conceptual design and implementation as the ACRU 2000 version

of the model. Additional minor refinements were made to the design in the ACRU 4

28

version in conjunction with implementing the XML-based model input file format.

These interim designs and implementations are not described in this document.

 Further development of the conceptual design and implementation as the ACRU 5

version, which are described in Section 3.2.2, amending identified limitations of the

ACRU 2000 and ACRU 4 versions.

3.2.1 Initial Design of the Model Structure

A simple way to represent real-world objects in an object-oriented model would be to create

a class for each type of object. Each class would contain instance variables describing the

class attributes and methods describing the class behaviour. For example, a class could be

created to represent a catchment, this class could have instance variables with simple data

types containing the area and other characteristics of the catchment, and one or more

methods containing algorithms describing the hydrological processes, such as total

evaporation, within the catchment. However, there are many possible ways to structure a

model using object-oriented design. The initial conceptual design by Kiker and David (1998)

is shown in its simplest form in the UML class diagram shown in Figure 3-1.

Figure 3-1 UML class diagram of the initial conceptual design for an object-oriented

structure for the ACRU model (after Kiker and David, 1998)

 * Refer to Section 8.2 for a guide to UML notation

29

In the initial conceptual design of a structure for ACRU, the use of object-orientation was

taken a step further. The initial conceptual design by Kiker and David (1998) included the

concept of MModel, CComponent, PProcess and DData classes, which are described below,

and also the associations between these classes. Hydrological systems are conceived as

being composed of a number of relatively discrete, but interrelated, physical components

such as catchments, rivers, dams, vegetation and soil. In the new object-oriented model

structure these physical components are represented by instances of the CComponent

class. A CComponent class can have other CComponent classes as subcomponents,

indicated by the “part of” relationship, for example, rivers and dams could be subcomponents

of a catchment. The attributes of the physical components of the hydrological system are

represented by instances of the DData class. This means that model variables and

parameters are objects in the object-oriented model structure, and can thus be added to the

model without needing to edit the code for the instance of CComponent that they describe.

Other advantages of using data objects, instead of simple data types, are that the data

objects can store metadata about the data values, such as units of measure, and enable

variable specific range and error checking to be performed. Instances of DData would have

a “part of” relationship with the instance of CComponent that they describe. Hydrological

processes, for example, evaporation or runoff, are represented by subclasses of the

PProcess class. An instance of PProcess may have an “association” relationship with one

or more instances of CComponent, from which it either obtains input data values or sets

simulated data values calculated within the process. In the initial design, both the

CComponent class and PProcess class are defined as being subclasses of the CNode

class, where the CNode class contains a set of instance variables and methods enabling

relationships between instances of CNode to be specified and queried. Instances of the

MModel class serve as the main container object for a model representing a specific

hydrological system. Through the “part of” relationship between the CNode class and the

MModel class, the MModel object consists of a collection of CComponent and PProcess

objects. The class names each start with a letter indicating the type of class enabling them

to be easily distinguished, thus the letters M, C, D, and P correspond to MModel,

CComponent, DData, and PProcess classes respectively and their subclasses. The terms

Model, Component, Data and Process are used to refer to the MModel, CComponent,

DData, and PProcess classes and their subclasses in a generic manner. Although this

structure was designed for the ACRU model it could conceivably be used to model other real

world systems.

This initial conceptual design was then developed further as described by Kiker and Clark

(1999). The main classes and interfaces that formed the foundation of the initial object-

30

oriented design of the ACRU model are described in more detail with the aid of UML class

diagrams in Appendix 8.3. The initial conceptual design by Kiker and David (1998) and

Kiker and Clark (1999) was largely a conceptual design using UML with very little

implementation in Java code. This conceptual design was then fully implemented in Java

code and almost the whole ACRU 3 version of the ACRU model was restructured from

procedural FORTRAN 77 code to object-oriented Java code based on this initial design,

resulting in the ACRU 2000 version of the model. Some aspects of the design of the ACRU

2000 model structure were published in Clark et al. (2001), Kiker (2001), Kiker and Clark

(2001b), Kiker and Clark (2001c) and Kiker et al. (2006). The implementation of the initial

conceptual design of the model structure resulting in the ACRU 2000 version of the model

was a learning process and was, to some extent, a compromise between completely

restructuring the model and constraining the model to certain concepts from the ACRU 3

version.

Application of the ACRU 2000 version built confidence in the restructured model and

highlighted some limitations, which included:

 The model input file format limited use of the new object-oriented structure of the

model to its full potential.

 A separate subclass of DData was created for each model variable, but most of these

subclasses did not include additional functionality.

 A separate subclass of CVegetation was created for each vegetation type with no

additional functionality.

 Representation of time series data was limited to daily and month-of-year data

structures, as in ACRU 3.

 The need to enable time series data input using other file formats, as the ACRU 3

formats were difficult to edit and were limited to a specific list of variables they could

contain.

 The need to handle state variables more explicitly and to be able to hot-start the

model.

 The need to handle water and different types of constituents, such as Nitrogen,

Phosphorus and sediment more explicitly.

Based on the identified limitations of the ACRU 2000 version two main areas of subsequent

development took place as part of this study: (i) new XML format model input files were

developed, as described in Section 3.3, with some changes to the model to read and use

these files, resulting in the ACRU 4 version, and (ii) the model structure was refined, which

31

included some parts of the design being simplified and others being expanded, resulting in

the ACRU 5 version described in Section 3.2.2.

3.2.2 Refined Design of the Model Structure

The main classes and interfaces that form the foundation of the ACRU 5 version of the

model are shown in Figure 3-2. A Model may consist of one or more main Components,

which may in turn consist of a set of nested sub-Components, each of which may have sub-

Components of its own. Each Component knows which Model it belongs to. Both

CComponent and PProcess are subclasses of the CNode class, sharing the functionality

related to the next type associations between instances of CNode. These next associations

each have a context that describes the type of association. For example, a river Component

may be related to a downstream dam Component using a next association with a

downstream context, and conversely the dam is related to the river in an upstream context.

In addition to the next associations, instances of CComponent may also have a special

association with an instance of CComponent that contains it. These containerComponent

relationships are used to set up a flexible containment structure, for example, HRUs and

river reaches within a subcatchment, or soil layers within a soil profile within an HRU. These

containment structures could have been set up using conventional object-oriented

aggregation relationships; however, these would not be flexible and would thus have been

very ACRU specific.

Both MModel and CComponent implement the IDataContainer interface, thus, in addition to

using Data objects to describe the characteristics of Component objects, a Model object may

also have one or more Data objects assigned to it to represent general modelling options,

parameters and variables. Conceptually, matter, such as water, nitrogen, phosphorus,

sediment or biomass, fits somewhere between Components and Data. Thus, the

RResource class was included in the design. Each Component may contain one or more

modelled Resources, representing water and other water quality related constituents. The

RResource class uses a special set of Data classes to describe a resource including

quantity, location and ownership as states at any point in time during a simulation. The

Resource classes have names starting with the letter R.

32

Figure 3-2 ACRU 5 design: main classes and interfaces

 * Refer to Section 8.2 for a guide to UML notation

 * Refer to Section 8.4.1 for a description of the Java generic types

Each Model has a list of Process objects and each Process object is aware of which Model

object it belongs to. Components, usually Components representing spatial features such

as catchments, HRUs and waterbodies, may each have a reference to a Process object,

which is the first Process that should be run for the Component in each timestep. The first

Process and subsequent Processes are related using CNode next associations, which in

effect creates an ordered list of Processes to be run for a Component at each timestep.

An additional category of classes, known as the Control classes, was included in the design,

and the names of these classes all start with the letter A. The Control classes are used to

control the initialisation and running of an instance of MModel. Each instance of MModel is

associated with: (i) an instance of AModelCreator to initialise an instance of MModel with its

33

constituent Component, Data and Process objects, (ii) an instance of AModelInput to

coordinate reading in model input files and making the input available to an instance of

AModelCreator, and (iii) an instance of AModelOutput which creates the model output files

and coordinates the writing and saving of these files.

In the ACRU 5 version more explicit relationships between the classes were defined and

extensive use was made of Java generic typing. The generic types used in Figure 3-2 are

described in detail in Appendix 8.4.1. The root package name ACRU_New was used

temporarily for the ACRU 5 version, but will be replaced by the package name ACRU. Each

of the main class categories Model, Control, Component, Data, Resource and Process is

described in more detail in Sections 3.2.2.1 to 3.2.2.6.

3.2.2.1 Model classes

The abstract MModel class is the generic superclass for one or more model specific

implementations, thus, in addition to the ACRU model the abstract MModel class could be

used as a foundation for the development of other time-stepping models. A model specific

implementation of MModel acts as a container for a collection of Component, Resource,

Data and Process objects that represent the real-world system being modelled. The

MModel class has a Java main method, making it the starting point for model instantiation

and execution. The main Model classes of the ACRU 5 version of the model are shown in

Figure 3-3. The MModel class includes methods to: (i) initialise a model by reading in data

and creating the appropriate Component, Data and Process objects, (ii) run the model, one

timestep at a time, for the specified simulation period, and (iii) finalise the model by storing

state data and closing model output files.

In real-world hydrological systems different processes occur simultaneously throughout a

spatial and temporal continuum. In the ACRU model the spatial continuum is divided into

discrete spatial units based on their hydrological characteristics. In an instance of

MAcruModel the computationOrder instance variable contains a list of Component objects,

representing spatial units, in the order in which they should be simulated for each timestep,

and each Component has an ordered list of Processes. All the runoff generating land units

are simulated first followed by the flow reach units in flow order starting with the upstream

reaches and ending with the reach that exits the most downstream catchment.

34

Figure 3-3 ACRU 5 design: Model classes

 * Refer to Section 8.2 for a guide to UML notation

An important refinement was the inclusion of the runTimeStep method to explicitly run the

model for a single time-step. The need for a method to explicitly run a single time-step was

recognised when creating an OpenMI linkable component wrapper for the ACRU model, as

this is one of the key requirements indicating suitability of a model to be made OpenMI

compliant using the wrapper approach as described in Section 4.3.2. The abstract

MAcruModel class was created to act as a superclass for one or more potential variations of

the ACRU model. The MAcruXml class was created to represent a variation of the ACRU

model that reads in model input files formatted using an XML schema developed specifically

for the ACRU model (Section 3.3.1) and an XML ACRU configuration file (Section 3.3.2).

The MAcruXml file has specific implementations of the initialiseModel, runModel and

runTimeStep methods.

3.2.2.2 Control classes

The main Control classes are shown in Figure 3-4. For each of the Model classes there are

associated model input, creation and output classes. The AAcruXmlModelInput class

contains code used to open and read the XML formatted model input files. The

35

AAcruXmlModelCreation class contains code that uses information in the XML model input

file (Section 3.3.1) and the model configuration file (Section 3.3.2) to configure an instance of

the MAcruXml class with the appropriate Component, Data and Process objects for a study

site. The AAcruXmlProcesses class specifies, together with options stated in the model

input files, which Process objects are to be created for each Component and the order in

which they are to be run. The AAcruXmlModelOutput class contains code to create the

model output files and control the writing of model output values to these files.

Figure 3-4 ACRU 5 design: main Control classes

3.2.2.3 Component classes

The design of the Component class structure was refined further for the ACRU 5 version of

the model. The CComponent class is shown in Figure 3-5. Each instance of CComponent

knows which container CComponent it is a part of, if any, and also contains a list of the

immediate sub-Components of which the instance is comprised. The Component classes

that represent the main spatial components of a hydrological system are shown in Figure

3-6. The abstract CSpatialUnit class is a superclass for all the Component classes that

represent the spatial entities within a hydrological system; those that would typically be

represented as a region, line or point on a map. In the ACRU 5 version of the model, the

containment and association relationships between Components are specified in the model

input file (Section 3.3.1) and the model configuration file (Section 3.3.2), and are not

hardcoded in the Component classes. This input file based configuration enables the

creation of different models or different model configurations without changing the

36

Component classes. However, this means that the containment and association

relationships between Components are not shown in the UML class diagrams.

Figure 3-5 ACRU 5 design: main Component classes

The abstract CLandSegment class represents units of land on which runoff is generated,

and the abstract CReach class represents reach segments of the flow network. The CHRU

(hydrological response unit) class represents ordinary portions of land. The CHRU class

typically represents portions of land with natural vegetation or dryland crops as a land cover.

The CSpecialRegion subclass of CLandSegment is an abstract superclass for a set of

classes that represent portions of land for which the land cover/use requires specialised

Process classes to be used. These specialised regions include impervious areas, wetlands,

riparian zones and irrigated areas. The concept of catchment Components was developed

further in the ACRU 5 version. The CSpatialUnit class includes subclasses named

CCatchment and CSubCatchment. An instance of the CSubCatchment class acts as a

container for the instances of CLandSegment and CReach that together represent the

spatial subcomponents of a subcatchment. An instance of the CCatchment class acts as a

container for either: (i) a set of instances of CSubCatchment representing subcatchments, or

(ii) a set instances of CCatchment representing smaller nested catchment areas within the

catchment being represented. This system of catchments and subcatchments enables the

conceptual representation of physical hydrological catchment areas contained within each

other, and also enables the aggregation of modelled variables such as in catchment-scale

water resource accounts.

37

Figure 3-6 ACRU 5 design: main spatial Component classes

The CReach class has two subclasses: CDam representing impoundments that form part of

the flow network, and the abstract CChannel class representing all other flow reaches. The

CChannel class has subclasses; the CRiver class represents river reaches and the

CChannelNode class represents the connecting points (nodes) between river and dam

38

reaches. The CChannelNode class is also used to represent points where: (i) runoff enters

the flow network, and (ii) where engineered inflows to, and outflows from, the flow network

occur. Subclasses of the CChannelNode class represent specialised nodes such as in-

stream flow requirement (IFR) sites and nodes where observed flow values are used to

replace simulated flow values. The CCatchmentNode and CSubCatchmentNode classes

were included as specific subclasses of CChannelNode to represent the flow node at the

downstream exit of catchments (CCatchment) and subcatchments (CSubCatchment)

respectively. The CSourceSinkNode class represents external sources of water into the

catchment area being modelled and external sinks of water out of a catchment, such as

inter-catchment transfers into or out of a catchment. The CWaterTransfer class is used to

represent engineered transfers of water between Components, such as the transfer of water

from a dam to an irrigated area. The CWaterTransfer class has a specialised subclass

CIrrigationSystem which is associated with a CIrrigatedArea class and holds water received

from a water source until it is applied to the irrigated area. The CUrbanWaterUser class is

used to represent urban water users.

An example is shown in Figure 3-7 of how a spatial unit of land, such as an HRU, is

represented conceptually using Component classes both in a spatial sense and as a set of

vertical subcomponent layers. Spatially an instance of the CHRU class would be part of an

instance of the CSubCatchment class which in turn would be part of an instance of the

CCatchment class. An instance of CHRU could typically be composed of several vertical

subcomponent layers such as instances of CClimate, CLandCover, CSoil and

CGroundwater. The subcomponents of the CWetland, CRiparianZone and CIrrigatedArea

Components are represented in a similar way to CHRU with some small variations. The

subcomponents of the CImperviousArea components are different to those of CHRU, as

described briefly in Appendix 8.4.2.

An instance of the CClimate class is used to represent the climate or atmosphere above a

unit of land, and it delivers precipitation and receives evapotranspired water. Climate

variables such as rainfall, evaporation potential and temperature are important inputs to a

hydrological model, however, the availability of climate data at a suitable spatial scale is

often a problem and availability also varies between study catchments. Instruments such as

rain gauges and evaporation pans generally have a sparse spatial distribution and it may be

necessary to use data from the same instrument to represent the climate in several

surrounding catchments. On the other hand the estimation of climate variables using remote

sensing may enable better representation of the spatial variability of climate variables. Each

instance of the CSpatialUnit class may optionally have an instance of the

39

CReferenceClimate class as a subcomponent, such that in some cases each individual

instance of CHRU may have its own individual instance of CReferenceClimate, while in other

cases all the instances of CHRU belonging to a subcatchment may be associated with a

single instance of CReferenceClimate which is a subcomponent of the subcatchment. This

arrangement of CClimate and CReferenceClimate also serves the purpose of reducing

repetition of climate datasets in memory in cases where instances of CReferenceClimate are

shared.

Figure 3-7 ACRU 5 design: CHRU subcomponent Component classes

The land cover on an HRU would typically be some sort of vegetation, represented by the

generic CVegetation class and, in addition, there may be a plant residue layer on the soil

surface, represented by the CPlantResidue class. In instances where it is necessary to be

able to distinguish between different vegetation types, a Data object can be used within

instances of CVegetation to identify these different vegetation types. Typically in ACRU

each instance of CHRU would be associated with only one instance of CVegetation,

representing one vegetation type, however, in the ACRU-Veld module (Kiker and Clark,

2001a) each instance of CHRU may be associated with more than one instance of

CVegetation.

An instance of CSoil could be composed of one or more soil layers, where the abstract

CSoilLayer class has subclasses representing more specific types of soil layer including: (i)

40

CSoilSurfaceLayer representing a very thin layer of soil near the surface of a land unit, (ii)

CHorizon representing conceptually discrete soil layers with different hydrological properties,

and (iii) CIntermediateZone representing a soil layer between the soil horizons and the

groundwater store. Typically in the ACRU model just a topsoil horizon and a subsoil horizon

are represented. The CSoilSurfaceLayer class was introduced for use in the new ACRU-NP

nitrogen and phosphorus modelling module (Campbell et al., 2001) where the modelling of

chemical reactions and nutrient transport near the surface of a land unit are important.

3.2.2.4 Data classes

The Data classes in the ACRU 2000 version were developed to duplicate, to a large extent,

the data structure used in the ACRU 3 version. However, further development of the model

highlighted many shortcomings of the structure of the ACRU 2000 version’s Data classes

and the handling of data, including:

 the creation of a Data class for every parameter and variable in the ACRU model,

 only daily and month-of-year time series were possible,

 the storage of values for state variables was not explicitly provided for, and

 there was no flexibility for parameters and variables to be temporally dynamic.

In the ACRU 2000 version the DData class and it’s more immediate subclasses provided

most of the data handling functionality and the subclasses of these classes, representing

specific ACRU model parameters and variables, provided very little if any additional

functionality. The intention was that: (i) the class names of these specific Data subclasses

would be used to identify parameters and variables in the model code, and (ii) that these

classes would provide variable specific range checking, though this was not extensively

implemented in the ACRU 2000 version. However, the creation of these numerous

subclasses to represent new model parameters and variables was onerous and, in most

cases, pointless as no additional functionality was provided.

For the above reasons the design of the Data classes was extensively restructured for the

ACRU 5 version, as shown in Figure 3-8 and detailed in Clark and Smithers (2013). The

new Data class structure was designed to provide a hierarchy of powerful and flexible non-

abstract Data classes to which parameter or variable identities, data ranges and other

attributes can be assigned when they are instantiated as objects during model setup.

Parameters and variables are now identified using the id, name and alias attributes of the

new DData class, instead of by the Data class name. The development of the new XML-

based model input and configuration files, described in Section 3.3, was an important part of

41

implementing this new data class structure. This resulted in the elimination of several

hundred Data classes from the ACRU model and made the model more extensible as it is

less onerous to add new parameters and variables.

Each Data object is associated with a Data container, such as CComponent or MModel,

which both implement the IDDataContainer interface. In addition to the identification

attributes the DData class includes several attributes that are used to describe the model

parameter or variable being represented. For example, the maximumValue and

minimumValue attributes enable simple range checking for variables containing numerical

values. The parameterType attribute specifies whether a model parameter or variable is: (i)

a model input, (ii) a model output, or (iii) a state variable which is inherently both a model

input and a model output variable. Better provision has been made for different data

structures and data value types in the ACRU 5 version of the Data classes, which are

described in more detail in Appendix 8.4.3. The valueType attribute specifies the data value

type, for example: string, integer or double precision floating point value types. There are

attributes describing the data structure, for example: a single value or a collection of values,

where a collection of values could be an array or a lookup table.

Figure 3-8 ACRU 5 design: main Data classes

The abstract DData_State class extends the DData class and acts as the superclass for all

Data classes that store state type data, that is, data that persists from one model timestep to

the next. Examples of state variables are variables representing water stored in a dam or

within a soil layer. Previously the ACRU model required a suitable warm up period at the

start of the time period being simulated so that certain state variables, such as the

groundwater store, had time to stabilise. Initialising these state variables would be useful

when using ACRU for planning purposes and essential if ACRU is to be used in future for

assessing water operations scenarios using forecast climate data and then updating this with

near real-time data as it becomes available. This initialisation of state variables to a specified

point in time is termed “hot-starting”. The new model input file structure, together with the

42

DData_State class and improved handling of time series data within the model, especially

breakpoint time series, has made it possible to hot-start the model.

The new Data structure of the ACRU 5 version also provides better handling of time series

data and more flexibility with regard to the types of time series that can be represented.

Each instance of DData may store either a constant value (time invariant in the context of

the modelled scenario) or a time series of values. The DTimeSeries class was developed to

provide functionality for handling time series data. Each instance of DTimeSeries contains

one or more data points, where each data point is an instance of the DTSDataPoint class. A

DTSDataPoint object stores the following: (i) the date-time of the data point, (ii) a data value,

and (iii) an optional data quality flag. The details of these classes are described in more

detail in Appendix 8.4.3.

Often there are attributes of a hydrological system that are typically assumed to be constant

for the duration of a modelled scenario, for example, land cover. However, in some

instances it may be important to model intermittent changes in such attributes. The ACRU 3

version made provision for modelling certain model variables dynamically through the use of

a dynamic input file specifying breakpoint values, but this feature was not included in the

ACRU 2000 version. One disadvantage of the dynamic input files in the ACRU 3 version

was that working with these files was perceived by users to be difficult as these files were

structured differently to the main model input files and data had to be entered into these files

manually. The new model input file structure and better handling of time series data within

the model, especially breakpoint time series, has made provision for these dynamic

variables to be represented in the model input files and internally in the model, as either

constant values or as a time series of values, in the same manner as all other variables.

In the ACRU 5 version extensive use has been made of generic typing in the Data classes.

Generic typing, which was not available in Java when the ACRU 2000 version was created,

has helped simplify and improve the type safety of the Data classes. The generic types are

described in Appendix 8.4.1.

3.2.2.5 Resource classes

Conceptually the ACRU model’s Component objects represent the physical components of a

water resource system and Data objects represent the attributes of the physical

components. Matter such as water could potentially be represented in ACRU either: (i) as a

physical entity using Component objects within container Component objects, or (ii) as a

43

Component attribute using Data objects as was done with DFluxRecord in the ACRU 2000

version. In the ACRU 5 version water, sediment and nutrients are collectively referred to as

“resources” and a separate set of Resource classes have been added to the model. These

Resource classes are conceptually similar to Component classes in that they represent a

physical entity with Data attributes, but contain specialised functionality to record resource

storage, influxes, outfluxes and ownership. The main Resource classes and their

relationships to CComponent and DData classes are shown in Figure 3-9.

Figure 3-9 ACRU 5 design: main Resource classes

The RResource class has a resourceTypeID attribute that is used to identify the type of

resource, for example “WATER”, “SEDIMENT” or “NITRATE”. Each instance of RResource

belongs to an instance of CComponent, which is the container of the resource. Each

instance of RResource is associated with five Data objects:

 an instance of DData_State which stores the resource quantity that exists within the

container Component at any point in time during the simulation period,

 an instance of DData which stores the individual influxes of the resource to the

container Component during a timestep and the source Components of these influxes,

44

 an instance of DData which stores the individual outfluxes of the resource from the

container Component during a timestep and the destination Components of these

outfluxes,

 an instance of DData_State which stores the ownership of portions of the resource

within the container Component by owner Components, and

 an instance of DData_State which stores the quantities of the same resource type that

the container component has ownership of, but which is stored in other instances of

CComponent.

The IResourceChangeObserver is an interface that can be implemented by Process classes

to initiate an action when the quantity of a specified resource type in a specified resource

container Component object changes. The RResourceRequest class is used in conjunction

with the RResource class to enable Component objects to order quantities of a resource

from another Component object. For example, an instance of CIrrigatedArea may send a

request for a specified quantity of water to an instance of CDam, and the requested quantity

may be supplied from unallocated water in the dam or from water in the dam that has

previously been allocated to a specified owner Component object. A RResourceRequest

class contains several attributes to store the following information:

 the type of the resource being requested, for example “WATER”;

 the quantity of resource requested (the amount actually supplied may be less than the

requested amount, depending on availability at the source);

 the priority of the request (a request with requestPriority=1 has the highest priority,

followed by a request with requestPriority=2, and requests with the same priority share

resources equally);

 the source Component object which will provide the requested resource quantity if

possible;

 the destination Component object to which the requested resource quantity will be

supplied;

 a list of Component objects specifying the supply path through which the requested

resource will move from source to destination;

 the Component object within the supply path through which the requested resource is

currently travelling;

 the Component object which owns the requested resource at the source Component

object; and

 the Component object to which ownership of the requested resource will be transferred

when supply commences.

45

These new Resource classes are an improvement over the previous ACRU 2000 system of

DFluxRecord classes as they: (i) are conceptually more intuitive, (ii) enable the state of

resources to be more easily persisted in the XML-based model input files as the existing

functionality for DData_State objects is used, and (iii) are more extensible as new resources

can be represented by simply specifying a new value in the resourceTypeID, instead of

having to create a new subclass for each resource type. Resources consisting of discrete

entities such as livestock could also be modelled.

3.2.2.6 Process classes

The PProcess class, shown in Figure 3-10, has two important methods: (i) the initialise

method and (ii) the runProcess method. The initialise method is empty in PProcess, but may

be overridden as required in subclasses. The initialise method is called for every instance of

PProcess, after model initialisation and just before the simulation starts, to perform any

Process initialisation that may be necessary. The abstract runProcess method must be

implemented in subclasses. The runProcess method is called for every instance of

PProcess, for every simulation timestep, to execute the Process specific algorithms. The

Process classes in the ACRU 5 version required some minor changes to implement the use

of the new Data and Resource classes. Two additional, and more significant, changes that

were made to the Process classes were: (i) an improved specification of the Data objects

required by each Process in the setRequiredData method, and (ii) the addition of a similar

specification of the Resource objects required within a new setRequiredResources method.

As shown in Figure 3-10, two classes were created for this purpose, PProcessDataItem and

PProcessResourceItem. The PProcessDataItem class stores: (i) a reference to the Data

container (an instance of MModel or CComponent), (ii) the Data ID, and (iii) whether the

Data object is an input parameter or variable in the context of the associated process, or an

output, or both as is often the case with state variables. The PProcessResourceItem class

stores: (i) a reference to the Component object containing the Resource object, (ii) the

resource type ID and (iii) whether the Resource object is an input, an output or both. The

setRequiredData and setRequiredResources methods are declared in the PProcess class

and overridden in individual subclasses, which enables these methods to be called from the

AAcruXmlModelCreator class to determine the data requirements of each Process object

that forms part of the model.

46

Figure 3-10 ACRU 5 design: main Process classes

All Process classes that represent the flow of water, including rainfall and evaporation,

implement the IWaterFlow interface and thus have a flowWater method. Typically the

runProcess method will call the flowWater method, which contains the main process

algorithm, though in some cases the flowWater method may in turn call one or more other

methods. The main abstract subclasses of the PProcess class, which relate to the flow of

water, are shown in Figure 3-11.

Figure 3-11 ACRU 5 design: PProcess class and main abstract subclasses related to the

flow of water

An example of how Process, Component and Data classes are related is shown in Figure

3-12. A Component object may have an ordered list of associated Process objects. The

PSatDownwardFlow class models the saturated downward movement of water between soil

47

layers. The PSatDownwardFlow class implements the IWaterFlow interface and the

flowWater method is called by the runProcess method. The PSatDownwardFlow class acts

on all the CSoilLayer objects that form part of a CSoil object and the CGroundwater object

below the CSoil object. The flowWater method retrieves input values from each CSoilLayer

object for: (i) Data attributes such as the depth, drained upper limit, wilting point, response

factor, and (ii) Resource attributes such as current soil moisture storage. The method then

calculates whether there is any movement of water, and if so, adjusts the soil moisture

storage in the RResource (WATER) objects in both the source and destination CSoilLayer

objects.

Figure 3-12 ACRU 5 design: example of Component, Data, Process class relationships

During model initialisation the typical sequence of events is as follows: (i) Component

objects are created, (ii) Process objects are created, and the setRequiredData and

setRequiredResources methods are called for each process, (iii) the required Data objects

are created and, (iv) the initialise method is called for each Process object. During the

model simulation phase the typical sequence of events is as follows: (i) for each Component

object in the computationOrder list, for each Process object in a Component object’s

processes list, the Process object’s runProcess method is called, which may in turn call

other methods within the Process object or associated Process objects, (ii) timestep data for

48

model output variables is saved to the model output files, (iii) the simulation advances to the

next timestep.

In real-world hydrological systems different processes occur simultaneously throughout a

spatial and temporal continuum. In ACRU, hydrological systems are reducted to discrete

Component and Process objects which are assigned to a computation order, first by

component and then by process. Mostly this simplification is acceptable, though while

restructuring ACRU it was found that there were two situations where this simplification

created difficulties for modelling. The first situation is where there are feedbacks between

different Processes in different Components. An example of this occurs when calculating an

irrigation requirement for an irrigated area Component, then calculating irrigation supply at a

dam Component, then finally irrigation application on the irrigated area Component for which

computation for the simulation timestep has already been complete. The second situation is

where there are feedbacks between different Processes for different Resources. This

occurs when, for example, water flows and nutrient flows are calculated in different

Processes, but the nutrient flow depends on the water flow in a specific water flow Process.

Solutions to both examples were created by adding specialised code to the ACRU model.

An alternative solution, recommended for further investigation, would be to develop an

algorithm to determine the computation order of Process objects belonging to different

components, based on data requirements, as a more flexible alternative to the hardcoded

Process ordering rules.

3.3 Design and Development of an XML ACRU Model Input Structure

The ACRU 3 and ACRU 2000 versions of the model use relatively simple text-based model

input files to store: (i) a few global modelling options, (ii) the model input parameter and

variable values for each subcatchment, and (iii) the flow network connectivity between

subcatchments. For the ACRU 3 version the main model input file was a single text file. For

the ACRU 2000 version there was a single “control” file containing global options, and

references to a set of subcatchment input files, with one file for each subcatchment,

containing model input parameter and variable values. Both versions used additional

separate text-based files to store daily time series information. Some of the disadvantages

of these model input files for use with the restructured object-oriented design of the ACRU

model, especially the ACRU 5 version, were that the flat text structure:

 was difficult to map to ACRU 5 Components and Data objects,

49

 was suitable for the simpler subcatchment view (Figure 2-2) of the ACRU 3 version,

but did not allow for the more flexible and complicated subcatchment internal

configurations possible with the ACRU 5 version, and

 included values for all parameters and variables for each subcatchment even if not

required.

As discussed in Section 2.2, subsequent to the initial object-oriented restructuring of the

ACRU model it was recognised that a new model input file data structure would be required

to complement the object-oriented model structure, enabling the full potential of the new

object-oriented model structure to be used. XML was identified as a suitable way to

structure these files. XML files are text-based, platform independent files, that enable model

input information and data to be structured in a manner that reflects the structure of the

model. XML files are extensible and can be easily serialised into memory to populate the

model. Another advantage of XML files is that their structure may be declared in, and

checked against, an XML Schema file which acts as a form of XML file template. The initial

designs of these XML-based model input files for ACRU were first described in Clark et al.

(2009) and Clark et al. (2012b), and some refinements related to the ACRU 5 version of the

model were described in Clark (2013). The design of the XML-based model input file

structure sought to address four main requirements:

 to complement the object-oriented structure of the ACRU model thereby enabling the

restructured model to be used to its full potential;

 provide a data model that is extensible, such that, new model parameters or variables

can be accommodated without changes to the data model, the ACRU model engine or

to the software utilities that read from or write to the data model;

 store actual data values or references to where data values are stored, such as in a

separate database; and

 enable storage of additional information that describes the model parameters or

variables for use in graphical user interfaces (GUI) and other software tools.

Early in the design process it was recognised that two different XML-based files were

required: (i) one file to store specific Component configuration information and Data values

for a study catchment, and (ii) one file to store general metadata type information about the

Component, Resource and Data types. The structure of the first of these files is specified in

an XML schema referred to as the ModelData schema, which is described briefly in Section

3.3.1. All the XML-based model input files used with the ACRU 5 version must conform to

50

this ModelData schema. The structure of the second type of file is specified in the

ModelConfiguration XML schema, which is described briefly in Section 3.3.2.

Although the XML-based model input files are readable and editable in a simple text editor,

they are less readable than the older ACRU flat text file formats and thus a software library

named the XmlModelFiles library, described in Appendix 8.5.3, was developed to assist in

developing software tools to create and edit model input files. In addition a software library

known as the ModelDataAccess library, described in Appendix 8.5.4, was developed to

provide a uniform set of data readers and writers for data, especially time series data, stored

outside, but referenced by, the model input files. The Configuration Editor tool, described by

Clark et al. (2009) and Clark et al. (2012b), was developed to provide model users with a

graphical user interface enabling them to visually create and edit ACRU model input files.

However, the development of the Configuration Editor tool was not part of this study. The

various file types and software tools related to the ACRU 5 version of the model are shown

in Figure 8-14 in Appendix 8.5.

Although the ModelData schema, ModelConfiguration schema, XmlModelFiles library,

ModelDataAccess library and Configuration Editor were designed and developed primarily

for the ACRU model, they were designed in such a way that they could easily be applied to

other models based on the same design. An advantage of using XML files is that they are

programming language and platform independent.

3.3.1 ModelData Schema

The ModelData schema provides a data model describing the structure of an XML-based

model input file that complements the object-oriented design of the ACRU model. An

implementation of the ModelData schema will be referred to as a “ModelData file”, therefore

a ModelData file is a populated XML file that obeys the ModelData schema. A different

implementation of the ModelData schema would be used for each configuration of the ACRU

model, that is, one XML model data file for each study catchment. The ModelData schema

must be used in conjunction with the ModelConfiguration schema (Section 3.3.2). The root

element of the ModelData schema, Model, and its main sub-elements are shown in a

simplified schema diagram in Figure 3-13. There are many similarities between the main

elements in the ModelData schema and the main ACRU 5 classes shown in Figure 3-2. A

Model element may contain several Component elements, each of which may contain zero

or more child Component elements. Each Component element contains a list Data elements

containing modelling parameter and variable values describing the ACRU Component. The

51

ModelInfo element contains a list Data elements containing general model parameter and

variable values. The Model element also contains a list of Relationship elements describing

relationships between ACRU Components. The ModelData schema is described in more

detail in Appendix 8.5.1

Figure 3-13 The Model element and main sub-elements of the ModelData schema

3.3.2 ModelConfiguration Schema

The ModelConfiguration schema complements the ModelData schema by providing a data

model for storing information describing permitted component configurations and

relationships and also metadata type information about model parameters and variables for

use in the ACRU model and associated software utilities such as the Configuration Editor. A

single implementation of the ModelConfiguration schema would be used for all

configurations of the ACRU model. An implementation of the ModelConfiguration schema

will be referred to as a “ModelConfiguration file”, therefore a ModelConfiguration file is a

populated XML file that obeys the ModelConfiguration schema. The root element of the

ModelConfiguration schema, ModelConfiguration, and its sub-elements are shown in Figure

3-14. The ModelInfo element may contain several DataDef elements containing metadata

describing general model parameters and variables. The ModelConfiguration element may

contain one or more ComponentType elements representing the different types of physical

components making up the hydrological system being modelled (e.g. subcatchments, rivers,

dams, vegetation or soil horizons). Each ComponentType elements contains: (i) a list

DataDef elements containing metadata describing parameters and variables, and (ii) a list of

ResourceDef elements describing resources that might be stored in a model Component of

that type. The ModelConfiguration element also contains a list of ResourceType elements

describing the types of resources that can be modelled. A list of RelationshipType elements

describes the relationship types that may be configured between different types of

Components. The ComponentConfiguration element contains information about which types

52

of Components may be configured as subcomponents of other types of Components and the

relationships that can or must exist between different types of Component. The

ModelConfiguration schema is described in more detail in Appendix 8.5.2.

Figure 3-14 The ModelConfiguration element and main sub-elements of the

ModelConfiguration schema

3.4 Development of a Water Accounting Module for ACRU

Clark (2015b) describes the development of a water use quantification and accounting

methodology for South Africa using a hydrological modelling approach, as summarised in

Appendix 8.8. As part of the methodology a new Accounting module was developed for the

ACRU 5 version of the model to create catchment-scale water resource accounts. The

purpose of water accounting is to quantify and communicate water stocks, inflows,

depletions and outflows for an entity, which may be a factory, an urban water reticulation

system or a catchment. The term ‘water resource accounting’ was used by Clark (2015a), in

the context of water accounting at a catchment-scale, to include the water balance and all

the significant water fluxes in the hydrological cycle within a catchment. Based on a review

of water accounting frameworks by Clark et al. (2015), the Water Accounting Plus (WA+)

water accounting framework, described by Karimi et al. (2013), was selected by Clark

(2015b) as being most suitable for catchment-scale water resource accounting. A modified

version of the WA+ Resource Base Sheet was included in the new ACRU Accounting

module and there is scope for other accounting sheets to be included in the module. The

53

object-oriented design of the restructured model facilitated the development of the

Accounting module in several ways, including:

 Modelling of several different land use classes per subcatchment as HRUs enabling

sectoral water use to be estimated and represented.

 Representation of inter-catchment transfers, which required parallel processing, and

daily flow volumes for these transfers instead of mean month-of-year flow values.

 Representation of nested catchments using objects and information about flows

between catchments enabled easy aggregation of catchment accounts from sub-

Quaternary Catchment level to Primary Catchment level.

3.5 Discussion

The algorithms representing hydrological processes in ACRU were developed based on

research conducted over many years, primarily in South Africa, making the model a valuable

repository of knowledge. However, the physical conceptual nature of ACRU has enabled it

to also be applied in other countries and for a wide range of different purposes. The

restructuring of the model sought to build on this strong foundation by applying object-

oriented design techniques to make it easier to add new functionality to the model and to

enable more flexible configuration of the model. The restructuring was more than a simple

translation from one computer language to another; the object-oriented approach resulted in

a different way of conceptually representing the water resource systems being modelled. All

of the design objectives for the restructured ACRU 5 version of the model, listed in Section

3.2, have been achieved as a result of the object-oriented restructuring and the unique and

innovative design. The first three objectives of the research study, (i) to (iii) listed in Section

1.4, have been achieved in the restructured ACRU model and are discussed in more detail

in the following sections, followed by a section with more general reflection regarding the

outcome of the restructuring.

3.5.1 Object-Oriented Restructuring for Greater Flexibility

The first objective for restructuring the model was greater model flexibility to enable more

flexible configuration of catchments within the model to better represent real-world

complexity, including multiple land cover/use types and the interconnectivity between

components of the modelled water resources system. This increased flexibility was

achieved through: (i) defining the physical hydrological components more explicitly as

objects, (ii) use of the containment (“part of”) mechanism of object-oriented programming,

where objects can consist of one or more sub-component objects, (iii) the association

54

mechanism of object-oriented programming which enable relationships between objects to

be specified, (iv) the more modular representation of the hydrological processes as classes,

enabling different representations of the same process to be more easily interchanged, and

(v) structuring the execution order of processes to permit parallel processing, such that

components of the modelled water resources system can exchange water on a timestep-by-

timestep basis. However, there is still scope for improvement in the model’s internal

administration of the order of Process object execution. The order in which Process objects

are executed is still hard-coded, to a large extent, and a more dynamic determination of the

order, using already existing internal Process class metadata stating the data variables

required by a Process object, should be investigated in the future.

3.5.2 Object-Oriented Restructuring for Greater Extensibility

The second objective for restructuring the model was to make it more extensible. The

improved extensibility was achieved: (i) partly through class inheritance and polymorphism

mechanisms which are key characteristics of object-oriented programming, (ii) by defining

the physical hydrological components more explicitly using classes and their object

instances, (iii) by defining the individual hydrological processes more explicitly using classes,

and (iv) through making it easier to declare new model input variables and parameters, in

the model as Data objects, in the model input files and in the model configuration file. The

concept of Resource classes and objects in the restructured model has made it easier to: (i)

model water quality constituents such as nutrients and sediment, (ii) ensure accurate

balances of water and constituents within the model, (iii) track flows of water into and out of

Component objects, which is especially useful for the model’s application for water resource

accounting, and (iv) track ownership or water. This extensibility has been confirmed through

the addition of several new classes and modules to the ACRU 2000 version of the model,

including: (i) new Process classes for better representation of river and dam operations

(Butler, 2001), (ii) the ACRU-Veld module for modelling mixed vegetation land cover and

utilisation by herbivores (Kiker and Clark, 2001a), (iii) the ACRU-NP module for nitrogen and

phosphorus (Campbell et al., 2001), (iv) the ACRUSalinity module for modelling salinity

(Teweldebrhan, 2003), (v) the ACRUCane module for advanced sugarcane and irrigation

modelling (Moult, 2005), and (vi) shallow water-table modelling of flatwood areas in Florida

(Martinez et al., 2008). The extensibility of the ACRU 5 version was demonstrated through

the addition of the Accounting module (Clark, 2015b). These new classes and modules also

demonstrated the flexibility of the object-oriented structure.

55

3.5.3 Object-Oriented Restructuring for Improved Data Handling

The third objective for restructuring the model was to provide improved data handling. The

internal data structure of the restructured model provides more flexible handling of time

series data. ACRU is a daily timestep model and many of the algorithms representing

hydrological processes are designed to be run at a daily timestep. The more flexible

handling of time series data makes it easier to use the best available data and either

aggregate or disaggregate it to daily values. This flexibility, especially for breakpoint time

series, also enables dynamic changes (not at a regular daily timestep), such as vegetation

characteristics to be represented more easily than with the dynamic input files of the ACRU

3 version. The inclusion of metadata about model data variables and parameters enables

range checking and translation between different units of measure. The provisions within

the new data structure to more explicitly deal with state variables will make the model more

suitable for use in an operational context, through hot-starting, by enabling the model to be

initialised to a measured or previously simulated state. The inclusion of the concept of

scenarios has made it possible to include different data values in a single model input file for

different modelling scenarios.

The base classes of the ModelDataAccess library, together with the model’s new internal

data structure, have made it easier to include different data formats for model input and

output data. This makes it easier to use data from different data sources, facilitates linking

of ACRU to other models and has enabled ACRU to be included as a model in two

integrated modelling frameworks: (i) the SPATSIM Hydrological Decision Support

Framework (SPATSIM-HDSF), as described in Clark et al. (2009) and Clark et al. (2012a),

and (ii) the Delft Flood Early Warning System (Delft-FEWS), as described in Appendix 8.5.5.

The new XML-based model input file structure complements the restructured object-oriented

model. The XML model input files are not object-oriented, as they do not include key

concepts such as inheritance and polymorphism, but they are structured to describe the

containment and association relationships between the water resource components to be

represented in the model. Without this complementary model input file structure it would be

difficult to use the object-oriented structure of the model to its full potential. The

Configuration Editor, which was not developed as part of this study, uses a graphical tree

structure to represent the containment structure of the water resource components. Based

on informal feedback from users this graphical representation of the containment structure of

the water resource components has made the configuration of catchments and their

subcomponents more intuitive.

56

3.5.4 Reflections

There are a few negative outcomes to the restructuring that need to be acknowledged.

Informal benchmarking of the execution time of the ACRU 5 version against the ACRU 3

version, has shown that the execution time of the restructured model is slower. In part, the

poorer execution speed may be due to Java being an interpreted language. There are also

performance trade-offs for parallel processing as it is necessary to have a larger quantity of

data loaded into memory at one time, the whole case study area compared to just one

subcatchment at a time in the ACRU 3 version. There is scope for optimisation of the source

code of the restructured model. The XML-based model input files are typically larger in size

than the simpler text files used for the ACRU 3 version. The bigger file size is due to the

XML tags used to structure the data in the XML files. However, there are some trade-offs as

the model input files used for the ACRU 3 version can in some cases include a large number

of redundant variable and parameter values for model variables that are not required for a

particular configuration of the model. The XML files are also not as simple to edit using a

text editor which has resulted in some frustration to experienced users of the model.

However, forcing inexperienced users to use the Configuration Editor is useful as it does

useful validation of model input and thus the time spent providing support to users who have

made unintended errors in configuring the model is reduced. The change from a procedural

FORTRAN 77/90 programming paradigm to object-oriented programming in Java has also,

unfortunately, reduced the number of researchers actively involved in ACRU code

development.

Despite the restructuring of the model and input files, most users of the model are unlikely to

notice any real difference from the ACRU 3 version as the algorithms representing

hydrological processes are the same. However, more experienced model users will be able

to exploit the greater flexibility with which water resource systems can be represented in the

model. For model developers, it is intended that the better conceptual foundation for the

model will make the model code easier to understand and extend. The design of the ACRU

5 version of the model and its input files are likely to be stable from this point on and no

substantial changes to the design are anticipated. The restructured ACRU model and XML

model input files, together with the associated libraries and other tools are not an end in

themselves, as the design and the base Component, Process, Data and Resource classes

could be used to develop simpler sub-models of ACRU or indeed completely new models.

57

4 MODEL INTEGRATION

The fourth objective of this research study, as stated in Section 1.4, was to develop a means

of linking ACRU with other models to facilitate integrated modelling studies. Integrated water

resources management (IWRM) recognises that there are not only water quantity and quality

aspects of water resources management but also ecological, economic, political, social and

institutional aspects to water resources management. IWRM requires integrated

assessment of complex water resource systems, which in turn requires the application of

detailed process-oriented models (Barthel et al., 2006). It is unlikely that a single model will

be able to adequately represent all facets of a water resource system, which may include

different scientific disciplines, different spatial and temporal scales, varying data availability

and a variety of modelling objectives and stakeholders (Blind and Gregersen, 2005; Moore

and Tindall, 2005; Gregersen et al., 2007; Castronova and Goodall, 2010). Thus, the

solution of real-world problems through modelling most often requires integrated analyses,

which in turn requires linking of models (Kokkonen et al., 2003). Kralisch et al. (2005) state

that sustainable water resource management requires integrated, flexible hydrological

models to simulate both water quantity and quality aspects of the hydrological cycle with a

suitable degree of certainty. Existing models are often developed for, or have strengths, in

specific domains within the water resource system and integration of models is a popular

solution in attempting to model complexity (Moore and Tindall, 2005; Barthel et al., 2006).

However, many existing models were developed for specific scales and purposes, are often

coded in different programming languages, run on different operating systems, and may not

be easily adapted for integration with other models (Hoheisel, 2002; Kralisch et al., 2005).

When linking models, one of the main challenges is to understand and define the

dependencies between models (Hoheisel, 2002). There are also both technical and

conceptual constraints to be overcome when attempting to integrate models from different

disciplines. Technically, existing environmental models are not generally designed to

communicate with other models within the same discipline, let alone communicate with

models from other disciplines, and conceptually, different models are often based on

different ontologies due to different disciplines having different views of the natural

environment, and differences in the way concepts are expressed in computer code (Argent,

2004). Different scientific disciplines approach system complexity and diverse scales in

various ways, and use different modelling techniques and approaches to model design

(Krause et al., 2005). Integrated models must be compatible in terms of spatial and

58

temporal scales and strategies for validation of both the individual models and the integrated

collection of models are necessary (Barthel et al., 2006).

As described in Clark and Smithers (2013) it is necessary to develop and integrate modelling

tools to support water resources planning and operations decisions by water resource

managers in South Africa. The project undertaken by Clark and Smithers (2013) specifically

sought to enhance the capabilities of the ACRU agrohydrological model by linking it to a river

network model. A review of model linkage systems by Clark et al. (2013), summarised in

Section 4.2, led to the selection of the OpenMI model linking interface. A review and

evaluation of river network models by Thornton-Dibb et al. (2013) led to the selection of the

MIKE BASIN model, largely due to its ease of use, strong GIS support through ArcGIS and

availability of local user support and training. None of the reviewed models were found to be

OpenMI compliant at that time. For the ACRU model, OpenMI Version 1.4 (OpenMI 1.4)

linkable components were created for both Java and .Net programming languages (Clark

and Lutchminarain, 2013). For MIKE BASIN, linkable components were created for both

OpenMI 1.4 and OpenMI Version 2.0 (OpenMI 2.0) for .Net (Clark and Lutchminarain, 2013).

The ACRU and MIKE BASIN models were configured and linked using OpenMI for the Kaap

River Catchment in Mpumalanga, South Africa, demonstrating several use cases for linking

between the models.

The eWater Source model is described by Carr and Podger (2012) as the new Australian

National Hydrological Modelling Platform. It is an integrated modelling system developed by

the eWater Cooperative Research Centre (CRC) for the simulation of river flow networks,

including water quality and environmental flows. A review by Thornton-Dibb et al. (2013) of

a beta version of the eWater Source as a river network model indicated that it met the

requirements for linking to the ACRU model (Clark and Smithers, 2013), but it was not

evaluated further as it was still under development. This PhD study presented an

opportunity to evaluate eWater Source further as potential modelling tool for use in South

Africa, and to simultaneously demonstrate the new ability to link the ACRU model to models

representing other domains to better represent reality.

This chapter on model integration includes the following:

 a discussion of different approaches to model integration,

 a summarised review of model linkage systems which led to the selection of OpenMI,

 an overview of the OpenMI interface standard,

 a description of the development of an OpenMI 2.0 linkable component for ACRU,

59

 a description of the development of an OpenMI 2.0 linkable component for eWater

Source.

 a discussion related to differences between models and OpenMI in the way time is

represented, and

 a description of how the ACRU and eWater Source models were linked using OpenMI.

4.1 Approaches to Model Integration

Some typical approaches to model integration are shown in Figure 4-1 and explained in this

section. Integration of models and modelling approaches for IWRM have led to the

development of integrated modelling environments, model interfacing specifications and

modular modelling systems (Krause et al., 2005). Gregersen et al. (2007) noted that some

existing hydrological decision support systems were based on fixed combinations of specific

hydrological and hydraulic models, but that the limited supported combinations sometimes

resulted in compromises being made in representing the hydrological system being

modelled. Krause et al. (2005) noted that there were two main research and development

paths being followed with regard to model integration: (i) direct integration of whole models

through implementation of a model interface specification, and (ii) modular modelling

systems where modules representing individual processes are combined to create custom

models, with both approaches having advantages and disadvantages.

Figure 4-1 Approaches to model integration

60

4.1.1 Simple Model Integration

As expressed by Krause et al. (2005), one of the simplest ways to combine models and

modelling approaches from different domains or disciplines is the coupling of whole

standalone models. There are many methods by which models can be coupled and these

differ in their degree of complexity and the degree of interaction and feedback that can take

place between the coupled models (Krause et al., 2005). At the most basic level, model

coupling involves using the output from one model as input for another model (Figure 4-1a),

where Model-A could be run for say 10 years, the output files from Model-A are then

reformatted to provide input to Model-B which is then run for the same 10 year period. This

approach is referred to as running models in series, that is, each model is run independently

for the full time period, one model after the other model. The advantages of this approach

are that it is simple and does not require any changes to the models used. There are two

main problems with this approach: (i) the effort required to reformat the output from one

model to be suitable for use as input for the other model, and (ii) as stated by Krause et al.

(2005), potential interactions and influences between the systems represented by the

coupled models can only be realised in one direction, meaning that feedbacks cannot be

modelled. The first problem can be overcome if both models use the same data input and

output format (Figure 4-1b).

4.1.2 Model Integration Using Modelling Environments

IWRM has led to the development of integrated water resource modelling environments

(Figure 4-1c) or decision support systems such as LIANA (Hofman, 2005), SPATSIM-HDSF

(Clark et al., 2009), DeltaShell (Donchyts and Jagers, 2010), Delft-FEWS (Werner et al.,

2013) and GeoJModelBuilder (Zhang et al., 2017). Integrated modelling environments

typically include common data storage and formats, common data editing tools, and

common spatial and temporal data visualisation and analysis tools. These modelling

environments provide a modelling environment within which model users can operate

without having to learn new user interfaces or data editing and analysis tools for each model.

They enable model developers to concentrate on the science behind their models instead of

having to reinvent the common functionality that is part of these modelling environments.

Individual models would need to be modified to read from and write to the environment’s

data format, and would then benefit from being able to use the common tools within the

framework. Integrated modelling environments assist in standardising the way in which

models are run and resolve the problem of having to translate the output data format from

one model to the input data format of the receiving model but, in general, models would still

61

have to be run in series and therefore the problem of not being able to model dynamic

feedbacks between the models would still exist, although in some cases, for example

DeltaShell, these environments may include some means of directly coupling models

(Krause et al., 2005).

4.1.3 Custom Coupling of Specific Models

Running one or more models in parallel requires each model to be run one timestep at a

time, with values of modelled variables being exchanged between models at each timestep.

One method of enabling two models to run in parallel would be to modify two or more

specific models to communicate with each other either directly (Figure 4-1d) or via a

common data repository on a timestep-by-timestep basis. When coupling two or more

models in this manner, the computation order and protocols for data format and transfer

have to be considered (Krause et al., 2005). In order for this to work each model must have

some means of being instructed to run each individual timestep and there needs to be some

sort of controller that commands each model, or a component of each model, to run for the

next timestep. Alternatively, for the models to communicate with each other directly, they

each need to provide some sort of publicly accessible software interface, for example the

Component Object Model (COM) interface protocol. The interface protocol selected needs

to be compatible with the operating platform and programming language of all of the models

to be linked. The .Net programming platform has, in some respects, replaced COM by

enabling compatibility between software modules written in different .Net programming

languages. This linking approach requires the models to be modified to implement the

interface protocol, which may not be possible if the models are proprietary software. This

approach has the advantage that feedbacks can potentially be modelled, and though the

models will need to be modified, legacy models can be linked without being completely re-

written and thus retain their identity and in-built integrity. A disadvantage of this approach is

that, though the specific models have been linked, further modifications may be required if

another model needs to be linked into the suite of models.

4.1.4 Model Interface Specifications

As noted by Krause et al. (2005), one of the model integration development paths for

integrated modelling has been the development of model interface specifications (Figure

4-1e,f) such as OpenMI (Blind and Gregersen, 2005; Gregersen et al., 2005; Moore and

Tindall, 2005; Gregersen et al., 2007; Knapen et al., 2009), the Common Component

Architecture (CCA) (Bramley et al., 2000; Armstrong et al., 2006) and the High Level

62

Architecture (HLA) (Lindenschmidt et al., 2005). A model interface standard consists of a

set of software interfaces that must be implemented by the model that is to be made

compliant with the standard. This concept of some sort of interface standard which must be

adhered to is in some ways similar to the modularisation approach (Section 4.1.5), except

that it does not require the modularisation of legacy models. Implementation of the interface

standard can be achieved in two ways, either by implementing the interface directly (Figure

4-1f) in the model code or creating a wrapper around the model (Figure 4-1e). In the latter,

the wrapper is compliant with the standard and has internal links to the wrapped model;

however, the model may still need to be modified to some extent to make it suitable for

wrapping. Each model must declare sets of publically visible input and output variables.

Feedbacks may be modelled if the model interface standard permits this. The models would

be configured individually through their respective graphical user interfaces. Links would

then be created between appropriate variables in each model. It is important to note that it is

specific configurations of each model that are linked, not the model engines themselves.

There are two approaches to indirectly controlling the flow of a simulation by linked models,

pull mechanisms and push mechanisms. Pull mechanisms start at the point where a result

is required, with requests for data values being filtered up through links and, where

necessary, processes are called until the required result has been calculated. Push

mechanisms start at the point where a piece of information is available, with data values

being filtered down through the links and then each process being run when all its input

variables are available. The linked model run is initiated by an external trigger on one of the

models. Krause et al. (2005) conclude that though coupling models by means of model

interface standards requires some effort to adapt the models, the advantages are increased

flexibility, the ability to model more complex interactions and the ability to perform more

detailed analyses of the coupled models. Other advantages of this approach are that the

identity and integrity of legacy models is maintained, and their marketability is improved

through their ability to link to other models that conform to the same interface specification.

Krause et al. (2005) conclude that, at that time, the OpenMI approach to model coupling was

the most sophisticated. Hoheisel (2002) state that tight coupling of models usually uses

shared memory to communicate between models usually coded in the same programming

language and requiring a lot of effort to achieve integration, while loose coupling is more

flexible, often using asynchronous communication between models.

63

4.1.5 Modular Modelling Frameworks

The other main development path for integrated modelling noted by Krause et al. (2005) has

been the modularisation of models and the development of modular modelling frameworks

(Figure 4-1g) such as MMS (Leavesley et al., 2002), OMS (Ahuja et al., 2005; Kralisch et al.,

2005), TIME (Rahman et al., 2003; Argent and Rizzoli, 2004; Rahman et al., 2004; Rahman

et al., 2005; Murray et al., 2007) and LIQUID (Branger et al., 2010a; Branger et al., 2010b).

Water resources models are typically structured into software components of some

description that represent one or more hydrological processes. Thus, the concept of

modularising legacy models into collections of modules representing individual hydrological

processes makes a certain amount of sense. The modular modelling frameworks typically

specify some sort of interface which each module must adhere to. Each module must

declare sets of publically visible input and output variables. Several modules can then be

linked within the appropriate modelling framework to create a custom-built model. Some sort

of controller is usually required to configure the model and to coordinate calls to the various

modules. The advantage of the modularisation approach is that custom-built models can be

created to meet the requirements of specific modelling projects. The disadvantages of this

approach are that there is a difference in the skills required by a model builder and a model

user, and that the developer of a legacy model which is to be modularised must choose to

adopt one modular modelling framework. Feedbacks can be modelled if the controller and

the module interface permit this, though the modularisation in itself may be sufficient for

feedbacks to be modelled. Jones et al. (2001) conclude that a modular modelling approach,

where new model components can be easily added, maintained and modified, facilitates

integration of knowledge from different disciplines.

4.2 Selection of a Model Linkage System

The requirement for integrated assessment of water resources and advances in computer

programming technologies have resulted in numerous innovative endeavours to provide

software tools for integrated modelling. A review of several model linkage systems was

conducted by Clark et al. (2013). The reviewed systems are listed and briefly described in

Table 4-1. Integrated modelling environments were not included in the review as although

they offer some degree of model integration by means of their common data formats, data

repositories and analysis tools, they do not facilitate direct communication between models

which is necessary for modelling feedbacks between system components.

64

Table 4-1 Model linkage systems reviewed in Clark et al. (2013)

System Description

Open Modelling Interface

(OpenMI)

Standard interface to facilitate linking models, operating at

various spatial and temporal scales, such that feedbacks

between modelled processes can be represented (Blind and

Gregersen, 2005; Moore and Tindall, 2005; Gregersen et

al., 2007).

Object Modelling System

(OMS)

Modular framework for developing environmental models,

including facilities for data provision, testing, validation, and

deployment (David et al., 2004; Ahuja et al., 2005; Kralisch

et al., 2005; David et al., 2010).

Jena Adaptable Modelling System

(JAMS)

Environmental modelling framework for component-based

model development and application, with a focus on water

resources management (Kralisch and Krause, 2006;

Kralisch et al., 2007; Fischer et al., 2009)

The Invisible Modelling Environment

(TIME)

Model development framework for the creation, testing and

integration of new model components and the development,

application and deployment of environmental model

applications (Rahman et al., 2003; Rahman et al., 2005;

Murray et al., 2007)

LIQUID® Modelling framework for modelling hydrological processes

enabling integrated models composed of reusable modules

to be built and run (Branger et al., 2010a; Branger et al.,

2010b).

High Level Architecture

(HLA)

A computer architecture for constructing distributed

simulations, facilitating interoperability between different

simulations and simulation types and promoting reuse of

simulation software modules (Dahmann et al., 1997;

Lindenschmidt et al., 2005; Jagers, 2010).

Common Component Architecture

(CCA)

A component architecture for scientific high-performance

computing, providing platform independent inter-component

communication mechanisms, enabling parallel computing

across components and configuration of components before

and during execution (Armstrong et al., 2006; McCartney

and Arranz, 2009; Jagers, 2010).

Clark et al. (2013) suggested that the systems reviewed could be categorised into two main

groups: CCA, HLA and OpenMI which are purely interface specifications, whereas OMS,

JAMS, TIME and LIQUID® are modular modelling frameworks which include a system for

linking models or process modules. OpenMI, OMS, JAMS, TIME and LIQUID® are designed

primarily for use in the water and environmental modelling domain. HLA was designed for

use in the defence domain. CCA is a general purpose linking system and is suitable for use

in a high performance computing operating environment. The coupling interfaces defined by

CCA, OMS, OpenMI and TIME are similar in that that they all include similar initialise, run,

finalize, get data and set data concepts, but differ in the amount of code needed to

implement the interface, and in run time performance (Lloyd et al., 2009; Jagers, 2010).

65

When linking either whole models or process specific modules, it is critical for the person, or

people, doing the linking to have a clear understanding of the respective models or modules.

Linking of models or modules should be done by experts to produce a sound integrated

modelling system for use by suitably trained, but not necessarily expert, model users. Blind

and Gregersen (2005) sum this up by correctly pointing out that an integrated modelling

system created by linking individually valid models does not imply that the integrated system

as a whole is valid, and that collaboration between model specialists will be required.

Modular modelling is an attractive concept but it likely to be beyond the abilities of most

model users, and even experienced model developers will have to be careful when

composing models to ensure that the modules on which they are based are compatible with

each other. Whole legacy models build a reputation over time. While custom models built

from modules may be useful for modelling individual case studies, they have no reputation

that gives confidence in the results, assuming of course that the model has been correctly

parameterised. There needs to be a balance between too much flexibility, which makes a

model linkage system hard to implement, and too little flexibility, which will reduce the

number of situations in which the system can be applied.

The objective of the review was to select a suitable model linkage system for use in linking

the ACRU model to other models to provide a holistic water resources modelling system for

use in water resources planning and operations. An initial goal was to link the ACRU model

with a river network model. The requirements were that:

 the linkage system needed to be suitable for use with the ACRU model,

 the linkage system should require minimal changes to the code of the ACRU model,

 ideally the linkage system should be regarded as an international standard,

 the linkage system should not be proprietary so as not to place a financial burden on

users of the linked models,

 the linkage system should have been implemented for a range of other models so that

other compatible models can be linked to ACRU in the future,

 the linkage system should enable the models to be linked in parallel so that dynamic

feedbacks between models can be adequately represented,

 the linkage system should enable the linked models to be run at different spatial and

temporal scales, and

 the linkage system should enable execution of the linked models in a time that is not

substantially longer than the total execution time of the individual models.

66

It was recommended by Clark et al. (2013) that, in order of preference, the OpenMI, TIME

and OMS systems were the most suitable for linking the ACRU model to a river network

model. All three systems are primarily intended for use in the water and environmental

modelling fields. The advantages of OpenMI are: (i) that it is generally accepted as a de

facto international standard, (ii) is strongly supported by the OpenMI Association, (iii) has

been widely adopted by key research and commercial players providing a useful set of

compliant water related models, and (iv) has been well documented. The advantages of

TIME are: (i) its lightweight architecture, (ii) it is strongly supported by the eWater CRC, (iii)

has been extensively implemented by the developers, providing a useful set of compliant

water and environmental models even if they are tailored to Australian requirements, and (iv)

has been well documented. The advantages of OMS are: (i) its lightweight architecture, and

(ii) that it has been moderately implemented by the developers, providing a small set of

compliant water and environmental models, though these models are tailored to United

States Geological Survey (USGS) and United States Department of Agriculture (USDA)

requirements. Clark et al. (2013) selected OpenMI for implementation with the ACRU model

as it met all the requirements and was judged to be the most appropriate solution.

4.3 Overview of the OpenMI Model Interface Standard

OpenMI is a standard to facilitate the linking of models, operating at various spatial and

temporal scales, and to enable new and existing models to interact with each other to

represent catchment process interactions (Blind and Gregersen, 2005; Moore and Tindall,

2005; Gregersen et al., 2007). Gregersen et al. (2007) define OpenMI as “a standardised

interface to define, describe and transfer data on a time basis between software components

that run simultaneously, thus supporting systems where feedback between the modelled

processes is necessary in order to achieve physically sound results”. The OpenMI Standard

is made freely available in both a .Net and a Java version. In 2014 Version 2.0 of the

OpenMI Standard was approved by the Open Geospatial Consortium (OGC®) as an OGC

standard (Open Geospatial Consortium, 2014).

The purpose of this section is to provide a brief overview of the OpenMI model interface

standard and associated Software Development Kit (SDK), to provide the necessary

background to its implementation in the ACRU and eWater Source models. A more

comprehensive review of OpenMI can be found in Clark et al. (2013) and the OpenMI

Association’s website [www.openmi.org] provides links to the official documentation and

67

other information. Documentation available for OpenMI 2.0 includes the following

documents:

 Scope for the OpenMI (OpenMI Association, 2010e),

 OpenMI Standard 2 Specification (OpenMI Association, 2010d),

 OpenMI Standard 2 Reference (OpenMI Association, 2010c),

 The OpenMI 'in a Nutshell' (OpenMI Association, 2010b),

 What's New in OpenMI 2.0 (OpenMI Association, 2010f),

 Migrating Models (OpenMI Association, 2010a), and

 OGC® Open Modelling Interface: Interface Standard (Open Geospatial Consortium,

2014)

4.3.1 OpenMI Terminology

Gregersen et al. (2007) and Moore and Tindall (2005) define the following terms used within

the OpenMI documentation:

 engine - generic representation of a process or processes, consisting of the algorithms

or calculations used to model the process or processes;

 model – when the engine is run it reads the data for a specific scenario to be simulated

and becomes a model of the system for which the simulation is being run (a model is

an engine that has been populated with data);

 engine component – and engine becomes an engine component if it can be

instantiated as a standalone software entity and has a well-defined interface enabling it

to accept and provide data;

 model component – an engine component that has been populated with data;

 linkable component – if the engine component implements the OpenMI standard

interface then it becomes a linkable component, and can be linked to other linkable

components;

 quantity – a engine variable whose value can be accepted or provided during an

exchange between models;

 element – a location at which a quantity is calculated, for example, a catchment or a

river reach;

 composition – a set of two or more connected linkable components; and

 migration – the process of implementing the OpenMI interface standard in an engine.

68

4.3.2 Requirements for Models to be Suitable to Implement OpenMI

For a model engine to be suitable for migration to become an OpenMI linkable component,

the following main requirements need to be met (OpenMI Association, 2010a):

 The model engine needs to be structured so that model initialisation is performed

separately from the computation of the model algorithms.

 The values of model input and output variables (quantities) representing boundary

conditions should be retrieved by the model algorithms, on a timestep-by-timestep

basis.

 The model engine needs to be structured so that the call to compute the model

algorithms for each timestep can be accessed by third-party software for the purpose

of controlling the linked simulation.

 The model engine needs to expose information about the model input and output

variables (quantities), which can be accessed by other models or by third-party

software for the purpose of configuring the model linkages.

 The model engine needs to be able to provide the values of modelled quantities and, if

relevant, their associated spatial and/or temporal attributes to other models.

4.3.3 The IBaseLinkableComponent Interface and Model Execution Phases

The OpenMI Standard consists of numerous interfaces. The key interface is the

IBaseLinkableComponent, shown in Figure 4-2, which must be implemented by all OpenMI

linkable components. In addition, if the linkable component is a timestepping model then the

interfaces of the OpenMI.Standard2.TimeSpace extension, primarily the

ITimeSpaceComponent interface, would also need to be implemented. Linkable

components may also implement the optional IManageState and IByteStateConverter

interfaces if required.

An OpenMI linkable component provides different services during different phases of its

execution (OpenMI Association, 2010d). The status of the linkable component changes as it

progresses through the different phases. The different states are shown in the

LinkableComponentStatus enumeration in Figure 4-2 These phases are briefly explained as

follows (OpenMI Association, 2010d):

 Initialisation – Instantiation of a linkable component as an object and initialisation of the

model using model specific configuration and input files. The linkable component

69

should then be able to expose the input and output exchange items through which it

can be linked to other linkable components.

 Inspection and Configuration – The input and output exchange items that have been

made available are inspected and then the required connections between these pairs

of input and output exchange items are configured and validated, including any

exchange adapters that may be required.

 Preparation – Any additional model preparation, such as creation of model output files,

is done.

 Computation – The computation phase on the linked model simulation starts with a call

to the Update method of the last linkable component in the computation chain. This

initiates a request-reply service between the linkable components which is repeated for

every timestep until the end of the simulation period.

 Completion – During this phase model output files may be written and closed and

other clean-up operations are performed before the models are closed.

Figure 4-2 The OpenMI IBaseLinkableComponent interface (OpenMI Association,

2010c)

70

4.3.4 Timestepping and Flow of Data in OpenMI

The sequence of model execution during the computational phase of a linked model

simulation is described by Blind and Gregersen (2005) as a pull driven mechanism, which

means that one linkable component makes a request to another component for a set of

quantity values for a given time for one or more specified elements (spatial locations).

Gregersen et al. (2007) describe this as a ‘request and reply’ mechanism, and explain that

OpenMI has a ‘pull-based pipe and filter’ architecture made up of linked source and target

components that exchange memory-based data in a predefined format and manner.

The linked model simulation starts with a call to the Update method of the last linkable

component. For this last linkable component, the consumer, to be able to complete its next

timestep it calls the GetValues method on the next linkable component up the chain, the

provider. The provider linkable component will return the requested quantity values if they

are available for that timestep, and if not available, the Update method on this provider

component will be called. As shown in Figure 4-3, this sequence of GetValues and Update

calls is repeated up a chain of linked components until each component in the chain can

complete the current timestep. A new call to the Update method of the last linkable

component for its next timestep starts the whole cycle again, until the end of the complete

time period to be simulated. If the linkable components have different timesteps then some

linkable components may have to be run for several timesteps before the input required for

the timestep of the consumer component model can be provided. As shown in Figure 4-3,

not all chain computation layouts are simple linear unidirectional chains, and in some cases

it may be necessary for a provider component to provide an estimate to the consumer or to

redirect the consumer to another provider component.

It is clear that in a model linking system such as OpenMI the information describing each link

between two or more models is important. A provider linkable component makes one or

more output exchange items available and for each one specifies information such as the

data type of the values, the units of measure and the spatial location of the modelled spatial

entities for which data is available. Similarly a consumer component declares one or more

input exchange items and for each one specifies information about the data it requires. In

OpenMI 2.0 a connection is made between two linkable components by specifying one or

more pairs of connected input and output exchange items, that is provider-consumer pairs.

However, a provider and a consumer may not be completely compatible and an output

adapter may need to be inserted between the provider and the consumer to handle unit of

measure transformations and differences in temporal and spatial resolutions. These

71

adapters are both consumers and providers and provide the person linking two models with

a versatile mechanism to ensure that the information passed between models is compatible.

Some examples of connections between linkable components using adapters are provided

in Figure 4-4.

Figure 4-3 Different chain computation layouts (OpenMI Association, 2010d)

Figure 4-4 Example of OpenMI Interfaces and the flow of data between components

(Open Geospatial Consortium, 2014)

72

4.3.5 Implementations of the OpenMI Standard

The OpenMI Standard is a collection of either .Net or Java interfaces that a model developer

needs to implement for their model to be OpenMI compliant and thus able to link to other

OpenMI compliant models. These interfaces are just a blueprint specifying a standard of

“behaviour” that a model needs to conform to and the OpenMI Standard does not include

any actual code implementation.

Separate to the development of the OpenMI Standard, the OpenMI Association Technical

Committee (OATC) developed an implementation of the Standard in C# for the .Net platform

and included tools that it used to implement and verify the Standard (OpenMI Association,

2010b). The OATC’s Software Development Kit (SDK) is a library of C# classes that provide

an implementation of the Standard and includes examples and unit tests. The OATC’s

Configuration Editor is a simple graphical user interface that enables users to configure

compositions of linked OpenMI compliant models. The SDK and the Configuration Editor

were made available under a public open source licence to assist users in implementing the

Standard in their models and then applying linked models. However, OpenMI Association

(2010d) states that the OpenMI Association does not formally support them. OpenMI

Association (2017) states that this was due to: (i) a lack of funding to do this themselves, and

(ii) the development of an open source GUI and SDK as part of the FluidEarth initiative, led

by HR Wallingford, which aims to support integrated modelling through the development and

support of software tools to assist in the implementation of OpenMI. The FluidEarth SDK

and other tools, described by Harpham et al. (2014) and (Harpham et al., 2016), are

available on the SourceForge webpage for FluidEarth

[http://sourceforge.net/projects/fluidearth]. One of the tools developed in the FluidEarth

initiative was Pipistrelle, which is a graphical user interface that can be used to create and

then run compositions of linked models. Tutorials describing the application of the

FluidEarth SDK and other tools can be found on the FluidEarth eLearning webpage

[http://eLearning.fluidearth.net/]. OpenMI Association (2017) indicates that there is an

initiative by a third party to develop a Java SDK for OpenMI 2.0. However, Knapen (2015)

stated that due to a lack of funding for this work the Java SDK had not been completed.

To make either an existing or a new model engine OpenMI compliant there are two main

options: (i) to directly implement the OpenMI Standard interfaces in the code of the model

engine, or (ii) to create an OpenMI compliant linkable component wrapper around the model

engine. The second option is usually preferable for existing models, and is the only option

for proprietary models where the developer of the wrapper does not have access to the

73

source code for the model engine. Both the OATC and the FluidEarth SDKs provide ready-

built classes that can be used to created linkable component wrappers for models.

4.3.6 Application of OpenMI

As a standard for linking models, OpenMI is only really useful if it is widely adopted by model

developers so as to provide a range of OpenMI compliant models representing different

modelling domains within the water resource system. Gijsbers et al. (2010) and OpenMI

Association (2017) list numerous OpenMI compliant models from a range of model

developers internationally. However, many of these models appear to have been made

compliant to Version 1.4 of the Standard and it is not clear how many of these models would

also have been made compliant to Version 2.0 of the Standard. OpenMI Association (2017)

indicates that it is mainly the models from Deltares, DHI and HR Wallingford that have been

officially recognised by the OpenMI Association as being compliant to Version 2.0 of the

Standard. However, based on the publications relating to OpenMI listed by OpenMI

Association (2017), OpenMI has been applied for a wide range of purposes, consequently

there may be many other OpenMI compliant models. One interesting example is the

OpenMI compliant AquaCrop crop water productivity model described by Foster et al.

(2017).

The application of OpenMI in several multi-disciplinary projects requiring integrated

modelling was evaluated by Knapen et al. (2013). One finding was that though both model

developers and model users recognised the value of OpenMI compliant models, the actual

work of making a model compliant was not the primary goal of either group. Knapen et al.

(2013) concluded that OpenMI was useful for integrating both existing and new models and

that it was suitable for linking models outside the hydrological domain for which they were

originally developed. Bulatewicz et al. (2010) commented on the importance of validation of

both the individual and the integrated models, especially in instances where feedbacks

between the modelled systems occur. They concluded that the software development effort

was reduced through reuse of existing models using the OpenMI linking system, and that the

use of a standard such as OpenMI enabled the compliant models to be used in other

studies.

4.4 Development of an OpenMI Linkable Component for ACRU

As a result of the restructuring of the ACRU model, described in Chapter 3, the ACRU 5

version of the model engine meets all the requirements, stated in Section 4.3.2, for a model

74

engine to be suitable for migration to become an OpenMI linkable component. The

restructuring of the ACRU model engine enabled it to be initialised and run in timestepping

mode by third party software, with the provision for exchange of both model input and output

variable values at each timestep. Object-oriented design and implementation using an

object-oriented programming language are not requirements for OpenMI migration.

However, the object-oriented structure and programming of the ACRU 5 version facilitated

the development of an OpenMI linkable component by providing access to model input and

output variable values through the Component and Data object structure, including metadata

about the variables.

The development of OpenMI 1.4 linkable components for the ACRU model for both Java and

.Net was described in Clark and Lutchminarain (2013). At that time it was decided that an

OpenMI 1.4 linkable component would be developed for ACRU as: (i) the OpenMI 2.0 SDK

for Java was still under development, (ii) some problems experienced with the initial release

of the OpenMI 2.0 OATC SDK for .Net, and (iii) few OpenMI 2.0 compliant models were

available. The development of the OpenMI 2.0 Standard and the OpenMI 2.0 FluidEarth

SDK, have since been completed and thus an OpenMI 2.0 linkable component for .Net was

developed as a wrapper around the ACRU model in this study, as will be explained in this

section. The development of an OpenMI 2.0 linkable component for Java would be difficult

without a Java version of the OpenMI 2.0 SDK. The lack of a Java version of the OpenMI

2.0 SDK also means that there are likely to be few, if any, OpenMI 2.0 compliant Java

models available.

As explained in Clark and Lutchminarain (2013) there were two possible approaches to

overcoming the compatibility problem between the Java and .Net platforms: (i) to use a

Java-.Net bridge that makes use of the Java Native Interface (JNI) for Java, and (ii) to

compile the ACRU Java code into a .Net assembly. The second approach was selected as

this approach was expected to offer better model run speeds, though with the disadvantage

of having to recreate the .Net assembly every time a change is made to the ACRU model.

The IKVM.NET (http://www.ikvm.net/) tool was used to statically compile the ACRU model

code written in Java (packaged as a Java archive file named ACRU.jar) to a .Net assembly

named ACRU.dll.

This study had access to the ACRU source code, which would have enabled direct

implementation of the OpenMI IBaseLinkableComponent interface. However, a decision

was made to rather use the model engine wrapper classes provided by the FluidEarth

OpenMI 2.0 SDK. The reasons for selecting this implementation option were: (i) this option

75

enables OpenMI compliance to be separated from the model itself, leaving the model

untouched, and (ii) the wrapper classes from the SDK already include functionality that

would have to be duplicated.

The developers of OpenMI recognised that model engines that do timestep-based

computations would have common requirements with regard to being made OpenMI

compliant, which lead to the development of the LinkableEngine wrapper class in the

OATC’s SDK (OpenMI Association, 2010a). The FluidEarth OpenMI 2.0 SDK includes

similar classes for wrapping model engines. In this study the BaseEngine and

BaseComponentTimeWithEngine classes from the FluidEarth OpenMI 2.0 SDK were used to

develop a linkable component for the ACRU model using the C# programming language.

These classes, together with their superclasses, are shown in the UML diagram in Figure

4-5. The separate BaseEngine and BaseComponentTimeWithEngine classes enable one

implementation of the BaseEngine class to be used by more than one implementation of the

BaseComponentTimeWithEngine class. This would enable a model engine to expose itself

to OpenMI in different ways for use in different situations.

The Acru_Engine class, which extends the abstract BaseEngine class, is the wrapper

around the ACRU model engine itself. The role of the Acru_Engine class is to: (i) create an

instance of the ACRU model engine, (ii) initialise the engine by reading in the model input

files and configuring the model, (iii) provide the model data values requested by another

model, (iv) set model data values provided by another model, (v) run the next simulation

timestep when instructed to do so, (vi) keep track of the current ACRU simulation time, (vii)

translate between Java and .Net date-time representations, and (viii) close down the

instance of the ACRU model engine at the end of the linked simulation.

76

Figure 4-5 UML class diagram of the ACRU OpenMI 2.0 linkable component classes

77

The Acru_LinkableComponent class extends the abstract BaseComponentTimeWithEngine

class, and is effectively a wrapper around the Acru_Engine class. The

Acru_LinkableComponent class exposes selected parts of the ACRU model to the “outside

world” and acts as a translator between the model and OpenMI. The role of the

Acru_LinkableComponent is to: (i) specify the arguments that must be provided to the ACRU

model engine for it to be able to initialise itself (for example, the path to the model input file),

(ii) specify the input exchange items, the input variables into which ACRU could potentially

receive data values from other models, (iii) specify the output exchange items, the ACRU

output variables from which ACRU could provide data values to other models, (iv) determine

the time horizon, that is the simulation period, for which the ACRU model can be run, (v) in

the UpdateEngine method initiate a call to the Update method of the associated instance of

Acru_Engine, and (vi) translate between Java and .Net date-time representations. The

Acru_LinkableComponent internally creates input and output exchange items for a wide

range of ACRU input, output and state variables.

As explained in Clark and Lutchminarain (2013) one problem that had to be overcome was

the manner in which units of measure are specified for variables representing fluxes in

ACRU. For example, in ACRU the units of measure associated with streamflow are cubic

metres, and not cubic metres per day. This makes sense in ACRU as it is a daily timestep

model and so all fluxes are implicitly per day. This was resolved by providing duplicate input

and output exchange items for each flux variable, one as a quantity and one as a rate.

Another problem which was overcome was the translation between Java and .Net date-time

representations. OpenMI uses a modified Julian Day to represent time and these are

calculated internally from instances of the .Net System.DataTime class. However, though a

.Net compiled version of ACRU had been created using the IKVM.NET tool, this version of

ACRU returned date-time values as instances of a .Net compiled version of the

java.Util.Date class which represents dates differently to the .Net System.DataTime class.

This problem was overcome with some simple methods to translate between the .Net and

the Java representations of date-time.

The wrapper classes provided in the FluidEarth OpenMI 2.0 SDK made it possible to create

a working linkable component for the ACRU model in a short space of time, and with

relatively few lines of code. No additional code or changes to code were required in the

ACRU model to achieve this, although to some extent the ACRU 5 version of the model had

been developed with the OpenMI migration requirements in mind. As stated previously, the

development of a .Net linkable component wrapper for the ACRU 5 version of the model was

78

greatly facilitated by the object-oriented structure and also the configuration information

which fully describes the data type of each variable including the units of measure. The

open source nature of the FluidEarth OpenMI 2.0 SDK also made it easier to investigate and

understand how the wrapper classes worked.

The linking of the ACRU and eWater Source models, for the purpose of demonstrating the

application of the OpenMI linkable component, is described in Section 5.5. Initially it was

intended that the daily timestep ACRU model would be linked to the eWater Source model

which would be set to run at a daily timestep. However, due to the relatively small size of

the upper uMngeni Catchment used for the case study, it was realised that it would be

necessary to run eWater Source at an hourly timestep to demonstrate the lag and

attenuation of flows routed down the river reaches in eWater Source. Thus, an OpenMI

adapted output was required to be able to disaggregate daily runoff volumes, simulated by

ACRU, to hourly runoff volumes that could be used by eWater Source as inflows to the

modelled river network. This presented an opportunity to investigate and apply OpenMI

adapted outputs as part of the connections between two models as shown in Figure 4-4. An

adapted output class was created by extending the abstract AdaptedOutputTimeBase class

from the FluidEarth OpenMI 2.0 SDK. This new adapted output class named

Adapter_DisaggregateRunoff_SCS_UH_DailyToHourly disaggregates daily surface runoff

volumes to hourly volumes in the AdaptRecords method by applying the SCS unit

hydrograph (UH) approach (Schmidt and Schulze, 1987) and a synthetic rainfall distribution

(Weddepohl, 1988) used in the flow routing module of ACRU 3 and ACRU 2000 (Smithers

and Caldecott, 1995). This adapter requires two arguments: (i) the catchment lag time, and

(ii) the rainfall intensity zone. An adapted output factory class was required to dynamically

create instances of the new output adapter. The ACRU_OpenMITools_AdapterFactory

class implements the IAdapterOutputFactory interface from the OpenMI 2.0 Standard. A

UML class diagram showing these two new classes is shown in Figure 4-6.

Though the primary purpose of OpenMI is to link models, the OpenMI 2.0 Standard and SDK

makes better provision than OpenMI 1.4 for data files and databases to be wrapped as

linkable components, which are able to provide linked models with direct access to stored

data at run time (Donchyts et al., 2010). This was tested by creating a linkable component

for the AcruCSV format file used for input and output of time series data in ACRU 5, as

shown in Figure 4-7. This linkable component was created using the same approach that

was used for the ACRU linkable component, where the AcruCSV_Engine class is a wrapper

directly around the Java ModelDataAccess.DataReaderWriter_AcruCSV class compiled to

.Net. The AcruCSV_LinkableComponent class does the translation between the wrapped

79

AcruCSV file and OpenMI. In principle it should be possible to create a single wrapper class

that extends the abstract BaseComponentTime class provided by the FluidEarth OpenMI 2.0

SDK, but an initial attempt to do this was not successful and would need to be investigated

further.

Figure 4-6 UML class diagram of the OpenMI 2.0 adapter class used to estimate hourly

runoff from daily runoff

Figure 4-7 UML class diagram of the OpenMI 2.0 linkable component class for the

AcruCSV file format

80

4.5 Development of an OpenMI Linkable Component for eWater Source

As is motivated in the introduction to Chapter 4, the eWater Source model was selected for

evaluation in this study for potential use as a river network model linked to the ACRU model

and to demonstrate linking ACRU to another model using OpenMI. An inspection of the

installed files for eWater Source indicated that eWater Source might be OpenMI compliant.

Davis (2015) confirmed that eWater Source was OpenMI compliant, but commented that this

had not yet been included in the documentation. Davis (2015) explained that the

RiverSystem.OpenMI.XMLCreator.exe tool, which is part of the eWater Source installation,

allows an eWater Source project file to be selected and for an OpenMI OMI-file (*.omi) to be

generated for the project. This tool worked as expected but for unknown reasons it was not

possible to use the project as a linkable component within the FluidEarth configuration tool

Pipistrelle, mentioned in Section 4.3.5. This led to the decision to create a separate new

wrapper for eWater Source using the FluidEarth OpenMI 2.0 SDK, to test the feasibility of

creating a linkable component for a third party model without any access to the source code

for the model.

As shown in Figure 4-8 the same FluidEarth OpenMI 2.0 SDK wrapping approach was used

as for the ACRU model. The FluidEarth OpenMI 2.0 SDK were used to develop a linkable

component for the eWater Source model (public version 4.1.0.4337) using the C#

programming language The eWaterSource_Engine class extends the abstract BaseEngine

class as the wrapper around the eWater Source model engine, using the

RiverSystem.ApplicationLayer.Simulation.SimulationHandler class as the model engine. To

open and initialise a eWater Source project within a linkable component the following

information must be specified as arguments by the user: (i) the path to an existing eWater

Source project file (*.rsproj), (ii) the name of an existing project scenario, (iii) the simulation

timestep to be used, (iv) the simulation start and end date, and (v) the folder path to which

output files are to be written. The eWaterSource_Engine class includes code to determine

the eWater Source input and output variables using the GetInputMetaParameters and

GetOutputMetaParameters methods of the SimulationHandler class. Additional code was

added to the eWaterSource_Engine class to write model output variables to CSV files in a

specified output path. The eWaterSource_LinkableComponent class extends the abstract

BaseComponentTimeWithEngine class. The eWaterSource_LinkableComponent class

internally creates input and output exchange items for all the available eWater Source

project input and output metaparameters. It was possible to determine the units of measure

for each metaparameter using functionality within the SimulationHandler class. In eWater

Source extensive use of was made of eWater Source Functions to act as input variables to

81

receive data from ACRU via OpenMI connections. Similarly eWater Source Functions and

ModelledVariables were used as output variables to provide data for use by ACRU via

OpenMI connections. Setting the correct Result Units and Time of Evaluation settings on

these Functions was important. The Result Units field in the Functions was used to correctly

handle the units of measure of the data passed between the models using OpenMI, rather

than using OpenMI adapted outputs for unit of measure conversions.

As was the case with ACRU, it was possible to create a working linkable component for the

eWater Source model in a short space of time, and with relatively few lines of code.

However, not having access to the source code for the model, meant that the Application

Programming Interface (API) for the eWater Source classes was the only source of

information available and thus development of the linkable component required some trial

and error.

82

Figure 4-8 UML class diagram of the eWater Source OpenMI 2.0 linkable component

83

4.6 Time Differences in Linked Models and OpenMI

The greatest challenge in wrapping and linking the two models lay in understanding how

ACRU, eWater Source and OpenMI each conceptualised simulation timesteps, simulation

start and end dates, and the timestamps used to define these. OpenMI requires a time

horizon (the simulation period) to be returned by each linkable component, and if these are

different then a time horizon corresponding to the overlap between the individual linkable

component time horizons is used. However, this can cause problems in the models so

ideally the linked models need to be configured for the same simulation period. However,

even more important is the timestamp associated with the current timestep of each model as

a simulation progresses. For the purpose of this discussion, consider a linked simulation

with a duration of 5 days starting on 2017/01/01 and ending on 2017/01/05. The different

model engine and OpenMI linkable component times and also the timing of data requests

and flows are shown for two timesteps in Figure 4-9.

Figure 4-9 Time in the ACRU and eWater Source models linked using OpenMI

ACRU is a daily model (timestep of one day), it starts with an initial state at the beginning of

the first day, e.g. 2017/01/01 (2017/01/01 00:00:00), and runs to the end date, e.g.

2017/01/05 (2017/01/06 00:00). During the first timestep the model has the internal current

84

date of 2017/01/01 which changes to 2017/01/02 at the end of the first timestep, so the state

values are effectively the state at 2017/01/02 00:00:00, which makes sense. The ACRU

output time series files store daily non-state flux data (average flow, evaporation) as values

for the day on which they occurred. But these same files store state data (dam storage, soil

moisture) as the value at the end of the day (e.g. the state at 2017/01/02 00:00:00 is stored

against date 2017/01/01), because the state is queried and saved to output before the

model’s current date is changed to 2017/01/02.

In eWater Source the timesteps, varying from annual to six minutes, can be selected so the

time component of the timestamp is important. In eWater Source, if a start date-time of

2017/01/01 00:00:00 is specified then at initialisation eWater Source seems to set the

internal current date-time to the start date-time minus one timestep (2016/12/31 00:00:00 for

a daily timestep, 2016/12/31 23:00:00 for an hourly timestep). When eWater Source starts

the first timestep it first advances its internal current time by one timestep (back to

2017/01/01 00:00:00) to model the first day from 2017/01/01 00:00:00 to 2017/01/02

00:00:00), though the internal current time will only change to 2017/01/02 00:00:00 at the

start of the second timestep. In eWater Source the end date-time should be specified as the

date-time at which the last timestep starts (2017/01/05 00:00:00 for a daily timestep,

2017/01/05 23:00 for an hourly timestep.

Irrespective of the internal current time in each of the linked models, OpenMI seems to be

solely governed by the common horizon defined by a start date-time and end date-time for

the models. Hence, to model five days means that the start date-time needs to be

2017/01/01 00:00:00 and the end date-time needs to be 2017/01/06 00:00:00, which may

not correspond to the start date, current date and end date values retrieved from the models,

so it is important for the linkable component classes for the individual models to take this into

account.

4.7 Linking the ACRU and eWater Source Models Using OpenMI

Using OpenMI, two or more linkable components can be linked to create an OpenMI

‘composition’. However, the configuration of an OpenMI composition of two or more models

requires connecting individual corresponding variables for each hydrological component,

which requires a detailed knowledge of the models to be linked and is not necessarily a

simple task. The concept of having a rainfall runoff model (ACRU) provide simulated runoff

flows to a river network model (eWater Source) seems relatively simple until feedbacks

between parts of the two modelled domains are considered. A typical example of such

85

feedbacks are irrigated areas, where: (i) the climate-crop-soil water balance is modelled in

ACRU, (ii) the irrigation demand is determined in ACRU and sent to eWater Source, (iii) the

actual irrigation water quantity supplied, limited by availability, is determined in eWater

Source, (iv) the actual irrigation is applied in ACRU, and (v) potentially some surface runoff

and baseflow from excess irrigation may be generated in ACRU and sent to eWater Source.

To demonstrate linking the ACRU and eWater Source models using OpenMI for the upper

uMngeni case study catchment (Section 5.5), such that feedbacks between the two

modelled domains are represented, requires several different types of connections between

the models to be configured, as shown in Figure 4-10. The lighter blue solid-line

connections represent surface runoff and baseflow from the various response units in ACRU

which were passed to an Inflow node in eWater Source. The surface runoff and baseflow

quantities were passed in separate connections, so that the daily surface runoff from ACRU

could be disaggregated to hourly values using an adapted output. The daily baseflow

quantities are simply converted by eWater Source from a daily rate to an hourly rate. The

grey dotted-line connections represent cases where information was passed between the

models, these were usually water requests sent from ACRU to Time Series Demand nodes

in eWater Source. The darker blue solid-line connections represent connections where

water supply quantities calculated in eWater Source were passed from Time Series Demand

nodes in eWater Source to ACRU. In the case of wetlands, to be consistent with the manner

in which ACRU models wetlands, the soil moisture deficit in the topsoil horizon of the

wetland was calculated in ACRU and sent to eWater Source from which, based on the flow

calculated in Source, water was supplied to ACRU where it entered the topsoil horizon. In

the case of irrigated areas and urban areas in ACRU, water requests were sent to Time

Series Demand nodes in eWater Source, which were then supplied to ACRU if sufficient

water was available in the eWater Source water source. For urban areas, return flows

calculated in ACRU were passed to an Inflow node in eWater Source.

86

Figure 4-10 The different types of connections between ACRU and eWater Source

The FluidEarth Pipistrelle graphical user interface tool, mentioned in Section 4.3.5, is useful

for creating and editing compositions with a relatively small number of connections and

adapters between the models. However, this would be a tedious exercise if there were a

large number of connections and adapters to be configured, as was the case with the case

study in the upper uMngeni Catchment (Chapter 5) for the linked ACRU and eWater Source

models. Thus, some new tools were developed to make it easier to create and run OpenMI

compositions:

(i) A general tool consisting of an XML file format to store information about a

composition, and a corresponding library of C# classes to read and write these XML

files and to run an OpenMI composition. The XML file format and the library of C#

classes are described briefly in Appendix 8.6.

(ii) A plugin to the graphical user interface for eWater Source, described briefly in

Appendix 8.7, which uses information from a user specified ACRU model input file to

create a corresponding eWater Source project and OpenMI configuration.

(iii) A plugin to the graphical user interface for eWater Source, described briefly in

Appendix 8.7, which enables the user to select and run an OpenMI composition.

87

4.8 Discussion

The newly developed facility to link ACRU with models representing other domains, using

OpenMI, is an innovation that is expected to enhance ACRU’s application as a tool for

IWRM. The development of OpenMI compliant wrappers for both ACRU 5 and eWater

Source using the FluidEarth .Net implementation of the OpenMI 2.0 Standard was relatively

straightforward. The object-oriented structure of the restructured ACRU model facilitated the

easy development of an OpenMI 2.0 wrapper for the model. The OpenMI 2.0 wrapper for

ACRU will enable ACRU to be linked to other OpenMI 2.0 compliant models and thus

facilitate the use of ACRU as part of integrated water resource modelling systems which can

utilise the strengths of different domain models. One of the objectives of the OpenMI 2.0

Standard was to facilitate the linking of models to data sources, in addition to linking models,

and this will also facilitate the use of ACRU within integrated modelling frameworks that have

implemented OpenMI 2.0 without any changes or additions to the ACRU code. It should be

noted that it would not have been possible to develop an OpenMI wrapper for the ACRU 3

version of the model operating in distributed mode, due to each subcatchment being

modelled individually for the full simulation period (Figure 2-3), compared to the ACRU 5

version where all subcatchments are modelled within each timestep (Figure 2-4).

It is unfortunate that a Java implementation of the OpenMI 2.0 Standard has not been

completed. However, in spite of this, the compilation of the ACRU Java code to .Net using

the IKVM software worked well and enables ACRU to be linked with OpenMI compliant

models developed in .Net, which are likely to be in the majority. Towards the end of the

development of the OpenMI 2.0 wrapper for ACRU a statement by Frijters (2017) indicated

that development of the IKVM software had been discontinued. Thus, an alternative solution

to compiling Java code to .Net may need to be investigated in the future.

Although the source code for the eWater Source model was not available it was still possible

to develop an OpenMI 2.0 wrapper as the model fulfilled the necessary criteria for wrapping.

However, the development of the wrapper for eWater Source did highlight the need for a

good knowledge of the model being wrapped.

When linking models it needs to remembered that there will now be two or more models

being loaded into memory simultaneously. Thus, the technical specifications of the

computer on which the linked models are to be run need to be considered. Buahin and

Horsburgh (2015) state that the increase in simulation time for loosely coupled models is

mainly due to: (i) initialisation and disposal of model components - increasing with the

88

number of exchange items and their complexity, and (ii) the data transformations and

transfers between components - increasing with the number of model components, the

complexity of the model components and their exchange items, the number of OpenMI

connections and the length of the model timesteps. The benefits resulting from linking

models need to be balanced against costs such as increased configuration and simulation

times (Buahin and Horsburgh, 2015).

Although the Pipistrelle tool makes is easy for model users to link two OpenMI compliant

models, the user will required a detailed understanding of both the models being linked and

also some knowledge of how OpenMI works. Validation of two or more models linked using

OpenMI will also be important to ensure that the links have been correctly configured. While

Pipistrelle is a useful GUI tool for configuring model linkages, it would be tedious to use in

instances where there are numerous links to be created between various components of the

linked models. In the case of these more complex model linkages it would be advantageous

to write code to configure the model linkages. The composition information classes,

described in Appendix 8.6, would make writing this code easier, and are a useful contribution

resulting from this study.

The ACRU and eWater Source models are compatible in the way in which they

conceptualise water resource systems. The water flow and management functionality of

eWater Source complements the ACRU surface land cover/use modelling functionality well.

While the two models can be applied in linked mode using OpenMI, as demonstrated in

Section 5.5, this is not straightforward.

In conclusion, the fourth objective of the research study, stated in Section 1.4, to develop a

means of linking ACRU with other models, has been achieved through the development of

an OpenMI linkable component for ACRU. In addition, the innovative linking of the ACRU

and eWater Source models, representing feedbacks between the two modelled systems,

has provided a non-trivial demonstration of linking two models on a timestep-by-timestep

basis. The suitability of the ACRU model engine for migration to OpenMI was largely a

result of the restructuring described in Chapter 3. The investigation and implementation of

OpenMI as a model linkage system described in this chapter demonstrated that it was

possible to:

 Develop an OpenMI 2.0 linkable component for ACRU, for which there was a good

understanding of the model and access to the source code.

 Develop an OpenMI 2.0 linkable component for a model input data file in AcruCSV

format.

89

 Develop an OpenMI 2.0 linkable component for eWater Source, for which there was

initially little understanding of the model and no access to the source code.

 Link two models using OpenMI such that feedbacks between the two modelled

systems were represented.

 Link two models using OpenMI where the models were run at different timesteps,

ACRU daily and eWater Source hourly.

 Develop an OpenMI adapted output to do a non-trivial adaption from daily runoff in

ACRU to hourly runoff for use in eWater Source.

90

5 CASE STUDY - UPPER UMNGENI CATCHMENT

The purpose of this chapter is to demonstrate and discuss, using a case study catchment,

how the objectives of this research study have been achieved. In the context of using the

ACRU model to produce simulated estimates of the hydrological variables required to

compile catchment-scale water resource accounts, it will be shown that the restructured

ACRU model is: (i) more flexible enabling more realistic representation of the physical

components of complex water resource systems, (ii) extensible through the addition of the

new Accounting module, and (iii) includes improved handling of time series data. The new

ability to link ACRU to other models using OpenMI is demonstrated by linking ACRU to the

eWater Source model, using eWater Source to do hydrologic routing of streamflow from

ACRU through river reaches and dams, taking abstractions of water for urban and irrigation

use into account.

5.1 Overview of the upper uMngeni Catchment

The uMngeni Catchment is situated in the summer rainfall region, within the KwaZulu-Natal

province of South Africa. The catchment has an area of 4455 km2 and the altitude ranges

from 2064 m in the West to sea level in the East. The Mean Annual Precipitation (MAP)

varies from 1550 mm in the West to 700 mm in the drier middle part of the catchment

(Warburton, 2011). The uMngeni River is the main source of water for the city of

Pietermaritzburg with a population of 618 536 (StatsSA, 2012), the city of Durban and the

greater eThekwini metropolitan area with a population of 3 442 361 (StatsSA, 2012), and

several smaller towns including Hilton, Howick, New Hanover and Wartburg. The uMngeni

River is regulated by four large dams (Midmar, Albert Falls, Nagle and Inanda). The

catchment is categorised as being fully developed (DWA, 2013) and is currently augmented

with transfers from the Spring Grove Dam and the Mearns Weir on the Mooi River in the

neighbouring uThukela Catchment. The bulk water utility Umgeni Water is responsible for

providing potable water within the catchment. The eThekwini metropolitan area is the

second largest commercial and industrial area in South Africa (DWAF, 2004) and significant

future population growth is anticipated in the eThekwini/Pietermaritzburg area due to

urbanisation and economic growth. Rural areas include subsistence and commercial

farming, with extensive irrigated agriculture, cultivation of sugarcane and commercial forestry

plantations (DWAF, 2004). Streamflow in the catchment is largely perennial and there is

relatively little extraction of groundwater (DWAF, 2004).

91

The uMngeni Catchment configuration of the ACRU model developed by Clark (2015d), to

demonstrate the application of an integrated water resources accounting methodology,

formed the foundation for the case study presented in this study. However, for the purpose

of this study it was decided to focus just on the upper portion of the uMngeni Catchment, that

is, the portion of the catchment upstream of and including Albert Falls Dam. Due to the

position of the dams and urban areas in the uMngeni Catchment, the upper uMngeni

catchment is a critical part of the water supply system due to the higher rainfall and that,

together Midmar Dam and Albert Falls Dam (via releases to Nagle Dam), provide water to

the city of Pietermaritzburg, to the surrounding small towns and to a large portion of the

eThekwini metropolitan area. Although the Inanda Dam is also an important part of the

system, its relatively low altitude means that it is best suited to providing water to the lower

altitude portions of the city of Durban and neighbouring coastal towns due to the cost of

pumping. The location of the upper uMngeni Catchment is shown in Figure 5-1. A detailed

map of the upper Umgeni Catchment is shown in Figure 5-2, including Quaternary

Catchments, subcatchment boundaries, rivers, major dams, urban areas and water transfers

into and out of the catchment.

Figure 5-1 Locality map and Quaternary Catchments for the upper uMngeni Catchment

92

Figure 5-2 Catchments, rivers, major dams, urban areas, water transfers in the upper uMngeni Catchment

93

5.2 Configuration of the ACRU and eWater Source Models

In a research project titled “Development And Assessment Of An Integrated Water

Resources Accounting Methodology For South Africa” (Clark, 2015a) a methodology was

developed to produce annual catchment-scale water resource accounts, as described in

Clark (2015b) and summarised in Appendix 8.8. A hydrological modelling approach was

adopted to provide the various water balance components required for the water resource

accounts. Much of the effort required to produce the accounts was related to identifying

suitable datasets, processing these datasets and then using these datasets to configure the

ACRU model. The methodology and Python scripts used to process the datasets and

configure ACRU are described in Clark (2015b). The same methodology, with a few

enhancements, was applied to configure ACRU for the upper uMngeni Catchment. The

methodology and datasets used to configure ACRU and eWater Source for the case study

are described in more detail in Clark (2015d) and in Appendix 8.9.

5.3 Verification of the Simulations

The ACRU model has been applied and verified extensively in South Africa (Schulze, 1995d)

and has also been applied in several other countries. Verification studies specifically relating

to the uMngeni Catchment include: Tarboton and Schulze (1991), Tarboton and Schulze

(1992), Kienzle et al. (1997), Schulze et al. (2004), Kiker et al. (2006) and Warburton et al.

(2010). The ACRU 4 version of the model is currently being applied in research and

consulting contexts, and is used in teaching hydrology and engineering undergraduate

students at UKZN. The ACRU 5 version of the model has thus far been applied for research

purposes in the upper uMngeni Catchment (Clark, 2015d), the Sabie-Sand Catchment

(Clark, 2015c), the upper uThukela Catchment (Clark, 2017a) and the upper and central

Breede Catchment (Clark, 2017b), as part of a methodology for compiling annual catchment-

scale water resource accounts. The representation of hydrological processes in the ACRU 5

version of the ACRU model, discussed in this chapter, is almost identical to the ACRU 3

version. Therefore, it was not intended for this case study to provide a detailed verification

of the ACRU model. However, the ACRU model was run for the period 1 October 2007 to

30 September 2016, a total of nine hydrological years, using the first year as a warmup

period to initialise small dam, soil and groundwater storages. The simulated streamflow and

dam storage volumes were compared to measured streamflow and dam storage volumes.

The detailed results are discussed in Appendix 8.10. In summary, the seasonal trends in the

measured streamflow were generally represented well, but with substantial over or

underestimations in the magnitude of the flow in some events and seasons. The trends in

94

the simulated flows appeared to be associated with the trends in the estimated rainfall. In

the relatively high rainfall upper uMngeni Catchment, with a strong seasonal variation in

rainfall and with rainfall frequently occurring in the form of high intensity storms, rainfall is the

primary driver of hydrological responses. It was concluded that the poor degree of

association between the simulated and the measured streamflow was most likely to be due

to: (i) differences in actual and estimated rainfall volumes, and (ii) mismatches in the timing

of peak flows. It was also concluded that the mismatches in the timing of peak flows was

possibly partly due the ACRU model not lagging and attenuating flows as they proceed down

river reaches and through dams.

As stated at the beginning of this section, the ACRU model has previously been applied

successfully in the uMngeni Catchment. Thus, although there is always scope to improve

understanding and model representation of hydrological process, the model is at a mature

stage of development and a certain degree of trust in the model has been established.

However, this study has highlighted two possible areas for further investigation related to

processes, stormflow generation and flow routing. The suitability of the SCS equation to

estimate stormflow, used in the ACRU model (Schulze, 1995c), when using spatially

averaged rainfall values from remotely sensed rainfall products, as opposed to point rain

gauge measurements, needs to be investigated further, but is beyond the scope of this

study. In addition a simple method of at least lagging flows should be considered for

inclusion in the ACRU model to improve the timing of flows, especially down long river

systems, for use in instances where detailed flow routing is not required.

5.4 Application of the Restructured Object-Oriented ACRU Model

The rationale for restructuring the ACRU model is discussed in Section 2.2 and the design

objectives to be achieved in the restructured model are listed in Section 3.2. The purpose of

this section is to use the case study catchment to demonstrate how the achievement of

these design objectives has resulted in more versatile and flexible ACRU model. Although

this section focusses primarily on the ACRU model engine, many aspects of the enhanced

functionality of the object-oriented model engine depend on the newly developed XML model

input file structure which complements the object-oriented structure of the engine.

5.4.1 Nested Catchment Structure

The object-oriented model structure in which the physical components of the hydrological

system are more explicitly defined, the object-oriented concept of objects being composed of

95

other sub-component objects and the ability to define relationships between objects, has

resulted in a model that has a more representative and more flexible structure. One

example of how this has improved the ACRU model is the nested structure of

subcatchments within catchments within bigger catchments, as shown in Figure 5-3. As

described in Section 2.1.1, the ACRU 3 version of the model conceptually represents

hydrological systems as a set of subcatchments (shown as green squares in Figure 5-3)

numbered in sequential flow order, but not explicitly belonging to a parent catchment. The

streamflow network is created by specifying a downstream subcatchment for each

subcatchment. In the ACRU 5 version, subcatchment Component objects can be configured

as residing within a parent (container) catchment Component object (orange outlines), which

in turn may reside within a bigger catchment component object (purple outline), resulting in a

structure of nested subcatchments and catchments. The nested system of subcatchments

and catchments has two advantages: (i) it makes it possible to determine the simulated flows

at different catchment scales by querying the simulated flows at the subcatchment or

catchment outflow nodes, and (ii) it makes it possible to aggregate other spatial variables,

such as rainfall or total evaporation at different catchment scales. The latter facility, to be

able to aggregate spatial variables up through a series of nested catchments, made it

possible in the new ACRU Accounting module to create sets of nested water resource

accounts at different catchment scales.

Figure 5-3 Representation of HRUs within nested subcatchments and catchments

5.4.2 Flexible Configuration of Subcatchments

The availability of more detailed satellite remotely sensed land cover/use datasets has led to

the requirement for more flexibility to include a greater number of land cover/use HRUs

within a subcatchment. As discussed in Section 2.1.1, and shown in Figure 2-2, the ACRU 3

version represented a subcatchment as having a single dominant land cover/use, with the

96

option to also include a dam, an irrigated area, an adjunct impervious area and a disjunct

impervious area. Common workarounds for this inflexible subcatchment configuration were

to: (i) calculate area weighted averages of land cover characteristics, or (ii) to use

subcatchments to represent individual HRUs. One of the main reasons for restructuring

ACRU was to enable more flexible configuration of spatial components within

subcatchments. The object-oriented model structure, complemented by the XML model

input file structure has made this possible. In the ACRU 5 version a subcatchment may

have any number of HRUs within a subcatchment (shown as subdivided green squares in

Figure 5-3), usually based on land cover/use classes, but are not usually spatially explicit

within a catchment. For example each subcatchment may contain: (i) several HRUs

representing different natural vegetation types, (ii) several HRUs representing different

dryland crops, (iii) several HRUs representing different irrigated crops, (iv) impervious areas,

(v) wetlands, (vi) more than one dam, and (vii) one or more river reaches. However, it

should be noted that this flexibility to represent a large number different HRUs within each

subcatchment will not necessarily result in better simulations as many HRUs may have

similar hydrological responses.

Many of the subcatchments modelled in the upper uMngeni include several different land

cover/use classes, as shown in Figure 8-45. The increased flexibility in configuring

subcatchments was used in this case study. One of the purposes of the water resource

accounts was to represent sectoral water use, and modelling each land cover/use class as a

HRU made it possible to account for the water use by different sectors.

In this case study the increased flexibility in configuring subcatchments was also used in the

representation of dams within a subcatchment. In the upper uMngeni catchment there are a

large number of farm dams, as shown in Figure 8-44, many of which are not on the main

river reach running through a subcatchment. It is not practical to individually model the

subcatchment providing runoff to each of these small dams. A typical approach used in

configuring the ACRU 3 version is to lump all the dams into a single dam which is assumed

to be either: (i) situated within the subcatchment, but off the main river channel, or (ii) an in-

channel dam situated at the downstream exit of the subcatchment. In this case study, as

described in Appendix 8.9.5, within each subcatchment: (i) all the small unregistered farm

dams were lumped and modelled as a single dam, off the main river reach, with no irrigation

abstractions, (ii) all the registered farm dams, for which more information was available,

were lumped and modelled as a single dam, on the main river reach, with irrigation

abstractions, and (iii) Midmar Dam and Albert Falls Dam were modelled as individual dams

on the main river reach. In each subcatchment, where relevant, two runoff regions were

97

determined, the regions upstream and downstream of unregistered and registered farm

dams, as shown in Figure 8-44. An example of how a subcatchment may be configured

internally in ACRU 5, as was done in this case study, is shown in Figure 5-4, comparing it to

a typical configuration in ACRU 3. In the region upstream of farm dams, runoff is received

by the lumped unregistered dam, which then flows into the lumped registered dam, which

then flows through the region downstream of dams to the exit of the subcatchment. The

irrigated areas in both the regions are assumed to be supplied with water from the lumped

registered dam. In subcatchments without dams, the runoff would flow directly to the exit of

the subcatchment and irrigation would be from run-of-river.

Figure 5-4 Example of more flexible configuration within subcatchments

5.4.3 Flexible Configuration of the Flow Network

The more flexible configuration of the spatial components contained within subcatchments to

more realistically represent heterogeneous land use, as discussed in Section 5.4.2, requires

the configuration of the flow connectivity between these spatial components. The object-

oriented model structure in which the physical components of the hydrological system are

more explicitly defined also enables the flow network to be configured more flexibly. Each

subcatchment contains a subcatchment node at its downstream exit. Within each

subcatchment a flow network of nodes, river reaches and dams may be configured ending

with the subcatchment node. Similarly each catchment contains a catchment node at its

downstream exit. The smaller scale subcatchment flow networks are connected to create

larger scale catchment flow networks. The flow network is configured by specifying

upstream and downstream relationships for each node, river reach and dam.

98

5.4.4 Flexible Configuration of Engineered Flows

Engineered flows of water for irrigation and urban use can add significant complexity when

configuring a hydrological model and creating catchment water accounts. This is especially

the case where water is abstracted from one subcatchment and used, possibly with return

flows, in a different subcatchment. Typically in ACRU 3 water for irrigation would be from a

river or dam in the same subcatchment, although the “loopback” option (Smithers and

Schulze, 1995) does enable water for irrigation to be supplied from an upstream

subcatchment. The ACRU 3 version does not make direct provision for water abstractions

and return flows for urban water use, though there are options to represent transfers of water

out of river reaches, and into or out of dams. In this case study catchment the assumption

that irrigation will be from a river or dam in the same subcatchment is reasonable as there

are no large-scale water schemes. However, there are significant abstractions of water from

Midmar Dam for urban use in Mpophomeni and Lidgetton upstream, and Howick, Merrivale

and Hilton downstream, located as shown in Figure 5-2, in addition to the supply of water for

urban use outside the upper uMngeni Catchment. To meet the need to represent these

engineered water flows for urban use in the water resource accounts, new functionality was

added to the ACRU 5 version to model daily urban water requirements by CUrbanWaterUser

Components in a simple manner. For both irrigation and urban water users the ACRU 5

version requires that a water source Component be specified, usually a dam or a river node,

where the water source component may be in another subcatchment which may be

upstream or downstream or in a completely different catchment.

The ability to model engineered water flows between catchments creates some difficulties

when determining the order in which the different components and their processes are to be

executed. In ACRU 3 each subcatchment is simulated for the full simulation period, for

example 10 years, before moving on to the next subcatchment which is then simulated for

the full simulation period, as shown in Figure 2-3. This means that only water transfers to

downstream irrigation water users can be modelled, and only if the downstream requirement

is already known. It was for this reason that one of the objectives of restructuring ACRU was

to enable a parallel processing approach, such that each hydrological process on each

subcatchment is executed each day before continuing to the next day, as shown in Figure

2-4. Representing Components and Processes as objects in ACRU 5, together with some

code to determine the computation order for Components and Processes objects, made it

possible to implement such a parallel processing approach. This made it possible in this

case study to simulate daily water urban water requirements and the supply of water from

Midmar Dam to meet these requirements for urban areas both upstream and downstream.

99

5.4.5 Flexible Handling of Time Series Data

Umgeni Water extracts water from Midmar Dam to supply bulk water to municipalities, both

within and outside the upper uMngeni Catchment. The flow rate data for DWS gauging

station U2H049, a flow meter measuring abstractions from Midmar Dam, was downloaded

from the DWS website [http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx]. This data

showed that for the hydrological years 2007/2008 to 2014/2015, on average, the annual

abstraction volume from Midmar increased by about 5.4% but, due to drought induced

restrictions put in place by Umgeni Water, abstractions reduced from 130 Million m3/annum

in 2014/2015 to 120 million m3/annum in 2015/2016. The inter-catchment transfers from

Spring Grove Dam and Mearns Weir on the Mooi River, in the neighbouring uThukela

Catchment, into the uMngeni Catchment are also significant and vary from year to year

depending on availability in the Mooi River system and needs in the uMngeni system. For

example, in the 2015/2016 hydrological year, a drought year, the inter-catchment transfer in

contributed 112 million m3/annum, which is nearly half the 235 million m3 full capacity of

Midmar Dam. Thus, it is important to be able to represent these variations over time in the

ACRU model inputs.

In the ACRU 3 version, transfers into and out of catchments would typically be represented

using: (i) the DOMABS variable for abstractions out of a river, (ii) the XDRAFT variable for

abstractions out of a dam, and (iii) the PUMPIN variable for transfers into a dam. These

variables contain 12 month-of-year flow rate values, and thus vary from month to month

within a year but not from year to year. With some additional effort it would be possible to

use the ACRU 3 dynamic file option to specify transfer rates that change monthly and

annually. In this case study daily data on flow rates for the inter-catchment transfer and the

Umgeni Water abstraction were available. The more flexible handling of time series data

and file formats in the model and the XML model input file, enabled these daily time series of

flow data to be used in the model to better represent these flows for use in the water

resource accounts.

Similarly, in the ACRU 3 version, controlled flow releases from dams to downstream

catchments would be represented using the QNORM variable containing 12 month-of-year

flow rate values. Flow releases from Midmar Dam are mostly to provide for environmental

requirements downstream. However, for Albert Falls Dam flow releases are made to supply

Nagle Dam downstream, from which water is pumped by Umgeni Water to supply urban

areas within the eThekwini metropolitan area. Although these flow releases do not typically

vary greatly from day to day, it was still useful to be able to represent daily flow releases

100

estimated from measured daily flow rates at weirs almost immediately downstream of both of

these dams.

5.4.6 Water Resource Accounts

As stated in the rationale for restructuring the ACRU model, discussed in Section 2.2, one of

the main reasons for restructuring the ACRU model was to make it more extensible. The

restructured model is more extensible due to the object-oriented design, especially the more

explicit representation of physical components and hydrological processes as Component

and Process classes. This extensibility was demonstrated through the addition of several

new modules to the ACRU 2000 version, as discussed in Section 3.5.2. The extensibility of

the ACRU 5 version was demonstrated through the development of the Accounting module

used to compile catchment-scale water resource accounts, which is described briefly in

Section 3.5.2 and in more detail in Clark (2015b).

During an ACRU simulation the Accounting module stores simulated values required for the

accounts. At the end of the simulation these stored values are used to generate water

resource accounts for each subcatchment for each month. Using information stored in the

subcatchment and catchment Component objects it is possible to aggregate the

subcatchment accounts, both spatially and temporally, to create annual water resource

accounts for a range of different catchment scales. The new model structure, not only made

it easier to develop the new Accounting module, but also made it possible to model the water

resource systems in suitable detail to provide the data and information required to generate

the water resource accounts.

Annual water accounts were generated for eight hydrological years from 2008-2009 to 2015-

2016. Three of these accounts are discussed and compared in this section: (i) for the

highest rainfall year 2010-2011, shown in Figure 5-5, (ii) for the lowest rainfall year 2011-

2012, shown in Figure 5-6, and (iii) for the recent drought year 2015-2016 shown in Figure

5-7. It was interesting that for these eight simulated years the lowest rainfall year followed

the highest rainfall year. These water accounts are in the form of the modified WA+

Resource Base Sheet described in Clark (2015b). A key to the individual items of the

accounts, with a brief description of each item, can be found in Appendix 8.11. These water

accounts should be regarded as being for illustrative purposes only, as the accuracy of the

modelled flows was not good for the reasons discussed in the verification described in

Appendix 8.10.

101

Inflows to the catchment are shown on the left-hand side of the Resource Base Sheet. In

2010-2011 the precipitation is approximately 37% greater than in 2011-2012 and 30%

greater than in 2015-2016. There are no surface water inflows to the upper uMngeni as it is

at the top of the uMngeni Catchment. Groundwater flows between catchments are not

modelled in ACRU, as all baseflow is assumed to contribute to streamflow within the

catchment in which it is generated. In 2010-2011, the inter-catchment transfer from the

neighbouring Mooi River Catchment is almost twice that in 2011-2012, which may be due to

availability of water at Mearns Weir. In 2015-2016 the inter-catchment transfer is

approximately three times that in 2011-2012, with increased availability of stored water with

the building of Spring Grove Dam and greater need as a result of increased population and

thus water demand from Midmar Dam.

After inflows, changes in water storage within the catchment are accounted for. In 2010-

2011 the change in surface water (∆Sf SW) is negative indicating that some of the gross inflow

to the catchment was used to increase the water stored in dams in the catchment during the

accounting period. In contrast, during the following year (2011-2012) the change in surface

water is positive indicating that water stored in the dams made a net contribution to flows out

of the catchment and thus stored water decreased. In 2015-2016 there was a small

increase in surface water storage despite the drought, but this was only possible due to

inflows from the inter-catchment transfer. In both 2010-2011 and 2011-2012 the change in

the soil moisture store (∆Sf SoilM) is similar, and the negative values indicate an increase in

soil moisture. The change in the soil moisture store is highly dependent on rainfall and total

evaporation in the days preceding the start and end of an accounting period. As the soil

moisture is calculated of a wide areal extent, over almost the whole area of a catchment, the

changes in volumes of water in the catchment in soil moisture store can in some

circumstances have a significant effect on the water account. In 2010-2011 the change in

the groundwater store (∆Sf SW) is negative indicating that there was some recharge of the

store, in contrast to the drier 2011-2012 and 2015-2016 where drawdown of the store

occurred.

Total evaporation within a catchment is usually the main form of water consumption.

Unsurprisingly the Landscape ET section shows total evaporation having a similar trend to

the precipitation. The accounts do not indicate evaporative potential during the accounting

period, but it is expected that even in wet years total evaporation is at times limited by water

availability. Total evaporation from cultivated areas and areas with natural land cover is the

greatest, though evaporation from water bodies is also significant. The values of

Incremental ET for the cultivated areas are surprisingly small compared to the Landscape

102

ET values. The reasons for this are that: (i) although there is a substantial area of irrigated

agriculture in the upper part of the catchment, it is still a relatively small portion of the whole

catchment area, (ii) irrigation of the annual crops only takes place during the growing

season, and (iii) the catchment has a relatively high rainfall and thus irrigation just

supplements the rainfall. In the drier 2011-2012 and 2015-2016 years irrigation and thus

Incremental ET is greater than in the wetter 2010-2011. Looking at the partitioning of total

evaporation, in all the years modelled transpiration makes up the greatest proportion of total

evaporation, followed by soil water evaporation and then evaporation of intercepted water.

Evaporation from open water surfaces is the smallest proportion, but that is expected as the

area of open water is small compared to the total catchment area.

Outflows from the catchment are shown on the lower right-hand side of the Resource Base

Sheet. Outflows of surface water due to downstream releases from Albert Falls Dam were

similar in 2010-2011 and 2011-2012, but less in 2015-2016. Transfers out of the catchment

from Midmar Dam for urban use increased each year, except in 2015-2016 when water

restrictions were put in place to reduce water use during the drought. It was interesting to

note that in 2015-2016 the out transfers were almost equivalent to the in transfers from the

inter-catchment transfer, highlighting the importance of this transfer.

103

Figure 5-5 Modified Resource Base Sheet for the upper uMngeni for 2010-2011

104

Figure 5-6 Modified Resource Base Sheet for the upper uMngeni for 2011-2012

105

Figure 5-7 Modified Resource Base Sheet for the upper uMngeni for 2015-2016

5.5 Application of the Linked ACRU and eWater Source Models

The need for the routing of flows in river reaches and dams to improve the simulation of

observed flows identified, at the end of Section 5.3, was addressed by linking ACRU to

eWater Source using OpenMI, as described in Section 4.7, such that ACRU acts as a

rainfall-runoff model and eWater Source as a river network and water management model.

The role of eWater Source was to route flows downstream, provide natural flows to wetland

areas modelled in ACRU and to distribute water to urban and irrigation users. ACRU is a

daily timestep model and the flow reaches in the upper uMngeni are relatively short, it was

thus necessary to run eWater Source at an hourly timestep and disaggregate the daily runoff

106

values from ACRU to hourly values. Two daily runoff disaggregation methods were used: (i)

simply dividing the daily runoff into 24 equal hourly values, and (ii) disaggregation of the

event stormflow volume using the SCS unit hydrograph (UH) approach (Schmidt and

Schulze, 1987) that is used in the flow routing module of ACRU 3 and ACRU 2000. In this

application of OpenMI, the ACRU and eWater Source linkable components were configured

such that they exchanged data values using one-to-one pairs of model components and

variables, each with a unique ID, rather than using the spatial characteristics of the modelled

components.

Examples of the results of the linked model simulations are shown in Figure 5-8 (U2H007),

Figure 5-9 (U2H013) and Figure 5-10 (U2H006) for a three month period in the 2008/2009

summer rainfall season. The verification of simulated flows, mentioned in Section 5.3,

showed substantial over or underestimations in the magnitude of the flow in some events,

most likely due to inaccurate rainfall estimates. The main purpose of this section was thus to

show the effect of flow routing on both the magnitude and timing of flows, thus

demonstrating and validating the developed ability to link the models for different domains.

The hourly streamflow volumes output from eWater Source were aggregated to daily

volumes and normalised to depths over the contributing catchment. The linked model

simulation using the simple runoff disaggregation method resulted in substantial attenuation

of the peak daily flows following a rainfall event. At a daily level there was no noticeable

lagging of flows with the simple runoff disaggregation method. As anticipated, the SCS UH

disaggregation method often resulted in higher daily runoff rates being calculated, but these

peak daily flows following a rainfall event are lagged by a day, corresponding better to the

timing of the measured flows following a rainfall event. These results highlighted the

sensitivity of the simulated streamflows to: (i) the temporal distribution of rainfall and runoff

within a day, and (ii) to a lesser extent, in this case study, to the lag and attenuation of flows

down river reaches. More importantly in the context of this study, the results demonstrated

that the linking of the ACRU and eWater Source models using OpenMI worked. However,

the results for this short simulation period seem to indicate that there may be a mass

balance error for the linked models when using the simple runoff disaggregation method -

with the linked model streamflows always being less than the modelled streamflows from

ACRU alone. This was more apparent for the Lions River and Mpendle Catchments than for

the Karkloof catchment. An initial investigation into this error found that the error was not

related to the units of measure when passing runoff between the models in the OpenMI

connections. The individual model configurations were the same for both runoff

disaggregation methods. It is unlikely that there is a mass balance error in the individual

models, thus it would seem that the error is related to the model linking, and more

107

specifically to the dissagregation of daily to hourly runoff. With the SCS UH dissaggregation

method, the runoff values are passed through an OpenMI AdaptedOutput in which the

dissagregation takes place. In the simple runoff disaggregation method, the daily runoff

values are passed to eWaterSource with the dissagregation to hourly values being done

internally within eWater Source. This should be the starting point for further investigation of

the problem. The cause of such mass balance errors can be difficult to pinpoint when

passing values between models through two model wrappers and the OpenMI linkage

mechanism.

Figure 5-8 Example of daily rainfall and streamflow at gauge U2H007 (Lions River)

Figure 5-9 Example of daily rainfall and streamflow at gauge U2H013 (Mpendle)

108

Figure 5-10 Example of daily rainfall and streamflow at gauge U2H006 (Karkloof)

The effect of the two runoff disaggregation methods to some extent masks the effect of the

flow routing. To show the effect of the flow routing, the hourly simulated flows at the

upstream and the downstream ends of the ungauged 17 km long main river reach in the

Lions River_11 subcatchment are shown for a two week period in Figure 5-11, for the SCS

UH runoff disaggregation method. The lag and attenuation of the streamflow hydrographs

for the two big rainfall events on the 15th and the 22nd of February 2009 can be seen in

Figure 5-11, even for this relatively short river reach. As anticipated, the lag time between

the upstream and downstream peaks is in the order of 3 to 4 hours for these two events.

Figure 5-11 Hydrographs upstream and downstream of main river reach in the Lions

River_12 subcatchment

109

Separate simulations were run for each of the Lions River, Mpendle and Karkloof

catchments using the linked ACRU and eWater Source models, due to the slow execution of

the simulation for the whole upper uMngeni Catchment for the full 2007 to 2016 simulation

period. This problem needs to be investigated further, but was not entirely unexpected

considering that detailed configurations of two model engines were being run simultaneously

with the OpenMI linkable components transferring data between them at each timestep. In

each of the Lions River, Mpendle and Karkloof catchments the execution time for the linked

model was approximately two hours for an 8 month simulation period, with ACRU being run

at a daily timestep and eWater Source at an hourly timestep. This is in the order of 100

times longer than the standalone ACRU simulations at a daily timestep for the same time

period, without flow routing. These long execution times for the linked models would be

impractical for (i) bigger catchment areas, configured at the same level of detail, (ii) when

running the models for longer time periods, or (iii) when a large number of model runs are

required. Running eWater Source at an hourly timestep is one reason for the longer

execution time, given the increased number of timesteps to be evaluated in the simulation

period, relative to a daily timestep. The cause of the long execution times was not

investigated further as it was out of the scope of the study, given the complexities of such an

investigation using software profiling tools, as was performed by Buahin and Horsburgh

(2015). No references could be found in literature related to any problems with slow

execution times by the eWater Source model, but as with the ACRU model it is expected

that execution time would increase with increasing size and complexity of model

configurations. Some reasons for the long execution times related to OpenMI, as discussed

by Buahin and Horsburgh (2015), are listed briefly in Section 4.8. In addition to these

OpenMI related causes, some potential areas for further investigation include the following:

 The compilation of ACRU Java code to .Net using IKVM.

 The IO and unit of measure conversion costs related to the OpenMI wrapper for

ACRU.

 The IO, unit of measure conversion and runoff disaggregation costs related to the

OpenMI wrapper for eWater Source.

 The use of the eWaterSource GetInputMetaParameters and

GetOutputMetaParameters methods of the SimulationHandler class, and also use of

the eWater Source Functions and ModelledVariables in the the OpenMI wrapper for

eWater Source.

 The configuration of the linked ACRU and eWater Source models, which includes a

large number of connections.

110

Both ACRU and eWater Source internally keep track of the mass balance of water in the

systems being modelled and report any imbalances. However, it is more difficult to keep

track of the combined mass balance of the linked models. Errors in the combined mass

balance could easily occur due to differences in the units of measure used in the separate

models, for the data passed between them using OpenMI, if incorrectly configured. During

verification of the data exchanged between the two models using OpenMI, one discrepancy

was found relating to the modelling of wetlands in ACRU and the quantity of water passed

from eWater Source to the topsoil horizon in the ACRU wetlands. When ACRU is run on its

own the soil moisture deficit in the topsoil horizon of a wetland is calculated after total

evaporation and runoff have been calculated for the day, but before infiltration of effective

rainfall. However, when the linked models are run the soil moisture deficit in the topsoil

horizon of a wetland is calculated at the end of daily timestep and sent to eWater Source,

that is, after infiltration of effective rainfall. This discrepancy in the timing of the calculation of

the soil water deficit resulted in some differences in the modelled quantities of water being

transferred from the river system in ACRU or eWater Source. In this case the discrepancy

was not due to an apparent mass balance error, but could be explained due to the time of

evaluation of a modelled state variable. This example, serves to highlight the need for the

modeller responsible for linking the models to have a sound understanding of both models.

Although OpenMI makes it possible to link two models, as has been demonstrated, the

configuration of the linkages is not necessarily straightforward.

111

6 DISCUSSION AND CONCLUSIONS

Water is key to the health of people, health of ecosystems and economic prosperity in South

Africa. Water resources are becoming limited in many catchments in South Africa,

especially those in which large cities are located. Sound water policy and good

management in accordance with South Africa’s National Water Act (NWA, 1998) is required

to ensure equitable and sustainable use of these water resources. South Africa is at a point

where there are limited economically feasible options for development of new water storage

and inter-catchment transfer infrastructure, and thus a paradigm shift is required towards

demand management. An IWRM approach to water resources management will be key,

thus there needs to be a move away from considering components of the water resource

system in isolation towards a whole system view. Water accounting has a role to play in

water resources management through quantifying water availability and use, improving

understanding of water resource systems, assisting in quantifying socio-economic impacts of

water management decisions and as a means of communication between stakeholders. In

recent years there have been advances in some technologies that should greatly assist in

quantification, understanding, prediction and optimisation of water resource availability and

use. One example of such technological advancements is in remote sensing of

meteorological and hydrological parameters, with higher resolution sensors and better

algorithms. This study has focussed on investigating the use of some technological

advances in computer modelling of water resource systems to improve the flexibility and

suitability of the ACRU agrohydrological model as a tool for integrated modelling of water

resource systems.

6.1 Summary of Study

The ACRU model is an existing and well established physical conceptual hydrological model

that was developed in South Africa, but has been applied locally and internationally in

numerous studies. The aim was to build on the existing core hydrological process

functionality of the model by developing it further to provide improved representation of water

resource system complexity and enabling integration with other models for use in multi-

disciplinary assessments. The specific objectives for this research study were thus to:

(i) Restructure ACRU to make it more flexible, and thus to enable: (a) more realistic

representation of the physical components of complex water resource systems, (b)

better representation of engineered flows between catchments, and (c) options for

112

representation of hydrological processes in varying degrees of detail depending on

availability of data.

(ii) Restructure ACRU to make it more extensible, to facilitate easier inclusion of new

functionality including: (a) improved representations of hydrological processes, and

(b) new analysis tools, such as a module for compiling water resource accounts.

(iii) Restructure ACRU to make it easier to include: (a) new data sources and formats,

and (b) better handing of time series data.

(iv) Develop a means of linking ACRU with other models to facilitate integrated modelling

studies.

6.1.1 Object-Oriented Restructuring for Greater Flexibility

The ACRU model was restructured from procedural FORTRAN 77 code to object-oriented

Java code, resulting in the new ACRU 5 version of the model described in this study.

Object-oriented programming techniques together with a revised design of the model

structure, were used to make the model more flexible so that it would be easier to represent

heterogeneous land cover/uses within catchments and engineered water transfers within

and between catchments in more detail and thus to better represent the complexity of

operational catchments. An XML-based model input file structure, defined in the ModelData

schema, was developed to complement the object-oriented structure of the ACRU model

engine.

More realistic representation of the physical components of complex water resource systems

and engineered flows between catchments was achieved through: (i) the more explicit

representation of these physical components as ACRU Component objects, and (ii) enabling

relationships between Component objects to be specified. In addition better representation

of engineered flows between catchments was achieved through a more flexible approach to

the execution order of ACRU Process objects which enabled parallel processing such that

each process on each Component object is executed each day before continuing to the next

day. The more explicit representation of hydrological processes as Process objects enables

simplified and more detailed representations of hydrological processes to be more easily

interchanged, depending on availability of data. The ACRU Resource objects, used to

represent different types of modelled resources such as water, sediment and nutrients,

provide a uniform and robust means of recording the resources contained within or owned

by each Component object.

113

6.1.2 Object-Oriented Restructuring for Greater Extensibility

A secondary objective of the restructuring was to make the model more extensible to

facilitate the inclusion of new modules to better address the requirements of modelling for

IWRM. It is important to note that the restructuring of ACRU was not intended to change any

of the existing hydrological processes algorithms, though a few minor corrections and

additions were made to the algorithms. Object-oriented programming techniques together

with a revised object-oriented design of the model structure have made the model more

easily extensible. The more explicit representation of hydrological processes as individual

ACRU Process objects, enables improved or different representations of hydrological

processes to be included in the model by simply interchanging the Process objects to be

executed without changing any existing code in the model. The system of Component,

Resource, Data and Process objects provides a foundational structure that can be used to

build new modules and analysis tools as extensions to the existing ACRU functionality. This

foundational model structure is complemented by the XML-based model input file structure

which enables new Component types and the parameters and variables describing them to

be included in the ACRU model engine without any changes to the code, except for the new

Process classes in which they are utilised. The flexibility and extensibility of the restructured

ACRU model was demonstrated by adding a new module to compile catchment-scale water

resource accounts using the Water Accounting Plus (WA+) water accounting framework

(Karimi et al., 2013).

6.1.3 Object-Oriented Restructuring for Improved Data Handling

The object-oriented restructuring of the ACRU model also resulted in improved data handling

through: (i) a common interface named IDataReaderWriter in the ModelDataAccess library,

which makes it easier to include support for different model input and output data formats in

ACRU without needing to add additional code to the ACRU model engine, (ii) improving the

data handling and storage structures, especially for time series data, within the ACRU model

engine using ACRU Data objects. The XML-based model input file structure was designed

such that data values could be stored directly in the XML files or in a separate referenced

data file. The data input and output handling was demonstrated through the development of

a data reader/writer enabling implementation of ACRU as a model in the Delft-FEWS

software. The XML-based model configuration file structure, specified in the

ModelConfiguration schema, provides useful information that can be used in developing

graphical user interfaces for configuring model setups.

114

6.1.4 Model Integration Using OpenMI

It was recognised that different models have different purposes and strengths in different

domains, and further that it may not be wise, practical or economically feasible to build all

the modelling functionality required for IWRM into a single model, such as ACRU, especially

when there are many existing models, developed by experts in specific water resource

domains, which could provide the required functionality. Thus, despite the improved

extensibility of the ACRU model, methods of linking ACRU with other existing models were

investigated. The OpenMI 2.0 model interface standard was implemented for ACRU,

enabling integration with other OpenMI 2.0 compliant models. The OpenMI 2.0 model

interface standard was also implemented for the eWater Source river network model to

demonstrate linking ACRU to another OpenMI compliant model. Model integration using

OpenMI was demonstrated by linking ACRU to eWater Source and running an integrated

simulation in parts of the upper uMngeni Catchment. However, despite the successful

implementation of an OpenMI compliant wrapper for ACRU, linking to another model is not

straight-forward and requires a sound understanding of both models. This understanding is

necessary to ensure the correct ordering of hydrological processes, that the variables being

linked are compatible, and that the necessary unit of measure conversions occur, especially

when the models are being run at different timesteps.

6.2 Conclusions

The ACRU model is an important repository of South African water research and knowledge.

However, as can happen with legacy models, a point was reached where the model

structure was hindering the further development of new subroutines representing

hydrological processes and to make use of new more detailed datasets. This study has

demonstrated that it is possible to leverage the valuable knowledge already existing in the

ACRU model through restructuring the model using object-oriented design and programming

techniques and the implementation of a model integration interface. The result is the ACRU

5 version of the model which is capable of more realistically representing the inherent

complexity of water resources systems and can be linked with other models, designed for

specific domains within the water resource system, to provide integrated holistic assessment

to inform water management decisions. The ACRU model is now better suited to

representing the complexity of water resources systems as a result of: (i) the increased

flexibility provided for the configuration of catchments and the engineered flows between

them, (ii) the increased flexibility provided for the order of execution of hydrological

processes, and (iii) the improved extensibility of the model which will enable new

115

representations of hydrological processes to be easily incorporated as understanding of

complex hydrological processes improves. The ACRU model is now better suited to support

IWRM by integrating additional functionality through either: (i) extending the model, or (ii)

use of the OpenMI interface to link to other models to assess, for example, the integrated

water quantity, water quality, economic and social impacts of water management decisions.

The ACRU model was previously typically used in a water resources planning context, but is

now better suited for use in an operational modelling context due to the improved

representation of state variables, improved time series data handling and the facility to hot-

start the model. The successful restructuring of the ACRU model required more than just a

new object-oriented design for the model engine, the design of an XML-based plus model

input file structure was crucial to being able to effectively configure the model.

6.3 Summary of Contributions

This study has resulted in the development of a restructured version of the ACRU

agrohydrological model that is more suitable than previous versions as a tool to support

IWRM for both water resource planning and operations in South Africa. The design and

implementation of the restructured model has also provided a unique conceptual structure

and code implementation that could be utilised as a foundation to restructure other legacy

models or to develop new models. The restructuring of the ACRU model was itself a

process of learning over a period of time, and it is hoped that this study will encourage and

assist other model developers in the restructuring of their legacy models.

The new and unique contributions that resulted from this study include the following:

 Design and development of a new and unique object-oriented structure for the ACRU

5 model engine in the Java programming language (Section 3.2), which enables more

realistic model representation of the complexity of water resource systems, as

described in Section 5.4.1, 5.4.2, 5.4.3, 5.4.4 and 5.4.5.

 Design and development of new model input and model configuration files using XML

(Section 3.3), which complement the new object-oriented structure for the ACRU 5

model engine. Without these XML-based files it would not have been possible to

utilise the new object-oriented structure of the model to its full potential.

 Design and development of an OpenMI 2.0 compliant wrapper for the ACRU model

(Section 4.4), thus facilitating integration with models from different domains, thereby

extending the scope of application of the ACRU model, especially as a tool for IWRM.

116

 The linking of the ACRU and eWater Source models using OpenMI, as demonstrated

in Section 5.5.

Other developments that were not a core part of the research study but which are closely

related to the application of the restructured ACRU model include:

 Development of a new methodology for configuring the restructured object-oriented

ACRU model for the purpose of generating catchment-scale water resource accounts,

as detailed in Clark (2015d) and in Appendix 8.9.

 Development of a water accounting module for ACRU based on WA+ (Clark (2015b) ,

Section 3.4, Appendix 8.8), which demonstrated the flexibility and extensibility of the

restructured model, and was applied in Section 5.4.6.

6.4 Recommendations for Further Research and Development

Recommendations for potential further development related to restructuring of the ACRU 5

version of the model include the following:

 The flow routing functionality included in the ACRU 3 and ACRU 2000 versions, if it is

to be retained, will need to be revised for use in the ACRU 5 version in which the

improved handling of time series data is expected to make the implementation of flow

routing easier.

 Investigate the feasibility of developing an algorithm to determine where parallel

processing of catchments is required and thus try to optimise performance by reducing

the quantity of catchment data loaded in memory at one time.

 Investigate the feasibility of developing an algorithm to determine the computation

order of Process objects, using information in the PProcessDataItem and

PProcessResourceItem objects, as a more flexible alternative to the hardcoded rules

currently used in the AAcruXmlProcesses class. This would prevent the occasional

problems related to the computation order of Components and Processes, discussed

at the end of Section 3.2.2.6.

 Investigate modifying the object-oriented design of ACRU and optimising the Java

model code to reduce model execution time by improving computational efficiency. In

the ACRU 5 version Component objects are run sequentially and for each Component

a list of Process objects is run sequentially, as shown in Figure 2-4. This makes some

sense for the Components forming the river flow network where one reach must be

modelled before the next reach downstream can be modelled. However, there is

117

scope for independent HRU Components to be run simultaneously in different threads

on different processor cores.

Recommendations for potential further development of the XML model input files include the

following:

 Investigate the use of a table-based format for storing model input data values, to be

used in conjunction with the XML model input file, to make it easier for model users to

insert and edit model input data values.

 Investigate reducing the size of the XML model input files by using shorter XML

element names (tags) and condensing data values into standard string representations

in place of using tags such as <val> and <rec>.

Recommendations for further research related to the application of ACRU as an OpenMI

linkable component include the following:

 Investigate the linking of models on the basis of the spatial entities in each model,

rather than the ID-based linkages used in this study.

 Investigate alternative methods of compiling the ACRU Java code to .Net, as a

replacement for the IKVM software.

 Investigate the impact of OpenMI links between ACRU and other models on the model

execution time of the linked models and whether this this impact can be reduced.

6.5 Lessons Learnt

The restructuring of the ACRU model using an object-oriented approach in Java was

successful in that the main design objectives were achieved. However, some lessons learnt

in the process are related in this section for consideration by future studies embarking on a

similar model restructuring or model linking exercise.

6.5.1 Conceptual Design and Computational Efficiency of ACRU

The object-oriented design of the restructured ACRU model, and the concept of Component,

Resource, Data and Process objects, has resulted in a better conceptual foundation for the

model code which will make the model code easier to understand and extend. However, in

retrospect, this better conceptual foundation appears to have come at the cost of some

computational efficiency. The more flexible object-oriented model structure enables: (i)

complex water resource systems to be configured in greater detail, and (ii) modelled

118

components in different subcatchments to be able to exchange data values on a timestep-

by-timestep basis, termed “parallel processing” in this study. However, there were some

trade-offs in the computational efficiency of the restructured model related to an increase in

the model execution time partly as a result of parallel processing. Thus, there is scope for

the design and implementation of the restructured ACRU model to be optimised further.

When restructuring a model, consideration needs to be given to memory usage, the time

related cost of read/write operations and how to make best use of multiple processor cores.

6.5.2 Application of OpenMI

OpenMI was relatively easy to implement as an OpenMI linkable component wrapper around

the ACRU model engine, and similarly for the eWater Source model, using the FluidEarth

implementation of the OpenMI Standard. However, the application of OpenMI to link two or

more compliant models requires expert knowledge, both of OpenMI and the linked models.

Expert knowledge is required to ensure that: (i) the correct variables are linked, (ii) all

necessary variables are linked, (iii) the data values passed between variables are

compatible, and (iv) a valid water balance in maintained in both models when run in linked

mode. Expert knowledge is required regarding how timestepping works in each model and

in OpenMI to ensure that the timestepping sequence is correct. Thus, the linking of two

models in not trivial. In addition, if there are a large number of linked exchange items

between the two models, it will be tedious to configure these manually. The execution time

of the linked models may also be greater than the sum of the individual execution times of

the standalone models, thus it will be necessary to weigh the increased execution time

against the disadvantages of simply running the two models in series.

6.5.3 Good Modelling Requires Good Data

To implement IWRM, water managers will require detailed, accurate and accessible data

and information. Models such as ACRU can assist water resources management by: (i)

providing estimates of water availability, use and losses, and (ii) improving understanding of

water resource systems. Water resource accounts provide a means of summarising

catchment water availability and use. The case study in the upper uMngeni catchment

demonstrated the new functionality developed in ACRU in this study. However, models such

as ACRU are only as good as the data used to configure and verify them. The biggest

lesson learnt from the case study was that, despite the improvements made to ACRU as tool

for use in water resource system modelling, the availability and quality of data inputs for use

in modelling are by far the greatest obstacle to the successful application of ACRU and other

119

water resource models. Thus, investment in maintaining and extending monitoring networks

and research into the development and application of new sources of data, such as remote

sensing, is crucial.

120

7 REFERENCES

Acocks, J. 1988. Veld Types of South Africa. Memoirs of the Botanical Survey of South

Africa No.57. 3rd Edition. Botanical Research Institute, Pretoria, South Africa.

Aduah, MS, Jewitt, GPW and Toucher, MLW. 2017. Assessing suitability of the ACRU

hydrological model in a rainforest catchment in Ghana, West Africa. Water Science,

31 (2): 198-214.

Ahuja, LR, Ascough Ii, JC and David, O. 2005. Developing natural resource models using

the object modeling system: feasibility and challenges. Advances in Geosciences, 4:

29-36.

Alfredsen, K and Saether, B. 2000. An object-oriented application framework for building

water resource information and planning tools applied to the design of a flood

analysis system. Environmental Modelling & Software, 15 (3): 215-224.

Allen, PM, Arnold, JG and Byars, BW. 1994. Downstream channel geometry for use in

planning-level models. Journal of the American Water Resources Association, 30 (4):

663-671.

Allen, RG, Pereira, LS, Raes, D and Smith, M. 1998. Crop evapotranspiration-Guidelines for

computing crop water requirements-FAO Irrigation and drainage paper 56. FAO,

Rome, 300: 6541.

Anderson, AJ, Mahlangu, MS, Cullis, J and Swartz, S. 2008. Integrated monitoring of water

allocation reform in South Africa. Water SA, 34 (6): 731-737.

Anonymous. 2004. ACRUView: A visualisation and statistical package for use with the

ACRU agrohydrological modelling system. In: eds. Schulze, RE and Pike, A,

Development and evaluation of an installed hydrological modelling system. WRC

Report No. 1155/1/04, Chapter 5. Water Research Commission, Pretoria, South

Africa.

Argent, RM. 2004. An overview of model integration for environmental application -

components, frameworks and semantics. Environmental Modelling & Software, 19

(3): 219-234.

Argent, RM and Houghton, B. 2001. Land and water resources model integration: software

engineering and beyond. Advances in Environmental Research, 5 (4): 351-359.

Argent, RM, Maul, C and Krämerkämper, T. 2002. Data frameworks for environmental

modelling. In: eds. Rizzoli, AE and Jakeman, AJ, Proceedings of the 1st Biennial

Meeting of the International Environmental Modelling and Software Society (iEMSs),

Lugano, Switzerland, 324-329.

121

Argent, RM and Rizzoli, AE. 2004. Development of multi-framework model components. In:

eds. Pahl-Wostl, C, Schmidt, S, Rizzoli, AE and Jakeman, AJ, Proceedings of the

2nd Biennial Meeting of the International Environmental Modelling and Software

Society (iEMSs), Osnabrück, Germany, 365-370.

Argent, RM, Vertessy, RA and Watson, FGR. 2000. A framework for catchment prediction

modelling. Hydro 2000. Proceedings of the 26th National and 3rd International

Hydrology and Water Resources Symposium, Perth, Australia, 706-711. The

Institution of Engineers, Australia.

Armstrong, R, Kumfert, G, McInnes, LC, Parker, S, Allan, B, Sottile, M, Epperly, T and

Dahlgren, T. 2006. The CCA component model for high-performance scientific

computing. Concurrency and Computation: Practice and Experience, 18 (2): 215-

229.

Band, LE, Tague, CL, Brun, SE, Tenenbaum, DE and Fernandes, RA. 2000. Modelling

watersheds as spatial object hierarchies: structure and dynamics. Transactions in

GIS, 4 (3): 181-196.

Barthel, R, Götzinger, J, Hartmann, G, Jagelke, J, Rojanschi, V and Wolf, J. 2006.

Integration of hydrological models on different spatial and temporal scales. Advances

in Geosciences, 9: 1.

Beven, K and Kirkby, M. 1979. A physically based, variable contributing area model of basin

hydrology. Hydrological Sciences Journal, 24 (1): 43-69.

Bian, L. 2003. The representation of the environment in the context of individual-based

modeling. Ecological Modelling, 159 (2-3): 279-296.

Bian, L. 2007. Object-oriented representation of environmental phenomena: Is everything

best represented as an object? Annals of the Association of American Geographers,

97 (2): 267 - 281.

Blaney, HF and Criddle, WD. 1950. Determining water requirements in irrigated areas from

climatological data. Technical Publication 96. USDA-SCS, Washington DC, USA.

Blind, M and Gregersen, J. 2005. Towards an Open Modelling Interface (OpenMI) the

HarmonIT project. Advances in Geosciences, 4: 69-74.

Booch, G. 1994. Object-oriented analysis and design with applications. Second Edition.

Object Technology Series. Addison-Wesley, Boston, USA.

Bramley, R, Chiu, K, Diwan, S, Gannon, D, Govindaraju, M, Mukhi, N, Temko, B and

Yechuri, M. 2000. A component based services architecture for building distributed

applications. Proceedings of the 9th IEEE International Symposium on High

Performance Distributed Computing, Pittsburgh, Pennsylvania, USA. IEEE Computer

Society.

122

Branger, F, Braud, I, Debionne, S, Viallet, P, Dehotin, J, Henine, H, Nedelec, Y and

Anquetin, S. 2010a. Towards multi-scale integrated hydrological models using the

LIQUID (R) framework. Overview of the concepts and first application examples.

Environmental Modelling & Software, 25 (12): 1672-1681.

Branger, F, Debionne, S, Viallet, P, Braud, I, Jankowfsky, S, Vannier, O, Rodriguez, F and

Anquetin, S. 2010b. Advances in integrated hydrological modelling with the LIQUID

framework. In: eds. Swayne, D, Yang, W, Voinov, A, Rizzoli, A and Filatova, T,

Proceedings of the 5th Biennial Meeting of the International Environmental Modelling

and Software Society (iEMSs), Ottawa, Canada.

Buahin, CA and Horsburgh, JS. 2015. Evaluating the simulation times and mass balance

errors of component-based models: An application of OpenMI 2.0 to an urban

stormwater system. Environmental Modelling and Software, 72: 92-109.

Bulatewicz, T, Yang, X, Peterson, JM, Staggenborg, S, Welch, SM and Steward, DR. 2010.

Accessible integration of agriculture, groundwater, and economic models using the

Open Modeling Interface (OpenMI): methodology and initial results. Hydrology and

Earth System Sciences, 14 (3): 521-534.

Butler, AJE. 2001. The development and evaluation of an operating rule framework for the

ACRU agrohydrological modelling system. Unpublished MSc Eng dissertation.

School of Bioresources Engineering and Environmental Hydrology, University of

KwaZulu-Natal, Pietermaritzburg, South Africa.

Campbell, KL, Kiker, GA and Clark, DJ. 2001. Development and testing of a nitrogen and

phosphorus process model for Southern African water quality issues. ASAE Paper

No. 012085. ASAE, St. Joseph, Michigan, USA.

Carr, R and Podger, G. 2012. eWater source - Australia's next generation IWRM modelling

platform. HWRS2012. Proceedings of the 34th Hydrology and Water Resources

Symposium, Sydney, Australia, 742-749. Engineers Australia.

Castronova, AM and Goodall, JL. 2010. A generic approach for developing process-level

hydrologic modeling components. Environmental Modelling & Software, 25 (7): 819-

825.

Charley, W, Pabst, A and Peters, J. 1995. The Hydrologic Modeling System (HEC-HMS):

Design and Development Issues. TP-149. Hydrological Engineering Center, US Army

Corps of Engineers, Davis, California, USA.

Clark, DJ. 2013. ACRU model development. In: eds. Clark, DJ and Smithers, JC, Model

integration for operational Water resources planning and management. WRC Report

No. 1951/1/12, Chapter 4. Water Research Commission, Pretoria, South Africa.

123

Clark, DJ. 2015a. Development and Assessment of an Integrated Water Resources

Accounting Methodology for South Africa. WRC Report 2205/1/15. Water Research

Commission (WRC), Pretoria, South Africa.

Clark, DJ. 2015b. Development of a methodology for water use quantification and

accounting. In: ed. Clark, DJ, Development and Assessment of an Integrated Water

Resources Accounting Methodology for South Africa. WRC Report No. 2205/1/15,

Chapter 4. Water Research Commission (WRC), Pretoria, South Africa.

Clark, DJ. 2015c. Sabie-Sand Catchment case study. In: ed. Clark, DJ, Development and

Assessment of an Integrated Water Resources Accounting Methodology for South

Africa. WRC Report No. 2205/1/15, Chapter 6. Water Research Commission (WRC),

Pretoria, South Africa.

Clark, DJ. 2015d. uMngeni Catchment case study. In: ed. Clark, DJ, Development and

Assessment of an Integrated Water Resources Accounting Methodology for South

Africa. WRC Report No. 2205/1/15, Chapter 5. Water Research Commission (WRC),

Pretoria, South Africa.

Clark, DJ. 2016. Further development and assessment of an integrated water resources

accounting methodology for South Africa: Deliverable 3: Progress report - Year 1.

Unpublished report to the Water Research Commission (WRC) for Deliverable 3 of

WRC Project K5/2512. Centre for Water Resources Research (CWRR), University of

KwaZulu-Natal, Pietermaritzburg, South Africa.

Clark, DJ. 2017a. Further development and assessment of an integrated water resources

accounting methodology for South Africa: Deliverable 4: Annual report - Year 1.

Unpublished report to the Water Research Commission (WRC) for Deliverable 4 of

WRC Project K5/2512. Centre for Water Resources Research (CWRR), University of

KwaZulu-Natal, Pietermaritzburg, South Africa.

Clark, DJ. 2017b. Further development and assessment of an integrated water resources

accounting methodology for South Africa: Deliverable 5: Progress report - Year 2.

Unpublished report to the Water Research Commission (WRC) for Deliverable 5 of

WRC Project K5/2512. Centre for Water Resources Research (CWRR), University of

KwaZulu-Natal, Pietermaritzburg, South Africa.

Clark, DJ. 2018. Investigation of satellite remotely sensed rainfall for use in hydrological

modelling in the upper uMngeni Catchment, South Africa. Paper in preparation.

Centre for Water Resources Research, University of KwaZulu-Natal,

Pietermarithburg, South Africa.

Clark, DJ, Bastiaanssen, WGM, Smithers, JC and Jewitt, GPW. 2015. A review of water

accounting frameworks for potential application in South Africa. In: ed. Clark, DJ,

Development and Assessment of an Integrated Water Resources Accounting

124

Methodology for South Africa. WRC Report No. 2205/1/15, Chapter 2. Water

Research Commission (WRC), Pretoria, South Africa.

Clark, DJ, Hughes, DA, Smithers, JC, Thornton-Dibb, SLC, Lutchminarain, A and Forsyth,

DA. 2012a. Deployment, maintenance and further development of SPATSIM-HDSF:

Volume 1 - SPATSIM-HDSF modelling framework. WRC Report No. 1870/1/12.

Water Research Commission, Pretoria, South Africa.

Clark, DJ, Kiker, GA and Schulze, RE. 2001. Object-oriented restructuring of the ACRU

agrohydrological modelling system. Proceedings of the 10th South African National

Hydrology Symposium, Pietermaritzburg, South Africa, 26-28.

Clark, DJ and Lutchminarain, A. 2013. Implementation of OpenMI for model linking. In: eds.

Clark, DJ and Smithers, JC, Model integration for operational Water resources

planning and management. WRC Report No. 1951/1/12, Chapter 5. Water Research

Commission, Pretoria, South Africa.

Clark, DJ, Lutchminarain, A and Smithers, JC. 2013. Review and evaluation of model

linkage mechanisms. In: eds. Clark, DJ and Smithers, JC, Model integration for

operational Water resources planning and management. WRC Report No. 1951/1/12,

Chapter 3. Water Research Commission, Pretoria, South Africa.

Clark, DJ and Smithers, JC. 2013. Model integration for operational Water resources

planning and management. WRC Report No. 1951/1/12. Water Research

Commission, Pretoria, South Africa.

Clark, DJ, Smithers, JC, Hughes, DA, Meier, KB, Summerton, MJ and Butler, AJE. 2009.

Design and development of a hydrological decision support framework. WRC Report

No. 1490/1/09. Water Research Commission, Pretoria, South Africa.

Clark, DJ, Smithers, JC, Thornton-Dibb, SLC and Lutchminarain, A. 2012b. Deployment,

maintenance and further development of SPATSIM-HDSF: Volume 3 - ACRU

agrohydrological model. WRC Report No. 1870/3/12. Water Research Commission,

Pretoria, South Africa.

Colvin, J, Ballim, F, Chimbuya, S, Everard, M, Goss, J, Klarenberg, G, Ndlovu, S, Ncala, D

and Weston, D. 2008. Building capacity for co-operative governance as a basis for

integrated water resource managing in the Inkomati and Mvoti catchments, South

Africa. WaterSA, 34 (6): 681-689.

Cook, S and Daniels, J. 1994. Designing object systems. Prentice-Hall, UK.

Croke, B, Andrews, F, Jakeman, AJ, Cuddy, S and Luddy, A. 2005. Redesign of the

IHACRES rainfall-runoff model. Proceedings of the 29th Hydrology and Water

Resources Symposium, Canberra, Australia. Engineers Australia.

125

CSIR. 2003. Guidelines for Human Settlement Planning and Design: Volume 2. Boutek

Report No. BOU/E2001. Compiled by Boutek at the Council for Scientific and

Industrial Research (CSIR) for the Department of Housing, Pretoria, South Africa.

CSIR. 2013. South African Functional Typology Population Dataset. [Dataset]. Council for

Scientific and Industrial Research (CSIR), Pretoria, South Africa.

Dahmann, JS, Fujimoto, RM and Weatherly, RM. 1997. The Department of Defense High

Level Architecture. Proceedings of the 29th Winter Simulation Conference, Atlanta,

Georgia, USA, 142-149. IEEE Computer Society, Washington, DC, USA.

David, O, Ascough, J, Leavesley, G and Ahuja, L. 2010. Rethinking Modeling Framework

Design: Object Modeling System 3.0. In: eds. Swayne, D, Yang, W, Voinov, A,

Rizzoli, A and Filatova, T, International Environmental Modelling and Software

Society (iEMSs), 2010 International Congress on Environmental Modelling and

Software - Modelling for Environment’s Sake, Ottawa, Canada.

David, O, Schneider, I and Leavesley, G. 2004. Metadata and modeling frameworks: The

object modeling system example. Transactions of the 2nd Biennial Meeting of the

International Environmental Modelling and Software Society, iEMSs 2004,

Osnabrück, Germany, 439-443. Citeseer.

Davis, G. 2015. Response on the eWater forum to a query regarding whether eWater

Source was OpenMI compliant. [Personal Communication]. 30/09/2015.

Deltares. 2018. Delft-FEWS Software Community. [Internet]. Available from:

http://oss.deltares.nl/web/delft-fews/home. [Accessed: 18/01/2018].

Donchyts, G, Hummel, S, Vaneçek, S, Groos, J, Harper, A, Knapen, R, Gregersen, J,

Schade, P, Antonello, A and Gijsbers, P. 2010. OpenMI 2.0 - What's new? In: eds.

Swayne, D, Yang, W, Voinov, A, Rizzoli, A and Filatova, T, International

Environmental Modelling and Software Society (iEMSs) 2010 International Congress

on Environmental Modelling and Software Modelling for Environment’s Sake, Ottawa,

Canada.

Donchyts, G and Jagers, B. 2010. DeltaShell - an open modelling environment. In: eds.

Swayne, D, Yang, W, Voinov, A, Rizzoli, A and Filatova, T, Proceedings of the 5th

Biennial Meeting of the International Environmental Modelling and Software Society

(iEMSs), Ottawa, Canada, 1050-1057.

DSO. 2016. List of Registered Dams in South Africa, 2016. List of Registered Dams Feb

2016.xls available from https://www.dwa.gov.za/DSO/Publications.aspx. [Dataset].

Dam Safety Office (DSO), Department of Water and Sanitation (DWS), Pretoria,

South Africa.

126

Dutta, D, Wilson, K, Welsh, WD, Nicholls, D, Kim, S and Cetin, L. 2013. A new river system

modelling tool for sustainable operational management of water resources. Journal of

Environmental Management, 121 (Supplement C): 13-28.

DWA. 2013. National Water Resource Strategy (2nd Edition): Water for an Equitable and

Sustainable Future. Department of Water Affairs. Pretoria, South Africa.

DWAF. 2004. National Water Resource Strategy. Department of Water Affairs and Forestry,

Pretoria, South Africa.

DWAF and Umgeni Water. 2004. Mooi-Mgeni Transfer Scheme Phase 2: Feasibility Study

Main Report. DWAF Report No. PB V200-00-1501. Prepared by GMKS (Pty) Ltd for

Department of Water Affairs & Forestry and Umgeni Water, South Africa.

DWS. 2015. Strategic Overview of the Water Sector in South Africa: 2015. Directorate:

Water Macro Planning, Department of Water and Sanitation (DWS), Pretoria, South

Africa.

Eagleson, PS. 1983. Some problems of parameterization of land surface heat and moisture

fluxes. Report to the Fourth Session of the Joint Scientific Committee, Venice, Italy.

World Meteorological Organisation, Geneva, Switzerland.

Egenhofer, M and Frank, A. 1992. Object-oriented modeling for GIS. Urisa Journal, 4 (2): 3-

19.

Elshorbagy, A and Ormsbee, L. 2006. Object-oriented modeling approach to surface water

quality management. Environmental Modelling & Software, 21 (5): 689-698.

eWater CRC. 2017. eWater Source (public version 4.1.0.4337. [Software]. eWater

Cooperative Research Centre (CRC), Canberra, Australia.

Ezemvelo KZN Wildlife and GeoTerraImage. 2013. KwaZulu-Natal Land Cover 2011 V1.

Unpublished GIS Coverage [Clp_KZN_2011_V1_grid_w31.zip]. [Dataset]. Produced

by Ezemvelo KZN Wildlife (Biodiversity Research and Assessment) and

GeoTerraImage (Pty) Ltd, P. O. Box 13053, Cascades, Pietermaritzburg, 3202,

South Africa.

Forbes, KA, Kienzle, SW, Coburn, CA, Byrne, JM and Rasmussen, J. 2011. Simulating the

hydrological response to predicted climate change on a watershed in southern

Alberta, Canada. Climatic Change, 105 (3): 555-576.

Foster, T, Brozovi´c, N, Butler, AP, Neale, CMU, Raes, D, Steduto, P, Fereres, E and Hsiao,

TC. 2017. AquaCrop-OS: An open source version of FAO’s crop water productivity

model. Agricultural Water Management, 181: 18–22.

Frevert, D, Fulp, T, Zagona, E, Leavesley, G and Lins, H. 2006. Watershed and River

Systems Management Program: Overview of Capabilities. Journal of Irrigation and

Drainage Engineering, 132 (2): 92-97.

127

Frijters, J. 2017. The End of IKVM.NET. [Internet]. Available from: http://weblog.ikvm.net/.

[Accessed: 15/01/2018].

Galton, A. 2004. Fields and objects in space, time, and space-time. Spatial Cognition &

Computation, 4 (1): 39-68.

Garrote, L and Becchi, I. 1997. Object-oriented software for distributed rainfall-runoff models.

Journal of Computing in Civil Engineering, 11 (3): 190-194.

Gärtner, H, Bergmann, A and Schmidt, J. 2001. Object-oriented modeling of data sources as

a tool for the integration of heterogeneous geoscientific information. Computers &

Geosciences, 27 (8): 975-985.

Ghashghaei, M, Bagheri, A and Morid, S. 2013. Rainfall-runoff Modeling in a Watershed

Scale Using an Object Oriented Approach Based on the Concepts of System

Dynamics. Water Resources Management, 27 (15): 5119-5141.

Gijsbers, P, Hummel, S, Vaneçek, S, Groos, J, Harper, A, Knapen, R, Gregersen, J,

Schade, P, Antonello, A and Donchyts, G. 2010. From OpenMI 1.4 to 2.0. In: eds.

Swayne, D, Yang, W, Voinov, A, Rizzoli, A and Filatova, T, International

Environmental Modelling and Software Society (iEMSs), 2010 International Congress

on Environmental Modelling and Software - Modelling for Environment’s Sake,

Ottawa, Canada.

Gregersen, JB, Gijsbers, PJA and Westen, SJP. 2007. OpenMI: Open modelling interface.

Journal of Hydroinformatics, 9 (3): 175-191.

Gregersen, JB, Gijsbers, PJA, Westen, SJP and Blind, M. 2005. OpenMI: the essential

concepts and their implications for legacy software. Advances in Geosciences, 4: 37-

44.

Hallowes, L, Schulze, RE, Horan, MJC and Pike, A. 2004. South African National

Quaternary Catchments Database: Refinements to, and links with, the ACRU model

as a framework for installed modelling systems. In: eds. Schulze, RE and Pike, A,

Development and evaluation of an installed hydrological modelling system. WRC

Report No. 1155/1/04, Chapter 6. Water Research Commission, Pretoria, South

Africa.

Hargreaves, GH and Samani, ZA. 1985. Reference crop evapotranspiration from

temperature. Transactions of the American Society of Agricultural Engineers, 1: 96-

99.

Harpham, Q, Cleverley, P and Kelly, D. 2014. The FluidEarth 2 implementation of OpenMI

2.0. Journal of Hydroinformatics, 16 (4): 890-906.

Harpham, Q, Lhomme, J, Parodi, A, Fiori, E, Jagers, B and Galizia, A. 2016. Using OpenMI

and a model map to integrate WaterML2 and NetCDF data sources into flood

128

modeling of Genoa, Italy. Journal Of The American Water Resources Association, 52

(4):

Hofman, D. 2005. LIANA Model Integration System - architecture, user interface design and

application in MOIRA DSS. Advances in Geosciences, 4: 9-16.

Hoheisel, A. 2002. Model coupling and integration via XML in the M3 simulation. In: eds.

Rizzoli, AE and Jakeman, AJ, Proceedings of the 1st Biennial Meeting of the

International Environmental Modelling and Software Society (iEMSs), Lugano,

Switzerland, 611–616.

Jagers, H. 2010. Linking Data, Models and Tools: An Overview. In: eds. Swayne, D, Yang,

W, Voinov, A, Rizzoli, A and Filatova, T, International Environmental Modelling and

Software Society (iEMSs), 2010 International Congress on Environmental Modelling

and Software - Modelling for Environment’s Sake, Ottawa, Canada.

Javadi, S, Kiapasha, MS and Mohammadi, K. 2009. Object oriented simulation; Its

application in water reservoir management and operation. Journal of Agricultural

Science and Technology, 11 (3): 331-340.

Jones, JW, Keating, BA and Porter, CH. 2001. Approaches to modular model development.

Agricultural Systems, 70 (2-3): 421-443.

Joyce, RJ, Janowiak, JE, Arkin, PA and Xie, P. 2004. CMORPH: A method that produces

global precipitation estimates from passive microwave and infrared data at high

spatial and temporal resolution. Journal of Hydrometeorology, 5 (3): 487-503.

Kang, K and Merwade, V. 2011. Development and application of a storage–release based

distributed hydrologic model using GIS. Journal of Hydrology, 403 (1): 1-13.

Kang, K, Merwade, V, Chun, JA and Timlin, D. 2016. Flexibility on storage-release based

distributed hydrologic modeling with object-oriented approach. Journal of Hydrology,

540: 17-25.

Karimi, P, Bastiaanssen, WGM and Molden, D. 2013. Water Accounting Plus (WA+) - a

water accounting procedure for complex river basins based on satellite

measurements. Hydrology and Earth System Sciences, 17 (7): 2459-2472.

Kienzle, SW. 2011. Effects of area under-estimations of sloped mountain terrain on

simulated hydrological behaviour: A case study using the ACRU model. Hydrological

Processes, 25: 1212-1227.

Kienzle, SW, Lorentz, SA and Schulze, RE. 1997. Hydrology and water quality of the Mgeni

Catchment. WRC Report Number TT87/97. Water Research Commission, Water

Research Commission, Pretoria, South Africa.

Kienzle, SW, Nemeth, MW, Byrne, JM and MacDonald, RJ. 2012. Simulating the

hydrological impacts of climate change in the upper North Saskatchewan River

basin, Alberta, Canada. Journal of Hydrology, 412-413: 76-89.

129

Kienzle, SW and Schmidt, J. 2008. Hydrological impacts of irrigated agriculture in the

Manuherikia catchment, Otago, New Zealand. Journal of Hydrology (New Zealand),

47 (2): 67-84.

Kiker, GA. 2001. ACRU2000 model. In: eds. Lynch, SD and Kiker, GA, ACRU model

development and user support. WRC Report No. 636/1/01. Chapter 4. Water

Research Commission, Pretoria, South Africa.

Kiker, GA and Clark, DJ. 1999. Further development of an initial design of an object-oriented

structure for the ACRU model. [Software]. School of Bioresources Engineering and

Environmental Hydrology, University of Natal, Pietermaritzburg, South Africa.

Kiker, GA and Clark, DJ. 2001a. Development and testing of a natural vegetation, herbivore,

and fire model for southern African rangeland management. ASAE Paper No.

017025. ASAE, St. Joseph, Michigan, USA.

Kiker, GA and Clark, DJ. 2001b. The development of a Java-based, object-oriented

modeling system for simulation of southern African hydrology. ASAE Paper No.

012030. ASAE, St. Joseph, Michigan, USA.

Kiker, GA and Clark, DJ. 2001c. Testing and validation of a Java-based, object-oriented

modeling system in the Mgeni River watershed, KwaZulu-Natal, South Africa. ASAE

Paper No. 012031. ASAE, St. Joseph, Michigan, USA.

Kiker, GA, Clark, DJ, Martinez, CJ and Schulze, RE. 2006. A Java-based, object-oriented

modeling system for Southern African hydrology. Transactions of the ASABE, 49 (5):

1419-1433.

Kiker, GA and David, O. 1998. Initial design of an object-oriented structure for the ACRU

model. [Software]. School of Bioresources Engineering and Environmental

Hydrology, University of Natal, Pietermaritzburg, South Africa.

Knapen, MJR, Verweij, P, Wien, JE and Hummel, S. 2009. OpenMI–The universal glue for

integrated modelling? 18th World IMACS Congress and MODSIM09 International

Congress on Modelling and Simulation, Cairns, Australia.

Knapen, R. 2015. E-mail responding to query regarding progress with development of a

Java SDK for OpenMI Version 2.0. [Personal Communication]. 18/09/2015.

Knapen, R, Janssen, S, Roosenschoon, O, Verweij, P, De Winter, W, Uiterwijk, M and Wien,

J-E. 2013. Evaluating OpenMI as a model integration platform across disciplines.

Environmental Modelling & Software, 39: 274-282.

Kokkonen, T, Jolma, A and Koivusalo, H. 2003. Interfacing environmental simulation models

and databases using XML. Environmental Modelling & Software, 18 (5): 463-471.

Kralisch, S, Krause, P and David, O. 2005. Using the object modeling system for

hydrological model development and application. Advances in Geosciences, 4 (1-2):

75–81.

130

Krause, P, Kralisch, S, Flügel, W, Haas, A, Jaeger, C, Hofman, D, Pullar, D, Lotze-Campen,

H, Lucht, W and Müller, C. 2005. Model integration and development of modular

modelling systems. Advances in Geosciences, 4: 1-2.

Kumar, M, Bhatt, G and Duffy, CJ. 2010. An object-oriented shared data model for GIS and

distributed hydrologic models. International Journal of Geographical Information

Science, 24 (7): 1061-1079.

Kummerow, C, Simpson, J, Thiele, O, Barnes, W, Chang, ATC, Stocker, E, Adler, RF, Hou,

A, Kakar, R, Wentz, F, Ashcroft, P, Kozu, T, Hong, Y, Okamoto, K, Iguchi, T,

Kuroiwa, H, Im, E, Haddad, Z, Huffman, G, Ferrier, B, Olson, WS, Zipser, E, Smith,

EA, Wilheit, TT, North, G, Krishnamurti, T and Nakamura, K. 2000. The Status of the

Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit. Journal of

Applied Meteorology, 39 (12): 1965-1982.

Kusangaya, S, Warburton Toucher, M and Archer van Garderen, E. 2017. Use of ACRU, a

distributed hydrological model, to evaluate how errors from downscaled rainfall are

propagated in simulated runoff in uMngeni Catchment, South Africa. Hydrological

Sciences Journal, 62 (12): 1995-2011.

Lafore, R. 2002. Object-oriented programming in C++. 4th Edition. Sams Publishing,

Indianapolis, Indiana, USA,

Lal, AMW, Van Zee, R and Belnap, M. 2005. Case study: Model to simulate regional flow in

South Florida. Journal of Hydraulic Engineering, 131 (4): 247-258.

Leavesley, G, Markstrom, S, Restrepo, P and Viger, R. 2002. A modular approach to

addressing model design, scale, and parameter estimation issues in distributed

hydrological modelling. Hydrological Processes, 16 (2): 173-187.

Leone, A and Chen, DY. 2007. Implementation of an object oriented data model in an

information system for water catchment management: Java JDO and Db4o Object

Database. Environmental Modelling & Software, 22 (12): 1805-1810.

Linacre, ET. 1977. A simple formula for estimating evaporation rates in various climates,

using temperature data alone. Agricultural Meteorology, 18: 409-424.

Lindenschmidt, KE, Hesser, FB and Rode, M. 2005. Integrating water quality models in the

High Level Architecture (HLA) environment. Advances in Geosciences, 4: 51-56.

Liu, DF and Stewart, TJ. 2004. Object-oriented decision support system modelling for

multicriteria decision making in natural resource management. Computers &

Operations Research, 31 (7): 985-999.

Lloyd, W, David, O, Ascough II, JC, Rojas, KW, Carlson, JR, Leavesley, GH, Krause, P,

Green, TR and Ahuja, LR. 2009. An exploratory investigation on the invasiveness of

environmental modeling frameworks. 909-915. TR, Ahuja, LR 2009. An Exploratory

Investigation on the Invasiveness of Environmental Modeling Frameworks. World

131

IMACS Congress and MODSIM09 International Congress on Modelling and

Simulation.

Lynch, SD. 2004. Development of a Raster Database of Annual, Monthly and Daily Rainfall

for Southern Africa. WRC Report 1156/1/04. Water Research Commission, Pretoria,

South Africa.

Lynch, SD and Kiker, GA. 2001a. ACRU model development and user support. WRC Report

No. 636/1/01. Water Research Commission, Pretoria, South Africa.

Lynch, SD and Kiker, GA. 2001b. Introduction to the ACRU restructuring project. In: eds.

Lynch, SD and Kiker, GA, ACRU model development and user support. WRC Report

No. 636/1/01. Chapter 1. Water Research Commission, Pretoria, South Africa.

Maaren, H and Moolman, J. 1985. The effects of farm dams on hydrology. Proceedings, 2nd

South African National Hydrology Symposium. ACRU Report, 22, 329-337.

Department of Agricultural Engineering, University of Natal, Pietermaritzurg, South

Africa.

Maila, D, Crafford, J, Mathebula, V, Naidoo, N and Visser, W. 2018. National Water

Accounts For South Africa: Systems, Methods and Initial Results. WRC Project

K5/2419. Water Research Commission (WRC), Pretoria, South Africa.

Martinez, CJ, Campbell, KL, Annable, MD and Kiker, GA. 2008. An object-oriented

hydrologic model for humid, shallow water-table environments. Journal of Hydrology,

351 (3-4): 368-381.

McCarthy, GT. 1938. The unit hydrograph and flood routing. Conference of the North Atlantic

Division, US Army Corps of Engineers, New London, Connecticut, USA.

McCartney, M and Arranz, R. 2009. Evaluation of water demand Scenarios for the Olifants

River catchment, South Africa. International Journal of River Basin Management, 7

(4): 379 - 390.

McDonnell, J, Sivapalan, M, Vaché, K, Dunn, S, Grant, G, Haggerty, R, Hinz, C, Hooper, R,

Kirchner, J and Roderick, M. 2007. Moving beyond heterogeneity and process

complexity: A new vision for watershed hydrology. Water Resources Research, 43

(7): W07301.

Meier, KB. 1997. Development of a spatial database for agrohydrological model applications

in Southern Africa. Unpublished MSc Eng dissertation. Department of Agricultural

Engineering, University of Natal, Pietermaritzburg, South Africa.

Molden, D, Frenken, K, Barker, R, de Fraiture, C, Mati, B, Svendsen, M, Sadoff, C,

Finlayson, M, Atapattu, S, Giordano, M, Inocencio, A, Lannerstad, M, Manning, N,

Molle, F, Smedema, B and Vallee, D. 2007. Trends in water and agricultural

development. In: ed. Molden, D, Water for Food, Water for Life: A Comprehensive

132

Assessment of Water Management in Agriculture. Earthscan, London, UK and

International Water Management Institute, Colombo, Sri Lanka.

Molina, JL, Bromley, J, García-Aróstegui, JL, Sullivan, C and Benavente, J. 2010. Integrated

water resources management of overexploited hydrogeological systems using

Object-Oriented Bayesian Networks. Environmental Modelling & Software, 25 (4):

383-397.

Moore, RV and Tindall, CI. 2005. An overview of the open modelling interface and

environment (the OpenMI). Environmental Science & Policy, 8 (3): 279-286.

Moult, NG. 2005. The development of a catchment scale irrigation systems model for

sugarcane. Unpublished MSc Eng dissertation. School of Bioresources Engineering

and Environmental Hydrology, University of KwaZulu-Natal, Pietermaritzburg, South

Africa.

Murray, N, Perraud, J-M, Rahman, J, Bridgart, R, Davis, G, Watson, F and Hotham, H. 2007.

TIME Workshop Notes 4.2. CSIRO Land and Water, and eWater CRC, Australia.

Novella, NS and Thiaw, WM. 2012. African Rainfall Climatology Version 2 for Famine Early

Warning Systems. Journal of Applied Meteorology and Climatology, 52 (3): 588-606.

NWA. 1998. National Water Act, Act No. 36 of 1998. Government Printers, Pretoria, South

Africa.

OMG. 2017. OMG® Unified Modeling Language® (OMG UML®): Version 2.5.1. Object

Management Group (OMG), Needham, Massachusetts, USA.

Open Geospatial Consortium. 2014. OGC® Open Modelling Interface Interface Standard.

http://www.opengis.net/doc/IS/openmi/2.0.

OpenMI Association. 2010a. Migrating Models for the OpenMI (Version 2.0). OpenMI

Document Series. The OpenMI Association, Delft, Netherlands.

OpenMI Association. 2010b. The OpenMI 'in a Nutshell' for the OpenMI (Version 2.0).

OpenMI Document Series. The OpenMI Association, Delft, Netherlands.

OpenMI Association. 2010c. OpenMI Standard 2 Reference for the OpenMI (Version 2.0).

OpenMI Document Series. The OpenMI Association, Delft, Netherlands.

OpenMI Association. 2010d. OpenMI Standard 2 Specification for the OpenMI (Version 2.0).

OpenMI Document Series. The OpenMI Association, Delft, Netherlands.

OpenMI Association. 2010e. Scope for the OpenMI (Version 2.0). OpenMI Document Series.

The OpenMI Association, Delft, Netherlands.

OpenMI Association. 2010f. What's New in OpenMI 2.0. OpenMI Document Series. The

OpenMI Association, Delft, Netherlands.

OpenMI Association. 2017. OpenMI. [Internet]. The OpenMI Association. Available from:

http://www.openmi.org/. [Accessed: 18/12/2017].

133

Pegram, GGS, Sinclair, S and Bárdossy, A. 2016. New Methods of Infilling Southern African

Raingauge Records Enhanced by Annual, Monthly and Daily Precipitation Estimates

Tagged with Uncertainty. WRC Report 2241/1/15. Water Research Commission

(WRC), Pretoria, South Africa.

Pegram, GGS, Sinclair, S, Vischel, T and Nxumalo, N. 2010. Soil Moisture from Satellites:

Daily Maps Over RSA for Flash Flood Forecasting, Drought Monitoring, Catchment

Management & Agriculture. WRC Report 1683/1/10. Water Research Commission

(WRC), Pretoria, South Africa.

Penman, HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings

of the Royal Society, London, United Kingdom. A193, 120-146.

Pike, A, Schulze, RE, Hallowes, L, Thornton-Dibb, SLC, Clark, DJ, Horan, MJC, Taylor, V

and Consultants, W. 2004. New developments in, and refinements to, supporting

software, documentation, user support andpropontion of the ACRU agrohydrological

modelling system. In: eds. Schulze, RE and Pike, A, Development and evaluation of

an installed hydrological modelling system. WRC Report No. 1155/1/04, Chapter 4.

Water Research Commission, Pretoria, South Africa.

Pollard, S and du Toit, D. 2008. Integrated water resource management in complex systems:

How the catchment management strategies seek to achieve sustainability and equity

in water resources in South Africa. WaterSA, 34 (6): 671-679.

Rahman, J, Perraud, J, Hotham, H, Murray, N, Leighton, B, Freebairn, A, Davis, G and

Bridgart, R. 2005. Evolution of TIME. In: eds. Zerger, A and Argent, RM, MODSIM

2005 International Congress on Modelling and Simulation, Melbourne, Australia, 697-

703. Modelling and Simulation Society of Australia and New Zealand.

Rahman, J, Seaton, S, Perraud, J, Hotham, H, Verrelli, D and Coleman, J. 2003. It’s TIME

for a new environmental modelling framework. In: ed. Post, DA, MODSIM 2003

International Congress on Modelling and Simulation, Townsville, Australia, 1727-

1732. Modelling and Simulation Society of Australia and New Zealand.

Rahman, JM, Seaton, SP and Cuddy, SM. 2004. Making frameworks more useable: using

model introspection and metadata to develop model processing tools. Environmental

Modelling & Software, 19 (3): 275-284.

Reitsma, R and Carron, J. 1997. Object-oriented simulation and evaluation of river basin

operations. Journal of Geographic Information and Decision Analysis, 1 (1): 10-24.

Ritchie, JT. 1972. A model for predicting evaporation from a row crop with incomplete cover.

Water Resources Research, 8 (5): 1204-1213.

Rumbaugh, J, Blaha, M, Premerlani, W, Eddy, F and Lorensen, W. 1991. Object-oriented

modeling and design. Prentice Hall, Englewood Cliffs, New Jersey, USA.

134

Schmidt, EJ and Schulze, RE. 1987. Flood volume and peak discharge from small

catchments in southern Africa, based on the SCS technique. Technology Transfer

Report TT/3/87. Water Research Commission, Pretoria, South Africa.

Schmidt, J, Kienzle, SW and Srinivasan, MS. 2009. Estimating increased evapotranspiration

losses caused by irrigated agriculture as part of the water balance of the Orari

catchment, Canterbury, New Zealand. Journal of Hydrology (New Zealand), 48 (2):

73-94.

Schulze, K, Hunger, M and Döll, P. 2005. Simulating river flow velocity on global scale.

Advances in Geosciences, 5: 133–136.

Schulze, RE. 1975. Catchment evapotranspiration in the Natal Drakensburg. Unpublished

PhD thesis. Department of Geography, University of Natal, Pietermaritzburg, South

Africa.

Schulze, RE. 1983. Agrohydrology and -Climatology of Natal. Water Research Commission,

Pretoria, South Africa.

Schulze, RE. 1984. Hydrological Models for Application to Small Rural Catchments in

Southern Africa : Refinements and Development. WRC Report No. 63/2/84. Water

Research Commission, Pretoria, South Africa.

Schulze, RE. 1989. ACRU : Background, Concepts and Theory. WRC Report No. 154/1/89.

Water Research Commission, Pretoria, South Africa.

Schulze, RE (ed.). 1995a. Hydrology and Agrohydrology: A text to accompany the ACRU

3.00 agrohydrological modelling system. WRC Report No. TT69/95. Water Research

Commission, Pretoria, South Africa.

Schulze, RE. 1995b. Soil water budgeting and total evaporation. In: ed. Schulze, RE,

Hydrology and agrohydrology: A text to accompany the ACRU 3.00 agrohydrological

modelling system. WRC Report No. TT69/95. Chapter 2. Water Research

Commission, Pretoria, South Africa.

Schulze, RE. 1995c. Streamflow. In: ed. Schulze, RE, Hydrology and agrohydrology: A text

to accompany the ACRU 3.00 agrohydrological modelling system. WRC Report No.

TT69/95. Chapter 10. Water Research Commission, Pretoria, South Africa.

Schulze, RE. 1995d. Verification Studies. In: ed. Schulze, RE, Hydrology and agrohydrology:

A text to accompany the ACRU 3.00 agrohydrological modelling system. WRC

Report No. TT69/95. Chapter 22. Water Research Commission, Pretoria, South

Africa.

Schulze, RE. 2013. Modelling Impacts Of Land Use On Hydrological Responses In South

Africa With The ACRU Model By Sub-Delineation Of Quinary Catchments Into Land

Use Dependent Hydrological Response Units. Internal report. Centre for Water

Resources Research, University of KwaZulu-Natal, Pietermaritzburg, South Africa.

135

Schulze, RE, Angus, GR, Lynch, SD and Smithers, JC. 1995. ACRU: Concepts and

structure. In: ed. Schulze, RE, Hydrology and agrohydrology: A text to accompany

the ACRU 3.00 agrohydrological modelling system. WRC Report No. TT69/95.

Chapter 2. Water Research Commission, Pretoria, South Africa.

Schulze, RE, George, WJ, Angus, GR and Lynch, SD (eds.). 1990. ACRU-2.0: User Manual.

WRC Report No. 154/2/89. Water Research Commission, Pretoria, South Africa.

Schulze, RE and Horan, MJC. 2008. Section 4.2: Soils Hydrological Attributes. In: ed.

Schulze, RE, South African Atlas of Climatology and Agrohydrology. WRC Report

1489/1/06. Water Research Commission, Pretoria, South Africa.

Schulze, RE, Lorentz, SA, Kienzle, SW and Perks, LA. 2004. Case Study 3: Modelling the

Impacts of Land-use and Climate Change on Hydrological Responses in the Mixed

Underdeveloped/Developed Mgeni Catchment, South Africa. In: eds. Kabat, P,

Claussen, M, Dirmeyer, PA, Gash, JHC, Bravo de Guenni, L, Meybeck, M, Pielke,

RA, Vörösmarty, CI, Hutjes, RWA and Lütkemeier, S, Vegetation, Water, Humans

and the Climate: A New Perspective on an Interactive System. Springer, Berlin,

Heidelberg.

Schulze, RE and Maharaj, M. 2008a. Section 7.3: Daily Maximum Temperatures. In: ed.

Schulze, RE, South African Atlas of Climatology and Agrohydrology. WRC Report

1489/1/06. Water Research Commission, Pretoria, South Africa.

Schulze, RE and Maharaj, M. 2008b. Section 7.5: Daily Minimum Temperatures. In: ed.

Schulze, RE, South African Atlas of Climatology and Agrohydrology. WRC Report

1489/1/06. Water Research Commission, Pretoria, South Africa.

Schulze, RE and Schütte, S. 2015. Local and accumulated downstream impacts of dryland

sugarcane on streamflows in three South African catchments: Can a case be made

for sugarcane to become a ‘streamflow reduction activity’? Proceedings of the South

African Sugar Technologists' Association.

Schulze, RE and Smithers, JC. 2004. The ACRU Modelling System as of 2002 :

Background, Concepts, Structure, Output, Typical Applications and Operations. In:

ed. Schulze, RE, Modelling as a Tool in Integrated Water Resources Management:

Conceptual Issues and Case Study Applications. WRC Report 749/1/04. Chapter 2.

Water Research Commission, Pretoria, South Africa.

Schütte, S. 2014. Linkages between selected hydrological ecosystem services and land use

changes, as indicated by hydrological responses. A case study on the Mpushini/

Mkhondeni Catchments, South Africa. Unpublished Master of Science in Hydrology

thesis, Centre for Water Resources Research, University of KwaZulu-Natal,

Pietermaritzburg, South Africa.

136

Schütte, S and Schulze, RE. 2017. Projected impacts of urbanisation on hydrological

resource flows: A case study within the uMngeni Catchment, South Africa. Journal of

Environmental Management, 196: 527-543.

Shane, RM, Zagona, EA, McIntosh, D, Fulp, TJ and Goranflo, HM. 1996. Project object. Civil

Engineering, 66 (1): 61-63.

Shaw, EM. 1994. Hydrology in practice. Third Edition. Chapman and Hall, London, UK.

Shuttleworth, WJ. 2010. Back to the basics of understanding ET. Kovacs Colloquium.

Hydrocomplexity: New Tools for Solving Wicked Water Problems, Paris, France.

IAHS.

Silvert, W. 1993. Object-oriented ecosystem modelling. Ecological Modelling, 68 (1-2): 91-

118.

Silvert, W. 2001. Modelling as a discipline. International Journal of General Systems, 30 (3):

261-282.

Simonovic, SP, Fahmy, H and El-Shorbagy, A. 1997. Use of object-oriented modeling for

water resources planning in Egypt. Water Resources Management, 11: 243-261.

Sinclair, S and Pegram, GGS. 2010. A comparison of ASCAT and modelled soil moisture

over South Africa, using TOPKAPI in land surface mode. Hydrol. Earth Syst. Sci., 14

(4): 613-626.

Sinclair, S and Pegram, GGS. 2013. HYLARSMET: A Hydrologically Consistent Land

Surface Model for Soil Moisture and Evapotranspiration Modelling over Southern

Africa using Remote Sensing and Meteorological Data. WRC Report 2024/1/12.

Water Research Commission (WRC), Pretoria, South Africa.

SLIM. 2014. Quaternary Catchment Boundaries of South Africa. [Dataset]. Directorate: of

Spatial & Land Information Management (SLIM), Department of Water and

Sanitation, Pretoria, South Africa.

Smithers, JC. 2014. Flood hazard determination - hydraulic modelling, KZN flood risk study:

Phase 2: Deliverable 2.3. Jeffares and Green, P.O. Box 794, Hilton, South Africa.

Smithers, JC and Caldecott, RE. 1995. Hydrograph Routing. In: ed. Schulze, RE, Hydrology

and agrohydrology: A text to accompany the ACRU 3.00 agrohydrological modelling

system. WRC Report No. TT69/95. Chapter 13. Water Research Commission,

Pretoria, South Africa.

Smithers, JC, Chetty, KT, Frezghi, MS, Knoesen, DM and Tewolde, MH. 2013. Development

and assessment of a daily time-step continuous simulation modelling approach for

design flood estimation at ungauged locations: ACRU model and Thukela Catchment

case study. Water SA, 39 (4): 00-00.

Smithers, JC, Gray, RP, Johnson, S and Still, D. 2017. Modelling and water yield

assessment of Lake Sibhayi. Water SA, 43: 480-491.

137

Smithers, JC and Schulze, RE (eds.). 1995. ACRU Agrohydrological Modelling System :

User Manual Version 3.00. WRC Report No. TT70/95. Water Research Commission,

Pretoria, South Africa.

Spanou, M and Chen, D. 2000. An object-oriented tool for the control of point-source

pollution in river systems. Environmental Modelling & Software, 15: 35-54.

StatsSA. 2012. Census 2011. [Dataset]. Statistics South Africa, Pretoria, South Africa.

www.statssa.org.za. [Accessed: 20/09/2017].

Stephens, T. 2010. Manual on Small Earth Dams: A Guide to Siting, Design, and

Construction. Food and Agriculture Organization of the United Nations, Rome, Italy.

Sydelko, PJ, Dolph, J, Taxon, T and Majerus, K. 1999. A dynamic object-oriented

architecture approach to ecosystem modeling and simulation. Proceedings of the

1999 American Society for Photogrammetry and Remote Sensing (ASPRS) Annual

Conference, Portland, Oregon, USA, 410-420.

Sydelko, PJ, Hlohowskyj, I, Majerus, K, Christiansen, J and Dolph, J. 2001. An object-

oriented framework for dynamic ecosystem modeling: application for integrated risk

assessment. Science of the Total Environment, 274 (1-3): 271-281.

Tague, CL and Band, LE. 2004. RHESSys: Regional Hydro-Ecologic Simulation System-An

object-oriented approach to spatially distributed modeling of carbon, water, and

nutrient cycling. Earth Interactions, 8: 1-42.

Tarboton, KC and Schulze, RE. 1991. The ACRU modelling system for large catchment

water resources management. In: eds. Van de Ven, FHM, Gutknecht, D, Loucks, DP

and Salewicz, KA, Hydrology for the Water Management of Large River Basins,

Vienna, Austria, 219-232. IAHS Publication No 201.

Tarboton, KC and Schulze, RE. 1992. Distributed hydrological modelling system for the

Mgeni catchment. WRC Report 234/1/92. Water Research Commission (WRC),

Pretoria, South Africa.

Teweldebrhan, AT. 2003. The Hydrosalinity Module of ACRU Agrohydrological Modelling

System (ACRU Salinity): Module Development and Evaluation. Unpublished Master

of Science in Hydrology thesis, School of Bioresources Engineering and

Environmental Hydrology, University of KwaZulu-Natal, Pietermaritzburg, South

Africa.

Thornthwaite, CW. 1948. An approach towards a rational classification of climate.

Geographical Review, 38: 55-94.

Thornton-Dibb, SLC, Smithers, JC and Clark, DJ. 2013. Review and evaluation of river

network models. In: eds. Clark, DJ and Smithers, JC, Model integration for

operational Water resources planning and management. WRC Report No. 1951/1/12,

Chapter 2. Water Research Commission, Pretoria, South Africa.

138

Umgeni Water. 2016. Infrastructure Master Plan 2016: 2016/2017 - 2046/2047. Planning

Services, Engineering & Scientific Services Division, Umgeni Water, P.O. Box 9,

Pietermaritzburg, 3200, South Africa.

USDA. 1985. National Engineering Handbook: Section 4 - Hydrology. United States

Department of Agriculture (USDA) Soil Conservation Service, Washington DC, USA.

Valerio, A, Rajaram, H and Zagona, E. 2010. Incorporating groundwater-surface water

interaction into river management models. Ground Water, 48 (5): 661-673.

Wang, J, Endreny, TA and Hassett, JM. 2005a. A flexible modeling package for

topographically based watershed hydrology. Journal of Hydrology, 314 (1-4): 78-91.

Wang, J, Hassett, J, Endreny, T and McDonnell, J. 2000. Criteria for selection of models for

water quality management in urbanizing areas. College of Environmental Science

and Forestry, Syracuse, New York, USA.

Wang, J, Hassett, JM and Endreny, TA. 2005b. An object oriented approach to the

description and simulation of watershed scale hydrologic processes. Computers &

Geosciences, 31 (4): 425-435.

Warburton, ML. 2011. Challenges in modelling hydrological responses to impacts and

interactions of land use and climate change. Unpublished Doctor of Philosophy in

Hydrology thesis, School of Bioresources Engineering and Environmental Hydrology,

University of KwaZulu-Natal, Pietermaritzburg.

Warburton, ML, Schulze, RE and Jewitt, GPW. 2010. Confirmation of ACRU model results

for applications in land use and climate change studies. Hydrology and Earth System

Sciences, 14 (12): 2399.

Weddepohl, JP. 1988. Design rainfall distributions for southern Africa. Unpublished MSc

dissertation. Department of Agricultural Engineering, University of Natal,

Pietermaritzburg, South Africa.

Weepener, HL, van den Berg, HM, Metz, M and Hamandawana, H. 2011a. The development

of a hydrologically improved Digital Elevation Model and derived products for South

Africa based on the SRTM DEM. WRC Report 1908/1/11. Water Research

Commission, Pretoria, South Africa.

Weepener, HL, van den Berg, HM, Metz, M and Hamandawana, H. 2011b. Flow direction

raster based on SRTM 90m DEM. SRTM90m_Flowdir_sfd.tif. [Dataset]. WRC Report

1908/1/11, WRC, Pretoria, South Africa.

Weepener, HL, van den Berg, HM, Metz, M and Hamandawana, H. 2011c. Flowpath

improved DEM based on SRTM 90m DEM. SRTM90m_Flowpath_improved.tif.

[Dataset]. WRC Report 1908/1/11, Water Research Commission, Pretoria, South

Africa.

139

Weepener, HL, van den Berg, HM, Metz, M and Hamandawana, H. 2011d. Flowpaths based

on SRTM 90m DEM. SRTM90m_flow_paths.shp. [Dataset]. WRC Report 1908/1/11,

Water Research Commission, Pretoria, South Africa.

Weepener, HL, van den Berg, HM, Metz, M and Hamandawana, H. 2011e. Gap-filled DEM

based on SRTM 90m DEM. SRTM90m_Gapfilled.tif. [Dataset]. WRC Report

1908/1/11, Water Research Commission, Pretoria, South Africa.

Wegner, P. 1990. Concepts and paradigms of object-oriented programming. ACM SIGPLAN

OOPS Messenger, 1 (1): 7-87.

Werner, M, Schellekens, J, Gijsbers, P, van Dijk, M, van den Akker, O and Heynert, K. 2013.

The Delft-FEWS flow forecasting system. Environmental Modelling and Software, 40:

65-77.

Wirth, N. 2006. Good ideas, through the looking glass. IEEE Computer Society, 39 (1): 28-

39.

WWF-SA. 2017. Scenarios for the Future of Water in South Africa. World Wide Fund for

Nature – South Africa (WWF-SA) and the Boston Consulting Group (BCG), Cape

Town, South Africa.

Yang, A, Dutta, D, Vaze, J, Kim, S and Podger, G. 2017. An integrated modelling framework

for building a daily river system model for the Murray–Darling Basin, Australia.

International Journal of River Basin Management, 15 (3): 373-384.

Zagona, EA, Fuip, TJ, Shane, R, Magee, T and Goranflo, HM. 2001. RiverWare: A

generalized tool for complex reservoir system modeling. JAWRA Journal of the

American Water Resources Association, 37 (4): 913-929.

Zhang, M, Bu, X and Yue, P. 2017. GeoJModelBuilder: an open source geoprocessing

workflow tool. Open Geospatial Data, Software and Standards, 2 (8): 1-8.

140

8 APPENDICES

8.1 Background to the Development of the ACRU Model

The ACRU model was originally developed as part of a distributed catchment

evapotranspiration study (Schulze, 1975) conducted in the early 1970’s in the Drakensberg

region of KwaZulu-Natal, South Africa (Schulze and Smithers, 2004). The ACRU model was

then further developed as an agrohydrological model as a result of research to compile an

agrohydrological and agroclimatological atlas for KwaZulu-Natal (Schulze, 1983). Since its

inception the ACRU model has been under continual development and refinement by staff

and postgraduate students in what was the Agricultural Catchments Research Unit (ACRU)

in the Department of Agricultural Engineering at the former University of Natal, then

subsequently in the former School of Bioresources Engineering and Environmental

Hydrology (BEEH) at the University of KwaZulu-Natal. The Centre for Water Resources

Research (CWRR) at the University of KwaZulu-Natal is the current custodian of the ACRU

model. This continued development and refinement of the model has been driven by

requirements for better representation of hydrological systems and processes, new research

and water management questions, availability of better datasets, and advances in computer

systems and software development tools. Development and refinement of the model has

taken place as part of numerous research projects, many of which were funded by the South

African Water Research Commission (WRC). A timeline summarising development of the

ACRU modelling system from its inception to present is shown in Table 8-1.

Table 8-1 Timeline summarising development of the ACRU modelling system (Schulze

and Smithers, 2004)

ACRU 1

Early 1970s Original development as a distributed catchment evapotranspiration model in the

FORTRAN programming language (Schulze, 1975).

Early 1980s Subsequent development as an agrohydrological model as a result of research to

compile an agrohydrological and agroclimatological atlas for KwaZulu-Natal

(Schulze, 1983).

1984 First user documentation for the ACRU 1 version published (Schulze, 1984).

ACRU 2

Late 1980s Development of the ACRU 2 version of the model.

Late 1980s Development of an ACRU configuration editor, known as the Menubuilder.

1989/1990 User documentation updated for the ACRU 2 version as a separate theory

document (Schulze, 1989) and user manual (Schulze et al., 1990).

141

Table 8-1 (cont.) Timeline summarising development of the ACRU modelling system

(Schulze and Smithers, 2004)

ACRU 3

Early 1990s Development of the ACRU 3 version of the model (Schulze, 1995a; Smithers and

Schulze, 1995).

Development of the ACRU Menubuilder to assist in preparing model input files

(Smithers and Schulze, 1995).

1995 User documentation updated for the ACRU 3 version as a separate theory

document (Schulze, 1995a) and user manual (Smithers and Schulze, 1995).

Early 2000s Development of a new ACRU configuration editor, together with the South African

National Quaternary Catchment Database (SANQCD), known as the ACRU

Agrohydrological Modelling System (AAHMS) (Hallowes et al., 2004; Pike et al.,

2004).

2001-2002 Development of the ACRUView time series analysis tool (Anonymous, 2004; Pike

et al., 2004).

ACRU 2000

1998-2002 Development of the object-oriented ACRU 2000 version of the model using the

Java programming language (Clark et al., 2001; Kiker, 2001; Kiker and Clark,

2001b; Kiker and Clark, 2001c; Kiker et al., 2006).

ACRU 4

2008-2011 Development of the ACRU 4 version of the modelling system (Clark et al., 2009;

Clark et al., 2012a; Clark et al., 2012b), including the:

 ACRU model structure,

 ModelData XML model input file structure,

 ModelConfiguration XML model configuration file structure,

 XmlModelFiles library,

 ModelDataAccess library for .Net,

 Configuration Editor graphical user interface (GUI),

 TSAnalysis time series analysis tools,

 inclusion of ACRU in the SPATSIM-HDSF modelling framework, and

 model input data file converter.

ACRU 5

2012 Development of OpenMI 1.4 compliant Java and .Net wrappers for the ACRU 5

version of the model (Clark and Lutchminarain, 2013).

2012-2014 Further development of ACRU 4 version of the modelling system (Clark, 2013), to

create the ACRU 5 version, including refinements to the:

 ACRU model structure (especially handling of time series data),

 ModelData XML model input file structure,

 ModelConfiguration XML model configuration file structure, and

 XmlModelFiles library (model input data file updater).

Development of a Java version of the ModelDataAccess library.

2015-2017 Development of OpenMI 2.0 compliant .Net wrapper for the ACRU 5 version of the

model.

2017 Development of a data reader/writer for the Delft-FEWS PI XML file format in the

Java version of the ModelDataAccess library.

142

Schulze and Smithers (2004) explain that following initial development in the early 1970s the

ACRU model was then further developed as an agrohydrological model as a result of

research to compile an agrohydrological and agroclimatological atlas for KwaZulu-Natal

(Schulze, 1983). This first version of the ACRU model is referred to here as the ACRU 1

version and is described in Schulze (1984). In the late 1980s the ACRU model was further

developed resulting in the ACRU 2 version and the Disk Operating System (DOS) based

Menubuilder user interface utility was developed to assist model users in configuring the

model (Schulze, 1989; Schulze et al., 1990). In the early 1990s further model development

took place resulting in the ACRU 3 version (Schulze, 1995a; Schulze et al., 1995). In the

early 2000s a database of ACRU model inputs such as information on soils, land cover/use

and climate for each Quaternary Catchment in South Africa was developed based on a

database developed by Meier (1997). This database known as the South African National

Quaternary Catchment Database (SANQCD) was created in Microsoft Access and included

a Windows based graphical user interface enabling users to create or edit ACRU

configurations (Hallowes et al., 2004; Pike et al., 2004). The SANQCD together with the

new user interface utility is known as the ACRU Agrohydrological Modelling System

(AAHMS). Also in the early 2000s a standalone utility known as ACRUView was developed

to graph and perform statistical analyses on times series of ACRU input and output data

values (Anonymous, 2004; Pike et al., 2004). Versions 1 to 3 of the ACRU model were

developed in the FORTRAN 77 programming language. These versions used a flat text file

structure for the main model input data file and two alternative formats of text file for daily

time series data.

For several reasons, discussed in Section 2.2, work began in 1998 to restructure the ACRU

model using the object-oriented software design approach in the Java programming

language (Clark et al., 2001; Kiker, 2001; Kiker and Clark, 2001b; Kiker and Clark, 2001c;

Kiker et al., 2006). Given the new model structure and the advent of the new millennium this

new version of the model was named ACRU 2000. The ACRU 2000 version used the same

algorithms as in the ACRU 3 version for representing hydrological processes, but provided a

more flexible and extensible model structure to support future model development. After its

completion in 2002 the ACRU 2000 version remained largely a research version for a few

years. Several new modules were added to the ACRU 2000 version including: (i) dam and

river operations (Butler, 2001), (ii) the ACRU-Veld module for modelling mixed vegetation

land cover and utilisation by herbivores (Kiker and Clark, 2001a), (iii) the ACRU-NP module

for Nitrogen and Phosphorus modelling (Campbell et al., 2001), (iv) ACRUSalinity module for

salinity modelling (Teweldebrhan, 2003), (v) ACRUCane for advanced sugarcane and

irrigation modelling (Moult, 2005), and (vi) shallow water table modelling (Martinez et al.,

143

2008). Despite the new object-oriented structure of the ACRU 2000 version of the model,

the model input files still used a flat text file structure, which did not enable the full potential

of the new object-oriented model structure to be used.

In 2008 work began on developing new model configuration and model input data file

designs using Extensible Markup Language (XML) to complement the object-oriented

structure of the model (Clark et al., 2009; Clark et al., 2012a; Clark et al., 2012b). Changes

were made to the ACRU 2000 version of the model to implement the new model

configuration and data file structure and this new version of the model became known as the

ACRU 4 version (Clark et al., 2009; Clark et al., 2012a; Clark et al., 2012b). A model input

data file converter was also developed to convert ACRU 3 and ACRU 2000 model input data

files to the new XML-based format. A new graphical user interface known as the

Configuration Editor was developed based on the XML model configuration and data file

structure (Clark et al., 2009; Clark et al., 2012a; Clark et al., 2012b). Simultaneously the

TSAnalysis time series visualisation and analysis tool was developed to replace the

ACRUView and SPATSIM TSOFT time series analysis tools (Clark et al., 2009; Clark et al.,

2012a). When the SPATSIM modelling framework was restructured, as part of WRC Project

K5/1490, to create the hydrological modelling framework known as SPATSIM-HDSF,

graphical and data interfaces were created to enable the ACRU 4 version to be run within

SPATSIM-HDSF, reading from, and writing to, the SPATSIM-HDSF database structure

(Clark et al., 2009; Clark et al., 2012a; Clark et al., 2012b). Since 2010 the ACRU 4 version

has replaced the ACRU 3 version, as the version of the model taught to undergraduate

hydrology and agricultural engineering students at UKZN and in courses presented to

hydrology practitioners. However, the ACRU 3 version is still used for some research

applications within the CWRR for large national-scale simulations where the time taken to

run simulations is a limitation of the ACRU 4 version.

From 2012 onwards further changes were made to the structure of the model and the model

configuration and data files (Clark, 2013). Most of these changes were related to improving

the handling of time series data, resulting in what will be referred to as the ACRU 5 version

of the model for the purposes of this document. The concept of Resource classes to

represent resources such as water, nutrients and sediment was an important addition to the

ACRU 5 version. Initial development of a water accounting module (Clark, 2015a) for ACRU

started in 2014 and is under continued development. A model input data file updater was

developed to model input data files to be updated easily to keep up with changes to the

model. A Java version of the ModelDataAccess library was developed to enable easier

addition of data reader/writer classes for additional model data input formats. A data

144

reader/writer for the Delft-FEWS PI XML file format was included in the Java version of the

ModelDataAccess library.

With increasing recognition of the need for integrated water resources management (IWRM),

considering integrated water quantity, water quality, economic and social impacts, it was

recognised that some means of linking ACRU to other domain specific models would be

necessary. To achieve this, Open Modelling Interface (OpenMI) compliant Java and .Net

wrappers (OpenMI version 1.4) were created for the ACRU 5 version of the model enabling

ACRU to be linked to other OpenMI compliant models (Clark and Lutchminarain, 2013).

OpenMI enables the models to be linked on a timestep-by-timestep basis, such that

feedbacks between the models can be represented. In 2015 an OpenMI 2.0 compliant .Net

wrapper was developed for the ACRU 5 version of the model.

8.2 Notation Used In UML Class Diagrams

The Unified Modelling Language (UML) is a notation developed to visually describe object-

oriented models of real-world systems to facilitate communication and enable model designs

to be documented in a manner that is independent of the computer programming language

used to implement the model. A UML specification is maintained by the Object Management

Group (OMG) in (OMG, 2017).

In this document, UML class diagrams have been used to describe the design of the new

object-oriented structure of the ACRU model and the OpenMI wrapper classes for ACRU

and eWater Source. The initial design of the restructured ACRU model using UML was

created using the Rational Rose [https://www-03.ibm.com/software/products/en/enterprise]

software. UML software such as Rational Rose enables generation of code from UML

designs and reverse engineering of code to back to UML. The UML class diagrams in

Chapter 3, describing the ACRU model, were created using the ObjectAid software

[http://www.objectaid.com/] which automatically reverse engineered the Java code to UML

enabling UML diagrams to be quickly generated based on actual model code. The UML

class diagrams in Chapter 4, describing the OpenMI wrappers, were created using the

Microsoft Visual Studio UML tools [https://www.visualstudio.com/] which automatically

reverse engineered the .Net C# code to UML enabling UML diagrams to be quickly

generated based on actual code.

The notation used to describe classes and interfaces in the UML class diagrams created

using the ObjectAid software, is shown in Figure 8-1. Each class or interface is shown as

145

block with a yellow background, with name of the class at the top followed by the name of

the package to which it belongs. The class attributes, constructors and methods are listed,

with an indication of their visibility (public [+], protected [#], private [-]) and whether they are

staticS or finalF. In the class diagrams in Chapter 3, some or all of the attributes and

methods may have been hidden to reduce the size of the diagrams.

Figure 8-1 Notation used in UML class diagrams created using ObjectAid software

The notation used to describe classes and interfaces in the UML class diagrams created

using the Microsoft Visual Studio software, is shown in Figure 8-2. Classes are shown as

blocks with a blue background and interfaces as blocks with a green background. The name

of a class is shown at the top followed by the class stereotype and the name of the

superclass. The class fields, properties, constructors and methods are listed, with an

indication of their visibility (public, protected, private). In the class diagrams in Chapter 4,

some or all of the fields, properties and methods may have been hidden to reduce the size of

the diagrams.

The notation used to describe the relationships between classes and interfaces in the UML

class diagrams is shown in Figure 8-3. The inheritance relationships between classes are a

core part of object-oriented design enabling a hierarchy of more general to more specialised

classes to be created, where each class has a “type of” relationship with its superclass. Both

the Java and C# programming languages permit only single inheritance. A realisation

relationship is used when a class implements an interface. The class is obligated to

implement the behaviour specified in each interface that it implements. Aggregation

relationships are used to indicate situations where one class forms part of another class,

such as an engine being part of a car. Association relationships are used to indicate any

146

other type of relationship between classes. In computer code the composition, aggregation

and association relationships are implemented in the same way. The ObjectAid and Visual

Studio UML tools, which create UML diagrams by reverse engineering the code, are thus not

able to distinguish between these relationship types and so association relationships are

used in all such cases.

Figure 8-2 Notation used in UML class diagrams created using Visual Studio software

Figure 8-3 UML notation describing relationships between classes and interfaces

147

8.3 Initial Object-Oriented Design of the ACRU Model Structure

The initial conceptual object-oriented design of the ACRU model structure by Kiker and

David (1998) and Kiker and Clark (1999) was briefly described in Section 3.2.1. The main

classes and interfaces that form the foundation of the ACRU model are shown in more detail

in Figure 8-4. The abstract MModel class is extended by the MAcru2k class which

represents the ACRU model engine. The MAcru2k class contains two instance variables,

where spatialEntityPool contains a list of instances of CComponent representing spatial

entities in a hydrological system, and computationOrder contains a list of pointers to the

spatial entities in the correct order for computing water flows within the system. The

WaterFlow interface has one method, flowWater and is implemented by MAcru2k,

CSpatialUnit and all subclasses of PProcess that represent water flows. In MAcru2k the

flowWater method contains the algorithm that controls the ordered computation of Processes

in the ordered list of spatial Components specified in spatialEntityPool. The three abstract

high-level CComponent, DData and PProcess foundation classes are also shown, with

CComponent and PProcess being subclasses of CNode. Instances of the CNode class may

be related in the sense of being “next to” each other, for example, Components in the spatial

sense and Processes in the sequential sense. Each instance of CNode may be “next to”

zero or more other instances of CNode. The CNode contains several methods that enable

these “next to” relationships to be set and queried. The DData class has methods to set,

retrieve and increment a double precision floating point value stored within the class. The

CComponent class has a Data class named DStorage that could be used to record the water

stored within an instance of CComponent.

Figure 8-4 Initial design of the ACRU model: main classes and interfaces

148

8.3.1.1 Component classes

In the initial conceptual design hydrological systems are conceived as being composed of: (i)

spatial entities, which could represent a region, line or point on a map, and (ii) entities

representing the conceptual vertical layers that are subcomponents of some types of spatial

entity. The classes representing spatial entities are shown in Figure 8-5. The spatial entities

are represented by the CSpatialUnit class which is a subclass of CComponent. Instances of

CSpatialUnit each have an identity number and an area. CSpatialUnit implements the

WaterFlow interface and thus its flowWater method, which is called by the flowWater method

in MAcru2k. The CSpatialUnit flowWater method contains the algorithm that controls the

ordered computation of the list of Processes associated with an instance of CSpatialUnit.

There are two subclasses of CSpatialUnit: (i) the CLandSegment class representing units of

land, and (ii) the CReach class representing flow network reaches through CRiver, CStream,

CGully and CDam subclasses. Each instance of CSpatialUnit is associated with an instance

of CClimate representing the local climatic conditions for each spatial entity.

Figure 8-5 Initial design of the ACRU model: spatial Component classes

149

As shown in Figure 8-6 the CLandSegment class is composed of several classes

representing vertical layers, starting at the top with CClimate inherited from CSpatialUnit.

The land cover layer is represented by the CLandCover class and its subclasses.

CLandCover has a CImpervious subclass representing impervious land cover, and a

CPervious subclass representing pervious land cover such as vegetation. The CVegetation

class is in turn composed of component classes CLeafCanopy, CSeeds, CStems and

CRoots. The soil layer is represented by the CSoil class which in turn can be composed of

one or more soil sublayers represented by the CHorizon class. The groundwater layer is

represented by the CGroundwater class. The CCatchment class is a subclass of

CLandSegment, but it is not clear in the initial design how this class would be used.

Figure 8-6 Initial design of the ACRU model: CLandSegment subcomponent classes

8.3.1.2 Data classes

The DData class and some examples of its subclasses are shown in Figure 8-7. Some of

these subclasses are simple, such as DArea representing a single constant value, or

DMaximumTemperature which could represent a time series of values. The DStorage class

is more complex and is itself composed of other data classes and contains specialised

methods to access these. All the subclasses inherit the methods of DData but may override

them to provide subclass specific behaviour such as range checking.

150

Figure 8-7 Initial design of the ACRU model: example Data classes

8.3.1.3 Process classes

The PProcess class and some examples of its subclasses are shown in Figure 8-8. The

abstract PProcess class has several abstract subclasses, each representing a generalised

category of hydrological process, such as interception, evaporation, transpiration, surface

flow and subsurface flow. Each of these generalised subclasses then has one or more

subclasses representing more specific processes or specific methods of modelling the

process, for example the PSCSRunoff class uses the SCS method (USDA, 1985; Schmidt

and Schulze, 1987) to estimate runoff.

Figure 8-8 Initial design of the ACRU model: Process classes

151

An example of how Process, Component and Data classes are related is shown in Figure

8-9. The PABResponse class models the saturated downward movement of water from the

soil’s A-horizon to B-horizon when the soil moisture in the A-horizon is above drained upper

limit. The PABResponse class implements the WaterFlow interface and the flowWater

method, which is called by the flowWater method in the instance of CSpatialUnit on which

the Process acts. The PABResponse class specifically acts on the two CHorizon

Component objects representing the A-horizon and B-horizon belonging to a CLandSegment

Component object. The flowWater method retrieves values for Component attributes

(represented by subclasses of DData) such as drained upper limit and current soil moisture

storage from the relevant CHorizon Component objects, then calculates whether there is any

movement of water, and if so, adjusts the soil moisture storage in both CHorizon Component

objects.

Figure 8-9 Initial design of the ACRU model: example of Component, Data, Process

class relationships

152

8.4 Refined Object-Oriented Design of the ACRU Model Structure

This section contains some additional details of the refined object-oriented design of the

ACRU model structure described in Section 3.2.2.

8.4.1 Java Generics Used in the DData, DData_State and RResource classes

In the ACRU 5 version extensive use was made of Java generic typing in the DData,

DData_State and RResource classes, as described in Table 8-2 and Table 8-3, to simplify

the use of different data value types in subclasses and ensure better type safety.

Table 8-2 Description of generic types used in the DData and DData_State classes

Type Description

B The base type of data structure used by an instance of DData

V The value type of individual values in the data structure used by an instance of DData

DP The time series data point type (sub-class of DTSDataPoint) used by an instance of DData

to store a time-stamped value as part of a time series of data points

TS The time series type (sub-class of DTimeSeries) used by an instance of DData to store a

time series of data points

Table 8-3 Description of generic types used in the RResource class

Type Description

V The value type of individual quantity values used by an instance of RResource

IV The type of data structure used to store a referenced list of source, destination, owner or

location quantity values in RResource

DQ The type (sub-class of DData_State with value type V) which records the quantity of resource

currently stored within the container CComponent of an instance of RResource.

DPQ The time series data point type (sub-class of DTSDataPoint with value type V) used by an

instance of RResource to store a time-stamped storage quantity value as part of a time series

of data points

TSQ The time series type (sub-class of DTimeSeries with value type V) used by an instance of

RResource to store a time series of storage quantity data points

DSI The type (sub-class of DData_State and using the IV data structure) which records either: (i)

the ownership quantities of the resource currently stored within the container CComponent of

an instance of RResource, or (ii) the quantity the resource owned by the container

CComponent of an instance of RResource, but stored in another instance of CComponent.

DI The type (sub-class of DData and using the IV data structure) which records for the container

CComponent of an instance of RResource either: (i) the source instances of CComponent

from which quantities of resource were received, or (ii) the destination instances of

CComponent to which quantities of resource were sent.

DPI The time series data point type (sub-class of DTSDataPoint and using the IV data structure)

used by an instance of RResource to store a time-stamped referenced list of source,

destination, owner or location quantity values in RResource as part of a time series of data

points

TSI The time series type (sub-class of DTimeSeries and using the IV data structure) used by an

instance of RResource to store a time series of referenced lists of source, destination, owner

or location quantity values in RResource

153

8.4.2 Component Classes

An example is shown in Figure 8-10 of how impervious areas are represented conceptually

using Component classes. The ACRU model distinguishes between impervious areas that

are adjunct to the river flow network (CAdjunctImperviousArea), thus contributing runoff

directly to the network, and those that are disjunct (CDisjunctImperviousArea), such that

runoff contributes to the surface water on an adjacent pervious spatial unit of land. Spatially

an instance of the CImperviousArea class would be part of an instance of the

CSubCatchment class which in turn would be part of an instance of the CCatchment class.

An instance of CImperviousArea could typically be composed of just two vertical

subcomponent layers CClimate and CLandCover. The CImperviousLandCover class is

used to represent an impervious land cover compared to the CVegetation class which

represents a pervious vegetation land cover.

Figure 8-10 ACRU 5 design: CImperviousArea subcomponent Component classes

8.4.3 Data Classes

More detailed descriptions are provided in this section of the Data class structure and

classes for storing and handling time series data.

154

8.4.3.1 Main Data classes

The details of the main classes of the new Data class structure are shown in Figure 8-11.

This structure was designed to provide a hierarchy of powerful and flexible non-abstract

Data classes to which parameter or variable identities, data ranges and other attributes can

be assigned when they are instantiated as objects during model setup.

Figure 8-11 ACRU 5 design: main Data classes and associated data type description

classes

Better provision has been made for different data structures and data value types in the

ACRU 5 version of the Data classes. In the ACRU 5 version the term “base type” refers to

different data structures, for example a single data value, an array of data values or a lookup

table containing pairs keys and data values. The term “value type” refers to different data

value types, for example string, integer or double precision floating point value types.

Different data structures and data value types are implemented as subclasses of the DData

and DData_State classes, as shown in Figure 8-12. For the simpler DData_String,

DData_Integer and DData_Double classes the base type and the value type are the same,

for example for DData_Double the base type and the value type are both java.lang.Double.

For the DData_CompID class which represents the ID of a CComponent object, the base

type and the value type are both java.lang.String. For the more complicated

155

DData_ListCompID class which represents a list of a CComponent object IDs, the base type

is ListCompID and the value type is java.lang.String. The ListCompID base type is simply a

wrapper class for a java.util.Vector list of java.lang.String objects. For the

DData_RefCompIDInteger class the value type is java.lang.Integer and the

RefCompIDInteger is a wrapper class for a java.util.Hashtable list with CComponent object

IDs as keys and instances of java.lang.Integer as the referenced values. The

DStructureTypes, DRecordTypes and DValueTypes classes, shown in Figure 3-8, each

contain static variables that describe different data structures and data value types in a

format that corresponds to the way in which this information is stored in the XML-based

model configuration file described in Section 3.3.2. The value types in the DValueTypes

class specify the data value type of a model parameter or variable, for example

DValueTypes.DOUBLE for a Data object containing one constant double precision floating

point value or a time series of double precision floating point values. The structure types in

the DStructureTypes class specify whether, for example, a variable consists of: (i) one

constant value, (ii) a set of constant values, termed a “record” here, (iii) a time series

containing one value for each timestep, or (iv) a time series containing a set of values (a

record) for each timestep. The DRecordTypes class contains the different record type

options which are: (i) a one dimensional array, (ii) a two dimensional array, and (iii) a lookup

table of key-value pairs, referred to as a “dictionary” in some programming languages. In

addition, the DParameterTypes class contains static variables that specify whether a model

parameter or variable is: (i) a model input, (ii) a model output, or (iii) a state variable which is

inherently both a model input and a model output variable.

Figure 8-12 ACRU 5 design: subclasses of Data classes

156

8.4.3.2 Time series data classes

The new Data structure of the ACRU 5 version also provides better handling of time series

data and more flexibility with regard to the types of time series that can be represented, as

shown in Figure 8-13. The types of time series that can be defined are listed in the

DTSTypes class and the permissible time series timesteps for non-breakpoint time series

are listed in the DTimeSteps class. Different time series variables are aggregated up for

coarser timesteps in different ways, for example, daily rainfall values would typically be

summed to provide an annual value, but daily temperature values would be averaged. The

DTSAggregationTypes class contains a list of the aggregation types that may be assigned to

a Data object. The DTSInterpolationTypes class similarly contains a list of interpolation

types, indicating how a time series variable should be interpolated to a finer timestep, but

this functionality requires further development. Each instance of DData is also associated

with an instance of the DTSConverter class, which enables conversion between different

time series types, where appropriate, through aggregation or interpolation. The DDateTool

class was created as a utility class to simplify use of the java.util.Date class by providing

methods to assist with formatting dates and times as strings and returning the next or

previous date or time relative to a specified data or time for a specified timestep.

Figure 8-13 ACRU 5 design: time series related Data classes

157

8.5 Design and Development of an XML ACRU Model Input File Structure and
Related Software Tools

The various file types and software tools related to the ACRU 5 version of the model are

shown in Figure 8-14. The design and development of an XML ACRU model input file

structure and related software tools are described in this section.

Figure 8-14 Software and files related to the ACRU 5 version of the model

158

8.5.1 ModelData Schema

The ModelData schema provides a data model describing the structure of an XML-based

model input file that complements the object-oriented design of the ACRU model. An

implementation of the ModelData schema will be referred to as a “ModelData file”, therefore

a ModelData file is a populated XML file that obeys the ModelData schema. A different

implementation of the ModelData schema would be used for each configuration of the ACRU

model, that is, one XML model data file for each study catchment. The ModelData schema

must be used in conjunction with the ModelConfiguration schema (Appendix 8.5.2). The root

element of the ModelData schema, Model, and its sub-elements are shown in Figure 8-15.

Figure 8-15 The Model element and main sub-elements of the ModelData schema

The ModelVersion element is used to store the version number of the ACRU model for which

a ModelData file was created as a means of version control. The ModelConfigurationFile

element is used to record the ModelConfiguration file associated with a ModelData file; this

is another aspect of version control to ensure that the model version, ModelData file and

ModelConfiguration file are all compatible. The ModelValidation element is used to hold

information about whether the data in the ModelData file has been checked to be valid

according to the associated ModelConfiguration file and when this was last checked. The

purpose of the DefaultDataStore element is to enable a default data store to be specified, for

example the name of a database or the default ‘local’ for the ModelData file.

159

8.5.1.1 ModelRuns element

The ModelRuns element contains a set of zero or more ModelRun elements. A ModelRun

element is used to store information about a particular model run so that it can be easily run

again or so that a list of model runs can be configured and used in batch executions of the

model. A ModelRun element stores an ID and description for the model run, the ordered

scenario set to be used, the start and end dates of the simulation, and optionally the start

and end dates for the time series datasets to be used if different from the simulation start

and end dates. Specifying the time series data start and end dates enables time series data

preceding the simulation start date to be read into memory in situations where processes are

influenced by model variable data values preceding the current simulation date.

8.5.1.2 Scenarios element

In water resource planning it is often useful to be able to model two or more different

scenarios. A mechanism for setting up scenarios has been included in the data model,

though this made the data model mode complicated. Each Model element contains a

Scenarios element which contains a list of one or more Scenario elements. A Scenario

element is used to store information about a particular scenario, including: an ID, a

description and an optional base scenario ID identifying an associated base scenario

together with which this scenario should be applied. These Scenario elements are

referenced by Data, Component and Relationship elements. The way in which scenarios

have been designed to work is that typically a base scenario containing a full set of data

values would be configured by the user. The user would then configure additional scenarios

which only contain the data values that change and these data values would override the

data values in the base scenario. A scenario is only a base scenario if it does not itself have

a base scenario. Scenarios which are not base scenarios can be superimposed over each

other in the order specified in the scenario set specified in a ModelRun element, with the

condition that they all have the same base scenario. Superimposed scenarios would

typically not have overlapping parameter or variable values.

8.5.1.3 ModelInfo element

A model configuration may include several global parameters and option variables. These

are specified in the ModelInfo element, configured as a list of Data elements within a

DataList element, as shown in Figure 8-16, to be consistent with the Component element.

The Data element is described in Appendix 8.5.1.7.

160

Figure 8-16 The ModelInfo element of the ModelData schema

8.5.1.4 Components element

The Components element contains a list of Component elements. The Component

elements represent the physical components of the hydrological system being modelled (e.g.

subcatchments, HRUs, rivers, dams, vegetation, soil). The Component element and its sub-

elements are shown in Figure 8-17. Each Component element stores: (i) a unique ID for the

component represented, (ii) a name for the component, (iii) the type of component being

represented, and (iv) a configuration component ID. The component type is a reference to a

ComponentType element (Appendix 8.5.2.2) in the ModelConfiguration schema, similar to

the ACRU model’s Component classes described in Section 3.2.2.3. The configuration

component ID is a reference to a configuration Component element within the

ComponentConfiguration element (Appendix 8.5.2.6) in the ModelConfiguration schema.

Figure 8-17 The Components element in the ModelData schema

A Component element may include zero or more component Scenario elements. These

Component Scenario elements each contain two items of information: (i) a scenario ID which

is a reference to one of the model Scenario elements, and (ii) whether the Component

element is active or inactive for the scenario. By default a Component element will be active

unless it has a Scenario element that specifies that it is inactive for a specified scenario.

Component scenarios enable certain components to be excluded from a simulation, for

example when running simulations to determine the effect of a new dam in a subcatchment.

161

Setting Component element scenarios would require corresponding Relationship element

scenarios to be set.

The SpatialRef element within a Component element enables a spatial reference to be

stored, for example, a spatial reference may refer to a feature in an ESRI shapefile or

geodatabase. These component SpatialRef elements each contain two items of information,

(i) a data reference ID which is a reference to one of the model DataRef elements (Appendix

8.5.1.6) which, for example, may store information for an ESRI shapefile, and (ii) an ID that

will be used to identify a particular spatial entity within the spatial data reference, for

example, a particular feature in an ESRI shapefile.

A modelled ACRU Component is described by data parameters and variables. The

ComponentElement has a DataList element containing a list of Data elements. The Data

element is described in Appendix 8.5.1.7.

The SubComponents element within a Component element contains a list of Component

elements which are subcomponents of the parent Component element, for example a HRU

or a dam within a subcatchment. This structure allows for a nested hierarchy of parent and

child Component elements.

The ComponentProcesses element within a Component element contains an optional list of

Process elements belonging to the parent Component element. The ordered list of Process

elements contains information about which hydrological process algorithms are to be run for

the parent Component element.

8.5.1.5 ComponentRelationships element

The physical components making up a hydrological system to be modelled, for example

HRUs, dams and subcatchments, do not exist in isolation, they are related to each other in a

one or more ways. For example an HRU may be related to a dam in that it is upstream of

the dam. Each Model element contains a ComponentRelationships element, shown in

Figure 8-18, which contains a list of zero or more Relationship elements. A Relationship

element is used to store information about a relationship between two Component elements;

it stores the relationship type, for example streamflow, and the IDs of the two Component

elements which are the subjects of the relationship being stored. As shown in Figure 8-18,

zero or more relationship Scenario elements may be included in a Relationship element.

These relationship Scenario elements each contain two items of information, the first item is

162

a scenario ID which is a reference to one of the model Scenario elements, and the second

item specifies whether the Relationship element is active or inactive for the scenario. By

default a Relationship element will be active unless it has a Scenario element that specifies

that it is inactive for the specified scenario. Relationship scenarios enable certain

relationships to be excluded from a simulation. Relationship scenarios would typically only

be required when Component element scenarios are set.

Figure 8-18 The Relationships element in the ModelData schema

8.5.1.6 DataReferences element

A common problem when setting up a hydrological model is ensuring that the model input

data is in the specific data format required by the model. Translation of data to a different

data format is time consuming and can lead to errors in the translated data and therefore

incorrect inputs to a model. This problem is further evident when using two different models

in an integrated water resource assessment context, to model two separate aspects of the

water resource system, as often output from one model needs to be used as input to the

second model. In addition it is not efficient to store large time series datasets in XML such

as in a ModelData file. It would also be advantageous to be able to specify that model

output data be saved to a specific user selected format. These considerations lead to the

concept of data references in the ModelData schema. Each Model element contains a

DataReferences element which contains a list of zero or more DataRef elements as shown

in Figure 8-19. A DataRef element is used to store information about a particular data

reference; it stores an ID for the data reference and a data reference type which identifies

the format of the referenced dataset, for example “ACRU_SingleFormat” or

“DelftFewsPiXml”. A DataRef element may also contain zero or more Param elements,

where each Param element stores a name and value pair, for example "FILENAME" as the

parameter name and "C:\MyFolder\MyFile.txt" as the parameter value. The information

stored in the Param elements would be used by third party software utilities to locate the

referenced data store and open it for reading and writing. These DataRef elements are

referenced by Data elements and SpatialRef elements belonging to Component elements.

Figure 8-19 The DataReferences element in the ModelData schema

163

8.5.1.7 Data element

The Data elements used within the ModelInfo and Component elements are identical. A

schema diagram of the Data element is shown in Figure 8-20. The Data element, in

conjunction with the ModelConfiguration schema’s DataDef element (Appendix 8.5.2.3), has

been designed such that a particular model parameter or variable may have a constant

value or a value that changes dynamically during the simulation and to be able to store state

data so that a model can be hot-started.

Figure 8-20 The Data element in the ModelData schema

Each Data element may contain one or more Scenario elements. These data Scenario

elements store a scenario ID which is a reference to one of the model Scenario elements.

Each data Scenario element will contain a Val, Rec or TimeSeries element in which the data

values for the scenario are stored. A Val element stores a single data value or a reference

to a single data value. A Rec element stores a table of data values or a reference to a table

of data values. A Rec element may contain a table (record) of data values in the form of

either a 1-D array of values, a 2-D array of values or a dictionary of key-value pairs. A

TimeSeries element stores a time series of Val or Rec elements or a reference to a time

series. A TimeSeries element also contains two attributes, one stating the type of time

series, such as daily, monthly or breakpoint, and the other stating the format of the

timestamp used for the time series date/time values, for example “yyyy/MM/dd”.

The Val, Rec and TimeSeries elements may store either, actual data values or a reference

to data values stored externally, but not both. References to data values stored externally

require two items of information to be stored, the first item is the ID of the DataRef element

164

that stores information about the data store itself, and the second item is an ID that identifies

the location of the data value or values within the data store.

A Scenario-Val element stores only a single data value. A Scenario-Rec-Val element stores

a data value and also a key used to identify the data value within the set. For a 1-D array

Rec the key would be an integer index, for a 2-D array Rec the key would be two comma

separated integers (a row index and a column index) and for a dictionary Rec the key would

be either an integer or a string. A Scenario-TimeSeries-Val element stores a single data

value, a timestamp and an optional data quality flag. A TimeSeries-Rec element is similar to

a Scenario-Rec element but in addition stores a timestamp and an optional data quality flag.

Each data Scenario element may also contain zero or more OutRef elements. The purpose

of OutRef elements is to store information about where model output for the scenario is to be

stored. This information includes the ID of the DataRef element that stores information

about the data store itself, and the location of where the data value is to be stored within the

data store. The OutRef element also stores information regarding whether model output

should replace or be appended to existing data values in the data store.

8.5.2 ModelConfiguration Schema

The ModelConfiguration schema complements the ModelData schema by providing a data

model for storing information describing permitted component configurations and

relationships and also metadata type information about model parameters and variables for

use in the ACRU model and associated software utilities such as the Configuration Editor. A

large proportion of the information stored in a ModelConfiguration file is not required by the

ACRU model but is required by software utilities used to display, edit and analyse data

values stored in a ModelData file. A single implementation of the ModelConfiguration

schema would be used for many catchment configurations of the ACRU model. A different

implementation of the ModelConfiguration schema would only be required if changes were

made to the ACRU model. An implementation of the ModelConfiguration schema will be

referred to as a “ModelConfiguration file”, therefore a ModelConfiguration file is a populated

XML file that obeys the ModelConfiguration schema. The root element of the

ModelConfiguration schema, ModelConfiguration, and its sub-elements are shown in Figure

8-21.

165

Figure 8-21 The ModelConfiguration element and main sub-elements of the

ModelConfiguration schema

The ModelConfiguration element has attributes to store a name and description for the

model configuration it represents. The ModelVersion element stores the version number of

the ACRU model for which a ModelConfiguration file was created as a means of version

control.

8.5.2.1 ModelInfo element

The ModelInfo element in the ModelConfiguration schema, shown in Figure 8-22, is related

to the ModelInfo element in the ModelData schema. The DataDefinitions element contains a

list of zero or more DataDef elements, described in Appendix 8.5.2.3, where each DataDef

element contains metadata information about a general model option, parameter or variable.

The DataGroups element contains a list of zero or more DataGroup elements where each

DataGroup element contains an ordered list of DataDef IDs. Data groups provide a means

of grouping model parameters or variables for display purposes in software utilities.

Figure 8-22 The ModelInfo element in the ModelConfiguration schema

166

8.5.2.2 ComponentTypes element

The ComponentTypes element, shown in Figure 8-23, contains a list of ComponentType

elements. The ComponentType elements represent the different types of physical

components making up the hydrological system being modelled (e.g. subcatchments, rivers,

dams, vegetation and soil horizons). Each ComponentType element stores: (i) a unique ID

for the component type represented, (ii) a name for the component type, (iii) the name of the

model Java class that is to be associated with the component type, and (iv) help text and

description information for the component type. The ComponentType element defines a

type of component by means of the parameters and variables describing its characteristics.

These characteristics are defined by means of the DataDefinitions and DataGroup elements,

described in Appendix 8.5.2.3, which work in the same way as the similarly named elements

in the ModelInfo element. Component configuration is dealt with in the

ComponentConfiguration element. For example, an in-channel dam and an off-channel dam

may both be represented by the same “dam” component type but they will be configured

differently in terms of flows.

Figure 8-23 The ComponentTypes element in the ModelConfiguration schema

8.5.2.3 DataDef and DataGroup elements

The DataDef elements used in the ModelInfo and ComponentType elements are identical.

The DataDef element, shown in Figure 8-24, contains several attributes, described in Table

8-4, which are used to define each data option, variable or parameter. The ID attribute of a

DataDef element must contain an ID that is unique within the parent configuration ModelInfo

or ComponentType element but need not be unique within the ModelConfiguration file. The

ID of a Data element in a ModelData file is identical to the ID of the corresponding DataDef

element in the associated ModelConfiguration file to make the link between Data element

and corresponding DataDef element. The PType attribute states whether the DataDef

element represents input, output or state data, where state data can be regarded as both

167

input and output data. The PType, VType, SType and TType attributes describe the data

values stored in a Data element as clearly as possible to make provision for all anticipated

data structures that may need to be represented in the ACRU model and other similar

models. The VType attribute stores the value type of the data values stored. The SType

attribute stores the structure type of the data, whether each data point is represented by an

individual data value or a table of data values. The TType attributes states whether the data

is always a constant, or always a time series, or whether the data may be dynamic. The

TType attribute would be set to Dynamic if the data to be stored is, in some instances,

modelled as a constant but in advanced modelling exercises the data may vary with time

and a time series will be used as input.

Figure 8-24 The DataDef element in the ModelConfiguration schema

A DataDef element may have more than one DataRule and DisplayRule element. A data

rule is used to determine whether a model parameter or variable data value is valid or not. A

DataRule element contains information about which software method in the rule source file

(Appendix 8.5.2.9) is to be run and which model options or parameters or variables may be

required in determining the validity of the target parameter or variable. The display rules

would be used by software utilities to determine whether a model parameter or variable

should be displayed depending on user selected values for other model options or

parameters or variables. A DisplayRule element contains information about which software

method in the rule source file (Appendix 8.5.2.9) is to be run and which other model options

or parameters or variables may be required in determining whether to display the target

parameter or variable.

168

Table 8-4 Attributes of the DataDef element in the ModelConfiguration schema

Attribute Use Description

ID required A unique ID for the data definition

Name required A name for the data definition

Alias required An alternative name for the data definition

PType required Parameter type (Input, Output, State)

VType required Value type (String, Int16, Int32, Float, Double, DateTime)

SType required Structure type (Val, Rec)

TType required Time type (Constant, TimeSeries, Dynamic)

AType optional Aggregation type - only applies to time series data (None,

Sum, Max, Min, Mean)

IType optional Interpolation type - only applies to time series data

(Isolated, Step, StraightLine, Fourier, CublicSpline)

TSTypes optional Set of permitted time series types (Annual, Monthly, Daily,

Hourly, Minute, Second, Breakpoint)

RType optional Record type - only applies to data with SType="Rec"

(Array1D, Array2D, Dictionary)

RFormat optional Record format - only applies to SType="Rec" and

RType="Array1D" or RType="Array2D"

UnitID required The ID of the unit of measure

DataClass required The associated software class

Decimals optional Default number of decimal places for numeric data

LookupID optional The ID of the lookup list to be used

ReadOnly optional Specifies if the data should be read-only

Description required Brief description of the data parameter or variable

HelpText required Help text for the data parameter or variable

MaxValue optional The maximum value for numeric data

MinValue optional The maximum value for numeric data

DefaultValue optional The default value to be used

ApplyDefault required Option to automatically set the default value

Data groups provide a means of grouping model parameters or variables for display

purposes in software utilities. The DataGroup element shown in Figure 8-25 contains: (i) a

unique ID for the data group, (ii) a name, (iii) a description, (iv) a parent data group, if

applicable, and (v) a list of DataDef element IDs which belong to the group.

Figure 8-25 The DataGroup element in the ModelConfiguration schema

169

8.5.2.4 ResourceTypes, ResourceDefinitions and ResourceDef elements

The ResourceTypes element, shown in Figure 8-26, contains a list of zero or more

ResourceType elements specifying the resource types that can be modelled, for example

water. A ResourceType element stores a unique ID, name and description for the resource

type, and also the name of the model Java class to be associated with the resource type.

The ResourceDefinitions element, within a ComponentType element (Figure 8-23), contains

a list of ResourceDef elements which are used to define the resource types, which can be

modelled for that component type. Each ResourceDef element has a ResourceTypeID

attribute, specifying the resource type, and contains one or more Param elements, each with

an ID for the resource parameter and a reference to the ID of a DataDef element that stores

the resource parameter values. For example, the ResourceDef for WATER in ACRU

contains three Param elements: (i) ID=Quantity DataID=WATER, (ii) ID=Sources

DataID=WATER_S, and (iii) ID=Destinations DataID=WATER_D.

Figure 8-26 The ResourceTypes and ResourceType element in the ModelConfiguration

schema

8.5.2.5 RelationshipTypes element

The RelationshipTypes element, shown in Figure 8-27, contains a list of zero or more

RelationshipType elements specifying the relationship types that may be used in a

ModelData file. A RelationshipType element stores a unique ID for the relationship type, and

a context and an inverse context for the relationship type. For example, a relationship type

with the ID of “Streamflow” would have a context of “Upstream” and an inverse context of

“Downstream”. Thus, if river reach RiverA flows into river reach RiverB, then RiverA is on

the left-hand side of the relationship and RiverB is on the right-hand side of the relationship,

therefore RiverA is upstream of RiverB and RiverB is downstream of RiverA.

Figure 8-27 The RelationshipTypes and RelationshipType elements in the

ModelConfiguration schema

170

8.5.2.6 ComponentConfiguration element

The ComponentType element, shown in Figure 8-23, contains data definitions that describe

the characteristics of the component type. Each ComponentType element represents a

particular component type in isolation of all other component types even the subcomponents

of the component type. Some means was required to enable the configuration of these

isolated component types to be described to represent the hydrological system being

modelled. This configuration needed to include not only parent-child component

containment relationships but also other relationships between components. The

ComponentConfiguration element shown in Figure 8-28 is used for this purpose. The

ComponentConfiguration element contains three sub-elements Components,

PermissibleRelationships and AutomaticRelationships.

Figure 8-28 The ComponentConfiguration element in the ModelConfiguration schema

The Components element contains information describing the parent-child component

containment relationships. As may be expected, it has a similar structure of Component and

SubComponents elements as for the ModelData schema as shown in Figure 8-17. Each

configuration Component element stores: (i) a unique ID for the configuration component, (ii)

a name for the configuration component, (iii) the component type ID, (iv) the minimum and

maximum permitted occurrences of the configuration component within its parent

configuration component, and (v) whether the configuration component is permitted to recur

within itself.

It was recognised that some means was required to be able to specify what types of

relationships could be specified between two configuration components. The

PermissibleRelationships element contains a list of permissible Relationship elements, each

containing information describing a relationship that is permitted between two configuration

components. For example, an in-channel dam may be permitted to have a streamflow

relationship with an upstream river reach, but an off-channel dam would not be permitted to

171

have such a relationship. A permissible Relationship element stores the relationship type,

for example “Streamflow”, and the configuration Component element IDs of the two

configuration Component elements which are the subjects of the relationship.

In addition to specifying permissible relationships, some means was required to be able to

specify what relationships must exist for a particular configuration component to enable

software utilities to automatically configure some of the relationships in a ModelData file

thereby helping to reduce model configuration time. The AutomaticRelationships element

contains a list of automatic Relationship elements each containing information describing the

target configuration component, the relationship type and context, and the related

configuration component.

8.5.2.7 Units element

The Units element, shown in Figure 8-29, consists of a list of zero or more Unit elements

each representing a unit of measure, for example, cubic metres. The Unit element stores a

unique ID for the unit of measure and a name and description for the unit. Each unit of

measure is assigned to a category, for example, cubic metres may be assigned to a

“Volume” category. Further information related to the dimensions for the unit and conversion

to SI units is also included.

Figure 8-29 The Units and Unit elements in the ModelConfiguration schema

8.5.2.8 Lookups element

The Lookups element, shown in Figure 8-30, contains a list of zero or more Lookup

elements. It is used to store lookup lists for model parameters, typically model option

parameters, which have a finite number of permissible parameter values. Each Lookup

element contains a list of LookupItem elements each of which of which contains ID, name

and description information about an individual lookup item.

Figure 8-30 The Lookups element in the ModelConfiguration schema

172

8.5.2.9 RuleSourceFile and RuleReferences elements

The RuleSourceFile element stores the name of a text file containing the source code for the

data and display rules that are called for each model parameter and variable to determine

whether the data values are valid and whether they should be displayed. For the ACRU

model, a file named Ruleset.cs, written in the C# programming language, contains a class

named RuleSet which contains a public method for each data rule and each display rule.

This RuleSet file is not pre-compiled, for ease of reference and editing, and is compiled on

the fly, for example within the Configuration Editor software. The RuleReferences element

stores references to software libraries, usually Dynamic Link Libraries (DLLs), that are

required by the file specified in the RuleSourceFile element to enable this file to be compiled

on the fly.

8.5.3 XmlModelFiles Libraries

XML is useful for structuring data files used to configure hydrological models, but although

they are text-based, they are difficult to edit. For this reason the XMLModelFiles software

library was developed to facilitate easier reading, writing and editing of ModelData and

ModelConfiguration XML files. The XMLModelFiles software library was created in both the

C-Sharp (C#) and Java programming languages.

The XMLModelFiles library consists of three packages: XmlModelFiles.ModelData,

XmlModelFiles.ModelConfiguration and XmlModelFiles.ModelRules. The elements within an

XML file are in most cases represented by a matching code object. The process of saving

the information within a code object to XML is referred to as serialization and the reverse

operation is referred to as deserialization. A simplified UML class diagram of the main

classes in the XmlModelFiles.ModelData package is shown in Figure 8-31. The

ModelDataDocument class represents a ModelData file and contains code to serialize and

deserialize between ModelData files and their matching code objects. The ModelElement,

ModelRunElement, ScenarioElement, ModelInfoElement, ComponentElement,

RelationshipElement and DataRefElement classes represent the corresponding elements in

the ModelData schema. The IDataContainer interface enables the ModelInfoElement and

ComponentElement classes can be referred to in a generic manner when working with the

DataElement class. The DataElement and DataScenarioElement classes represent the

Data and Scenario elements in the ModelData schema. The DataValElement,

DataRecElement and DataTSElement classes, together with their associated classes,

represent the Val, Rec and TimeSeries elements in the ModelData schema, and are used to

173

store the actual data values for a modelling scenario. Classes named DataRule,

DisplayRule, DataProcedure and DataEvent (not shown in the figure) were created to

contain code used to configure and run data and display rules based on the information

stored in the DataDef elements of a ModelConfiguration file.

Figure 8-31 Simplified UML diagram of the XmlModelFiles.ModelData package

A simplified UML diagram of the main classes in the XmlModelFiles.ModelConfiguration

package is shown in Figure 8-32. The ModelConfigurationDocument class represents a

ModelConfiguration file and contains code to serialize and deserialize between XML

elements in the ModelConfiguration files and their matching classes. The other classes

represent the corresponding elements in the ModelConfiguration XML schema. The

IDataDefContainer interface has been created so that the ConfigurationModelInfoElement

and ComponentTypeElement classes can be referred to in a generic manner when working

with the DataDefElement class.

174

Figure 8-32 Simplified UML diagram of the XmlModelFiles.ModelConfiguration package

As described in Section 8.5.2.9, the RuleSourceFile element in the ModelConfiguration

schema stores the name of text file containing the source code for the data and display rules

that are called for each model parameter and variable to determine whether the data values

are valid and whether they should be displayed. The XmlModelFiles.ModelRules package

contains several utility classes used to compile and execute the code for the data and

display rules stored in a rule file. These classes were not developed as part of this PhD

study, but were consolidated into this library as they had previously formed part of the

Configuration Editor.

175

8.5.4 ModelDataAccess Library

The ACRU 3 version of the model provided three different ACRU specific text formats by

which time series data could be provided as input to the model, namely the Single format,

the Composite format and the CompositeY2K format (same as the Composite format but

with four digit numbers for years). These three formats were not easy to create using text

editors or spreadsheets and both the Composite format and the CompositeY2K format could

only contain specific ACRU input variables. Time series of simulated output data from the

ACRU 3 version of the model was written to an ACRU specific binary format.

The ACRU 2000 version of the model also enabled the selection of the dBase IV (dbf) format

for model output time series data. The ACRU 4 version of the model, through the XML

model input files, enabled more flexible configuration of which file and file format each model

variable read data from or wrote data to. As part of the development of the SPATSIM-HDSF

modelling framework, code was written to enable the ACRU 4 version of the model to read

from and write to SPATSIM-HDSF databases in Microsoft Access (Clark et al., 2009; Clark

et al., 2012a). In addition, a software library named ModelDataAccess was developed for the

.Net platform, containing a set of classes to read and write data from and to the existing

ACRU input and output formats, where each of these reader/writer classes implements a

common interface named IDataReaderWriter to enable easier integration of new formats into

the system (Clark, 2013). The Java code to read and write the existing formats was

previously part of the ACRU model code but was subsequently consolidated into a Java

version of the ModelDataAccess library as a set of reader/writer classes.

Subsequently, as part of this study, two additional data formats were included into the

ModelDataAccess libraries: (i) an ACRU specific comma separated value (CSV) format, and

(ii) the Delft-FEWS PI XML format. The ACRU CSV format can contain time series data for

any variable, enables easy data visualisation and editing in text editors and spreadsheets,

and can include information such as units of measure and data type. The Delft-FEWS

software (Werner et al., 2013; Deltares, 2018) is an open platform through which data and

models can be flexibly integrated to construct operational forecasting systems. The recent

addition of the Delft-FEWS PI XML format, as described briefly in Appendix 8.5.5, enables

the ACRU model to be run as a model in the Delft-FEWS framework using the Delft-FEWS

General Adapter. Thus, ACRU can be run as part of a Delft-FEWS setup using historical or

forecast time series data stored by Delft-FEWS as input and saving ACRU simulated outputs

back into Delft-FEWS for analysis and visualisation or as input to another model.

176

8.5.5 Integration of the ACRU Model With Delft-FEWS

The Delft Flood Early Warning System (Delft-FEWS), developed by Deltares in the

Netherlands, is described as an “Expert data handling and model integration software for

flood forecasting, drought and seasonal forecasting, and real-time water resources

management” (Deltares, 2018). More information is available in Werner et al. (2013) and at

http://oss.deltares.nl/web/delft-fews/. Delft-FEWS is a system that facilitates data handing

and model integration enabling users to build their own custom modelling systems. For each

application of Delft-FEWS, users decide which model or models need to be implemented

and the datasets required to run these models. External models are usually linked into and

executed from DELFT-FEWS using the General Adapter module. Prior to running a model

the user would execute one or more Delft-FEWS Workflows to import the data required for

modelling into a Delft-FEWS database. For each model implementation a Workflow in Delft-

FEWS would be used to execute an instance of the General Adapter for the model. Delft-

FEWS already contains pre-built adapters for a variety of models and also adapters to read

and write a variety of commonly used data formats. To integrate other models into Delft-

FEWS, where the model user does not have access to source code for a model, it would be

necessary to develop a pre-adapter and a post-adapter to enable the transfer of data

between Delft-FEWS and the model.

In the case of the ACRU model, it was possible to omit the pre-adaption and post-adaption

phases of linking and executing the model by adding functionality to the ACRU model to

read from and write to the Delft-FEWS Published Interface XML (PI XML) data exchange

files directly. Two new classes were developed and incorporated into the ModelDataAccess

library for the ACRU4 and ACRU 5 versions of the model: (i) the

ADelftFewsPiXmlFileReader class which reads a PI XML file, containing daily time series

input data, into ACRU and, (ii) the ADelftFewsPiXmlFileWriter which writes daily time series

of ACRU simulation results to a PI XML file. These two new classes are shown in the

Unified Modelling Language (UML) class diagram in Figure 8-33. The linking and execution

of the ACRU model in Delft-FEWS in shown in Figure 8-34. A simple Delft-FEWS Workflow

can be used to run the ACRU model, using historical time series of rainfall data imported into

Delft-FEWS, and then to import simulated streamflow time series from ACRU back into Delft-

FEWS.

The successful development of these reader/writer classes for the ACRU model to read and

write PI XML files, enables the ACRU model be used as a model within Delft-FEWS.

However, further investigation is required into the use of ACRU together with Delft-FEWS to

http://oss.deltares.nl/web/delft-fews/

177

provide agrohydrological forecasts. One important point to note is that, although two or

more models may be run from Delft-FEWS such that the output from one model is used as

input to another model, these models are run in series. The implication of this is that any

feedbacks, between different components of the modelled system represented by different

models, cannot be modelled unless each model is run one timestep at a time.

Figure 8-33 UML diagram of new ACRU classes developed to read and write PI XML files

Figure 8-34 Linking and execution of the ACRU model in Delft-FEWS

178

8.6 Development of OpenMI Composition Tools

In OpenMI two or more linkable components can be connected to create an OpenMI

‘composition’. One of the tools developed in the FluidEarth project was Pipistrelle, shown in

Figure 8-35, which is a graphical user interface that can be used to create and then run

compositions of linked models. To be able to add a linkable component to a composition an

OMI-file (*.omi) must be created. An OMI-file is a standard OpenMI file in XML format which

contains information about (OpenMI Association, 2010d): (i) the linkable component class for

the model to be instantiated, (ii) the compiled library containing the linkable component

class, and (iii) model specific arguments providing information required to configure the

model and initialise the linkable component. The linkable components are then added to

Pipistrelle using these model specific OMI-files which are displayed as shown in the example

in Figure 8-35. The connections and associated output adapters between the two linkable

components are then configured using the tools provided in Pipistrelle. Finally a ‘trigger’ or

‘pull’ variable is selected for one of the models (the eWater Source – uMngeni_Upper model

in this example) through which the linked simulation will be initiated. A Pipistrelle

composition may be saved to a composition file (*.chi) which stores the composition

information in an XML format.

Figure 8-35 The Pipistrelle tool for creating compositions of linked models

Pipistrelle is a useful tool for creating and editing compositions with a relatively small number

of connections and adapters between the models. However, this would be a tedious

exercise if there were a large number of connections and adapters to be configured, as was

the case with the case study in the upper uMngeni Catchment (Chapter 5) for the linked

179

ACRU and eWater Source models. Initially it seemed that it would be best to write some

code to automate the population of a Pipistrelle composition file. However, these files were

found to be difficult to work with. This lead to the development of what were termed OpenMI

‘composition information’ files OCI-files (*.oci) for use in this study. These OCI-files are also

in XML format but are simpler than the CHI-files and easier to work with. A XML schema

diagram for these OCI-files is shown in Figure 8-36. The OCI-files, which contain a small set

of XML elements and attributes, are used to store information about linkable components,

adapter factories, adapters, connections and the pull variable. A corresponding set of C#

classes, shown in Figure 8-37, were created to programmatically create and edit these OCI-

files. The main CompositionInfo class also contains code that enables a CHI-file to be

generated. The CompositionInfo_OMI class, which is an alternative to the CompositionInfo

class, enables existing OMI-files to be used to store information about the linkable

components.

Figure 8-36 XML schema diagram for the OpenMI composition information files

180

Figure 8-37 UML class diagram of classes created to work with the OpenMI composition

information files

8.7 Development of Tools to Configure the Linked ACRU – eWater Source Models

The graphical user interface for eWater Source, shown in Figure 8-38, provides tools that

enable model users to set up a flow network consisting of different types of nodes connected

by links, and then to configure these nodes and links with variable and parameter values.

Most of the flow network information required to configure eWater Source could be obtained

from an ACRU model input file. Thus, several new C# classes and forms were developed

to: (i) create a new eWater Source scenario, (ii) create the flow network within this scenario,

(iii) configure the network nodes and links, and (iv) to run the linked models.

181

Figure 8-38 The eWater Source graphical user interface (eWater CRC, 2017)

When a new eWater Source project is created the project creation form enables a scenario

creator to be selected. A new scenario creator named ACRU Scenario Creator was

developed to create a scenario based on information imported from an ACRU input file. This

new form implements the RiverSystem.Controls.Interfaces.IScenarioCreation interface, and

can be included in eWater Source as one of the scenario creation options. The new ACRU

Scenario Creator form is shown superimposed on the eWater Source project creation form in

Figure 8-39. The form enables the user to select the ACRU input file and model run to be

imported, and also whether eWater Source is to be run at a daily or an hourly timestep.

182

Figure 8-39 The ACRU Scenario Creator form in eWater Source

A class named AcruNetworkScenarioImporter was created to read a specified ACRU input

file and configure a new eWater Source scenario. The configuration of eWater Source

included the creation of all the necessary Inflow nodes, Storage nodes (dams), Minimum

Requirement nodes, Supply Point nodes, Time Series Demand water user nodes,

interconnecting links without flow routing (Straight-Through Routing links) and river links with

flow routing (Storage Routing links). eWater Source Functions were created for the Inflow

nodes and Time Series Demand nodes to facilitate OpenMI connections with ACRU. All the

information required to configure the dam Storage nodes was obtained from the ACRU input

file, including dam geometry, spillway rating curve, seepage losses and flow releases. The

dam seepage losses and flow releases from dams were modelled using Minimum

Requirement nodes. Similarly many of the river reach characteristics required for flow

routing were obtained from the ACRU input file, which for the upper uMngeni case study,

were estimated as described in Appendix 8.9.3. As part of the import process an OCI-file

was automatically generated with the ACRU and eWater Source models as linkable

components and all the necessary connections and output adapters. As part of the import it

was necessary to add some of the ACRU rainfall and reference potential evaporation time

series data files as data sources in eWater Source. Thus, two additional classes named

AcruCsvIO and AcruCompositeY2kIO were created by extending the

183

TIME.DataType.IO.MultiTimeSeriesIO class to enable eWater Source to read the data from

the ACRU time series data files. A UML class diagram for these three classes is shown in

Figure 8-40.

Figure 8-40 UML class diagram for the ACRU – eWater Source configuration tools

184

The OpenMI Composition Tools form, shown in Figure 8-41, was developed as a plugin for

eWater Source. This form enables users to select an OpenMI composition specified in an

OCI-file and then run the OpenMI composition. There is also an option on this form to create

a CHI-file for the selected OpenMI composition.

Figure 8-41 The OpenMI Composition Tools form in eWater Source

8.8 Development of a Water Use Quantification and Accounting System for South
Africa

In a research project titled “Development And Assessment Of An Integrated Water

Resources Accounting Methodology For South Africa” (Clark, 2015a) a methodology was

developed to produce annual catchment-scale water resource accounts for South Africa.

The methodology is described in Clark (2015b), but an overview is provided in this section

as the configuration of ACRU for the case study in the upper uMngeni Catchment in

Chapter 5 was based on this methodology.

The compilation of water resource accounts is data intensive and much of the data are

variable in both space and time. Some of the data are available from ground-based

measurements such as rainfall, reference potential evaporation and streamflow. Water

resources modelling is also data intensive, but can also be an invaluable tool for estimating

water resource quantities in ungauged catchments and for estimating water resources

variables that cannot be easily measured. An investigation into the water resource related

datasets available in South Africa, and a review of water use quantification methodologies

previously applied in South Africa helped to guide the development of the methodology. The

water resource related datasets investigated included catchment boundaries, altitude,

climate (rainfall, evaporation, air temperature), land cover/use, soil hydrological

characteristics, dams, rivers, measured streamflow, abstractions, return flows, transfers and

reserved flows.

185

The following key decisions guided the development of the methodology:

 The WA+ water accounting system would be used, with an initial focus on the

Resource Base Sheet, and only after that the Utilized Flows Sheet.

 A hydrological modelling approach using the ACRU agrohydrological model would be

the most suitable. The hydrological modelling approach was selected as there are

many components of the water resource accounts which cannot be easily measured,

either directly or by remote sensing. A daily physical conceptual model, such as

ACRU, enables the natural daily fluctuations in the water balance of the

climate/plant/soil continuum to be represented and ensures internal consistency

through the modelled feed-forwards and feedbacks between the various components

of the hydrological system.

 Remotely sensed data products would be considered as potential sources of data for

hydrological modelling.

 To produce annual water resource accounts at a Quaternary Catchment scale,

although the hydrological modelling should be done at a suitable finer spatial scale to

represent variations in climate and sectoral water use within a Quaternary Catchment.

 The methodology should make it possible to aggregate accounts up from finer to

coarser spatial and temporal scales.

 Consistent with WA+, the methodology should have a strong land cover/use basis, to

enable assessment of sectoral water use.

 To initially focus on rainfall and total evaporation estimates at a catchment scale.

 To initially focus on water quantity, but to anticipate that water quality and economic

aspects of water resources would be important additional components of the accounts

in the future.

As stated, the methodology was intended to have a strong land cover/use focus. There are

various land cover/use datasets available for different regions and points in time and these

all use different land cover/use classifications. Thus, some means was required to provide

consistency in the application of these various datasets and ensure compatibility between

water resource accounts compiled using different datasets. This led to the development of a

standard hierarchy of land cover/use classes and an associated database of land cover/use

classes containing information describing the hydrological characteristics of these classes.

The land cover/use classes and hierarchy were used in a Python script that was developed

to determine HRUs based on catchment boundaries, land cover/use, previously existing

natural vegetation and soils datasets.

186

The poor spatial representation and poor availability of rain gauge data led to the

investigation of remotely sensed rainfall datasets. Four remotely sensed daily rainfall

datasets (CMORPH, FEWS ARC 2.0, FEWS RFE 2.0 and TRMM) were compared with rain

gauge data and the simulated streamflow resulting from the use of these rainfall datasets

was compared with measured streamflow. The investigation of remotely sensed rainfall

datasets is discussed further in Appendix 8.9.9.2, Clark (2015b), Clark (2016) and Clark

(2018). Although remotely sensed rainfall offers advantages in spatial representation and

availability, the coarse resolution and bias in rainfall quantities may be a problem in

accurately estimating rainfall at sub-Quaternary scale for use in water resource accounts.

Naturally vegetated, cultivated and water body land cover/use classes together typically

cover the largest portion of a catchment and are the easiest to represent in a hydrological

model for a large number of catchments. Datasets quantifying water use and return flows for

urban and mining land cover/use classes are often harder to access and more difficult to

model. Urban residential water use was estimated in a simple manner based on population

and assumptions regarding per capita water use and return flows. Industrial, commercial

and mining water use was not taken into account.

As part of the methodology a project database spreadsheet was developed, in which the

spatial configuration of catchments, subcatchments, HRUs, river flow network, dams and

other water infrastructure is specified. This spreadsheet acts as a structured source of

information from which the ACRU model, and potentially other hydrological models can be

configured. This project database also aims to make catchment configuration more

transparent, editable and reproducible, though implementation by individual models will

require different model specific assumptions. A library of Python scripts was developed to

process datasets and to populate the project database spreadsheet. Java code was also

developed to use the information contained in the project database spreadsheet and

associated datasets to configure the ACRU model. The workflow to compile water resource

accounts using the methodology includes the following main components: (i) processing of

datasets, (ii) compilation of a project database spreadsheet containing catchment

configuration information, (iii) configuration of ACRU using the project database and

associated datasets, and (iv) simulation using ACRU and compilation of accounts.

The ACRU model was further developed to compile the modified WA+ Resource Base

Sheets and store the information required to populate the Land And Water Use Summary

table. The new source code is contained in the ACRU.Processes.Accounting package and

includes classes to: (i) store monthly and annual volumes of water stocks and flows for each

187

catchment, subcatchment, HRU, dam, river and water user, and (ii) the PWaterAccount

class which creates instances of the Resource Base Sheet for each month and year for each

subcatchment and catchment modelled. It was initially intended that this source code which

was added to ACRU to compile the modified WA+ Resource Base Sheets would be a

prototype from which a standalone tool, outside of ACRU, would be developed. However, it

was found that although the stocks and flows within a catchment were relatively easy to

keep track of, the flows between catchments were more difficult to keep track of, especially

when aggregating up to bigger catchments. Thus, it was concluded that it would be easier to

keep this functionality within ACRU which, partly as a result of the object-oriented structure,

makes it easier to determine the source and destination catchments to include transfers into

and out of catchments in the accounts. The Resource Base Sheet accounts were also found

to be a very useful summary of the simulated model output from ACRU, as they show not

only the simulated streamflow at the exit of the catchment, but also the inflows, consumption

and changes in storage within the catchment.

8.9 Case Study - Configuration of the ACRU and eWater Source Models

This section describes the data and information used to configure the ACRU and eWater

Source models for the upper uMngeni Catchment. The methodology and datasets described

in Clark (2015b) and Clark (2015d) were applied, with a few enhancements, as described

below.

8.9.1 Catchment and Subcatchment Boundaries

The geographical region of South Africa, Lesotho and Swaziland has been divided up by the

Department of Water and Sanitation (DWS) into a hierarchical system of catchments,

composed of 22 Primary Catchments containing, Secondary, Tertiary and Quaternary

Catchments. The Quaternary Catchments are widely used in South Africa for water

resources assessments. The upper uMngeni Catchment consists of the U20A (Mpendle),

U20B (Lions River), U20C (Midmar), U20D (Karkloof) and U20E (Albert Falls) Quaternary

Catchments, as shown in Figure 5-1.

For the purpose of the case study it was decided that the sub-Quaternary catchment

boundaries used by Umgeni Water and also (Warburton, 2011) should be used. These sub-

Quaternary catchment boundaries did not match the new DWS Quaternary Catchment

(SLIM, 2014) boundaries exactly and had to be adjusted slightly or split into two. The sub-

Quaternary catchments used for the upper uMngeni Catchment are shown in Figure 8-42.

188

Figure 8-42 Catchments, rivers, major dams, streamflow gauges and rain gauges in the upper uMngeni Catchment

189

8.9.2 Altitude

The Digital Elevation Model (DEM) (Weepener et al., 2011e) with 90 m resolution described

by Weepener et al. (2011a) was used to determine the mean altitude for each sub-

Quaternary catchment. The DEM altitudes are shown in Figure 8-43. The altitude ranges

from 2064 m in the Lions River Catchment in the West to 656 m at Albert Falls Dam in the

East.

Figure 8-43 DEM altitudes for the upper uMngeni Catchment (after Weepener et al.,

2011e)

8.9.3 Rivers and River Nodes

The river features shown in Figure 8-42 were clipped from a vector dataset developed by

Weepener et al. (2011d) in WRC project K5/1908 using the Shuttle Radar Topography

Mission (SRTM) 90m DEM as described by Weepener et al. (2011a). As described in Clark

(2015d), the clipped rivers dataset together with the upper uMngeni sub-Quaternary

Catchment boundaries dataset was used to manually create a point shapefile of river nodes

using ArcMap. A river node was created where each sub-Quaternary catchment boundary

intersected a river segment and where a confluence of river reaches occurred between

190

these points. For each node, attributes were set specifying the downstream node and

whether the node was at the exit of a sub-Quaternary catchment.

Typically, in ACRU, river reaches are modelled as simple conduits of water, thus: (i) they are

assumed to have no surface area within the catchment through which they flow, and (ii)

hydraulic characteristics such as length, slope, friction and cross-sectional area are not

required. However, although the rivers in the upper uMngeni Catchment are relatively small,

the land cover/use dataset used (as discussed in Appendix 8.9.7) included some pixels of

the class Water (natural) which were identified as being open water sections of river reaches

for which an area could be calculated. Based on the river features dataset shown in Figure

8-42, a new vector dataset was created containing only the main river reaches within each

sub-Quaternary catchment. Using this new dataset the reach lengths were measured and

the average reach slopes were calculated using the start and end elevation of each reach,

taking into account Howick Falls (95 m) and Karkloof Falls (98 m).

Information describing the hydraulic characteristics for the main river reaches was required

for Muskingum flow routing (McCarthy, 1938) in the eWater Source river network model. As

there were no known measured reach cross-section data available for the study catchment,

the generalised equations proposed by Allen et al. (1994) based on measurements at 674

stations in the United states, were used as described by Schulze et al. (2005). These

equations relate channel width, depth and velocity to flow rate using equations of the form

y = a Qb (where: y = dependent variable [m or m/s], Q = flow rate [m3/s], a = constant,

b = exponent). A Muskingum X (weighting factor [dimensionless]) value of 0.2 was assumed

(Smithers and Caldecott, 1995) and Muskingum K (storage time constant [s]) values were

calculated for a range of flow rates for each main river reach as eWater Source provides the

facility to estimate the K values dynamically based on a user specified table of

corresponding flow rates and K values.

8.9.4 Streamflow Gauges

There are six operational streamflow gauges operated by DWS in the catchment, and the

location of these is shown in Figure 8-42. The measured primary flow data was downloaded

from the DWS website [http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx]. The

measured primary flow data (instantaneous flow rates, typically at 12 minute intervals) were

converted to 24 hour flow volumes for an 8:00 am to 8:00 am day to be compatible with the

modelled daily streamflow outputs which were based on 24 rainfall totals for an 8:00 am to

8:00 am rainfall day. The measured daily streamflow data for gauge U2H048 were provided

191

by Umgeni Water. Gauge U2H013 is on the upper reaches of the uMngeni River in

Quaternary Catchment U20A. Gauge U2H061 is a relatively new gauging station

operational (since March 2013) on the Mpofana River a short distance downstream of the

outfall of the inter-catchment transfer pipeline from Mearns Weir and Spring Grove Dam.

The catchment area upstream of gauge U2H061 is relatively small (50.6 km2) and thus flows

are substantially altered by the inter-catchment transfer flows. Further downstream, gauge

U2H007 provides a measure of flows in the lower portion of the Lions River. Gauge

U2H006, in Quaternary Catchment U20D, provides a measure of flows in the Karkloof River.

The other two gauges, U2H048 just downstream of Midmar Dam and U2H014 just

downstream of Albert Falls Dam, provide a measure of the combined spillway and controlled

release flows from these dams. The measured flow data from these six streamflow gauges

were used to verify the streamflows simulated by the ACRU model.

8.9.5 Dams

In addition to the two large dams, Midmar and Albert Falls, the upper uMngeni Catchment

has a large number of smaller farm dams of various sizes used for irrigation, stock watering

and recreational fishing. These dams can have a significant effect on the hydrology within a

catchment due to their impact on water flows and due to the evaporation from their open

water surfaces. However, the lack of good datasets characterising these dams, and the

need to simplify the representation of these dams for modelling purposes, provided

challenges for the configuration of the model and for the simulations. The following potential

sources of information on dams were identified:

 The DWS Dam Safety Office (DSO) database of registered dams (DSO, 2016) is a

database of dams with a storage capacity of more than 50000 m3 and a wall height of

more than 5 m. This database includes information on the latitude and longitude of the

dam wall, full surface area and full storage capacity of each dam.

 The DWS Water Authorisation Registration and Management System (WARMS)

database (Anderson et al., 2008) includes information on all dams reported by water

users as part of the water use registration and licencing process, including latitude-

longitude location, full surface area, full storage capacity and purpose.

 The 1:50000 scale topographical maps from the Surveyor General includes

information on surface area and location in the form of polygons.

 The Ezemvelo KwaZulu-Natal Wildlife land cover/use dataset for 2011 (Ezemvelo KZN

Wildlife and GeoTerraImage, 2013) includes 20 m raster pixels classed as Water

(dams).

192

In the upper uMngeni Catchment there are a total of 103 registered dams. In Clark (2017a)

a small investigation for the upper uMngeni Catchment compared the DWS DSO database,

the DWS WARMS database and dams included on the 1:50000 topographic maps. The

DWS WARMS database, the 1:50000 topographic maps and Google Earth were used to

verify and correct, where necessary, the full surface area of the dams in the DWS DSO

database. The DWS WARMS database together with the empirical relationship

A = 7.2 Sv
0.77 (where: A = surface area [m2], Sv = storage volume [m3]), developed by Maaren

and Moolman (1985), were used to verify and correct, where necessary, the full storage

capacity of the dams in the DWS DSO database. However, the lack of a reliable identifier of

individual dams that is common to all three datasets made cross-checking difficult and there

were substantial differences between the datasets with respect to the individual dams

contained in each dataset and their location.

The methodology described in Clark (2015b) and modified by Clark (2016) was used to

determine the configuration of dams within each sub-Quaternary Catchment to be used in

the ACRU model. The land cover/use raster dataset (Ezemvelo KZN Wildlife and

GeoTerraImage, 2013), discussed in Appendix 8.9.7, was used to create a vector dataset of

dam polygons, which was used in conjunction with the DWS DSO database to identify

unregistered dams. For each unregistered dam the estimated full surface area was used

with the Maaren and Moolman (1985) equation to estimate the full storage capacity. The

unregistered dams within each sub-Quaternary Catchment were then lumped together, by

summing surface areas and storage capacities and calculating a composite area:capacity

relationship, to create a single lumped unregistered dam per catchment. Midmar Dam and

Albert Falls Dam were modelled as individual dams. All other registered dams within each

sub-Quaternary Catchment were then lumped together, by summing surface areas and

storage capacities and calculating a composite area:capacity relationship, to create a single

lumped registered dam per catchment. Thus, in most subcatchments, where necessary, two

lumped dams were modelled: (i) a lumped dam representing unregistered dams, and (ii) a

lumped dam representing registered dams. The area:capacity relationship of each individual

registered dam was estimated by adjusting the exponent of the Maaren and Moolman (1985)

equation to fit the surface area and storage capacity when full, which was the only known

point on the curve. More accurate area:capacity relationships for Midmar Dam and Albert

Falls Dam were derived from information provided by the Durban Regional Office of DWS.

A common simplifying assumption when configuring the ACRU model is to assume a single

lumped dam at the downstream outlet of each catchment. This can affect simulated

streamflows, especially when small dams are almost empty at the start of the rainy season.

193

In the upper uMngeni Catchment it was observed that this was not a good assumption in

most catchments, due the large number and spatial distribution of the dams with most not

being on the main river reaches. A Python script, described in Clark (2017b), was

developed to use the land cover/use dataset (Ezemvelo KZN Wildlife and GeoTerraImage,

2013), the DEM dataset (Weepener et al., 2011c) and the flow direction dataset (Weepener

et al., 2011b) to determine the region within each sub-Quaternary Catchment that is

upstream of farm dams. The dams and their contributing regions are shown in Figure 8-44.

In each catchment the runoff into dams and outflow from dams were configured as follows:

 HRUs within the region upstream of farm dams contribute runoff to the lumped

unregistered dam, if it exists, otherwise to the lumped registered dam, if it exists;

 the lumped unregistered dam, if it exists, then flows into the lumped registered dam, if

it exists;

 the lumped registered dam, if it exists, then flows to an individual large registered dam,

if it exists, otherwise to the outlet of the catchment;

 HRUs within the region downstream of farm dams contribute runoff to an individual

large registered dam, if it exists, otherwise to the outlet of the catchment.

Figure 8-44 Dams and regions upstream or downstream of farm dams in the upper

uMngeni Catchment

194

For Midmar Dam and Albert Falls Dam it was necessary to estimate the daily flow release

volumes. Flow releases occur from Albert Falls Dam to make water available to Nagle Dam

downstream from which Umgeni Water pump water for use to supply eThekwini Municipality

with bulk water for use in parts of the greater Durban area. These flow releases from Albert

Falls Dam were estimated by subtracting the daily dam spillway flow volumes, measured at

DWS gauge U2R003, from daily flow volumes at the downstream weir U2H014. The same

method did not work for Midmar Dam, possibly due to a problem with the measurement of

flows at the downstream weir U2H048. The flow releases from Midmar Dam were estimated

from daily flow volumes at the downstream weir U2H048, but during dam spill periods the

flow releases were estimated by interpolating between daily flow volumes at U2H048 just

before and just after the spill period.

The ACRU model accounts for seepage from dams. Seepage from Midmar Dam and Albert

Falls Dam was assumed to be zero as, if there is any seepage, it would be accounted for in

the estimation of flow releases described above. For the farm dams, a seepage rate of

0.067 % of dam full storage capacity per day was assumed, based on the recommendation

in Smithers and Schulze (1995). The ACRU 3 version assumes that this seepage rate is

constant. However, a small improvement was made to the ACRU 5 version by using the

area:capacity relationship for a dam to estimate the depth based on the current volume of

water stored in the dam, and the seepage rate was then varied in proportion to the depth of

water relative to the depth at full capacity, i.e. seepage reduces as the depth of water in the

dam decreases.

The flow routing option in the ACRU 3 and ACRU 2000 versions of the model substantially

increases the execution time of the model and has not yet been included in the ACRU 5

version. When running ACRU without the flow routing option turned on, all water in a dam

exceeding the full storage volume at the end of the daily timestep is transferred downstream

via the spillway, thus the hydraulic characteristics of the spillway are not required. The

estimation of the spillway hydraulic characteristics for dams was required for flow routing in

eWater Source. The spillway rating curves for Midmar Dam and Albert Falls Dam were

obtained from DWS. However, no spillway rating curves or even spillway dimensions were

available for the farm dams, including the registered dams in the DWS DSO database. The

spillway dimensions for these farm dams were estimated using recommendations from the

Food and Agriculture Organisation’s (FAO) “Manual on small earth dams” (Stephens, 2010)

together with design flood peak flow rates (Smithers, 2014) for the catchment areas

upstream of these dams.

195

The storage volumes of the farm dams were initialised to 50 % of full storage capacity at the

start of the simulation and ACRU was run for a warm-up period of one full hydrological year

prior to the start date of the required simulation period. The storage volumes of Midmar

Dam and Albert Falls Dam were initialised using measured values recorded by DWS for the

start of the warm-up period (1 October 2007).

8.9.6 Transfers, Abstractions and Return Flows

The available water supply in the uMngeni Catchment has been augmented by transfers

from Mearns Weir since 1983 and from Spring Grove Dam since 2016. The transfer from

Mearns Weir started as an emergency scheme during a severe drought but was

recommissioned for regular use in 1993 (DWAF and Umgeni Water, 2004). Mearns Weir,

situated on the Mooi River just downstream of the Little Mooi tributary, does not provide

much storage, thus the scheme, which has a pumped of capacity of 3.2 m3/s, is operated on

a run-of-river basis (DWAF and Umgeni Water, 2004). Spring Grove Dam, with a storage

capacity of 139.5 million m3 was completed in 2013 as part of Phase 2 of the Mooi-Mgeni

River Transfer Scheme (DSO, 2016). The transfer from Spring Grove Dam has a pumped

capacity of 4.5 m3/s, which is the capacity of the transfer infrastructure and the receiving

stream (DWAF and Umgeni Water, 2004). Measured flow values from Mearns Weir and

Spring Grove Dam were obtained from Umgeni Water and were used to create a daily time

series of flow volumes into the Lions River_12 sub-Quaternary catchment for use in the

ACRU model.

Umgeni Water extracts water from Midmar Dam to supply bulk water to municipalities, both

within and outside the upper uMngeni Catchment. The measured daily primary flow rate

data for gauging station U2H049 was downloaded from the DWS website

[http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx]. Water extracted from Midmar

Dam is treated at the Midmar Water Treatment Works (WTW) and DV Harris WTW. Based

on information included in Umgeni Water (2016) it was established that for the years 2012,

2013, 2014 and 2015 the water supplied from these two WTW to Howick, Mpophomeni and

Albert Falls (within the upper Umgeni Catchment) was almost constant with an average of

3.8 % of the total water abstraction from Midmar Dam. Thus, the daily flow volumes at

U2H049 were multiplied by 0.962 to create an estimate a daily time series of flow volumes

from Midmar Dam out of the study catchment for use in the ACRU model. The data for

U2H049 showed that for the hydrological years 2007/2008 to 2014/2015 the average annual

abstraction volume from Midmar increased by about 5.4% but due to drought induced

restrictions put in place by Umgeni Water abstractions reduced from 130 Million m3/annum in

196

2014/2015 to 120 million m3/annum in 2015/2016. Thus, it is important to be able to

represent these variations over time in the ACRU model inputs.

8.9.7 Land Cover/Use

Land cover/use datasets are compiled for different purposes by different people and

organisations, thus the classification system used varies. This led to the development of a

standard classification of land cover/use for the water use quantification and accounting

methodology developed by Clark (2015b). This standard classification makes it easier to

compare results from studies based on different land cover/use datasets, for different time

periods or for different catchments. For each land cover/use dataset it is necessary to map

each of the dataset classes to one of the standard classes. To represent the different land

cover/use classes, for the purpose of configuring the ACRU model, a database of land

cover/use class information was developed. For each class, relevant information is stored,

such as: vegetation characteristics (canopy interception, crop coefficient, sensitivity to

stress, root distribution), coefficient of initial abstraction, dryland or irrigated, annual or

perennial, pervious and impervious area fractions.

In addition, and as described in more detail by Clark (2015b), the standard land cover/use

classes were organised into a hierarchy of categories of land cover/use. This hierarchical

structure provides a means of grouping similar land covers and uses so that they can be

summarised with different degrees of detail in water accounts. The most specific categories

are at the bottom of the hierarchy, within increasingly more general categories, ending with

the most general categories at the top of the hierarchy. The following five categories form

the top of the hierarchy:

 Natural - areas covered with natural vegetation or uncultivated bare ground,

 Cultivated - areas covered with agricultural crops or production forest plantations,

 Urban/Built-up - urban and other built-up areas including residential, commercial and

industrial areas,

 Mines and Quarries - areas characterised by quarries, subsurface and surface mining

features, and

 Waterbodies - open bodies of water and wetland areas with aquatic vegetation cover.

As described in Clark (2015b), the determination of HRUs for modelling in ACRU were

primarily based on land cover and use. For this case study the Ezemvelo KwaZulu-Natal

Wildlife raster land cover/use dataset for the province of KwaZulu-Natal for the year 2011

197

(Ezemvelo KZN Wildlife and GeoTerraImage, 2013) with resolution of 20 m was used. As

shown in Figure 8-45, in the upper uMngeni Catchment, the remaining natural land cover is

predominantly grassland with some bush and dense bush in the East, and some patches of

indigenous forest especially in the Karkloof area in the North-East. There are extensive

cultivated areas including production forest plantations, commercial agriculture (both dryland

and irrigated), and some sugarcane in the warmer area in the East. The catchment includes

the urban areas of Howick, Mpophomeni and part of Hilton. In addition to the dams

discussed in Appendix 8.9.5, there are several wetlands distributed through the western and

central parts of the catchment.

Figure 8-45 Land cover/use classes in the upper uMngeni Catchment (after Ezemvelo

KZN Wildlife and GeoTerraImage, 2013)

198

In most of the land cover/use datasets, natural vegetation is classified as either natural

vegetation or degraded natural vegetation with a few very general classes for each. In order

to be able to represent natural vegetation in more detail, Clark (2015b) describes the use of

the Acocks Veld Types (Acocks, 1988) dataset together with the hydrological characteristics

derived by Schulze et al. (2004). If the natural vegetation is degraded then the hydrological

characteristics are adjusted based on recommendations by Schulze (2013). The Acocks

Veld Types in the upper uMngeni Catchment are shown in Figure 8-46.

Figure 8-46 Acocks Veld Types in the upper uMngeni Catchment (after Acocks, 1988)

Water requirements for irrigation are estimated in ACRU which was configured to use a soil

water deficit scheduling method. ACRU was configured such that in each sub-Quaternary

Catchment the lumped registered dam, if one exists, was assumed to be the water source

for irrigation, otherwise irrigation was assumed to be from run-of-river on the main river

reach within the catchment.

Urban areas were represented in ACRU, as described in Clark (2015b), using a combination

of pervious vegetated areas (irrigated in some instances), disjunct impervious areas

(representing roofs) and adjunct impervious areas (representing roads and other

infrastructure connected directly to some form of storm drainage). The proportion of these

different areas varied for the different classes of urban area. Residential water

199

requirements, as described in Clark (2015b), were determined using: (i) population estimates

from the CSIR’s functional typology population dataset (CSIR, 2013), based on the 2011

population census, and (ii) estimated daily water requirements for the different classes of

urban area from CSIR (2003). Midmar Dam was assumed to be the source of water for all

residential water requirements for the main urban areas. For the low density rural urban

areas the lumped registered dam in the local sub-Quaternary Catchment, if one exists, was

assumed to be the water source, otherwise from run-of-river on the main river reach within

the catchment. Industrial water use was not included as no specific data was available and

industrial water use within the upper uMngeni was not considered to be significant.

8.9.8 Soils

The soils dataset developed and described by Schulze and Horan (2008) was used in this

case study. The soil hydrological properties included in the dataset are the depth, porosity,

drained upper limit and wilting point for each of the A and B soil horizons, and also the

saturated drainage rate from the A to the B soil horizon. Using the methodology described in

Clark (2015b) the dominant soil type for each land cover/use based HRU within each sub-

Quaternary catchment was used to determine the hydrological characteristics required by

the ACRU hydrological model for each HRU. The soil moisture stores were initialised to

50% of plant available water (PAW) and then the ACRU model was run for a warm-up period

of one full hydrological year prior to the start date of the required simulation period.

8.9.9 Climate

The ACRU model requires daily rainfall time series for each sub-Quaternary Catchment as

an input. ACRU also requires daily reference potential evaporation time series, or other

climate variables from which it can be calculated, for each sub-Quaternary Catchment as an

input. Other climate variables required by ACRU are: (i) MAP, for the estimation of

catchment lag using the Schmidt/Schulze equation (Schmidt and Schulze, 1987), which is

used in calculating peak discharge, and (ii) air temperature, which is used to adjust crop

coefficients following periods of water stress.

8.9.9.1 Mean annual precipitation (MAP)

The MAP dataset developed by Lynch (2004) was used in this case study. The MAP for the

upper uMngeni Catchment is shown in Figure 8-47. The upper uMngeni Catchment has a

relatively high rainfall, but there is significant spatial variation across the catchment, with the

200

Karkloof Catchment and the area just to the south of it having the highest rainfall. The Lynch

(2004) dataset was used to create a shapefile containing area weighted mean MAP values

for each sub-Quaternary catchment which were then used to configure the ACRU model.

Figure 8-47 MAP in the upper uMngeni Catchment (after Lynch, 2004)

8.9.9.2 Daily rainfall

Accurate estimation of areal rainfall is important as it is the one of the key inputs required for

hydrological modelling. Rain gauge networks are crucial, yet expensive to establish and

maintain, and there has been a general decline in the number of rain gauges in South Africa

(Pegram et al., 2016). This decline is also evident in the upper uMngeni Catchment, as

shown in Figure 8-42, which is a catchment that is part of an economically important region

of KwaZulu-Natal and which provides water to millions of people. In addition to poor spatial

representation, other potential problems associated with using rain gauge data for modelling

include: (i) missing and poor quality data, (ii) poor accessibility to data from the institutions

that measured it, and (iii) the lag between data measurement and when it is made

accessible. Remotely sensed rainfall datasets from satellites offer some potential

advantages over using rain gauge data for modelling, including: (i) better spatial

representation, despite the coarse resolution, in areas with a sparse rain gauge network, (ii)

some datasets are available in near-real time, (iii) many datasets are freely available and

can be downloaded over the internet. Although investigating remotely sensed satellite

201

rainfall was not one of the objectives of this study, it formed an important part in attempting

to improve the performance of hydrological modelling in the case study catchment by

improving the catchment rainfall estimates using satellite remotely sensed rainfall estimates

asa relatively new source of rainfall data.

Clark (2015b) reported on an initial investigation into four remotely sensed rainfall datasets:

(i) CMORPH (Joyce et al., 2004), (ii) FEWS RFE 2.0 (Novella and Thiaw, 2012), (iii) FEWS

ARC 2.0 (Novella and Thiaw, 2012), and (iv) TRMM 3B42 Kummerow et al. (2000). These

remotely sensed datasets compared favourably with rain gauge data in the uMngeni

Catchment but performed poorly in the Sabie-Sand Catchment. Conversely, when these

datasets were used to model streamflow using ACRU and the results were compared with

measured streamflow, the results in the Sabie-Sand were more encouraging than the results

for the uMngeni catchment. The requirement for some form of adjustment for localised bias

was evident. Clark (2015b) concluded that although remotely sensed rainfall datasets offer

advantages in spatial representation and availability, the coarse resolution and bias in

rainfall quantities are a problem in accurately estimating rainfall at sub-Quaternary

Catchment scale and that further investigation was required into methods for downscaling

and adjusting to reduced localised biases.

Further investigation into some simple methods for adjusting remotely sensed rainfall

estimates to reduce local biases are reported in Clark (2016). Part of the investigation by

Clark (2016) was repeated by Clark (2018) using an additional year of data and the refined

ACRU configuration described in this section. A summary of the previous investigations by

Clark (2015b) and Clark (2016), descriptions of the datasets used and the results of the

extended investigation are included in Clark (2018). The outcome of the investigation was

that an adjustment method based on the accumulative frequency distributions of the

remotely sensed and rain gauge datasets, was found to be effective in reducing the

differences between the means and the standard deviations of the measured and estimated

streamflow datasets, but was not effective in improving the goodness-of-fit indicated by the

R2 and NSE values, possibly as a result of the timing of modelled streamflows. The adjusted

FEWS ARC 2.0 and FEWS RFE 2.0 rainfall datasets resulted in better verifications against

modelled streamflow than the TRMM 3B42 and CMORPH datasets. Thus, based on the

extended investigation, reported in Clark (2018), a rainfall dataset based on the FEWS RFE

2.0 satellite remotely sensed daily rainfall product (Novella and Thiaw, 2012), but adjusted

using measured rainfall data from rain gauges to reduce localised bias, was selected for use

in this case study. The area weighted monthly rainfall depths for the upper uMngeni

Catchment are shown in Figure 8-48.

202

Figure 8-48 Area weighted monthly rainfall depths for the upper uMngeni Catchment

8.9.9.3 Reference potential evaporation

A reference potential evaporation (ET0) dataset was developed using the Penman-Monteith

equations (Allen et al., 1998), together with forecast climate data from the South African

Weather Service (SAWS) version of the Unified Model and remotely sensed radiation data

(Pegram et al., 2010; Sinclair and Pegram, 2010; Sinclair and Pegram, 2013). The ET0

dataset of hourly values at 0.11° spatial resolution is available on the Satellite Applications

Hydrology Group (SAHG) website (http://sahg.ukzn.ac.za/soil_moisture/et) for the period

October 2007 to February 2017.

The SAHG ET0 dataset was used together with a shapefile dataset of sub-Quaternary

catchment boundaries to create a time series of area weighted daily ET0 data values for

each sub-Quaternary catchment. The area weighted monthly ET0 depths for the upper

uMngeni Catchment are shown in Figure 8-49. For the eight years shown there appears to

be a trend of increasing maximum monthly total ET0 values each year. The ACRU model

was originally developed to use A-pan reference potential evaporation together with

associated crop factors. Therefore, an adjustment factor of 1.2 (Shuttleworth, 2010) was

applied to the ET0 values in ACRU to estimate A-pan equivalent daily ET0 values.

Figure 8-49 Area weighted monthly ET0 depths for the upper uMngeni Catchment

203

8.9.9.4 Air Temperature

The datasets of long-term mean month-of-year maximum and minimum daily air temperature

developed by Schulze and Maharaj (2008a) and Schulze and Maharaj (2008b) were used in

this case study. For each of the 12 month-of-year maximum air temperature raster datasets

and the 12 month-of-year minimum air temperature raster datasets an areal mean value was

calculated for each sub-Quaternary catchment to produce a shapefile dataset of month-of-

year maximum and minimum daily temperature values. The values were then used to

configure the ACRU model.

8.10 Case Study - Verification of the Simulations

The ACRU 5 version of the model was configured for the upper uMngeni Catchment and the

model was run for the period 1 October 2007 to 30 September 2016, a total of nine

hydrological years. The simulated streamflow results were compared to measured

streamflow at the six streamflow gauges described in Appendix 8.9.4. The first year of

simulated streamflow was regarded as a warmup period for the model and excluded from

the statistical analysis, resulting in an analysis of eight hydrological years. Any periods

where there was missing data in each measured streamflow dataset, were also excluded

from the statistical analysis. At streamflow gauge U2H061 only three hydrological years,

starting in October 2013, were included in the comparison as measurements only started in

2013.

The goodness-of-fit statistics comparing the daily measured and simulated streamflow time

series are shown in

204

Table 8-5, and for monthly time series in Table 8-6. The verification of streamflow at gauges

U2H006, U2H007 and U2H013 was of primary interest, as: (i) gauges U2H014 and U2H048

are immediately downstream of large dams and thus have additional uncertainties

associated with them, such as errors in upstream flow estimates, abstractions and releases,

and (ii) U2H061 is just downstream of the inter-catchment transfer from Mearns and Spring

Grove Dam, with the transfer flows being substantially greater than runoff from the

catchment.

205

Table 8-5 Statistics describing daily measured and simulated streamflow depths

Streamflow Gauge U2H061 U2H007 U2H013 U2H048 U2H006 U2H014

Total measured flows (mm) 3266.113 1512.445 1583.883 615.484 1482.716 712.368

Total simulated flows (mm) 3223.737 1505.795 1687.224 346.374 1510.905 686.417

Mean measured flows (mm/day) 3.125 0.521 0.544 0.211 0.550 0.301

Mean simulated flows (mm/day) 3.085 0.519 0.579 0.119 0.560 0.290

% Difference between means -1.297 -0.440 6.525 -43.723 1.901 -3.643

Std. Deviation of measured flows (mm) 2.936 0.516 0.903 0.603 0.840 0.390

Std. Deviation of simulated flows (mm) 3.190 0.605 0.765 0.287 0.949 0.382

% Difference between Std. Deviations 8.658 17.155 -15.294 -52.385 12.883 -2.101

Regression Coefficient (slope) 1.057 0.603 0.436 0.138 0.577 0.419

Regression Intercept -0.218 0.204 0.342 0.089 0.243 0.164

Correlation Coefficient: Pearson’s R 0.973 0.515 0.515 0.290 0.512 0.428

Coefficient of Determination: R2 0.946 0.265 0.265 0.084 0.262 0.183

Nash-Sutcliffe Efficiency 0.936 -0.158 0.154 0.026 -0.081 0.018

Table 8-6 Statistics describing monthly measured and simulated streamflow depths

Streamflow Gauge U2H061 U2H007 U2H013 U2H048 U2H006 U2H014

Total measured flows (mm) 3033.569 1487.356 1581.441 612.941 1405.551 687.206

Total simulated flows (mm) 2983.849 1462.367 1681.683 343.831 1392.890 661.280

Mean measured flows (mm/month) 94.799 15.823 16.647 6.452 16.934 9.287

Mean simulated flows (mm/month) 93.245 15.557 17.702 3.619 16.782 8.936

% Difference between means -1.639 -1.680 6.339 -43.905 -0.901 -3.773

Std. Deviation of measured flows (mm) 79.968 13.364 20.574 14.173 19.953 7.933

Std. Deviation of simulated flows (mm) 85.480 13.329 14.601 4.473 16.057 6.233

% Difference between Std. Deviations 6.893 -0.257 -29.030 -68.438 -19.524 -21.433

Regression Coefficient (slope) 1.049 0.654 0.501 0.190 0.660 0.595

Regression Intercept -6.219 5.207 9.362 2.396 5.613 3.409

Correlation Coefficient: Pearson’s R 0.982 0.656 0.706 0.601 0.820 0.758

Coefficient of Determination: R2 0.963 0.430 0.498 0.361 0.672 0.574

Nash-Sutcliffe Efficiency 0.962 0.333 0.499 0.241 0.705 0.695

The total and mean flow depths were simulated well when considered over the full

comparison period, with the exception of gauge U2H048 which is located just downstream of

Midmar Dam. The percentage difference between the means of measured and simulated

daily streamflows was good (less than 10%) at most gauges. The reason for the poor

simulation at gauge U2H048 is not immediately apparent, as estimates at the upstream

gauges (U2H007 and U2H0013) are good. The estimation of runoff in the subcatchments

immediately surrounding Midmar Dam are also expected to be good as the same driver rain

gauge was used to adjust the remotely sensed rainfall in most of Quaternary Catchments

206

U20A, U20B and U20C. The flows at gauge U2H014 below Albert Falls Dam do not appear

to have been substantially impacted by the poor estimation upstream at gauge U2H048.

The percentage difference between the standard deviation of measured and simulated daily

streamflows was also satisfactory (less than 15%) at most gauges. However, these

conservation statistics only tell part of the story. As the flow releases from both Midmar and

Albert Falls Dams were estimated based on measured flows at the measurement weirs

immediately downstream, the errors in the simulated flows were all due to excessive spill

flows or to the dams not spilling when they should have.

The regression statistics for the daily streamflow data, shown in

207

Table 8-5, indicate that the pattern and magnitude of the daily flows was not simulated well

at most of the gauges. Only at gauge U2H061 was there a high degree of association

between the measured and simulated daily flows. Gauge U2H061 has a relatively small

catchment area (50 km2) and flows are often dominated by the measured inter-catchment

transfer from Mearns Weir and Spring Grove Dam. The regression statistics for the monthly

streamflow data, shown in Table 8-6, indicate a better association between the measured

and simulated monthly flows, though at most gauges the association was still not good.

To provide further insight into the simulation results the time series of monthly rainfall,

measured streamflow and simulated streamflow were plotted for each of the six streamflow

gauges as shown in Figure 8-50 to Figure 8-53 and Figure 8-55 to Figure 8-56. The monthly

rainfall depths plotted for each streamflow gauge were calculated by area weighting the

monthly rainfall depths for all the catchments contributing to the streamflow gauge. In

addition the mean monthly storage, as a percent of full capacity, is shown for Midmar Dam in

Figure 8-54 and for Albert Falls Dam in Figure 8-57.

The monthly time series of streamflow for gauge U2H061 are shown in Figure 8-50, in which

the monthly time series of inflows from the inter-catchment transfer are also shown. It can

be seen that the transfer scheme is used every year to supplement the water supply in the

uMngeni supply system. Due to the drought the transfer was in operation continuously from

September 2015, and the transfer flows increased when the pipeline directly from Spring

Grove Dam came into operation in mid-2016. The simulated streamflows closely follow the

transfer flows, with runoff from the Lions River_12 catchment having only a small effect on

these flows. One area of concern is noted in the two periods in 2014 and 2015 where the

measured streamflow is less than the transfer flow. This indicates a possible error in the

measurement of one or both of these flows, or that part of the transfer flow is being lost or

utilised somewhere between the source and the outfall in the Lions River_12 catchment.

However, the measured streamflow is greater than the transfer flow during the 2013/2014

and 2016 transfer periods.

The monthly time series of streamflow for gauge U2H007 on the Lions River downstream of

gauge U2H061 are shown in Figure 8-51. The seasonal trends in the measured streamflow

are represented well, but there are significant over or underestimations in the magnitude of

the flow depths in some seasons. The statistics did not indicate the transfer flows as having

a strong influence on the flows at weir U2H007 downstream. However, from 2013 when

recording of flows started at gauge U2H061, there appears to be a relationship between the

over and underestimated flow periods at these two gauges. This may indicate that the

208

measured transfer flows, which were used to model the transfer, were incorrect, and at least

partly contributed to the poor association between measured and simulated flows at gauge

U2H007.

Figure 8-50 Total monthly rainfall and streamflow depths at gauge U2H061

209

Figure 8-51 Total monthly rainfall and streamflow depths at gauge U2H007 (Lions River)

210

The monthly time series of streamflow for gauge U2H013 on the uMngeni River in the

Mpendle WMA are shown in Figure 8-52. Again, the seasonal trends in the measured

streamflow are represented well, but with significant over or underestimations in the

magnitude of the flow in some seasons. The trends in the simulated flows appear to be

associated with the trends in the estimated rainfall.

Figure 8-52 Total monthly rainfall and streamflow depths at gauge U2H013 (Mpendle)

At all of gauges U2H007, U2H013 and U2H006 there is an overestimation of streamflow

during the drought years 2014/2015 and 2015/2016. Except for simulated streamflow, there

is no real way to validate the spatial rainfall estimates. However, a quick comparison of the

adjusted FEWS RFE 2.0 rainfall value at the driver rain gauges used to adjust the remotely

sensed data showed: (i) an overestimation of rainfall in these two years at the 19744-

30999_IvanhoeImpendhle rain gauge, (ii) no clear overestimation at the

U2E003_MidmarDam rain gauge, and (iii) no comparison was possible at the

19806_HawkestoneHowick rain gauge as the record stopped in 2011. The high ET0 values

in those two years, as shown in Figure 8-49, seem to indicate that there was not a general

underestimation of ET0 during this drought period. It was concluded that the over simulation

of streamflow in these two years was most likely due to the spatial rainfall estimates, though

this would need to be investigated further outside of this study.

211

The monthly time series of streamflow for gauge U2H048 on the uMngeni River just

downstream of Midmar Dam are shown in Figure 8-53. As anticipated from the goodness-

of-fit statistics the flows at this gauge are poorly simulated. The over and under simulation of

flows in the different years corresponds closely to over and under simulation at the two

upstream gauges U2H007 and U2H013. Further verification, indicating that it is not just an

error with the gauge, is provided in the comparison of measured and simulated monthly

average storage values for Midmar Dam, shown in Figure 8-54. In the 2010/2011

hydrological year the simulated spill from Midmar was earlier and bigger than the measured

spill. Although the 2011/2012 year was simulated well at the upstream gauges, with a small

under simulation at U2H013 early in the year, the dam continued to be drawn down during

the summer rainfall season instead of recovering to a small spill as shown in the measured

data. Under simulations in the following two years resulted in the simulated storage being

drawn down further instead of spilling as it should have. This was followed by two years of

over simulated upstream flows, during which the storage over recovered.

Figure 8-53 Total monthly rainfall and streamflow depths at gauge U2H048 (Midmar)

212

Figure 8-54 Mean monthly storage in Midmar Dam

The monthly time series of streamflow for gauge U2H006 on the Karkloof River are shown in

Figure 8-55. The seasonal trends in the measured streamflow are represented well, but with

some over- or underestimations in the magnitude of the flow depths in some seasons. The

trends in the simulated flows appear to be associated with the trends in estimated rainfall.

Figure 8-55 Total monthly rainfall and streamflow depths at gauge U2H006 (Karkloof)

213

The monthly time series of streamflow for gauge U2H014 on the uMngeni River just

downstream of Albert Falls Dam are shown in Figure 8-56, and the monthly time series of

measured and simulated monthly average storage for Albert Falls Dam are shown in Figure

8-57. The trends in the measured streamflow are represented well. As expected the

measured flow releases from Albert Falls Dam result in good simulations during the non-spill

periods. The dam spills in the 2008/2009 and 2009/2010 years despite an under simulation

in the 2007/2008 warmup year. The dam spills later than it should in the 2009/2010 year

due to the timing of flows from both gauge U2H006 and U2H048 upstream. The measured

storage data indicates a substantial overestimation of inflows to the dam during the

2010/2011 year, possibly related to flows at U2H048 upstream being over simulated during

this period, and unfortunately there was almost a whole year of measured flow records

missing at gauge U2H006. The storage during the 2012/2013 and 2013/2014 years were

well simulated despite under simulation of inflows and flows at U2H014. However the

severe drawdown during the subsequent drought years is poorly represented due to over

simulation of inflows from upstream.

Figure 8-56 Total monthly rainfall and streamflow depths at gauge U2H014 (Albert Falls)

214

Figure 8-57 Mean monthly storage in Albert Falls Dam

The daily measured and simulated flows at gauges U2H007, U2H013 and U2H006 were

also compared visually by graphing the time series to discern whether there were additional

possible causes for the poor regression statistics. It was observed that when significant

runoff producing daily rainfall occurred, the simulated daily streamflow values peaked on the

same day as the rainfall event occurred (as expected from the ACRU runoff algorithms), but

that the measured daily streamflow values usually peaked the following day with lower flow

values. Examples of this are shown in Figure 8-58 (U2H007), Figure 8-59 (U2H013) and

Figure 8-60 (U2H006) for the 2008/2009 summer rainfall season. The measured flows are

represented by a dark blue line and the flow simulated in ACRU by a light blue line. It was

concluded that the poor degree of statistical association between the simulated and the

measured streamflow was most likely to be due to: (i) differences in actual and estimated

rainfall volumes, and (ii) the mismatch in the timing of flows. It was also concluded that the

mismatch in the timing of flows is possibly partly due the ACRU model not lagging and

attenuating flows as they proceed down river reaches and through dams.

215

Figure 8-58 Daily rainfall and streamflow at gauge U2H007 (Lions River) for 2008/2009

Figure 8-59 Daily rainfall and streamflow at gauge U2H013 (Mpendle) for 2008/2009

Figure 8-60 Daily rainfall and streamflow at gauge U2H006 (Karkloof) for 2008/2009

216

Configuration of the ACRU model for the upper uMngeni catchment was done at a sub-

Quaternary Catchment scale, with detailed representation of the different land cover/use

classes and detailed representation of dams with their contributing areas. All model

parameters were based on recommended values resulting from the application of ACRU

over many years in many different catchments. Although the urban areas within the upper

uMngeni Catchment are not extensive the estimation of urban water use is one source of

uncertainty due to possible inaccuracies in the estimation of population in each catchment

and per capita water use. Industrial water use was not represented due to unavailability of

data. There is a substantial amount of irrigated agriculture in the catchment, which is

another source of uncertainty, as many assumptions had to be made regarding irrigation

water sources and scheduling. Therefore, though it is possible that the model configuration

may be improved, it is not expected to be the main source of the poor simulation results.

The daily time series variables quantifying the inter-catchment transfer, abstractions from

Midmar Dam and flow releases from both Midmar and Albert Falls Dams, were based on

measured flow data. Therefore, apart from the uncertainties related to the measurement

and processing of these datasets, these engineered flows are judged to have been

accurately represented.

Poor estimation of the meteorological driver variables, is most likely to be the main cause of

the poor simulation results. The reference potential evaporation (ET0) data was not verified

in this study, but the limited verification by Pegram et al. (2010) of the SAHG ET0 estimates

indicated good correlation with estimates based on measured meteorological forcing

variables. In the relatively high rainfall upper uMngeni Catchment, with a strong seasonal

variation in rainfall, and rainfall frequently occurring in the form of high intensity storms,

rainfall is the primary driver of hydrological responses. A sparse rain gauge network makes

it difficult to estimate catchment rainfall accurately. The application of remotely sensed

rainfall is possible but also requires rain gauge data to do localised corrections However,

verification of these spatial rainfall estimates can only be done indirectly through hydrological

modelling with which there are associated many other uncertainties.

217

8.11 Description of Items in Resource Base Sheet of Water Resource Account

The individual items of the water resource accounts, in the form of the modified WA+

Resource Base Sheet described in Clark (2015b), are briefly described in Table 8-7.

Table 8-7 Description of items in the Resource Base Sheet

Account Item Description

Precipitation [1] Precipitation as an inflow to the catchment

Qin SW [2] Surface water inflow (e.g. from upstream catchment)

Qin GW [3] Groundwater inflow (e.g. from neighbouring catchment)

Qin Transfers [4] Inflow to a catchment as inter-catchment transfers

Gross Inflow [5] Gross inflow to the catchment
[1] + [2] + [3] + [4]

ΔSf SW [6] Decrease in surface water store (e.g. in dams)

ΔSf SoilM [7] Decrease in soil moisture store

ΔSf GW [8] Decrease in groundwater store

Net Inflow [9] Net inflow to the catchment accounting for change in storage within the
catchment
[5] + [6] + [7] + [8]

Landscape ET [10] Evaporation of naturally occurring water from the landscape

Exploitable Water [11] Water that could be exploited
[9] – [10]

Reserved Outflow [12] The portion of utilizable flow that is reserved as outflow from the
catchment, for example, to meet environment requirements or
downstream requirements

Available Water [13] Exploitable water – reserved outflow
[11] – [12]

Incremental ET [14] Evaporation of water that would not naturally occur (e.g. irrigated
water)

Non-recoverable Flow [15] Flow that is utilised but can’t be recovered because, for example, it is
polluted

Utilized Flow [16] Portion of available water that is utilized
[14] + [15]

Utilizable Outflow [17] The portion of utilizable outflow that was not utilized, but could have
been utilized, and will flow out of the catchment
[13] – [16]

Consumed Water [18] The water that was consumed (depleted) within the catchment and is
not available for re-use
[10] + [14] + [15] or [10] + [16]

Total Evaporation [19] Total evaporation within the catchment
[10] + [14]

Interception [20] The precipitation and irrigated water that has been intercepted by
vegetation and other surfaces and has subsequently evaporated

Transpiration [21] The water transpired by vegetation

Soil Water Evaporation [22] The water evaporated from the soil

Open Water Evaporation [23] The evaporation from open water surfaces (e.g. dams)

Outflow [24] Water flowing out of a catchment = net inflow – consumed water
[9] – [18] or [12] + [17]

QOut SW [25] The water that flows out of the catchment as surface water (e.g. to a
downstream catchment)

QOut GW [26] The water that flows out of the catchment in the form of groundwater
(e.g. to a neighbouring catchment)

QOut Transfers [27] Outflow from a catchment as inter-catchment transfers

