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ABSTRACT 

The objective of the study was to confirm the species and determine the genetic diversity of the 

confirmed Fasciola species from cattle and selected wildlife hosts from Zimbabwe and 

KwaZulu-Natal and Mpumalanga provinces of South Africa. This was based on analysis of DNA 

sequences of the nuclear ribosomal internal transcribed spacer (ITS) and mitochondrial 

cytochrome oxidase 1 (CO1) regions.  Flukes were collected from livers of 57 cattle at four 

abattoirs in Zimbabwe and 47 cattle at four abattoirs in South Africa. DNA was extracted from 

each fluke and 3 wildlife, alcohol preserved, duiker, antelope and eland samples from 

Zimbabwe. The ITS and CO1 regions of individual flukes were amplified by the polymerase 

chain reaction (PCR) and sequenced. Aligned sequences (ITS 506 base pairs and CO1 381 base 

pairs) were analyzed by neighbour-joining, maximum parsimony and bayesian inference 

methods. The phylogenetic trees revealed the presence of Fasciola gigantica in cattle from 

Zimbabwe and F. gigantica and Fasciola hepatica in the samples from South Africa. Fasciola 

hepatica was more prevalent (64%) in South Africa than F. gigantica. Fasciola gigantica was 

the only species found in Zimbabwe save one sample and an antelope and a duiker which were 

found to be F. hepatica. This is the first molecular confirmation of Fasciola species in 

Zimbabwe and South Africa. Knowledge on the identity and distribution of these liver flukes at 

molecular level will allow disease surveillance and control in the studied areas.  
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CHAPTER 1 

1.0 INTRODUCTION 

Fasciolosis is a parasitic disease affecting a wide range of mammalian species especially wild 

and domestic ruminants including humans. The disease is either caused by the liver fluke 

Fasciola gigantica or F. hepatica (WHO 1995). Global economic losses associated with 

fasciolosis due to weight loss, reduced productivity, draught capacity, fertility and milk 

production are estimated to be at least US$3.2 billion annually (Spithill et al., 1999). Recently, 

fasciolosis has gained public health importance due to its zoonotic aspect resulting in a number 

of human cases due to the two Fasciola species as well as the hybrid form being reported 

(Schweizer et al., 2005).   

Fasciola life cycle is dependent on the presence of a snail as an intermediate host and hence, the 

distribution of the parasite follows that of the intermediate snail host (Mas-Coma et al., 2005). 

Lymnaea truncatula, the intermediate host snail for F. hepatica is mainly found in cold and mild 

climatic regions hence it is common in temperate regions of Europe, America and Australia 

(Mas-Coma and Bargues 1997). In contrast, F. gigantica is found in tropical and sub-tropical 

regions of Africa and Asia, where Lymnaea species have been reported as the main intermediate 

host (Thanh 2012).   

In Zimbabwe, fasciolosis of domestic animals assumed to be caused by F. gigantica is endemic 

in most parts of the country (Vassilev 1999). The intermediate host of F. gigantica in Zimbabwe 

is Lymnaea natalensis and it tolerates various climatic conditions and can be found in different 

reservoirs such as rivers, streams, ornamental ponds and cattle drinking troughs (Davies 1982). 

However, L. natalensis is less prevalent in the drier districts of the country compared to higher 

rainfall areas (Pfukenyi and Mukaratirwa 2004). It has also been noted that as the numbers of the 

intermediate host increases the prevalence of F. gigantica also increases (Pfukenyi et al., 2006). 

Diagnosis of Fasciola species infection in livestock has been based on parasitological methods 

such as coprological examination as well as identification of morphological characteristics of the 

fluke (Thanh 2012). Although coprological examination has a high specificity the sensitivity is 

low and species identification is not possible using the egg morphology (Adedokun et al., 2008). 

Advanced techniques for identification and determining the phylogeny of parasites have been 



developed and include several molecular methods that are DNA based (Thanh 2012). Molecular 

methods include karyotyping, microsatellites and the analysis of ribosomal and mitochondrial 

DNA sequence markers (Thanh 2012). Markers have been used in separating Fasciola gigantica 

from F. hepatica and have led to the discovery of “intermediate variants of Fasciola” in various 

hosts using the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 (Itagaki et al., 2009). 

The nuclear rDNA markers are particularly useful for species confirmation (Hills and Dixon 

1991) whereas mtDNA markers such as cytochrome oxidase 1 (CO1) and the nicotinamide 

dinucleotide dehydrogenase subunit-1 (ND1) are more variable and can be used to distinguish 

closely related species and populations of Fasciola (Semyenova et al., 2005).  

Reports on the presence of F. gigantica in Zimbabwe and South Africa are based on morphology 

of eggs from coprological studies (Alves et al., 1988) and adult flukes collected from livestock 

slaughtered at abattoirs (Vassilev and Jooste 1991). Fasciola hepatica (Williams 1914), which 

was most likely a case of misidentification (Jooste 1989) has been reported once in Zimbabwe. 

Other Fasciola species reported to date in Zimbabwe include F. tragelaphi from a sitatunga 

(Tragelaphus spekei) (Pike and Condy 1965) and a cow (Mukaratirwa and Brand 1999) and F. 

nyanzae from a hippopotamus (Hippopotamus amphibius capensis) (Jooste 1989).  Hence, this 

study seeks to provide information on the Fasciola spp from cattle using molecular techniques 

and to determine the population genetic structure of the identified species in Zimbabwe and 

selected sites in KwaZulu-Natal and Mpumalanga provinces of South Africa.  

1.1 Main Objective  

To determine the distribution of Fasciola spp from different geographical locations in Zimbabwe 

and selected sites in KwaZulu-Natal and Mpumalanga provinces of South Africa 

1.2 Specific objectives 

1. To determine the Fasciola species present in Zimbabwe and selected sites in KwaZulu-Natal 

and Mpumalanga provinces of South Africa using  DNA sequences of the nuclear ribosomal 

ITS1-5.8S-ITS2 region, referred to hereafter as the ITS region.   



2. To determine the genetic diversity within and between the different populations in Zimbabwe 

and selected locations of KwaZulu-Natal using mitochondrial cytochrome oxidase 1 (CO1) DNA 

sequences. 

 

 

 

 

 

  



CHAPTER 2 

 

2.0 LITERATURE REVIEW 

Fasciolosis in ruminants is mainly caused by F. gigantica and/or F. hepatica, though, two other 

species; F. nyanzae (Jooste 1989) and F. tragelaphi have been reported in wild life and cattle by 

Pike and Condy (1965) and Mukaratirwa and Brand (1999) respectively.  

2.1 Morphology of Fasciola gigantica and F. hepatica 

Fasciola hepatica is leaf shaped, flattened and is approximately 35mm long and 15mm wide on 

its widest part. The anterior and posterior ends of the fluke are narrow with the former end being 

conical with distinct shoulders (Stemmermann 1953).  Fasciola gigantica is elongate, with a 

conical anterior end but however, bigger than F. hepatica, and is 75mm long and 15mm wide 

with less pronounced shoulders (Stemmermann 1953). On electron microscope, the surface of 

both flukes is covered with spines except the oral and ventral suckers. The spines are fewer on 

the ventral surface, small at the posterior end and they gradually increase in size from the middle 

to the anterior end (Dangprasert et al., 2001). Fasciola spp possess sensory papillae on their 

surfaces with the dorsal surface having more papillae and spines (Dangprasert et al., 2001). In 

countries where both Fasciola species are present it is difficult to differentiate them based on 

morphology due to the presence of intermediate forms of the parasite with varying 

morphological characteristics (Marcilla et al., 2002).   

2.2 Life cycle 

Adult flukes are hermaphrodites and produce approximately 20 000 eggs/day which are passed 

out in faeces (Durbin 1952). In wet environments with adequate light and temperatures above 

10oC, eggs embryonate within 2 weeks (Graczyk and Fried 1999). Miracidia are released once 

the eggs hatch and these penetrate the intermediate snail host of the genus Lymnaea. In the 

intermediate host there is development and multiplication of the miracidia into sporocysts 

followed by rediae, daughter rediae and finally cercariae (Graczyk and Fried 1999). Shedding 

cercariae then find plants on which they encyst as metacercariae. Animals and humans are 

infected by ingesting metacercariae on water plants and grass respectively or drinking water 



contaminated with the metacercariae (Graczyk and Fried 1999). Once inside the host, the 

metacercaria excysts in the stomach in humans and duodenum in animals and then penetrates the 

gut wall, peritoneal cavity and reaches the liver (Cheesbrough 2005). The immature liver flukes 

migrate in the liver parenchyma for a period of 8 weeks and then enter the bile duct where they 

mature to adults (Graczyk and Fried 1999). 

Adult flukes reproduce by cross and self-fertilisation in the bile ducts of the host whereas the 

immature stages are involved in asexual reproduction (Cheesbrough 2005). The flukes survive 

for years in the liver and produce thousands of eggs that are passed out in faeces via the bile duct 

into intestinal tract and the cycle continues (Boray 2007). It may take approximately 3 to 4 

months for a fluke to develop into an adult and start producing eggs and Lymnaeid snails act as 

the intermediate hosts (Miliotis and Bier 2003). 

2.3 Intermediate hosts 

Lymnaeid snails are known to be the intermediate hosts of the main two Fasciola species (Thanh 

2012). Lymnaea truncatula the intermediate host of F. hepatica is common in mild climatic 

regions of America, Australia and especially Europe (Mascoma and Bargues 1997; Kock et al., 

2003). The distribution of   L. truncatula in sub Saharan Africa is limited to regions in South 

Africa with lower temperatures and widely distributed in South Africa (Kock et al., 2003). 

Lymnaea columella is more widely distributed in South Africa compared to L. truncatula but the 

importance of L. columella in the transmission of Fasciola species has not been established in 

South Africa (Kock et al., 2003). In Egypt F. gigantica and F. hepatica cause fasciolosis and L. 

cailliaudi transmits F. gigantica whilst L. columella transmits both F. gigantica and F. hepatica. 

Lymnae natalensis the intermediate host of F.gigantica is common in the tropical and subtropical 

regions of Africa (Thanh 2012). The snail is more prevalent in South Africa than both L. 

trancatula and L. columella (Kock and Wolmarans 2008).  In Zimbabwe, L. natalensis is the 

intermediate host of F. gigantica and is found in a variety of water habitats; streams, dams, rivers 

and ponds (Davies 1982; Pfukenyi et al., 2005).  

2.4 Distribution of Fasciola spp  

The distribution of F. gigantica and F. hepatica follows that of the snail intermediate hosts found 

in both the tropical and temperate regions (Prasad et al., 2008). Lymnaea truncatula, the 



intermediate snail host for F. hepatica is mainly found in cold and mild climatic zones and 

hence, F. hepatica is mainly common in the temperate regions of Europe, Australia and America 

(Mas-Coma and Bargues 1997). Other Lymnaeid species are mainly found in the tropical and 

sub-tropical regions of Africa and Asia making F. gigantica the most common species in these 

regions (Dinnik and Dinnik 1964).  

Overlaps in distribution of F. gigantica and F. hepatica occur in some African and Asian 

countries resulting in hybridization of species and presence of intermediate forms of the parasite 

in countries such as Japan, Iran and Egypt (Periago et al., 2008). Fasciola hepatica has been 

introduced to new environments a result of the introduction of its intermediate host, L. 

truncatula, from European countries to other continents (Mas-Coma et al., 2005).  In Egypt 

where F. gigantica and F. hepatica are present, intermediate forms of the two species have been 

identified morphologically (Periago et al., 2008). In countries such as Japan, Taiwan, Korea it 

has been difficult to identify the varieties of the hybrid species (Marcilla et al., 2002). 

Morphological types resembling F. hepatica and F. gigantica and intermediate forms have been 

reported in these Asian countries (Marcilla et al., 2002). This overlap in distribution causes 

diagnostic problems due to variations in morphology, causing controversy in taxonomic 

identification of Fasciola species in these countries (Periago et al., 2008). 

 In Zimbabwe F. gigantica is widespread and occurs all year round, with a high prevalence in 

high rainfall compared to drier areas (Vassilev1999; Pfukenyi 2003). Lymnaea natalensis, the 

intermediate snail host is widespread in Zimbabwe and is known to thrive in a variety of 

conditions (Davies 1982). The fresh water snail has been collected in both the highveld and 

lowveld regions of Zimbabwe with more snails being found in the highveld (Chingwena et al., 

2002; Pfukenyi et al., 2006)). The highveld is characterized by a mean annual rainfall of 800-

1200mm and has plenty of water reservoirs such as dams and streams whilst the lowveld has less 

rainfall (400-650mm), flat land and prone to droughts (Chingwena et al., 2002). The disease is 

endemic in domestic ruminants in areas with mean annual rainfall of 1016mm (Dinnik and 

Dinnik 1964). High prevalence of F. gigantica in Zimbabwe is also attributed to the presence of 

numerous man-made water bodies such as dams as well as perennial streams in the highveld 

(Pfukenyi and Mukaratirwa 2004). The epidemiology of F. gigantica in Zimbabwe has been 

extensively studied by Pfukenyi and Mukaratirwa (2004) and high prevalence of the mature 



flukes have been reported during the wet season (November to April) compared to the dry season 

(May to October). Lymnaea natalensis was observed to increase during the dry season and 

declining in the cold months (June and July) and then increasing in October (Pfukenyi 2003). 

Animals are normally infected during grazing especially when they ingest metacercariae on 

herbage closer to water bodies and this is common in drier months when grazing pastures are 

reduced (Pfukenyi 2003). Besides domestic ruminants, F. gigantica has been reported in wildlife 

such as impala (Aepyceros melampus), blue wildebeest (Connochaetes taurinus), tsessebe 

(Damaliscus lunatus), giraffe (Giraffa camelopardalis), sable antelope (Hippotragus niger), 

common duiker (Sylvicapra grimmia), buffalo (Syncerus caffer), eland (Taurotragus oryx) and 

kudu (Tragelaphus strepsiceros) (Christe 1966; von Roth and Dalchow1967; Jooste 1987, 1989) 

in Zimbabwe.  Fasciola hepatica (Williams 1914), which was most likely a case of 

misidentification (Jooste 1989) has been reported once in Zimbabwe.  Other Fasciola species 

reported to date in Zimbabwe include F. tragelaphi from a sitatunga (Tragelaphus spekei) (Pike 

and Condy 1965) and a cow (Mukaratirwa and Brand 1999) and F. nyanzae from a 

hippopotamus (Hippopotamus amphibius capensis) (Jooste 1989).  In South Africa, Fasciola 

gigantica has been reported in an impala (Horak 1978) and F. hepatica in a kudu (Tragelaphus 

strepsiceros) (Alves et al., 1988). 

2.5 Pathogenesis in domestic ruminants 

The impact caused by the parasites depends on the number of metacercariae that are ingested at a 

given time and most lesions take place in the liver parenchyma and bile ducts (Soulsby 1986).  

2.5.1 Acute fasciolosis 

This condition is due to consumption of copious amounts of metacercariae in a short space of 

time (Behm and Sangter 1999) for example animals feeding on pastures that are highly 

concentrated with metacercariae due to drought or overstocking (Boray 2007).  Huge numbers of 

immature flukes migrate in the liver parenchyma resulting in traumatic hepatitis and severe 

damage of the liver parenchyma causing hemorrhaging into the peritoneal cavity (Boray 2007). 

Acute fasciolosis is rare in cattle but occurs more often in sheep (Müller 2007). The bacteria 

Clostridium novyi which usually resides in sheep liver multiplies due to tissue necrosis causing 



“Black disease” (Boray 2007) and this condition is common in sheep rearing continents such as 

Europe, America and Australia (Soulsby 1986). 

2.5.2 Chronic fasciolosis 

Chronic fasciolosis is due to gradual consumption of low numbers of metacercariae at a given 

time over a long period of time by ruminants and even in humans (Soulsby 1986). The eventual 

slow accumulation of adult flukes in the liver causes obstruction of bile flow resulting in stunted 

growth, weight loss, reduced reproduction, anemia, abdominal pain and diarrhea (Radostits et al., 

2007). Constant irritation of the bile ducts by adult flukes results in calcification of the bile ducts 

and liver fibrosis (Soulsby 1986). The adult flukes obtain nutrients by sucking blood resulting in 

anemia and chronic cholangitis (Boray 2007).  Hepatocytes and other tissue components in the 

tracks are extensively destroyed and hepatocytes are filled with eosinophils, lymphocytes and 

macrophages and coagulative necrosis occurs in tissues in proximity to the tracks (Rahko 1969). 

Thrombosis of hepatic blood vessels, arteritis and phlebitis occur in migratory regions and 

eventually necrosis of vessel walls (Soulsby 1986).  Macrophages in larger tracks actively 

participate in the healing process of the tissue. Fibroblasts, mesenchymal tissue rich in blood 

capillaries and bile ductuli continuously replace the absorbed tissue in the tracks resulting in liver 

cirrhosis in the areas of migration (Rahko 1969).    

2.5.3 Gross pathology 

The colour of the migratory tracks in the liver changes from brown red to grey with a hyperemia 

(Rahko 1969). Bigger tracks resemble red plaques due to hemorrhage caused by the mature 

flukes (Rahko 1969).  In chronic infections there is dilatation of the bile ducts, and the lumen of 

the ducts will contain numerous flukes and a brownish mucous exudate (Gajewska et al., 2005). 

Fibrosis of the liver and atrophy of the central and left lobes with enlarged hepatic lymph nodes 

occurs (Rahko 1969).    

2.6 Economic losses 

Fasciola species cause significant losses in the livestock sector due to reduced productivity, 

weight gain and decreased milk production and fertility (Charlier et al., 2007). In sheep, reduced 

production and wool quality, poor growth rates of lambs and increased replacement of lambs has 



been observed (Boray 2007). Losses have been estimated to be US$3.2 billion annually (Mas-

Coma et al., 2005). In Zimbabwe, in addition to what was noted by Charlier et al. (2007), losses 

due to mortalities, poor carcass quality and reduced performance in draught animals as well as 

liver condemnations have been reported (Vassilev and Jooste 1991; Pfukenyi and Mukaratirwa 

2004). Most losses are as a result of liver trimming and condemnations with 46% of cattle livers 

being condemned due to fluke infection in 1986 (Chambers 1987), whilst a maximum of 43.2% 

livers were condemned between 1988 and early 1990 (Vassilev and Jooste 1991) and  37.1%  

were condemned between 1990 to 1999 (Pfukenyi and Mukaratirwa 2004). Fasciolosis has also 

gained public health importance due to its zoonotic aspect (Thanh 2012). No reports of 

Fasciolosis in humans in Sub-saharan Africa have been made (Kock and Wolmarans 2008).   

2.7 Treatment and Control 

Several antihelmintics are used to control fasciolosis, however, some drugs are only effective 

against mature stages of the parasite (Spithill et al., 1999). Triclabandazole is an antihelmintic 

effective for both mature and immature stages of F. hepatica (Wolff et al., 1983) and F. 

gigantica (Waruiru et al., 1994). Deworming regime recommended by Pfukenyi and 

Mukaratirwa (2004) for Zimbabwe for control of fasciolosis in domestic ruminants is to treat 

animals three times a year i.e, December/ January to control chronic fasciolosis, beginning of the 

cold season April/May to reduce contamination of pastures by the parasite and another treatment 

at the end of the dry season in August. Control of the Intermediate snail host may be useful in 

reducing fasciolosis in ruminants in Zimbabwe (Pfukenyi and Mukaratirwa 2004). Molluscicides 

have been strategically used in Malawi to reduce the infected snail population (Mzembe and 

Chaudhry 1981). However, molluscicides have been recommended for use in water reservoirs 

such as dams and rivers due to the persistence of the compound in the environment resulting in 

the killing of non-targeted animals and plants in the habitat (Spithill et al., 1999).  In Zimbabwe 

the use of molluscicides in the highveld maybe expensive due to the vast number of snail habitats 

in the region (Pfukenyi and Mukaratirwa 2004). 

2.7 Human fasciolosis 

Human fasciolosis is caused by both F. gigantica and F. hepatica (Mas-Coma et al., 2005). 

Transmission is due to environmental contamination and thus, infections are more prevalent in 



sheep and cattle rearing areas (Thanh 2012). Domestic and wild animals play a role in the 

transmission and these include cattle, sheep, goats, donkeys, pigs and wild animals such as the 

deer, buffalo and eland (WHO 2007).  

The disease is a problem in young children especially in Andean countries such as Peru, Chile, 

Equador and Bolivia (Thanh 2012). Prevalence rates in these countries are high (68.2%) and as 

low as 3% in Northern Africa (Esteban et al., 1997). Symptoms of fasciolosis in humans include 

abdominal pain, weight loss, indigestion and diarrhea (Mas-Coma et al., 1999). Diagnosis of 

human fasciolosis has been through parasitological methods such as the Kato-Katz method for 

examination of eggs in faeces (Esteban et al., 2002).  

2.8 Identification of Fasciola species  

2.8.1 Phenotypic methods  

Accurate identification of Fasciola species is necessary for effective clinical management of 

infection and for epidemiological surveys (Thanh 2012). Morphology of eggs has been used to 

distinguish F. hepatica from F. gigantica, they are bigger in F. gigantica (150±196/90±100 mm) 

than in F. hepatica (130±150/63±90 mm) (Marcilla et al., 2002) 

Using morphology in distinguishing adult flukes and eggs has limitations (Rokni et al., 2009). 

Furthermore, there is no egg laying during migration of the immature parasite in the liver and a 

low, inconsistent number of eggs are laid when there is a low parasite burden (Hillyer 1999). 

Morphometric methods, based on measurements of distances between organs of flukes, have 

helped in distinguishing F. gigantica and F. hepatica from different countries (Periago et al., 

2006; Ashrafi et al., 2006). Adult fluke measurements such as body length, width and perimeter, 

cone length and width, diameter of oral and ventral suckers can be measured and compared to 

determine the differences between the species of the parasite. These morphometric methods of 

identification rely on a computer image analysis system (CIAS) (Thanh 2012). This technique 

resulted in a variety of morphological types of Fasciola being identified from countries such as 

Japan, Korea, China and Vietnam (Periago et al., 2008; Itagaki et al., 2009). Intermediate forms 

of Fasciola that have been identified are probably due to hybridization of the two species (Mas-

Coma et al., 2009). This complicates morphological identification and differentiation of the 



Fasciola species due to the variety of phenotypic characters resulting from hybridization, 

especially in places where there is species overlap (Marcilla et al., 2002). 

Morphology alone cannot give precise identifications because some species may look similar but 

are genetically different (Knowlton 1993). This method of identification also requires great 

expertise for precision; however there has been a reduction in the number of taxonomists, hence 

the need for molecular approach (Hebert et al., 2003). Combining molecular and other diagnostic 

methods such as morphometrics can help in making a more precise species identification of 

parasites.  

2.8.2 Molecular techniques for identification of Fasciola spp 

Molecular methods are ideal for species identification, strain confirmation and population 

genetic studies (Thanh 2012). Most of these molecular methods are polymerase chain reaction 

(PCR)-dependent targeting a common gene which is adequately divergent between taxa (Hills 

and Dixon 1991). The targeted region must be long enough to provide adequate variable 

characters to appreciate differences and similarities for analysis (Huang et al., 2004). However, 

this is determined by the function of the genome. Functional constraints generally result in fewer 

mutations as some nucleotide positions remain constant whilst diversity exists on others (Shaw et 

al., 2005). Coding regions have more functional constraints than non-coding regions which are 

said to offer more information for phylogenetic studies (Shaw et al., 2005). 

The use of mitochondrial and/or nuclear DNA sequencing to identify or diagnose species and 

determine their boundaries falls under the phylogenetic or genetic species concepts (Maddison 

1997; Baker and Bradley 2006). There are a number of molecular techniques which are PCR 

based and these include DNA fingerprinting, hybridization methods, sequencing of selected 

genes, DNA barcoding and microsatellites (Thanh 2012).  

   

2.8.4 Markers for Fasciola species 

 Evolutionary phylogenetic and population genetic studies of a variety of organisms, including 

Fasciola, have been carried out based on ribosomal DNA (rDNA) and mitochondrial DNA 

(mtDNA) markers (Le et al., 2000, Huang et al., 2004, Zarowiecki et al., 2007). 



 

2.8.5 Ribosomal DNA (rDNA) markers  

The nuclear rDNA markers (ITS-1 and ITS-2) are located between the 18S, 5.8S and 28S 

ribosomal RNA genes (Fig. 2.1); these non-coding regions have been used in a number of 

phylogenetic studies to differentiate Fasciola spp from different hosts and locations, resulting in 

the discovery of the intermediate forms of Fasciola (Itagaki et al., 2009) They are also useful in 

the identification and confirmation of Fasciola species (Itagaki and Tsutsumi 1998; Prasad et al., 

2008). The ITS-1 marker has been useful in the differentiation of F. hepatica and F. gigantica 

from 3 provinces in Iran, where the presence of both species was confirmed both molecularly 

and morphologically (Mohammad et al., 2010). These markers were also used to confirm the 

presence of F. gigantica and intermediate forms of F. gigantica and F. hepatica in Vietnam (Le 

et al., 2008). Molecular characterization of F. gigantica, F. hepatica and intermediate forms 

from China was carried out using the ITS-2 marker (Huang et al., 2004). Flukes of Indian origin 

were also identified using ITS-1 and 2 markers and it was proven that these flukes are similar to 

isolates from China, Japan, Indonesia and Zambia (Prasad et al., 2008). Several researchers have 

indicated that ITS-1 and ITS-2 are good markers for interspecific variations and phylogenetic 

studies of parasites (Itagaki and Tsutsumi 1998; Le et al., 2000; Zarowiecki et al., 2007).  

Nuclear rDNA is useful because it has numerous variable regions flanked by conserved regions 

which make it ideal for molecular studies (Hills and Dixon 1991). 

 

2.8.6 Mitochondrial DNA markers 

Certain mitochondrial DNA markers are useful in both phylogenetic and population genetic 

studies of liver flukes (Walker et al., 2006).  Mitochondrial CO1 has been used in genotypic and 

species identification of Fasciola (Zarowiecki et al., 2007). The mitochondrial nicotiamide 

dinucleotide dehydrogenase subunit-1 (ND1) has been used to determine the relationship 

between Fasciola spp from Thailand and those from other Asian countries (Pannigan et al., 

2012).  Mitochondrial ND1 and CO1 genes were also used to determine the lineages of F. 

hepatica from 20 different locations in China, Turkey, Bulgaria, Russia and Turkmenistan. 

Haplotypes were identified; 10 with CO1 and 13 with ND1 (Semyenova et al., 2005). 



Mitochondrial DNA is useful in determining genetic diversity of flukes; many mitochondrial 

genes evolve more rapidly than coding regions of the nuclear genome, making them suitable for 

separating closely related organisms at species and subspecies level (Ai et al., 2011). 

There is inadequate information on the molecular characterization of Fasciola species in Africa 

and the public health importance of the species (Ai et al., 2011). Most studies on Fasciola in 

southern Africa were based on morphology and currently there are no reports on the molecular 

characterization of the fluke in South Africa and Zimbabwe based on ITS-1 and 2 and 

mitochondrial markers (CO1 and ND1). Hence, the aim of this study was to identify Fasciola 

species and determine their phylogenetic relationships for samples from Zimbabwe and selected 

locations in South Africa.  

 

Figure 2.1: Schematic diagram of ITS-1 and ITS-2 markers (Adapted from Le et al., 2000) 

  



CHAPTER 3 

 

3.0 MATERIALS AND METHODS 

3.1 Sampling 

Liver flukes were collected from 57 cattle from four main abattoirs in Zimbabwe (Koala in  

Harare and the Cold storage Commission abattoirs in Chinhoyi, Mutare and Bulawayo) that have 

a large slaughter capacity and a wide catchment area of slaughter animals (Fig. 3.1). Alcohol 

preserved wildlife fluke samples from an antelope, eland and duiker of which the geographical 

origin is unknown were provided by the Department of Veterinary Services (DVS), Ministry of 

Agriculture, Zimbabwe. In addition, flukes were collected from cattle livers in abattoirs located 

in Pietermaritzburg, Glencoe and Eshowe of KwaZulu-Natal as well as Ehlanzeni, Gert Sibande 

and Newcastle of Mpumalanga provinces of South Africa (Table 3.1).  

3.2 DNA extraction  

 Approximately 25mg of each fluke was used for DNA extraction using a DNeasy® DNA Blood 

and Tissue Kit (QIAGEN Inc.) according to the manufacturer’s instructions.  

  

3.2.1 Spectrophotometry 

Spectrophotometry was used to quantify the fluke DNA samples. One µl of double-deionised 

water was used to zero a Nanodrop Spectrophotometer and 1µl of AE buffer from Qiagen was 

then used to calibrate the instrument. One µl DNA solution was added and the concentration 

determined. 

 3.2.2 Agarose gel electrophoresis 

 A 1% (w/v) suspension of agarose in 0.5X TBE buffer was heated to dissolve the agarose; 100µl 

ethidium bromide (0.05 mg ml-1) was added to the solution prior to casting of the gel, to allow 

visualization of the DNA bands by transillumination with UV light. Eight µl of each DNA 

sample was mixed with 2µL loading dye ( Fermentas 6X Orange) prior to loading into the well. 



Five µl molecular weight marker III (Roche, Germany) or O’Gene Ladder (100 bp) (Fermentas) 

were co-electrophoresed with the samples. Samples were electrophoresed at 100 V for 30 

minutes in 0.5X TBE running buffer. A Uvitec UV transilluminator was used to visualize the 

DNA bands and the image was captured using a Uvitec digital camera. This was done in order to 

determine the integrity of the DNA (the presence of a sharp high-molecular weight band is 

indicative of intact DNA, whereas a lack of such a band, combined with the presence of a smear 

in the lane, is indicative of the presence of degraded DNA). 

 

3.3 Polymerase chain reaction (PCR) and sequencing 

The polymerase chain reaction was used to amplify the genomic DNA region comprising ITS-

1/5.8S rDNA/ITS-2 region using primers S30FE (forward: 5′-GTCGTAACAAGGTTTCCGTA -

3′) and S49E6 (reverse: 5′-TATGCTTAAATTCAGCGGGT-3′), which were designed based on 

conserved sequences in the 5.8S and 28S genes of Fasciola species. The ITS region of all cattle 

liver fluke samples was amplified with the ITS primer.  None of the wildlife samples were 

amplified with this genetic marker.  

The mitochondrial cytochrome oxidase (CO1) region was amplified for half of the Zimbabwean 

and most KwaZulu-Natal cattle liver flukes. In addition, Zimbabwe wildlife liver flukes from an 

antelope, duiker and eland were also amplified with the same marker. Cytochrome oxidase 1 

primer regions FHCO1 (forward: 5′-TTGGTTTTTTGGGCATCCT-3′) and FHCO1 (reverse: 5′-

AGGCCACCACCAAATAAAAGA3′) were used to amplify the flukes.  

 The PCR amplifications for both markers were performed in 25µL volumes. Each reaction 

contained 4µL of DNA, 11µL of sterile water, 8µL of TopTaq master mix (QIAGEN Inc.) and 

1µL of each primer (100µM) (forward and reverse) per reaction. PCR was performed in a 

thermocycler (BIORAD) under the following conditions: 94°C for 5 min (initial denaturation), 

followed by 40 cycles at 95°C, 1 min (denaturation), Ta, 1 min (annealing), 72°C, 1 min 

(extension), and a final extension of 72°C for 7 min, Ta, the annealing temperature was 55°C for 

the ITS region and 59°C for the CO1 region. 



An aliquot (8μl) of the reaction products was electrophoresed through a 1% agarose gel (as 

previously described) in order to allow separation and isolation of the amplification products. 

The amplified ITS and CO1 bands were selected by their positions relative to the co-

electrophoresed molecular weight marker and excised from the gel. The excised bands were 

stored in a 1.5ml microfuge tube at -20°C ready for sequencing. 

 

3.4 DNA sequencing 

Unpurified PCR products of 104 1TS-1-2 and 52 CO1 Fasciola samples were sent to the Central 

Analytical Unit of the University of Stellenbosch for DNA sequencing by the Sanger dideoxy 

method. DNA fragments were sequenced in the forward and reverse directions using the primers 

used in the initial amplification.   

3.5 Data analysis 

 ITS1-2 and CO1 sequences were edited with Bioedit Sequence Alignment Editor, version 5.0.9 

for windows 95/98 NT (Hall 1999). Sequences were determined by comparison with previously 

published Fasciola sequences in the Genbank for both markers (Table 3.1). Multiple alignment 

of sequences was done using the Clustal W function of Bioedit (version 5.0.9) (Hall 1999) and 

were further edited by visual inspection. Sequences were trimmed to a uniform length and files 

were imported into Clustal X, version 1.81 (Thompson et al., 1997), and re-saved as nexus (.nxs) 

files. 

 

3.5.1 Molecular phylogenetic analysis 

3.5.1.1 Neighbour-joining, Maximum parsimony and Bayesian Inference 

 PAUP4.0b10 for Macintosh (Swofford 2002) was used to create maximum parsimony and 

neighbour-joining trees for both ITS and CO1 sequences. To determine the most appropriate 

evolutionary model (GTR + G) to use in neighbour-joining and Bayesian inference analysis, 

jModelTest 0.1.1 (Posada 2008) was used to apply Akaike’s information criterion. Starting trees 

were obtained via stepwise addition.  The addition sequence was random, with 10 replicates and 



one tree held at each step during the stepwise addition.  The heuristic search option was used to 

search for the shortest tree using the tree bisection-reconnection (TBR) branch swapping option. 

Nodal support was assessed using bootstrap resampling analysis (100 replicates) (Felsenstein 

1985). Bayesian inference was carried out in MrBayes version 3.2.1 (Ronquist and Huelsenbeck, 

2001).  Four Markov chains were run for 5 million generations to ensure that the standard 

deviation of the split frequencies was less than 0.01.  The print frequency was 1000 and the 

sample frequency was 100.  The burnin value of 50 000 was determined empirically in several 

initial runs. 

3.5.1.2 Haplotype and population genetic analyses 

(DNA Sequence Polymorphism) DnaSP version 4.90.1 was used to determine the number of 

haplotypes in each data set (Rozas et al., 2003). TCS version 1.13 was used to create a statistical 

parsimony haplotype network in order to determine the relationships between haplotypes 

(Clement et al., 2000). Analysis of the dataset for population genetics was carried out in DnaSP 

to determine haplotype (h) and nucleotide (п) diversity values.  

3.5.1.3 Pairwise genetic distance analyses 

Individual pairwise genetic distance between experimental haplotypes and mean p-distances 

between F.hepatica and F.gigantica sample groups were calculated in Mega Version (Hutchison 

and Templeton, 1999). 

 

 

 

 

 

 



Table 3.1:  Summary of sample types where liver flukes were collected from and geographical locations in Zimbabwe and South 

Africa. 

Country Sample type  Abattoir Location Number of 

samples  

Latitude Longitude 

Zimbabwe Cattle  Bulawayo Bulawayo 2 -17.39 30.39 

   Matebeleland  2 -20.86 28.42 

   Matebeleland North 4 -19.79 28.23 

   Matebeleland South 2 -20.46 29.49 

  Chinhoyi Guruve 4 -16.66 30.70 

   Hurungwe  4 -16.45 29.36 

   Makonde  1 -17.11 30.17 

   Mazowe 3 -17.51 30.97 

   Mhondoro 2 -18.34 30.62 

   Mutoko 2 -17.38 32.21 

   Mzarabani 5 -16.36 31.13 

   Nyabira  3 -17.48 30.83 

   Zvimba 9 -17.48 30.46 

   Chiredzi 2 -20.79 31.41 

  Harare Mazowe 1 -17.51 30.97 

   Masvingo 3 -20.27 31.06 

  Mutare Chipinge 2 -20.37 32.53 

   Manicaland 4 -18.92 32.17 



   Marange 2 -19.48 32.40 

 Antelope - DVS 1 ND ND 

 Duiker - DVS 1 ND ND 

 Eland - DVS 1 ND ND 

       

South 

Africa 

Cattle       

  Eshowe Eshowe 7 -28.890 31.471 

  Glencoe Glencoe 10 -28.183 30.150 

  Pietermaritzburg Pietermaritzburg 15 -29.601 30.379 

  Gertsibande Gertsibande 2 -32.546 30.268 

  Ehlanzeni Ehlanzeni 13 -45.819 31.015 

DVS - Department of Veterinary Services Zimbabwe; ND – Not Determined



 

Figure 3.1: Abattoir catchment areas for cattle flukes from Zimbabwe and South Africa 

 

 



CHAPTER 4 

 

4.0 RESULTS 

 

4.1 DNA Purity and molecular weight 

The DNA extracted from cattle flukes yielded discrete high-molecular weight bands with no smearing, indicating that it was not 

degraded. The ITS and CO1 regions amplified strongly and produced clear bands when separated by agarose gel electrophoresis (Fig 

4.1). Fragment length of the trimmed ITS1-2 alignment was 506 base pairs (bp) whilst that for CO1 was 381 bp. Both ITS and CO1 

experimental sequences were BLAST searched against the NCBI Genbank to obtain closest matches for inclusion in the analyses (to 

allow identification of experimental clades) and to obtain outgroups for use in rooting the phylogenetic analyses.    

4.2 ITS phylogenetic trees 

Neighbor-joining, maximum parsimony and Bayesian analyses produced ITS trees with similar topologies. In Fig 4.2, the neighbour-

joining tree is presented, with nodal support values from the maximum parsimony and Bayesian inference analyses indicated at the 

nodes.  Fasciola formed a well-supported monophyletic clade (1.00/93/99 – Bayesian posterior probability, neighbour joining 

bootstrap %, maximum parsimony bootstrap %) with respect to the out-group Fascioloides magna. The Fasciola clade formed two 

reciprocally monophyletic sister clades, namely F. gigantica and F. hepatica respectively. The F. gigantica clade is so named as it 

includes all Genbank-derived samples of F. gigantica.  All flukes isolated from Zimbabwe cattle are part of the F. gigantica clade, 

which is well-supported (0.93/90/94).  According to the phylogenetic species concept (Maddison 1997) they can therefore be 

identified as F. gigantica. However, within the same clade, Guruve 7 and Chimanimani 69 isolates showed a very shallow divergence 



from the rest of the Zimbabwe F. gigantica isolates. Phylogenetic analyses also revealed that some of the South African Fasciola 

isolates from both Mpumalanga and KwaZulu-Natal provinces (Gert Sibande 16, 18; Ehlanzeni 23-27 & 30-31); all Eshowe isolates 

except Eshowe 2) were also F. gigantica as they were in the same clade as the Zimbabwe isolates.  

The Fasciola hepatica clade was moderately supported (0.89/73/76), and so named because it contained all of the Genbank samples of 

F. hepatica.  Also present within this clade and therefore identified as F. hepatica were South African Fasciola isolates from 

KwaZulu-Natal province (Eshowe 2, all Glencoe and all Pietermaritzburg) and Mpumalanga province (Ehlanzeni 17, 19-22, 28-29). 

The F. hepatica clade contained a weakly-supported subclade (0.79/60/62) comprising all samples except JF496716, which was basal.  

In the analyses, F. hepatica and F. gigantica were distinguished clearly as separate species according to the phylogenetic species 

concept, as they form reciprocally-monophyletic clades. 

4.3 CO1 phylogenetic tree 

The length of the trimmed aligned CO1 sequence was 381 base pairs. Phylogenetic analysis of the CO1 sequences revealed a strongly 

supported Fasciola clade (0.99/98/98) with respect to the outgroup Fasciolopsis buski (Fig 4.3). The Fasciola clade was divided into 

three major subclades; (A) a strongly supported F. hepatica clade (0.99/98/99, (B) a strongly-supported clade comprising Genbank-

derived F. hepatica and Fasciola spp. (0.90/93/98) and (C) a moderately-supported F. gigantica clade (-/52/73).  

The F. gigantica clade (C) comprised Fasciola isolates from all Zimbabwe cattle, eland 12 and some South African cattle (Eshowe 1, 

3 & 5, KwaZulu-Natal). All experimental samples (clade C2) were sister to a strongly supported (0.92/80/91) Genbank F. gigantica 

clade (C1). 

The strongly supported F. hepatica clade (A) was divided into two shallow sister clades, A1 and A2. Clade A1 was moderately 

supported and contained isolates from KwaZulu-Natal, South Africa [Glencoe & all Pietermaritzburg (PMB) isolates (except PMB1)] 



and one Zimbabwe isolate (Matebeleland North 59). Unsupported sister clade A2 comprised isolates from KwaZulu-Natal, South 

Africa (Eshowe 2 & PMB1) and from Zimbabwe (antelope 1 & duiker 8). Fasciola hepatica is present in both clades A and B.  

 

4.4 Haplotype networks  

 4.4.1 ITS haplotypes 

Haplotype analysis of Fasciola samples based on 506 nucleotides of the ITS1-2 gene yielded 11 haplotypes (5 for F. gigantica, 5 for 

F. hepatica and 1 for Fasciola spp) excluding sites with gaps (Table 4.1). The haplotype gene diversity (hd) was 0.6388. 

ITS1-2 Haplotype Network 

There were 11 haplotypes. Except for haplotype 5 which was separated from haplotype 1 by 3 mutational steps; neighbouring 

haplotypes were separated by one mutational step (Fig 4.4). Haplotype 1, identified as F. gigantica, included most of the Zimbabwe 

isolates (except Guruve 7 – haplotype 3 and Chimanimani 69 – haplotype 4), some South African isolates (from Mpumalanga and 

KZN) and Genbank-derived F. gigantica haplotypes. Haplotype 2, identified as F. hepatica contained most of the South African 

isolates (KZN and Mpumalanga samples) as well as Genbank-derived F. hepatica samples. None of the Zimbabwe and South African 

isolates belonged to the other remaining haplotypes.  Haplotypes 5, 6, 7, 8, 9, 10 and 11 comprise Genbank samples exclusively.  

4.4.2 CO1 haplotypes 

Haplotype analysis of Fasciola samples based on 381 nucleotides of the CO1 gene yielded 32 haplotypes based on 381 sites excluding 

sites with gaps (Table 4.2). The haplotype diversity (hd) was 0.8943. 

CO1 Haplotype Network  



A statistical parsimony analysis of the CO1 region of Fasciola species showing mutational relationships of haplotypes is presented in 

Figure 4.5. When set at a 95% parsimony criterion, TCS (Clement et al., 2007) yielded three separate networks, corresponding to F. 

hepatica, F. gigantica and a Fasciola species (comprising Genbank-derived samples only). The F. gigantica and F. hepatica networks 

are separated by 20 mutational steps. F. gigantica is separated from the unidentified Fasciola species by 10 mutational steps 

Fasciola gigantica isolates 

All the Zimbabwe isolates identified as F. gigantica were found to belong to haplotypes 2, 3, 4, 6, 8 and 9, with haplotype 2 being the 

most common. All the KZN isolates identified as F. gigantica also belonged to haplotype 2. None of the Genbank F. gigantica 

isolates were found to belong to these haplotypes.   Haplotype 2, which comprised most isolates, was separated from haplotypes 8 

(Muzarabani 17 isolate) and 4 (eland 12) by 1 mutational step.  Haplotype 6 (Matebeleland 1 isolate) was separated from haplotype 8 

by 2 mutational steps. Haplotype 3 (Banket 40, Bulawayo 65, Makonde 45 and 47, Muzarabani 13 and 14) was separated from 

haplotypes 4 and 8 by 2 mutational steps. One mutational step separated haplotype 9 (Nyabira 53) from haplotype 3. Experimental 

haplotypes 3 and 8 were each separated from the closest Genbank haplotype (10) by four mutational steps.   

Fasciola hepatica samples 

The Zimbabwe cattle isolate (Matebeleland North 59) and the wildlife isolates (antelope 1 & duiker 8) which were identified as F. 

hepatica belonged to haplotypes 7 and 1, respectively. Except for Eshowe 2 and PMB 1, which were found to belong to haplotype 1, 

the rest of the South African isolates which were identified as F. hepatica were found to belong to haplotype 5. Haplotype 5 was 

separated from haplotype 7 (Matebeleland North 59) by 1 mutation and from haplotype 1 (antelope 1, duiker 8, Eshowe and PMB1 

samples) by 2 mutational steps.   

 

 



4. 5 Genetic Distances 

4.5.1 ITS Genetic distance analysis 

Genetic p-distances between haplotypes based on 506 nucleotides of the nuclear ribosomal ITS region of experimental samples of 

Fasciola hepatica and Fasciola gigantica. Genetic distances between F. hepatica samples range from 0.21 to 1.27% and between F. 

gigantica samples range from 0 to 0.42%. Mean genetic p-distance between F. hepatica and F. gigantica samples based on the ITS 

region (506 nt) is 1.0% (Table 4.2). 

4.5.2 CO1 Genetic distance analysis 

Genetic p-distances between haplotypes based on 381 nucleotides of the mitochondrial cytochrome oxidase I region of experimental 

samples of Fasciola hepatica and Fasciola gigantica. Genetic distances between F. hepatica samples range from 0.26 to 0.79% and 

between F. gigantica samples range from 0.26 to 5.77%. Mean genetic p-distance between F. hepatica and F. gigantica samples based 

on the COI gene (381 nt) is 5.5% (Table 4.3) 

 

 

 

 

   

 



 

Table 4.1: Summary of ITS haplotypes for the studied Fasciola and Genbank isolates  

 

Taxon 

 

Haplotype 

 

Studied Fasciola isolates 

 

Genbank isolates 

No. isolates 

in haplotype 

Fasciola gigantica 1 Manicaland(1-4),  Mazowe (1 -6), Zvimba (1-7, 19-20), 

Muzarabani (13- 14), Mhondoro (29-30), Mutoko (37-38), 

Makonde(41- 42, 49), Nyabira( 50-51), Mazowe (1-5), 

Chiredzi (52-53), Masvingo ( 54, 59), Matebeland ( 60,63, 

64, 65), Bulawayo(66-67), Marange, Eshowe (1-5), 

Guruve (7-10), Marange 68,Chimanimani (70-74),  

Mpumalanga 1  (23-27,30-32), 

JN82895, HM74678, 

AJ85384, JF43207, 

JF43207, JF49670, 

JF49671, AM90037,  

AM85010, JF49671 

91 

 3 Guruve 7 Nil 1 

 4 Chimanimani  Nil 1 

 10 Nil JF49670 1 

 11 Nil JF49671 F, JF49671 2 

 

 

 

 



 

Table 4.1: (cont.)  

 

Taxon 

 

Haplotype 

 

Studied Fasciola isolates 

 

Genbank isolates 

No. isolates 

in haplotype 

Fasciola hepatica 2 PMB(1- 5, 10, 1T-9T,), 

Eshowe 2, Glencoe(1- 5), 

Mpumalanga 1 (28-29), 

Mpumalanga 2 (17, 19-20, 

21-22, Glencoe (11-14), 

Newcastle15 

AM707030, AM709498-AM709500, AM709609-

AM709622, AM709643-AM709649, AM850107, 

AM900370, GQ231546, GQ231547, HM746785, 

HM746786, JF432071, JF432072, JF432075-

JF432078, JF708029, JN828954, JN828959, 

JN828960. 

74 

 5 Nil JF496716 1 

 6 Nil JF708026  1 

 7 Nil JF708034 1 

 8 Nil JF708036 1 

Fasciola spp 9 Nil JF708041, JF708042, JF708043 3 

Out-group 12 Fascioloides magna   

     

 

 

 



 

 

Table 4.2: Summary of CO1 haplotypes for the studied Fasciola and Genbank isolates 

 

Taxon 

 

Haplotyp

e 

 

Studied Fasciola isolates 

 

Genbank isolates 

No. isolates 

in haplotype 

Fasciola 

gigantica 

2 Banket 39, Chimanimani (69-72, 75), Chipinge (71-72), Eshowe 

(1, 3, 5), Guruve 6, Hurungwe 34, Manicaland (2-3), Marange 

(67-68), Masvingo 55, Matebeleland 2, Matebeleland North (61-

62), Matebeleland South (63-64), Mazowe (1-3), 

Muzarabani(16,18), Nyanyadzi 74 

Nil 27 

 3 Banket 40, Bulawayo 65, Makonde (45,47), Muzarabani (13-14) Nil 6 

 4 Eland Nil 1 

 6 Matebeleland 1     Nil 1 

 8 Muzarabani 17 Nil 1 

 9 Nyabira 53 Nil 1 

 11 Nil GU11246 1 

 

 

 



 

 

Table 4.2: (cont.)  

 

Taxon 

 

Haplotyp

e 

 

Studied Fasciola isolates 

 

Genbank isolates 

No. isolates 

in haplotype 

Fasciola 

gigantica 

12 Nil GU11247 1 

Fasciola 

hepatica 

1 Antelope1, Duiker 8, Eshowe 2, 

PMB 1 

AF216697, GQ231550,  KF111595, KF111623 8 

 5 Glencoe 1-Glencoe 5, PMB 2- 

PMB 5 

GQ121276, GQ231548-9, KF111585 KF111587, 

KF111590, KF111602, KF111615, KF111618, 

KF111626, KF111629, M93388, X15613 

22 

 7 Matebeleland north 59 Nil 1 

 21 Nil KF111576, KF11158-4, KF111586, KF111588, 

K111589, KF111591-K111594,  KF111597-

K111599, KF111601, KF111603-4, KF111606-

K116013, KF111619-k111620,  KF111628 

29 

 22 Nil KF111577, KF111579, KF111581,KF111596 4 

 15 Nil GU112457 1 

 23 Nil KF111600 1 



 

 

Table 4.2: (cont.)  

 

Taxon 

 

Haplotyp

e 

 

Studied Fasciola 

isolates 

 

Genbank isolates 

No. isolates 

in haplotype 

Fasciola spp 14 Nil GU112454-GU112456, GU112469-GU112470 4 

 25 Nil KF111614, KF111616, KF111617 3 

 16 Nil GU112482 1 

 17 Nil GU112483 1 

 18 Nil GU112484, GU112845, GU112486     3 

 19 Nil KF111574, KF111578 2 

 20 Nil KF111575 1 

 24 Nil KF111605 1 

 26 Nil KF111621 1 

 27 Nil KF111622 1 

 28 Nil KF111624 1 

 29 Nil KF111625 1 

 30 Nil KF111627 1 

 



 

 

Table 4.2: (cont.)  

 

Taxon 

 

Haplotyp

e 

 

Studied Fasciola isolates 

 

Genbank isolates 

No. isolates 

in haplotype 

Fasciola spp 31 Nil GU11247-GU11248   2 

 32 Nil GU11249 1 

 

 

 

  



PCR Amplification 

         

Figure 4.1: Gel electrophoretic separation (2%) of PCR amplicons of the ITS1-2 region of 

representative Fasciola samples from Eshowe, KwaZulu-Natal, South Africa. Lanes 1-6 show 

the amplified DNA.  Lane M contains a molecular ladder.         

 

     

 

 

 

 

 

 

 

 



 

Figure 4.2: Phylogenetic tree based on 506 nucleotides of the nuclear ribosomal ITS region 

showing relationships between Fasciola samples and outgroups. Nodal support is indicated as 

Bayesian posterior probability/ neighbour-joining bootstrap %/ maximum parsimony bootstrap 

%.  



 Normal font + bold = Zimbabwe, normal + bold + underlined = KwaZulu-Natal, RSA, 

italics + bold = wildlife normal + italics = Genbank sample. 

 

 Figure 4.3: Phylogenetic tree based on 381 nucleotides of the mitochondrial cytochrome 

oxidase I gene showing relationships between Fasciola samples and outgroups. Nodal support is 

indicated as Bayesian posterior probability/ neighbour-joining bootstrap %/ maximum parsimony 

bootstrap %. Normal font + bold = Zimbabwe, normal + bold + underlined = KwaZulu-

Natal, RSA, italics + bold = wildlife normal + italics = Genbank sample.  



 

 

Figure 4.4: Statistical parsimony haplotype network based on 506 nucleotides of the nuclear 

ribosomal ITS region of Fasciola species. White fill=Zimbabwe; black=KwaZulu-Natal; light 



grey=Genbank sample; spotted=Mpumalanga. Numbers adjacent to lines connecting haplotypes 

represent number of mutational steps, where greater than one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Statistical parsimony haplotype network based on 381 nucleotides of the 

mitochondrial cytochrome oxidase 1 gene of Fasciola species. Solid lines represent 95% 

parsimony connections. Dotted lines represent <95% parsimony connections. Key: white 

fill=Zimbabwe; black=KwaZulu-Natal; dark grey= wild life; light grey=Genbank sample. 

Numbers adjacent to lines connecting haplotypes represent number of mutational steps, where 

greater than one. 



Table 4.2:  Genetic p-distances between haplotypes based on 506 nucleotides of the nuclear 

ribosomal ITS region of experimental samples of Fasciola hepatica and Fasciola gigantica. 

Hap=haplotype. 

    1 4 10 3 9 11 5 2 6 7 

F. gigantica 

           F. gigantica Hap1 

          F. gigantica Hap4 0.00 

         F. gigantica Hap10 0.00 0.00 

        F. gigantica Hap3 0.21 0.21 0.21 

       F. gigantica Hap9 0.21 0.21 0.21 0.42 

      F. gigantica Hap11 0.21 0.21 0.00 0.42 0.42 

     F. hepatica Hap5 0.63 0.42 0.63 0.84 0.84 0.84 

    F. hepatica Hap2 0.84 0.63 0.85 1.05 1.05 1.05 0.21 

   F. hepatica Hap6 1.05 0.85 1.06 1.27 1.27 1.27 0.42 0.21 

  F. hepatica Hap7 1.05 0.85 1.06 1.27 1.27 1.27 0.42 0.21 0.42 

 F. hepatica Hap8 1.05 0.85 1.06 1.27 1.27 1.27 0.42 0.21 0.42 0.42 

 

Mean genetic p-distance between F. hepatica and F. gigantica samples based on the ITS region 

(506 nt) = 1.0% 

 

 

 

 

 

 

 



 

Table 4.3:   Genetic p-distances between haplotypes based on 381 nucleotides of the 

mitochondrial cytochrome oxidase I region of experimental samples of Fasciola hepatica and 

Fasciola gigantica. Hap=haplotype. 

    1 5 7 3 2 4 6 8 

F. hepatica Hap1 

        F. hepatica Hap5 0.52 

       F. hepatica Hap7 0.79 0.26 

      F. gigantica Hap3 5.25 5.51 5.25 

     F. gigantica Hap2 5.51 5.77 5.51 0.26 

    F. gigantica Hap4 5.25 5.51 5.25 0.52 0.26 

   F. gigantica Hap6 5.77 6.04 5.77 1.05 0.79 1.05 

  F. gigantica Hap8 5.25 5.51 5.25 0.52 0.26 0.52 0.52 

 F. gigantica Hap9 5.51 5.77 5.51 0.26 0.52 0.79 1.31 0.79 

 

Mean genetic p-distance between F. hepatica and F. gigantica samples based on the COI gene 

(381 nt) = 5.5% 

 

 

 

 

 

 

 

 



CHAPTER 5 

5.0 Discussion 

Classification of trematodes such as Fasciola species has been based on morphological features 

(Prasad et al., 2008). However, reports have shown that it is difficult to distinguish adult 

Fasciola spp using morphological features (Moghaddam et al., 2004). In countries where the two 

species overlap, it is a challenge due to morphological variations between and within species 

(Prasad et al., 2008; Marcilla et al., 2002). Combining diagnostic methods such as molecular and 

morphometrics can help in the accurate species identification of parasites (Hebert et al., 2003).  

Molecular analyses of nuclear ribosomal ITS (Marcilla et al., 2002; Itagaki et al., 2005) and 

mitochondrial ND1and CO1 (Itagaki et al., 2005) sequences have been successfully used to 

discriminate between F. hepatica and F. gigantica in many regions of the world but not southern 

Africa. 

In our study, ITS and CO1 sequences were used to confirm and determine the genetic variation 

of Fasciola isolates from Zimbabwe and selected locations of South Africa. Phylogenetic 

analysis revealed that F. gigantica is the main species present in Zimbabwe. However, F. 

hepatica was found in one cattle sample from Matebeleland north and in one antelope and one 

duiker based on CO1 sequences. Both F. hepatica and F. gigantica were found to be present in 

KwaZulu-Natal (KZN) and Mpumalanga provinces of South Africa. However, F. hepatica was 

more prevalent as it constituted 64% of the South African samples.  

The distribution of Fasciola species is determined by the availability of the snail intermediate 

hosts (Prasad et al., 2008). Lymnaea species are known to be the intermediate hosts of the F. 

gigantica and F. hepatica (Thanh 2012). Fasciola hepatica is common in Europe, America and 

Asia where Lymnaea truncatula act as the main intermediate host (Walker et al., 2008). 

Lymnaea natalensis is found in the tropical and sub-tropical regions of Africa and is the main 

intermediate host of F. gigantica in the continent (Dinnik and Dinnik 1964, Walker et al., 2008). 

Based on slaughterhouse studies and coprological examinations, Vassilev (1999), Pfukenyi 

(2003) and Pfukenyi et al. (2006) showed that F. gigantica is the common species in Zimbabwe 

and results of the present study confirmed this finding. An eland sample was also positive for F. 

gigantica and this confirms previous findings of this species in eland as well as other several 

Comment [u1]: This staetement fits 
more in the Results section than Discussion 
section. 



wildlife species in Zimbabwe (Christe 1966; von Roth and Dalchow1967; Jooste 1987, 1989). 

Fasciola gigantica is prevalent in all provinces of Zimbabwe and this is attributed to the wide 

distribution of L. natalensis which thrives in a variety of conditions (Davies 1982, Chingwena et 

al., 2002; Pfukenyi et al., 2006). The finding of one F. hepatica from one animal from 

Matabeleland North province of Zimbabwe could be attributed to imports of infected cattle, 

particularly bulls from South Africa which is quite common in Zimbabwe. In addition to the 

cattle sample, antelope and duiker Fasciola isolates were also confirmed to be F. hepatica. 

Previously, F. hepatica was documented once in cattle in Zimbabwe (Williams 1914) but the 

finding was reported as a misidentification (Jooste 1989). Hence, further molecular-based studies 

are required to determine the extent of F. hepatica infection in the country.  

The presence of L. natalensis, L. truncatula and L. columella has been reported in South Africa 

(Kock et al., 2003; Kock and Wolmarans 2008). Lymnaea natalensis is the most prevalent 

intermediate host of F. gigantica in South Africa (Kock and Wolmarans 2008). In the present 

study, F. gigantica was found in cattle samples from KwaZulu-Natal (Eshowe) and Mpumalanga 

(Ehlanzeni and Gert Sibande) provinces.  In South Africa and Lesotho, L. truncatula is common 

in low temperature regions (Kock et al., 2003). However, L. columella is more widely spread in 

South Africa compared to L. truncatula (Kock et al., 2003). Even though L. truncatula is the 

intermediate host of F. hepatica in Europe, its role in transmission in South Africa is unknown 

(Kock et al., 2003). Similarly, the role of L. columella in transmission of F. gigantica and F. 

hepatica has not been established in South Africa and Zimbabwe (Kock et al., 2003). Fasciola 

hepatica was the most prevalent species in KwaZulu-Natal (KZN), whilst both species were 

equally present in Mpumalanga province. KwaZulu-Natal borders with Lesotho and L. 

trancatula the known intermediate host for F. hepatica is abundant in the swampy areas of 

Lesotho (Kock et al., 2003). Cool temperatures, wet and humid conditions of KwaZulu-Natal 

may enable rapid reproduction, survival and spread of the snail (Kock et al., 2003) from Lesotho 

once introduced to KwaZulu-Natal. However, Mpumalanga Province is further away from 

Lesotho compared to KwaZulu-Natal. Lymnaea columella which is widespread in South Africa 

(Kock et al., 2003) and resistant to extreme temperatures (Brown 1994), maybe the likely 

intermediate host for F. hepatica, whilst the most prevalent snail L. natalensis is responsible for 

F. gigantica, in Mpumalanga province. Reports of fasciolosis in humans in southern Africa are 

scanty with only one report of infection with F. hepatica in school children of KwaZulu-Natal 



(Schutte et al., 1981). It is likely that both L. truncatula and L. columella are transmitting F. 

hepatica in South Africa (Kock and Wolmarans, 2008). Lymnaea truncatula is also reported to 

be spreading from European countries to other continents and thus, F. hepatica has adapted to 

new environments (Mas-Coma et al., 2005). However, lack of data on the presence and 

confirmation of F. hepatica in L. truncatula and L. columella in the present study makes it 

difficult to conclude on the role of these snails in the transmission of F. hepatica. Hence, further 

studies are required to determine the host-parasite relationship of these snails and F. hepatica in 

South Africa.   

The present study revealed the presence of both F. gigantica and F. hepatica in Eshowe of KZN 

and Ehlanzeni of Mpumalanga, provinces of South Africa.  In Africa, Fasciola species overlap 

has been reported in Ethiopia (Walker et al., 2008) and Niger (Ali et al., 2008). This poses the 

risk of hybridization and co-infection where both species co-exist. Both species have also been 

reported in Egypt and phenotypic variations of the adult fluke have been identified suggesting 

hybridization of the two species (Periago et al., 2008).   

Phylogenetic analysis revealed more genetic variability with the CO1 sequences than in ITS 

sequences, mean genetic distance between F. hepatica and F. gigantica was 5.5% with CO1 and 

1% with ITS, this is in agreement with previous studies (Le et al., 2007). Fasciola gigantica and 

F. hepatica were distinguished as separate species with ITS according to the phylogenetic 

species concept as they formed monophyletic clades. However, only F. gigantica was 

monophyletic with CO1 whilst F. hepatica was not, as it was present in clades A (F. hepatica 

only) and B (F. hepatica and Fasciola species). Fasciola hepatica in clade B, are probably 

misnamed and may be hybrid species. The less variable ITS sequences identified one main 

haplotype (haplotype 1) for F. gigantica samples in both Zimbabwe and South Africa. Haplotype 

1 is also represented among the Genbank samples from Iran, Burkina Faso and Niger. However, 

there was slight species variation of F. gigantica amongst the Zimbabwe samples. Guruve 7 and 

Chimanimani 69 isolates differed by one mutation from the rest of the Zimbabwean samples, and 

represent two novel F. gigantica ITS haplotypes. All F. hepatica samples from South Africa 

were identical based on ITS sequences (haplotype 2). Haploytpe 2 is also represented among the 

Genbank samples from Niger and Spain.  



Analysis of the more variable COI region, revealed a greater number of experimental haplotypes 

of both F. gigantica and F. hepatica.  In the case of F. gigantica, all experimental haplotypes (2, 

3, 4, 6, 8, and 9) were novel, and not represented on the NCBI Genbank. Haplotype 2, which 

comprised most isolates, was separated from haplotypes 8 (Muzarabani 17 isolate) and 4 (eland 

12) by 1 mutational step. Fasciola gigantica from Eshowe (KZN) formed part of the most 

common haplotype (haplotype 2), along with most F. gigantica samples from Zimbabwe, to 

which it is genetically identical. It is possible that this genetic form of F. gigantica shares the 

same intermediate host in both South Africa and Zimbabwe, and that it is the widely-distributed 

Lymnaea (Radix) natalensis  (Walker et al., 2008). The experimental haplotypes in the more 

divergent COI dataset differed from each other by between one and 5 mutational steps, and were 

four mutational steps distant from the closest Genbank haplotype (haplotype 10) represented 

among the Genbank samples from Niger. 

The COI marker showed one mutational difference between F. hepatica haplotype 5 from KZN, 

South Africa and haplotype 7 from Matebeleland north, Zimbabwe. Fasciola hepatica found in 

antelope 1 and duiker 8 from Zimbabwe is genetically identical to the Eshowe 2 and PMB 1 

samples from South Africa. This similarity between the Zimbabwe wildlife and South Africa 

cattle F. hepatica isolates is difficult to explain.     

The present study is the first to confirm the presence of F. gigantica in cattle in Zimbabwe and 

both F. gigantica and F. hepatica in KZN and Mpumalanga provinces of South Africa using a 

genetic approach.  It has also demonstrated F. hepatica as the most prevalent species in the 

localities sampled in KwaZulu-Natal. In addition, it is the first to confirm F. gigantica and F. 

hepatica in wildlife samples (eland, antelope and duiker) from Zimbabwe.   

The genetic characterization and population genetic variability of Fasciola species in South 

Africa and Zimbabwe is important as it aids in disease surveillance and control of the parasite in 

the studied areas (Farjallah et al., 2009). Currently there are no reports on the economic losses 

due to fasciolosis in South Africa (Kock et al., 2003). In Zimbabwe losses due to mortalities, 

poor carcass quality, liver trimming and condemnations have been reported (Chambers 1987; 

Vassilev and Jooste 1991; Pfukenyi and Mukaratirwa 2004). Knowledge of losses due to 

fasciolosis creates an awareness of the importance of the parasites let alone its public health 

importance as zoonoses in African countries (Kock et al., 2003; Pfukenyi et al., 2006). The high 



prevalence of Fasciola species in cattle in the studied areas also poses risk of human infections 

as these ruminants are reservoirs of infection. Zoonotic fasciolosis is known to be rare in Africa 

(Kock and Wolmarans, 2008) however; this could be as a result of underreporting which has 

been noted in countries such as Egypt and Ethiopia (Kock and Wolmarans, 2008).  

Further studies are necessary to determine the prevalence of Fasciola species in other provinces 

of South Africa and to determine the actual snail intermediate host involved in the transmission 

F. hepatica in KZN and Mpumalanga provinces of South Africa. There is also need to explore 

the economic losses associated with the parasite in South Africa as well as to determine whether 

genetic variation in the species affects control of the parasite.  
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