
0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 1

Speculative Barriers with Transactional Memory
Manuel Pedrero, Ricardo Quislant, Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata

Abstract—Transactional Memory (TM) is a synchronization model for parallel programming which provides optimistic concurrency
control. Transactions can run in parallel and are only serialized in case of conflict. In this work we use hardware TM (HTM) to implement
an optimistic speculative barrier (SB) to replace the lock-based solution. SBs leverage HTM support to elide barriers speculatively.
When a thread reaches an SB, a new SB transaction is started, keeping the updates private to the thread, and letting the HTM system
detect potential conflicts. Once the last thread reaches the corresponding SB, the speculative threads can commit their changes.
The main contributions of this work are: an API for SBs implemented with HTM extensions; a procedure to check the speculation state
in between barriers to enable SBs with non-transactional codes; a HTM SB-aware conflict resolution enhancement where SB
transactions stall on a conflict with a standard transaction; and a set of SB use guidelines derived from our experience on using SBs in
a variety of applications. We evaluated our proposals in two different architectures with a full-system simulator and an IBM Power8
server. Results show an overall performance improvement of SBs over traditional barriers.

Index Terms—Speculative Barriers, Hardware Transactional Memory, Shared-Memory Parallelism, IBM Power8, GEMS.

F

1 INTRODUCTION

T RANSACTIONAL Memory (TM) [1], [2], [3] has emerged
as an alternative to locking techniques to simplify par-

allel programming. A transaction is a section of code that is
guaranteed to be executed atomically and in isolation. The
TM system executes transactions speculatively in parallel
while keeping track of memory accesses to detect and re-
solve conflicts. Thus, TM is considered to provide optimistic
concurrency control as opposed to the pessimistic lock-
based way of dealing with critical sections, which always
serializes the execution. Many TM proposals have arisen in
the last two decades, including both software (STM) [4], [5]
and hardware designs (HTM) [6], [7], [8]. In the last years,
major manufacturers of commercial processors have added
HTM extensions to their architectures [9], [10], [11]. Such
extensions are called best-effort HTMs because they do not
offer finalization guarantees for transactions.

In this work we use such commercial HTM extensions
to implement an optimistic speculative barrier (SB) to replace
the pessimistic lock-based traditional solution. SBs leverage
HTM support to allow threads to elide barriers by exe-
cuting speculatively. When a thread reaches an SB, a new
transaction (SB transaction) is started, which keeps the up-
dates private to the thread while the HTM system monitors
memory accesses for potential conflicts. Once the last thread
reaches the corresponding SB, the speculative threads can
commit their changes. SBs implement a partial order among
transactions before the barrier and SB transactions, where
the latter cannot commit until the former have finished.

Barrier-intensive applications [12] may exhibit poor
speedups due to (i) load imbalance, where faster threads
have to wait to slower ones; and (ii) barrier communication
latency, specially on multi-chip processors. SBs are devised
for the faster threads to speculate across the barrier instead
of idling. Thus, load imbalance can be harnessed to hide the

• All authors are with the Department of Computer Architecture, Univer-
sity of Malaga, Spain, 29071.
E-mail: {mpedrero,quislant,eladio,zapata,oplata}@uma.es

Manuscript received November 22, 2019.

SBtime working idle Barrier

th1

th1
th2

th2

Fig. 1. Standard barriers (top) versus SBs (bottom).

barrier latency and getting ahead with work. Fig. 1 shows
a scenario where such an imbalance causes the standard
barriers to lag (top) while SBs (bottom) perform better even
though the faster thread has to wait at the last barrier. Fig. 1
assumes no memory conflicts between threads.

One hard requirement for our implementation is HTM
support for escape actions [13]. Escape actions allow non-
transactional accesses executed inside transactions. We use
them to enable communication among SB transactions with-
out triggering aborts. SB control variables must be accessed
inside transactions and a conflict might be detected if a
transaction reads a variable that was updated by another
transaction, unless such accesses are escaped.

This work extends a preliminary study on optimistic
barriers [14] with the following contributions:

• We provide an application programming interface (API)
for SBs implemented with commercial HTM exten-
sions. The API includes begin/commit transaction
wrappers as well as a barrier substitute.

• We add a procedure for last barriers which ends
speculation of previous barriers and does not start
new speculation.

• We introduce a check speculation mechanism to sup-
port the use of SBs with non-transactional codes. This
mechanism checks the speculation state in between
barriers and can also be used with transactional
codes to increment the SB checkpoints.

• We propose a new HTM SB-aware conflict resolution
enhancement where the SB transaction stalls on a con-
flict with a standard transaction, to be used instead

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/389489475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 2

of the commonly used requester-wins/loses conflict
resolution policy.

• We outline some SB use guidelines derived from our
experience on using SBs in a variety of barrier-
intensive applications.

We evaluated our proposals in two different architec-
tures with support for HTM and escape actions: a simulator
with GEMS [15] and an IBM Power8 server (Intel’s HTM
system does not provide escape actions). Results show an
overall performance improvement of SBs over traditional
barriers. The gains increase with the number of threads,
specially in the 2-socket Power8 machine when there is
inter-socket communication.

1.1 Background on Hardware Transactional Memory
Commercial HTM extensions [10], [11] implement a TM
system based on caches and the coherence protocol, such
as the seminal approach of Herlihy and Moss [1]. Core’s
private L1 cache is used to keep transactional updates, while
L2 and L3 caches are used to keep track of transactionally
read locations. Transactional read/write bits are provided
with each cache block so that the coherence protocol can
check for conflicts among transactions. On a transactional
read request, the coherence protocol checks these trans-
actional bits. If the write bit was set by another transac-
tion, the protocol sends an abort command either to the
requester (requester-loses conflict resolution policy) or to
the requested thread (requester-wins conflict resolution pol-
icy). Requests from non-transactional code to transactional
blocks favor non-transactional code enforcing the strong-
isolation property [16].

On the Instruction Set Architecture (ISA) level, HTM
extensions provide a concise set of instructions to manage
transactions: xBegin(ret) marks the beginning of a transac-
tion and may receive a label, ret, that points to the line of
code we want the thread to resume on abort. From xBegin()
onwards, the HTM system starts the bookkeeping of mem-
ory accesses in the cache hierarchy; xCommit() marks the end
of a transaction, resets transactional bits and releases private
updates. An abort instruction explicitly aborts a transaction
from within. HTMs with support for escape actions add the
pair escapeBegin() and escapeEnd() to temporally disable TM
tracking in the code enclosed between them.

This HTM implementation results in a best-effort sys-
tem where a transaction aborts whenever it runs out of
bookkeeping hardware, risking live-lock. To ensure forward
progress the user must implement a fallback mechanism
which often consists of the transaction body protected by
a global lock. Fig. 2 shows a simplified API for transactions
that implements a fallback mechanism. The begin/commit
instructions are replaced with the TX START/TX STOP wrap-
pers which check a thread-local retry counter (line 2) to
choose whether to execute the fallback or the transaction.
First, the counter is incremented, line 4, and the transaction
begins, line 8. If the transaction aborts, the execution is
resumed in line 4 and the retry counter is incremented again.
Once the number of retries is greater than MAX RETRIES,
line 5, the global fallback lock is taken and the execution
is serialized, line 6. The transaction must subscribe to the
global lock by reading it, so that it aborts when other thread

1: global fallbackLock← 0 . Global lock for fallback execution
2: thread local retries← 0 . Retry counter for transactions
3: procedure TX START(retries)
4: retries← retries + 1
5: if (retries > MAX RETRIES) then
6: acquire(fallbackLock) . Fallback begin
7: else
8: xBegin(4) . Go to line 4 on abort
9: end if

10: end procedure
11: procedure TX STOP(retries)
12: if (retries ≤ MAX RETRIES) then
13: xCommit() . Transaction end
14: else
15: release(fallbackLock) . Fallback end
16: end if
17: retries← 0 . Reset retry counter
18: end procedure

Fig. 2. Simplified API implementation for hardware transactions

1: chunk← N/#TH
2: start← tid*chunk
3: stop← MIN(N, start + chunk)
4: for (t← 0; t ≤ N-2; t← t+1) do
5: for (k← start; k < stop; k← k+1) do
6: → TX START(tx) . Not necessary when using check spec
7: if (k < (N-t-1)) then
8: W[t+k+1]← W[t+k+1] + B[k][t+k+1]*W[t]
9: end if

10: → TX STOP(tx) or CHECK SPEC(tx) . Speculation checkpoint
11: end for
12: BARRIER()→ SPEC BARRIER(tx) . Replace the barrier with an SB
13: end for . to enable speculation
14: → LAST BARRIER(tx) . Non-speculative barrier

Fig. 3. Parallel Livermore loop 6 (Recurrence). Right arrows point to the
changes needed for SB utilization (see Section 2)

runs the fallback code. Other optimizations [17] can be
approached. At the end of the critical section the counter
is checked again to see whether it is the transaction or the
fallback executing, line 12. In the first case the transaction is
committed, line 13. Otherwise, the fallback lock is released,
line 15. Finally, the retry counter is reset in line 17.

1.2 Barriers: A motivational case study

As mentioned in the introduction, barrier-intensive appli-
cation performance can be hindered by load imbalance
and synchronization penalties [12], [18]. Next, we motivate
speculative barriers with a case study in linear recurrence.

Recurrence is the sixth kernel of the Livermore Loops
(LFK) [19]. It implements a general recurrence equation over
an array W of length N. The code for Recurrence, in Fig. 3,
first distributes the computation among threads in lines 1 to
3. The inner loop in lines 5 to 11 updates a single element
of W at a time by accessing preceding elements of W and
matrix B. This creates a recurrence due to read-after-write
(RAW) patterns in W, so the barrier in line 12 is mandatory
at the end of each iteration of the outer loop (lines 4 to 13).

Fig. 4 shows the execution of the first two iterations of
the outer loop with N=8 and #TH=2. The thread on the left,
th0, updates elements 1 to 4 of W while th1 updates elements
5 to 7. After the barrier, th0 updates elements 2 to 5, with a
RAW dependence in 5, and th1 updates elements 6 to 7, with
a RAW dependence in element 1 which is used for the W
updates in line 8. Cross-barrier dependencies in Recurrence

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 3

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

th0
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

th1

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

BARRIER
W W BB

Fig. 4. Cross-barrier dependencies for Recurrence. Green squares rep-
resent reads, red squares represent writes, dashed arrows represent
cross-barrier dependencies.

are low, but the barrier is needed to ensure correctness, with
the consequent communication latency and load imbalance
penalties. This cross-barrier dependency pattern might lead
to various scenarios where SBs can extract performance:

• th0 finishes the first iteration of the outer loop before
th1 and crosses the barrier speculatively. By the time
th0 gets to compute element 5 of W in the second
iteration, th1 already computed element 5 and th0
can safely read it without risking abort1. The fact that
the element holding the dependency is the first to be
computed by th1 in the first iteration and the last to
be computed by th0 in the second iteration makes
this scenario more feasible.

• th1 finishes the first iteration of the outer loop before
th0 and crosses the barrier speculatively. When th1
computes element 6 of W in the second iteration,
th0 already computed element 1 and th1 can safely
consume it. The first element to be computed by th1
in the second iteration depends on the first element
to be computed by th0 in the first iteration. It is less
distance than that of the first scenario but can be
greater depending on the chunk size (line 1, Fig. 3).

We evaluated our proposals with seven barrier-intensive
benchmarks. Five present dependency patterns and load
imbalance similar to Recurrence. The rest lacks these char-
acteristics, with the purpose of checking SBs overhead. See
Section 3.2 and Appendix A for more information.

2 SPECULATIVE BARRIERS

SBs [14] are intended to be used in transactional codes where
transactions can be found between barriers. In outline,
an SB works as follows. A thread elides the barrier and
starts a transaction for after-barrier speculation. We call this
transaction the SB transaction. If a transaction is found after
the barrier, the xBegin() instruction is not executed and its
xCommit() is replaced with a check to end the SB transaction.
The speculation will continue until (i) a conflict is detected,
(ii) the speculation limit is reached or (iii) all other threads

1. If th0 computes element 5 in the second iteration before th1 does
in the first iteration, the speculative after-barrier transaction opened by
th0 will be aborted by the th1 access to element 5 due to strong isolation.

crossed the barrier. Case (i) will abort the SB transaction,
discard speculative work, and retry the SB transaction. In
(ii), the SB transaction will wait for the other threads to cross
the barrier. Thus, speculation is limited as best-effort HTM
systems have limited resources. In (iii), the SB transaction
will commit since the speculation was successful.

2.1 API implementation

Fig. 5 provides a detailed API implementation for SBs. We
define two global variables: sbBarrier, in line 1, to keep count
of the number of threads that crossed the SB; and sbOrder,
in line 2, which maintains the global order of the current
non-speculative barrier and is used to implement the partial
order restrictions among transactions.

Each thread has a local transaction descriptor, lines 3 to 9,
to implement the SB functionality. It includes a local order
variable (line 4) that is incremented each time the thread
reaches an SB. This way, a thread is considered speculative
if its local order is ahead of sbOrder. A spec flag (line 6)
represents the speculative state of the corresponding thread.
sbOrder is incremented once the last thread reaches an SB
(line 68), enabling the speculative threads to commit.

TX START, line 11: this procedure replaces the HTM
primitive to begin a transaction (xBegin()). It first checks
if the thread is speculating, i.e. the thread elided a barrier
and started an SB transaction, in which case nothing is
done since it is already executing a transaction. If not, the
standard procedure to begin a transaction is executed (see
Fig. 2). An eager subscription fallback mechanism [17] is
engaged after a MAX RETRIES number of retries.

TX STOP, line 21: this procedure replaces the HTM prim-
itive to commit a transaction (xCommit()). In this case,
we consider two different situations. If the corresponding
thread is not speculating (lines 22 to 30), the standard
procedure to commit a transaction is executed (see Fig. 2)
and the corresponding variables of the descriptor are reset.
In case of speculation, we can either end the speculation
or continue. In the first case, we check if the orders match
(line 32). Note that the order check must be escaped (line 31).
Otherwise the SB transaction would be aborted by a sbOrder
update. In the second case, the SB transaction continues
unless the maximum speculation level is reached, in which
case the SB transaction is blocked until the orders match or
the transaction is aborted.

SPEC BARRIER, line 54: this procedure is intended as a
substitute for standard barriers. Any non-speculative thread
that reaches an SB increments its local order (line 65). The last
thread reaching the SB also increments sbOrder to generate
a new global order (line 68). If the thread is not the last,
it would be blocked in a traditional barrier, but here it
elides the barrier and begins a new SB transaction instead
(line 83). A subsequent abort of such transaction will return
the execution to line 70, where the thread checks whether
the speculation must end (lines 71 to 74) or be adjusted
otherwise (lines 76 to 81). The last thread does not initiate
an SB transaction since there is no need to speculate.

Speculation in our proposal is limited to one SB per
thread as resources are limited in a best-effort HTM system.
Hence, any speculative thread that reaches a subsequent
SB waits until its local order matches sbOrder. This is done

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 4

1: global sbBarrier← #TH . Barrier counter
2: global sbOrder← 1 . Global order for barriers
3: thread local tx { . Transaction descriptor
4: order← 1 . Local order for the transaction
5: retries← 0 . Retry count for the transaction
6: spec← 0 . Flag to signal SB mode
7: specMax← MAX SPEC . Maximum spec level
8: specLevel← MAX SPEC . Current spec level
9: }

10:
11: procedure TX START(tx)
12: if (tx.spec = 0) then . Not executing an SB
13: tx.retries← tx.retries + 1
14: if (tx.retries > MAX RETRIES) then
15: fallbackBegin() . Acquire fallback lock
16: else
17: xBegin(13) . Go to line 13 on abort
18: end if
19: end if . If the thread is in SB mode, do nothing
20: end procedure
21: procedure TX STOP(tx)
22: if (tx.spec = 0) then . Not in SB mode
23: if (tx.retries ≤ MAX RETRIES) then
24: xCommit()
25: else
26: fallbackEnd() . Release fallback lock
27: end if
28: tx.retries← 0 . Reset tx descriptor
29: tx.specLevel← tx.specMax
30: else . In SB mode
31: escapeBegin() . Suspend HTM system tracking
32: if (tx.order ≤ sbOrder) then
33: escapeEnd() . Resume HTM system tracking
34: xCommit()
35: tx.retries← 0 . Reset tx descriptor
36: tx.specLevel← tx.specMax
37: tx.spec← 0
38: else
39: escapeEnd() . Resume HTM system tracking
40: tx.specLevel← tx.specLevel - 1;
41: if (tx.specLevel = 0) then
42: escapeBegin() . Suspend HTM system tracking
43: while (tx.order > sbOrder) do
44: end while . Busy waiting
45: escapeEnd() . Resume HTM system tracking
46: xCommit()
47: tx.retries← 0 . Reset tx descriptor
48: tx.specLevel← tx.specMax
49: tx.spec← 0
50: end if
51: end if
52: end if
53: end procedure

54: procedure SPEC BARRIER(tx)
55: if (tx.spec = 1) then . Executing an SB
56: escapeBegin() . Suspend HTM system tracking
57: while (tx.order > sbOrder) do
58: end while . Busy waiting
59: escapeEnd() . Resume HTM system tracking
60: xCommit()
61: tx.retries← 0 . Reset tx descriptor
62: tx.specLevel← tx.specMax
63: tx.spec← 0
64: end if
65: tx.order← tx.order + 1;
66: if ((sbBarrier← sbBarrier - 1) = 0) then . Atomic
67: sbBarrier← #TH
68: sbOrder← sbOrder + 1 . Atomic
69: else
70: tx.retries← tx.retries + 1
71: if (tx.order ≤ sbOrder) then . Do not begin an SB
72: tx.retries← 0 . Reset tx descriptor
73: tx.specLevel← tx.specMax
74: tx.spec← 0
75: else
76: if (tx.retries > MAX RETRIES) then
77: if tx.specMax > 1 then
78: tx.specMax← tx.specMax - 1
79: end if
80: tx.specLevel← tx.specMax
81: end if
82: tx.spec← 1
83: xBegin(70) . Go to line 70 on abort
84: end if
85: end if
86: end procedure
87: procedure LAST BARRIER(tx)
88: if (tx.spec = 1) then . Executing an SB
89: escapeBegin() . Suspend HTM system tracking
90: while (tx.order > sbOrder) do
91: end while . Busy waiting
92: escapeEnd() . Resume HTM system tracking
93: xCommit()
94: tx.retries← 0 . Reset tx descriptor
95: tx.specLevel← tx.specMax
96: tx.spec← 0
97: end if
98: tx.order← tx.order + 1;
99: if ((sbBarrier← sbBarrier - 1) = 0) then . Atomic
100: sbBarrier← #TH
101: sbOrder← sbOrder + 1 . Atomic
102: else
103: while (tx.order > sbOrder) do
104: end while . Busy waiting
105: end if
106: end procedure

Fig. 5. API implementation for Speculative Barriers (SBs)

by an escaped busy-waiting to avoid the abort of the SB
transaction due to the access to sbOrder (lines 56 to 59). Once
the orders match, the SB transaction is committed and the
descriptor is reset.

LAST BARRIER, line 87: this procedure is similar to
SPEC BARRIER, but no speculation is allowed afterwards.
This barrier should be used if we are certain that there is no
possibility of speculation after the barrier.
Scenario: Fig. 6 shows a scenario using SBs. Dotted lines
represent each phase of the computation. First, th1 and th2
execute transactions (tx #, with # being the local order of the
transaction) before the first barrier. The spec flag is set to 0 so
transactions begin and commit normally. Then, th1 reaches
an SB, increments its local order, decrements sbBarrier and
finds it is not the last. Consequently, th1 begins an SB
transaction and continues its execution. By the time the

tx 1

tx 1 tx 1

tx 2 tx 2

tx 2

sbOrder 2

tx 3 th1

SB tx

tx 3 th2

SPEC_BARRIERtime LAST_BARRIER

tx 2

tx 3

conflict

1

Fig. 6. SB scenario.

second thread reaches the barrier, th1 has already executed
one transaction, which is not actually opened due to the
SB transaction, hence the dotted rectangle. However, th1
cannot commit the SB transaction until the end of the second
transaction because the global order check in the commit
of the first one was performed too early (its local order
was greater than the global order). Next, th2 executes one

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 5

transaction and elides another barrier by opening an SB
transaction. The SB transaction is aborted and retried due
to a conflict with a standard transaction from th1. We can
see how threads cross the SBs without waiting each other.

2.2 SB-aware conflict resolution enhancement

A conflict between a standard transaction and an SB transac-
tion is shown in the scenario of Fig. 6. In this example the SB
transaction in th2 is aborted by the standard transaction in
th1, but the conflict could have been resolved the other way
around. If so, an SB transaction would delay other threads
crossing the barrier, and the SB transaction commit would
be delayed consequently. This situation may cause a per-
formance loss in systems with a traditional (requester-wins
or requester-loses) conflict resolution policy. For that reason
we propose an SB-aware conflict resolution enhancement
so that the SB transaction always stalls on such conflicts.
In fact, our SB-stalls policy uses the requester-wins policy
among standard transactions, and among SB transactions,
but switches to SB-stalls for conflicts involving SB transac-
tions and standard ones.

To implement the SB-stalls policy we need a new SB-tx
bit per hardware context to flag whether the ongoing trans-
action is an SB transaction. A new instruction is also needed
to set the SB-tx bit at the beginning of an SB transaction.
The bit is implicitly reset in the commit. Besides, the SB-tx
bit must be attached to coherence request messages for the
local cache controller to have the information of the remote
core to resolve the conflict, since the HTM conflict manager
is implemented in cache controllers. Hence, the cache co-
herence protocol must be modified to manage NACKing
(negative acknowledgement) depending on the SB-tx bit.

Table 1 shows the changes to be made to the L1 cache
coherence protocol of a chip multiprocessor (CMP) high-
lighted in gray. We consider a baseline system such as the
one described in Section 3.1. In summary, each tile of the
CMP has a private L1 cache and one bank of a shared L2
cache. Cache controllers feature request/response queues
to communicate through the network interconnect, and a
mandatory queue which holds the requests from the CPU.
L1 caches hold a pair of read and write transactional bits
per block, R-tx and W-tx. The cache coherence protocol is
MESI with a directory holding a full bit vector of sharers.
Consequently, we can have block invalidation (INV) mes-
sages coming from the directory, due to block evictions and
the inclusion property, for instance. As we can see in the
first column of the table, if an INV message is received
for a transactional block, (R-tx∨W-tx), the transaction is
aborted whenever (SB-tx∨¬remote(SB-tx)) is fulfilled, i.e.
either we are in SB mode or the remote requesting core
is not. In this manner, requester-wins is always enforced
except for the case in the second column. That is, if we are
not in SB mode and we receive an INV message from a
remote core in SB mode, the remote core is NACKed. When
the remote controller receives the NACK (fifth column) its
mandatory queue is recycled, causing the conflicting request
to be reissued until either the transaction commits or the
remote transaction is aborted. Lastly, GetShared (GETS) and
GetModified (GETM) messages from other cores can be
forwarded to the controller. GETS messages to S blocks are

1: procedure CHECK SPEC(tx)
2: if (tx.spec = 1) then . In SB mode
3: escapeBegin() . Suspend HTM system tracking
4: if (tx.order ≤ sbOrder) then
5: escapeEnd() . Resume HTM system tracking
6: xCommit()
7: tx.retries← 0 . Reset tx descriptor
8: tx.specLevel← tx.specMax
9: tx.spec← 0

10: else
11: escapeEnd() . Resume HTM system tracking
12: tx.specLevel← tx.specLevel - 1;
13: if (tx.specLevel = 0) then
14: escapeBegin() . Suspend HTM system tracking
15: while (tx.order > sbOrder) do
16: end while . Busy waiting
17: escapeEnd() . Resume HTM system tracking
18: xCommit()
19: tx.retries← 0 . Reset tx descriptor
20: tx.specLevel← tx.specMax
21: tx.spec← 0
22: end if
23: end if
24: end if
25: end procedure

Fig. 7. Procedure to check the SB transaction state.

served by the L2 controller, but GETS and GETM requests
to E/M blocks are forwarded to L1 caches to check for
conflicts. For such forwarded requests the modifications to
the protocol are the same as for the INV requests. We have
adopted the LogTM [8] requester-stalls conflict resolution
policy for our SB-stalls protocol.

2.3 Speculative barriers and non-transactional codes
The proposed API can be used as is with non-transactional
codes. However, SB transactions might end up being too
large for a HTM system to deal with if barriers are far away
from each other. For example, Recurrence without standard
transactions would end up with an SB transaction of size
proportional to chunk (see Fig. 3). With the parameters from
Table 2 and 2 threads, the size of the SB transaction would be
up to 65K cache lines, which is huge for a commercial HTM
system, resulting in capacity aborts. That is, not a single SB
transaction would ever commit. Whereas in the presence of
standard transactions between barriers we use the TX STOP
procedure to check the global order and potentially commit
the SB transaction, in the absence of them we do not have
such an intermediate checkpoint. Hence, we propose the
CHECK SPEC procedure.

Fig. 7 outlines the procedure, which is in essence the
else clause of TX STOP. Line 2 checks whether the thread
is executing an SB transaction, and we try to commit the
SB transaction if so. To this end, we check whether its local
order is less than or equal to the global order (sbOrder) and
commit the SB transaction. If not, the SB transaction goes on.
Note that we keep the specLevel check in line 13 regardless
of the absence of transactions between barriers, so we can
control the length of the speculation. The CHECK SPEC
procedure can be also used in codes with transactions in
case the code in between transactions is too long.

2.4 Speculative barrier use guidelines
Appendix A outlines the code of the benchmarks we used
for evaluation. In the majority of the benchmarks the use

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 6

TABLE 1
L1 cache coherence protocol modifications to implement the SB-stalls policy.

St
at

e

Events
INV INV FWD GET FWD GET

(R-tx∨W-tx)∧ (R-tx∨W-tx)∧ (R-tx∨W-tx)∧ (R-tx∨W-tx)∧ NACK
(SB-tx∨¬remote(SB-tx)1) (¬SB-tx∧remote(SB-tx)) (SB-tx∨¬remote(SB-tx)) (¬SB-tx∧remote(SB-tx))

I – – – – z2
S Abort /I NACK – – z
E Abort /I NACK Abort /I NACK –
M Abort /I NACK Abort /I NACK –
1 remote(SB-tx): gets the SB-tx bit from the requester, which is in the request message.
2 z: recycles mandatory queue.

is as straightforward as replacing the barriers by SBs (see
Fig. 3). If the code has transactions, the wrappers in Fig. 2
must be replaced by the ones in our API (Fig. 5). If not,
we should place a CHECK SPEC to prevent large SB transac-
tions. Next, we summarize the steps to follow for easy and
efficient SB API application.

We should examine one barrier at a time and do not
replace the barrier if: (i) The code before the barrier allo-
cates memory that is used after the barrier. Accessing non-
allocated memory in SB mode may risk segmentation fault
or transaction abort, depending on the HTM system; (ii)
The code after the barrier executes instructions that always
abort, (e.g. system calls or interrupts). If an SB is placed
in this case we only risk performance penalties, if any; (iii)
There are easy to detect dependencies which would prevent
the speculation to succeed.

We should replace the barrier with an SB if: (i) Depen-
dencies are not evident and the barrier is placed just in
case; (ii) Dependencies vary depending on the data, e.g.
algorithms with dependencies only in the boundaries of
data partitions.

In case of barriers being far away each other,
CHECK SPEC calls can be placed to add more checkpoints.
Fewer checkpoints will lead to larger SB transactions that
can increase aborts due to capacity and cross-barrier depen-
dencies. More checkpoints will produce smaller SB transac-
tions reducing the speculation window. Our proposal uses
specLevel and specMax (see Fig. 5) to decrease the speculation
level at run time (in terms of number of checkpoints) if an SB
transaction runs out of retries. Other approaches to release
the user from the task of placing CHECK SPECs could be ex-
plored (e.g. the compiler could implicitly place checkpoints
based on static transactional information at compile time or
based on dynamic data –hardware counters measuring the
transactions size, for example– at run time).

3 EXPERIMENTAL EVALUATION

3.1 Targeted architectures

RubyHTM

We modeled a best-effort HTM system with the goal of im-
plementing the conflict resolution enhancement described in
Section 2.2. We used Simics [20], a full system simulator that
can be augmented with third-party profiling and modeling
modules, such as Wisconsin GEMS’s Ruby [15]. We modi-
fied Ruby, which is a multiprocessor memory system timing
simulator. We installed an unmodified instance of Solaris 10
in an image of a SPARC CMP for Simics.

Our system, called RubyHTM, has 64 in-order single-
issue cores with a private 64KiB 8-way L1D cache, where
each L1 cache block has a pair of transactional read/write
bits (R-tx and W-tx) which can be flash-cleared on transac-
tion commit/abort; a unified, shared L2 cache divided into
64 banks of 1MiB of capacity, 16 ways and 64B blocks; a
full bit vector of sharers directory; and a packet-switched
crossbar interconnect. The HTM system baseline conflict
resolution policy is requester-wins and we implemented our
enhanced conflict resolution policy as well. Strong isola-
tion [16] is enforced. The system supports escape actions.

IBM Power8
The Power8 processor includes best-effort HTM exten-
sions [11] providing strong isolation, lazy version manage-
ment, eager conflict detection with cache-line granularity,
and a mixed conflict resolution policy with a requester-
loses scheme for transactional loads and a requester-wins
scheme for transactional updates. The design allows up
to 8KB of transactional accesses per core. Escape actions
are supported by a suspended-mode which can be enabled
by using tsuspend/tresume instructions to delimit a non-
transactional section inside a transaction. Experiments were
carried out in a S822LC-8335 server with 2-socket, 10-core
processors. Each core can execute up to 8 simultaneous
threads (SMT) resulting in a total of 160 execution threads.
Each core have the following characteristics: a 64 KiB L1
private write-through data cache; a 512 KiB L2 private data
cache; 8 MiB of a semi-private L3 cache.

3.2 Benchmarks
We evaluated our proposals with seven barrier-intensive
benchmarks. Table 2 summarizes their parameters and char-
acteristics. The Barrier microbenchmark [21] represents a
best-case scenario with no cross-barrier dependencies. Half
of the threads work in each iteration creating a load imbal-
ance. It was used to check the feasibility of the proposed
SB API. Cholesky and Recurrence correspond with the
second and sixth kernels of Livermore Loops (LFK) [19].
These kernels exploit fine-grain data parallelism with a
high frequency of barriers [12]. Recurrence, introduced in
Section 1.2, exhibits a dependency pattern and load imbal-
ance suitable for SBs. Cholesky, based on the incomplete
Cholesky factorization implementation in [12], has similar
characteristics. We modified both Recurrence and Cholesky
to add a resizable computation chunk, configurable by
parameter C, to control transaction size. The number of
barriers in these benchmarks depends directly on parameter

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 7

TABLE 2
Benchmark Parameters and Transaction and Speculative Commit Rate for 16 threads.

Power 8 TCR (%)/SCR (%) RubyHTM TCR (%)/SCR (%)
Parameters #Barr |tx| (M/A) TM SB CS Parameters TM SB SB-stalls CS

Ba
rr N100K L1K 100K 5/4.5 99.9/- 99.9/99.9 -/99.9 - - - - -

N100K L10K 100K 5/4.5 99.9/- 99.7/99.9 -/99.9 - - - - -

R
ec

ur
re

n N20K C1 20K 9/6.5 98.6/- 99.3/6.3 -/34.6 N2K C1 98.8/- 98.8/48.9 98.8/47.9 -/50.7
N20K C5 20K 16/8.9 95.5/- 98.6/8.3 -/33.1 N2K C5 88.0/- 86.6/21.6 87.7/31.7 -/49.0
N20K C10 20K 21/11.8 92.2/- 97.9/8.4 -/26.7 N2K C10 81.9/- 79.5/16.7 82.0/26.4 -/47.9
N20K C15 20K 26/14.8 88.6/- 96.9/7.9 -/29.2 N2K C15 79.8/- 76.4/14.5 80.4/22.9 -/45.0

C
ho

le
sk

y N100M C1 27 8/7.2 100/- 100/38.0 -/60.9 N100K C1 99.9/- 100.0/86.1 100/81.4 -/84.4
N100M C5 27 10/8.5 99.9/- 100/43.8 -/58.8 N100K C5 98.9/- 99.5/56.2 99.5/64.1 -/76.3
N100M C10 27 12/10 99.9/- 100/45.1 -/59.3 N100K C10 97.7/- 98.8/51.9 98.8/58.2 -/74.9
N100M C15 27 12/11.6 99.9/- 100/45.7 -/57.1 N100K C15 96.5/- 98.4/45.1 98.9/54.8 -/74.4

D
G

C
A

N2K A2 T4K 4K 20/18.1 99.8/- 99.9/99.6 -/99 N500 A2 T500 85.1/- 84.2/2.7 91.2/5.1 -/18.2
N8K A2 T4K 4K 20/18.1 99.9/- 99.9/99.4 -/99.7 N1K A2 T500 91.8/- 90.7/2.1 95.4/2.9 -/12.2
N2K A8 T4K 4K 27/25.1 94.2/- 93.1/42.1 -/48.6 N500 A8 T500 77.1/- 74.7/2.7 77.6/6.8 -/6.4
N8K A8 T4K 4K 26/24.6 98.1/- 97.8/29.6 -/40.3 N1K A8 T500 86.3/- 84.0/1.1 86.5/5.8 -/3.6

St
en Large T100 101 12/11.1 99.9/- 99.9/10.3 -/25.5 Small T50 100/- 100/33.7 100/35.2 -/31.7

Large T800 801 12/11.1 99.9/- 99.9/7.6 -/26.7 Small T100 100/- 100/37.9 100/38.7 -/33.8

H
is

t Large T1K C1 2001 6/5.9 98.9/- 98.9/0.9 -/1.2 Small T20 C1 90.1/- 90.5/41.4 90.5/42.3 -/29.8
Large T1K C5 2001 15/13.2 30.4/- 30.9/0.2 -/0.2 Small T20 C5 3.7/- 3.7/0.4 3.7/0.4 -/12.4

SS
C

A
2 k1 -s14-l9-p9 10 8/8 98.6/- 98.5/3 - k1 -s13-l3-p3 84.7/- 85.2/33.1 85.2/32.3 -

k1 -s20-l3-p3 10 8/8 99.9/- 99.9/0.2 - k1 -s14-l9-p9 91.9/- 91.9/47.1 91.9/45.5 -
k4 -s14-l9-p9 24K 6/6 71.77/- 30.07/0.51 - k4 -s13-l3-p3 33.5/- 23.1/0.09 23.5/0.09 -
k4 -s20-l3-p3 1572K 6/6 62.61/- 30.47/0.05 - k4 -s14-l9-p9 33.6/- 23.1/0.07 23.3/0.08 -

N, being log2(N) for Cholesky. DGCA [22] is a coloring
graph algorithm with the number of nodes given by N and
the node associativity by A. The number of barriers depends
on T, the number of refining iterations of the algorithm.
Stencil and Histogram belong to the Parboil suite [23], being
a Jacobi and a saturating histogram application, respectively.
We modified the OpenMP versions of them to got a pthread
alternative for the kernels where the omp parallel for im-
plicit barrier was replaced by an SB. We added a resizable
chunk (C) to Histogram and computed different number of
iterations (T), grids for Stencil (Large: 521x512x64, Small:
128x32x8) and image sizes for Histogram (Large: 996x1040,
Small: 498x520). SSCA2 [24] is a graph theory application
consisting of 4 kernels from which we used the first and
the fourth ones. Kernel 1 does not exhibit many barriers,
whereas kernel 4 shows plenty since they reside within
a loop. However, the cross-barrier dependencies are very
pronounced in this kernel.

We chose smaller data structure sizes and fewer itera-
tions for RubyHTM due to the slow simulations. For SSCA2,
we used the parameters proposed in [25] with their variants
for simulation and real machines. Appendix A describes the
code of the benchmarks and where we placed the SBs.

The |tx| (M/A) column shows the maximum (M) and av-
erage (A) size of standard transactions measured in accesed
cache blocks. We found that, with these sizes, and consid-
ering bookkeeping limitations on tested HTMs, a value of
MAX SPEC=4 worked well for the benchmarks evaluated.

3.3 Methodology
We obtained the average execution time of 20 executions
of each experiment. More consistent results were obtained
by bounding each thread to a processor to prevent mi-
grations. In the Power8 machine we used up to 128 cores
with threads’ affinity set in a round robin scheme avoiding
SMT when possible. This fact gives rise to three different
scenarios to consider: (i) experiments using 1-8 threads

are executed in a single socket, so the impact of commu-
nication among different cores is reduced. Also, a single
physical core is used per thread, so the thread can use
all the transactional and hardware resources available. (ii)
Experiments with 16 threads are executed in 2 sockets, with
the communication penalty that it implies, but the threads
still use a single physical core per thread. (iii) Experiments
with 32 to 128 threads are executed in 2 sockets with SMT,
sharing transactional and hardware resources and suffering
the inter-socket communication latency.

We used padding to ensure that variables in lines 4
and 5 of Fig. 5 are mapped to separate cache blocks, thus
preventing false sharing conflicts. The counter tx.order is
read in escape action and may self-abort the transaction as
other descriptor variables are written inside the transaction.

Regarding the performance results we considered six
different profiles:

• Unprotected: neither transactions nor barriers were
used, so the results may be incorrect. This profile
represents a performance upper limit.

• Parallel: features standard barriers already present in
the code and neither transactions nor SBs are used.

• CS: similar to Parallel, but barriers are replaced with
SBs, and the CHECK SPEC primitive is used to add
additional checkpoints to the speculation.

• TM: features transactions throughout the code and
standard barriers already present in the benchmarks.

• SB: similar to TM, but barriers are replaced with SBs.
In this case, transactions after the barrier already
provide checkpoints to end the speculation, so the
CHECK SPEC primitive is not used.

• SB-stalls: same as SB, but with the enhanced coher-
ence protocol described in Section 2.2. This profile is
only present in the simulator experiments.

Metrics analyzed include speedup with respect to non-
transactional, sequential execution; transaction commit rate
(TCR), which is the percentage of committed transactions

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 8

1 2 4 8 16 32 64 128
Threads

0.0

0.2

0.4

0.6

0.8

1.0
S

pe
ed

up
Barrier N=100K L=1000

Parallel TM SB CS

1 2 4 8 16 32 64 128
Threads

0.0

0.2

0.4

0.6

0.8

1.0

Barrier N=100K L=10000

Fig. 8. Barrier microbenchmark results using Power8.

with respect to all the transactions initiated, and speculative
commit rate (SCR), which is the percentage of committed SB
transactions with respect to all the SB transactions initiated.

3.4 Results

Results for all the benchmarks are shown in Fig. 8 (Barrier),
Fig. 9 (Power8), Fig. 10 (RubyHTM) and Table 2 (SCR/TCR).

Barrier microbenchmark

In this benchmark the Y-axis represents efficiency rather
than speedup, as it is implemented so that the load is
not shared among threads but replicated. This way we can
measure the time wasted by transactions and barriers.

Due to the load imbalance among iterations (N), the
efficiency in profiles without speculation (Parallel and TM)
is halved when using more than one thread. In these cases,
only half of the threads perform actual work in each itera-
tion of the inner loop, L (see code in Appendix A). However,
SB and CS profiles can speculate upon reaching the barrier,
so the idle threads in a given iteration can immediately
advance and work in the next one. On the left, we have
reduced the load (L) of each iteration to observe the barrier
contention. Parallel and TM profiles are penalized when
using more threads due to both the barrier contention and
the load imbalance. SB and CS profiles also decrease their
performance because of the contention, but the penalty is
reduced since the threads do not need to wait in barriers.
All these experiments yield about 100% SCR with both SB
and CS profiles, which confirms that the proposed API does
not introduce additional aborts due to false-sharing.

Recurrence

Two situations can be observed in this benchmark: Unpro-
tected, Parallel and CS profiles do not have the overhead
of between-barrier transactions (e.g. memory barriers on
beginning and committing), while TM and SB profiles do.
Such differences can be clearly identified when using 1-8
threads, where Unprotected, Parallel and CS profiles obtain
similar speedups, whereas TM and SB do it but to a much
lower extent. Executions with 16 threads exhibit super-linear
speedups with Unprotected and CS in Power8 due to cache
interaction (see Appendix B for more information). Parallel
and TM profiles do not scale due to the increased cost of
synchronization when using 2 sockets, while the barrier
speculation in the SB profile noticeably reduces the synchro-
nization overhead. Results with 32 to 128 threads show the
overhead of SMT resource sharing. Performance decreases
for all profiles, with larger chunks being more affected due

to the combination of larger transactional footprints and
shared transactional resources.

RubyHTM results are comparable to Power8. This time,
however, all threads execute in a single socket and trans-
actional resources are not shared among threads, so the
slowdowns observed in Power8 are not so profuse here.
A slight super-linear behaviour is also obtained with the
Unprotected and CS profiles with 8 threads (see Appendix
B), and the additional SB-stalls profile obtains a performance
boost compared with SB for 32 and 64 threads.

Regarding TCR, all profiles obtain good results in this
benchmark. Larger chunk sizes produce slightly worse ra-
tios, and SB-stalls yields better results than SB for both
TCR and SCR. Nevertheless, best SCR are obtained with CS,
which is expected, since there are less in-flight transactions
to conflict with. Notice that Power8 obtains lower values for
SCR than RubyHTM. Reasons for this behaviour include
false sharing due to cache line granularity (doubled in
Power8), differences in conflict resolution policy and smaller
transactional cache in Power8.

Cholesky
Cholesky shows less dependencies than Recurrence, which
is reflected in better TCR and SCR values in all scenarios.

Power8 performance using CS sits between Unprotected
and Parallel regardless of the number of threads. Note
that relative performance differences among such profiles
increase from 16 threads onwards due to the higher com-
munication costs when using 2 sockets. This behaviour
is also present when comparing TM and SB profiles. In
this case, however, differences are more evident with 32
to 128 threads. The overhead caused by transactions par-
tially masks relative performance differences. The effect of
resource sharing when using SMT can be noticed as well.

RubyHTM results show reduced performance differ-
ences among different profiles except for Unprotected, due
to the smaller number of iterations (N). As in Recurrence,
the effect of inter-socket communication and SMT is not
present in the simulator. Differences between SB and SB-
stalls are negligible due to the low conflict ratio and the
reduced number of barriers.

DGCA
DGCA plots depict different configurations varying the
node adjacency (A) and the node count (N) of the input
graph. Individual connections between nodes are randomly
chosen when constructing the graph, following a uniform
distribution. This way, we explore low-contention scenarios
with small and large graphs in the first two plots, and high-
contention scenarios in the rest. As a consequence of the
simulation overhead, RubyHTM experiments use smaller
graphs and fewer iterations (M).

Power8 executions in low-contention scenarios exhibit a
noticeable overhead due to transactions when using 1 to
8 threads. In this case, Unprotected and Parallel show a
significant performance gap with respect to CS, while TM
and SB profiles perform similarly. Nevertheless, Parallel is
heavily affected by barrier synchronization from 8 threads
onwards, obtaining speedups comparable to TM with high
thread counts. Speculation performs well in these scenarios,
with CS and SB scaling up to 32 threads and obtaining

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 9

1 2 4 8 16 32 64 128
0

5

10

15

20

25

S
pe

ed
up

Recurrence N=20000, C=1

Unprotected Parallel TM SB CS

1 2 4 8 16 32 64 128
0

5

10

15

20

25 Recurrence N=20000, C=5

1 2 4 8 16 32 64 128
0

5

10

15

20

25 Recurrence N=20000, C=10

1 2 4 8 16 32 64 128
0

5

10

15

20

25 Recurrence N=20000, C=15

1 2 4 8 16 32 64 128
0

2

4

6

8

10

12

S
pe

ed
up

Cholesky N=100M, C=1

1 2 4 8 16 32 64 128
0

2

4

6

8

10

12 Cholesky N=100M, C=5

1 2 4 8 16 32 64 128
0

2

4

6

8

10

12 Cholesky N=100M, C=10

1 2 4 8 16 32 64 128
0

2

4

6

8

10

12 Cholesky N=100M, C=15

1 2 4 8 16 32 64 128
0
2
4
6
8

10
12
14

S
pe

ed
up

DGCA N=2000, A=2, T=4000

1 2 4 8 16 32 64 128
0
2
4
6
8

10
12
14 DGCA N=8000, A=2, T=4000

1 2 4 8 16 32 64 128
0
2
4
6
8

10
12
14 DGCA N=2000, A=8, T=4000

1 2 4 8 16 32 64 128
0
2
4
6
8

10
12
14 DGCA N=8000, A=8, T=4000

1 2 4 8 16 32 64 128
0
4
8

12
16
20
24
28
32

S
pe

ed
up

Stencil Large, T=100

1 2 4 8 16 32 64 128
0
4
8

12
16
20
24
28
32 Stencil Large, T=800

1 2 4 8 16 32 64 128
0

1

2 Hist Large, T=1000, C=1

1 2 4 8 16 32 64 128
0

1

2 Hist Large, T=1000, C=5

1 2 4 8 16 32 64 128
Threads

0

1

2

3

S
pe

ed
up

SSCA2 k1, -s14-i1.0-u1.0-l9-p9

1 2 4 8 16 32 64 128
Threads

0

2

4

6

8 SSCA2 k1, -s20-i1.0-u1.0-l3-p3

1 2 4 8 16 32 64 128
Threads

0

1

2 SSCA2 k4, -s14-i1.0-u1.0-l9-p9

1 2 4 8 16 32 64 128
Threads

0

1

2 SSCA2 k4, -s20-i1.0-u1.0-l3-p3

Fig. 9. Power8 results for Recurrence (Livermore loop 6), Cholesky (Livermore loop 2), DGCA, Stencil, Histogram and SSCA2 (Kernel 1 and 4).

the highest SCR values. The larger graph (N=8000) in the
second plot shows a similar behaviour, and extends the
performance gains with speculative profiles to 64 threads,
because of the lower conflict probability.

Scalability in high-contention scenarios is limited mainly
by dependencies. In these experiments the differences with
1 to 8 threads among CS, Parallel and Unprotected are
reduced due to more compute-intensive executions asso-
ciated with higher node connectivity. The same behaviour
is observed between SB and TM. It is worth noting in
the rightmost plot the performance differences between CS
and SB profiles from 32 threads onwards. In this case, SB
cannot maintain the same scalability, which is expected
since standard transactions share transactional resources
with SB transactions. Using SMT threads gives rise to aborts
caused by footprint overflow. This neither happens with CS,
because non-speculative threads do not need such transac-
tional resources, nor with A=2, where fewer transactional
accesses are needed due to the lower connectivity.

RubyHTM yields a similar behaviour. TM, SB and SB-
stalls profiles add the overhead of standard transactions, but
the CS profile can leverage speculation for a larger number
of threads. This is expected for two reasons: first, graph
sizes are smaller in RubyHTM executions giving rise to
more transactional conflicts compared with Power8. Second,

the use of smaller M values in the simulator affects to the
conflict probability, which decreases with each iteration of
the corresponding loop as node colors are updated. Never-
theless, SB-stalls yields up to 33% performance gain with
respect to SB in executions from 32 threads.

Differences in experiment configurations are specially
evident in TCR and SCR results. Power8 exhibits high TCR
in all experiments, while SCR depends on both the graph
size and the number of connections, which determine the
potential conflicts. RubyHTM figures, though, are lower due
to the use of smaller graph sizes and fewer iterations. This
is specially evident for SCR.

Stencil and Histogram

These benchmarks represent bad-case scenarios for two rea-
sons: first, they do not exhibit load imbalance. Second, the
barrier overhead is low, as we can see both in the number of
barriers in Table 2 and in the small performance differences
between Unprotected and Parallel profiles. Such differences
hint the lack of opportunities for improvement with SBs.

Stencil exhibits cross-barrier dependencies only in the
boundaries of the input data grid partitions. Speculative
profiles show good values for TCR and moderate SCRs
similar to that of Recurrence. However, such speculation is
not translated into performance due to the reasons above.

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 10

1 2 4 8 16 32 64
0

5

10

15

20

S
pe

ed
up

Recurrence N=2000, C=1

Unprotected Parallel TM SB SB-stalls CS

1 2 4 8 16 32 64
0

5

10

15

20 Recurrence N=2000, C=5

1 2 4 8 16 32 64
0

5

10

15

20 Recurrence N=2000, C=10

1 2 4 8 16 32 64
0

5

10

15

20 Recurrence N=2000, C=15

1 2 4 8 16 32 64
0

2

4

6

8

10

S
pe

ed
up

Cholesky N=100000, C=1

1 2 4 8 16 32 64
0

2

4

6

8

10 Cholesky N=100000, C=5

1 2 4 8 16 32 64
0

2

4

6

8

10 Cholesky N=100000, C=10

1 2 4 8 16 32 64
0

2

4

6

8

10 Cholesky N=100000, C=15

1 2 4 8 16 32 64
0

5

10

15

20

25

S
pe

ed
up

DGCA N=500, A=2, T=500

1 2 4 8 16 32 64
0

5

10

15

20

25 DGCA N=1000, A=2, T=500

1 2 4 8 16 32 64
0

5

10

15

20

25 DGCA N=500, A=8, T=500

1 2 4 8 16 32 64
0

5

10

15

20

25 DGCA N=1000, A=8, T=500

1 2 4 8 16 32 64
0

5

10

15

20

25

30

S
pe

ed
up

Stencil Small, T=50

1 2 4 8 16 32 64
0

5

10

15

20

25

30 Stencil Small, T=100

1 2 4 8 16 32 64
0

1

2

3

4 Hist Small, T=20, C=1

1 2 4 8 16 32 64
0

1

2

3

4 Hist Small, T=20, C=5

1 2 4 8 16 32 64
Threads

0

2

4

6

S
pe

ed
up

SSCA2 k1, -s13-i1.0-u1.0-l3-p3

1 2 4 8 16 32 64
Threads

0

2

4

6

8 SSCA2 k1, -s14-i1.0-u1.0-l9-p9

1 2 4 8 16 32 64
Threads

0

1

2 SSCA2 k4, -s13-i1.0-u1.0-l3-p3

1 2 4 8 16 32 64
Threads

0

1

2 SSCA2 k4, -s14-i1.0-u1.0-l9-p9

Fig. 10. RubyHTM results for Recurrence (Livermore loop 6), Cholesky (Livermore loop 2), DGCA, Stencil, Histogram and SSCA2 (Kernel 1 and 4).

Histogram has hard cross-barrier dependencies, re-
flected in the low SCR values except for RubyHTM (C1),
which still does not leverage the speculation to increase the
performance. Besides, the nature of the input, which follows
a Gaussian pattern, causes multiple conflicts when updating
the histogram, degrading TM and SB performance. This
behaviour is exacerbated with larger chunks.

These benchmarks show that the performance of SBs
in non-friendly scenarios is comparable to the use of tra-
ditional barriers, being the exception a slight performance
decrease in Stencil when using 128 threads.

SSCA2
For SSCA2 we used kernels 1 and 4 with recommended
inputs from [25]: small (s13) and medium (s14) inputs for
RubyHTM, and medium (s14) and large (s20) for Power8. As
part of STAMP, this benchmark is already parallelized using
transactions, so only SB and TM profiles are considered.

Kernel 1 shows limited gains in Power8 with medium
input parameters and no gains with large ones for SB over
TM. Most of the barriers in this kernel protect dynamic
allocations thus impeding the use of SB. Also, unlike pre-
vious benchmarks, SBs do not appear inside loops. As a
consequence, only a few SBs are called throughout the code,

reducing the speculation opportunities. RubyHTM results
show better speedups than Power8 for Kernel 1, but a
similar behaviour when comparing TM and SB profiles. The
absence of inter-socket communication and SMT favors scal-
ability. Limited gains are obtained with speculative profiles
and a large number of threads.

Main speculation opportunities in Kernel 4 reside in the
barriers within a loop which contains two SBs (see code
in Appendix A). The iteration computation decreases as
the loop advances, so some speculation can be leveraged
in spite of the cross-barrier dependencies. Unfortunately,
conflicts caused by a reduction operation and the frequent
interactions with global variables cause aborts that limit
performance. This translates into the small speedups in
Fig. 9 and 10. Such interactions are specially harmful in
Power8 due to its larger cache line size, which increases
aborts due to false sharing. This fact can be observed in
the large TCR differences (see Table 2). Regardless of the
conflicts and low SCR, both Power8 and RubyHTM yield
consistent performance gains of SB over TM. SB-stalls does
not yield any benefit in SSCA2.

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 11

Implications
The performance of SBs depends on several factors: the
potential speculation opportunities can be seen as a com-
bination of the number of barriers and load imbalance. The
cross-barrier dependencies will determine the success ratio
of such opportunities. Moreover, on real hardware we must
account for the limited transactional resources, which limits
speculation in terms of memory accesses. Consequently, SBs
will perform better when there are many speculation oppor-
tunities offering little gains than the other way around.

Ideally, a high barrier count, irregular load and no
cross-barrier conflicts represent the best scenario for SBs
(Barrier benchmark). In our experience, load-imbalanced
codes where the performance is fairly limited by barrier
synchronization and cross-barrier dependencies offer cer-
tain window for speculation, representing good use cases
(Recurrence, Choleksy, DGCA). Conversely, codes with a
high ratio of cross-barriers dependencies (SSCA2 K4, Histo),
well balanced or without enough barriers (SSCA K1, Histo,
Stencil) will not extract significant performance gains.

SBs does not seem to harm performance with respect to
traditional barriers in the vast majority of tested scenarios.
Some losses can be observed on Stencil, where the overhead
of traditional barriers is negligible. A runtime scheme could
be adopted to avoid the use of SBs in such cases based on the
stall-times spent on each barrier: If such times are shorter
than a threshold, a LAST BARRIER can be placed allowing
traditional barriers to be used onwards. If stalls increase, this
could be reverted to SBs. Some hysteresis may be beneficial
for reducing both switching and time measurements.

SB-aware enhancement is beneficial when there are
enough cross-barriers conflicts involving aborts of non-SB
transactions due to the baseline HTM conflict resolution
policy. Larger TCR differences between SB and SB-Stalls pro-
files hint situations where SB-stalls can extract performance.

4 RELATED WORK

Martı́nez and Torrellas [26] propose hardware support for
speculation in synchronization primitives including locks,
flags and barriers. Ad hoc HTM-like hardware is added
to caches and controllers to manage speculation. They do
not support ordering among speculative threads and ensure
progress only on deadlock-free parallel codes. To avoid
unnecessary aborts due to barrier counter updates they
expose the speculative hardware to the user. We provide
barrier speculation with partial ordering, ensure forward
progress due to HTM deadlock-free nature, and use escape
actions to solve the barrier counter problem, while hiding it
from the user with our API.

Porter et. al. [27] explore the path of efficient speculative
multithreading in concert with a HTM subsystem. They
execute a sequential application and spawn a speculative
thread at run time whenever a loop iteration or a function
is started. HTM supports the execution of the speculative
thread. They show a 10% speedup in a simulated 2-core
CMP and propose hardware optimizations such as data for-
warding, ordered transactions or false sharing elimination
with modest results. Our proposal is focused on barrier
speculation for parallel codes, without new thread spawn-
ing, and supports ordered transaction commit without addi-

tional hardware requirements by leveraging escape actions.
Our CS averages a 4× speedup over Parallel for 128 threads.

Other approaches address thread-level speculation (TLS)
with commercial HTM extensions. Odaira and Nakaike [28]
analyse the limitations of Intel TSX when used to enable
speculation on SPEC benchmarks. They focus on manu-
ally parallelizing frequently executed loops —not barriers—
by enclosing iterations into transactions which are subse-
quently executed in parallel with order restrictions. As TSX
does not support ordered transactions, speculative iterations
completed out of order are aborted. Although some scenar-
ios can leverage speculation, the performance is degraded
in most cases. Interestingly, the main source of overhead is
not the lack of ordered transactions, but transactional aborts
due to conflicts.

Salamanca et al. [29] propose a TLS extension with
commercial HTM support for OpenMP to ease TLS tuning
and programming, and study the effect of false sharing.

Nagarajan and Gupta [18] analyse a set of parallel
programs with fine grained barrier synchronization and
propose a two-version code to gain performance by spec-
ulating on barriers. One version elides the barrier under the
assumption that no interprocessor dependencies will arise.
The other is the original traditional barrier version of the
code. The former is speculatively executed first and the
latter is executed in case of misspeculation. The compiler
ensures speculative thread isolation by writing to a separate
address space. They modify the Advance Load Address
Table (ALAT) of Itanium processors to detect potential mis-
speculation at runtime. Their simulations show an average
12% reduction in execution time with 8 cores. Our proposal
does not need compiler/hardware modifications nor an
additional optimistic version of the code, and CS achieves a
4× average speedup over Parallel with 128 threads.

In [21], after-barrier speculation using Intel Haswell
HTM support is studied. The system does not support
ordered transactions nor escape actions. Consequently, if
speculative threads cannot commit upon reaching the spec-
ulation checkpoint, speculative work is discarded. For this
reason, a best-case SCR of 40% is reported for the Barrier
microbenchmark. The same benchmark yields nearly perfect
SCR with our proposal due to the use of escape actions
for communication among transactions (see Table 2). This
work does not provide multiple speculative checkpoints nor
adaptive speculation level as we do. Also it does not con-
sider the limitations of commercial HTM systems including
limited transactional sizes, presence of illegal instructions in
speculative transactions, and conflict resolution policies.

5 CONCLUSIONS

In this paper we use commercial hardware transactional
(HTM) extensions to implement an optimistic speculative
barrier (SB) as an alternative to traditional barriers. SBs
allow threads to elide a barrier by leveraging HTM. We
provide an SB API implemented with HTM extensions to be
used with transactional and non-transactional applications.

Our proposals are evaluated using a GEMS-based simu-
lator architecture and an IBM Power8 server which provide
escape actions, a hard requirement of SBs. Results show an
overall performance improvement of SBs over traditional

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3044234, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 12

barriers in benchmarks with load imbalance and low cross-
barrier dependencies. Significant performance gains are ob-
tained in Power8 as the number of threads increases. The
2-socket configuration penalizes traditional barrier commu-
nication and SBs help on hiding this latency. The overhead
of SBs does not seem to affect performance negatively on
the majority of the benchmarks tested.

ACKNOWLEDGMENTS

Governments of Spain (project TIN2016-80920-R) and Junta
de Andalucı́a (project P12-TIC-1470) supported this work.

REFERENCES

[1] M. Herlihy and J. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Int’l. Symp. on Computer
Architecture, 1993, pp. 289–300.

[2] N. Shavit and D. Touitou, “Software transactional memory,” in
Symp. on Principles of Distributed Computing, 1995, pp. 204–213.

[3] T. Harris et al., Transactional Memory, 2nd edition. Morgan &
Claypool Publishers, 2010.

[4] D. Dice et al., “Transactional locking II,” in Distributed Computing,
2006, vol. 4167, pp. 194–208.

[5] P. Felber et al., “Time-based software transactional memory,” Trans.
on Parallel and Distributed Systems, vol. 21, no. 12, pp. 1793–1807,
2010.

[6] L. Hammond et al., “Transactional memory coherence and consis-
tency,” in Int’l. Symp. on Computer Architecture, 2004, pp. 102–113.

[7] R. Rajwar et al., “Virtualizing transactional memory,” in Int’l.
Symp. on Computer Architecture, 2005, pp. 494–505.

[8] K. Moore et al., “LogTM: Log-based transactional memory,” in
Int’l. Symp. on High-Performance Computer Architecture (HPCA’06),
2006, pp. 254–265.

[9] C. Kevin Shum et al., “IBM zEC12: The third-generation high-
frequency mainframe microprocessor,” Micro, vol. 33, no. 2, pp.
38–47, 2013.

[10] P. Hammarlund et al., “Haswell: The Fourth-Generation Intel Core
Processor,” Micro, vol. 34, no. 2, pp. 6–20, 2014.

[11] H. Q. Le et al., “Transactional memory support in the IBM
POWER8 processor,” IBM Journal of Research and Development,
vol. 59, no. 1, pp. 8:1–8:14, Jan 2015.

[12] J. Sampson et al., “Exploiting Fine-Grained Data Parallelism with
Chip Multiprocessors and Fast Barriers,” in Int’l. Symp. on Microar-
chitecture, 2006, pp. 235–246.

[13] M. J. Moravan et al., “Supporting Nested Transactional Memory
in logTM,” in Int’l. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2006, pp. 359–370.

[14] M. Pedrero et al., “TMbarrier: Speculative Barriers Using Hard-
ware Transactional Memory,” in Euromicro Int’l. Conf. on Parallel,
Distributed and Network-Based Processing, 2018, pp. 214–221.

[15] M. Martin et al., “Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset,” Computer Architecture News,
vol. 33, no. 4, pp. 92–99, 2005.

[16] M. M. K. Martin et al., “Subtleties of Transactional Memory Atom-
icity Semantics,” Comput. Archit. Lett., vol. 5, no. 2, p. 17, 2006.

[17] R. Quislant et al., “Insights into the Fallback Path of Best-Effort
Hardware Transactional Memory Systems,” in Int’l. Conf. on Paral-
lel Processing, 2016, pp. 251–263.

[18] V. Nagarajan and R. Gupta, “Speculative Optimizations for Paral-
lel Programs on Multicores,” in Languages and Compilers for Parallel
Computing. Springer Berlin Heidelberg, 2010, pp. 323–337.

[19] J. T. Feo, “An analysis of the computational and parallel complex-
ity of the Livermore Loops,” Parallel Computing, vol. 7, no. 2, pp.
163–185, 1988.

[20] P. Magnusson et al., “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, 2002.

[21] L. Bonnichsen and A. Podobas, “Using Transactional Memory to
Avoid Blocking in OpenMP Synchronization Directives,” in Int’l.
Workshop on OpenMP, 2015, pp. 149–161.

[22] K. R. Duffy et al., “Complexity analysis of a decentralised graph
colouring algorithm,” Information Processing Letters, vol. 107, no. 2,
pp. 60–63, 2008.

[23] J. A. Stratton et al., “Parboil: A revised benchmark suite for
scientific and commercial throughput computing,” University of
Illinois at Urbana-Champaign, Tech. Rep. IMPACT-12-01, 2012.

[24] D. A. Bader and K. Madduri, “Design and Implementation of
the HPCS Graph Analysis Benchmark on Symmetric Multipro-
cessors,” in Int’l. Conf. on High Performance Computing, 2005, pp.
465–476.

[25] C. Minh et al., “STAMP: Stanford Transactional Applications for
Multi-Processing,” in Int’l. Symp. on Workload Characterization,
2008, pp. 35–46.

[26] J. F. Martı́nez and J. Torrellas, “Speculative synchronization: Ap-
plying thread-level speculation to explicitly parallel applications,”
Oper. Syst. Rev., vol. 36, no. 5, pp. 18–29, 2002.

[27] L. Porter et al., “Mapping out a path from hardware transactional
memory to speculative multithreading,” in Int’l. Conf. on Parallel
Architectures and Compilation Techniques, 2009, pp. 313–324.

[28] R. Odaira and T. Nakaike, “Thread-level speculation on off-the-
self hardware transactional memory,” in Int’l. Symp. on Workload
Characterization, 2014, pp. 212–221.

[29] J. Salamanca et al., “Using hardware-transactional-memory sup-
port to implement thread-level speculation,” Trans. on Parallel and
Distributed Systems, vol. 29, no. 2, pp. 466–480, 2018.

Manuel Pedrero received the MSc degree in
computer engineering from the University of Cor-
doba in 2012, the M.S. in Mechatronics in 2014,
and the PhD in Computer Architecture in 2018,
both from the University of Malaga. Currently, he
is working as a software engineer. His research
interests include high performance computing,
with special regard to transacional memory.

Ricardo Quislant received the MSc degree in
computer engineering from the University of
Granada, and the PhD from the University of
Malaga, Spain, in 2006 and 2012, respectively.
Currently, he is working as a researcher in the
Department of Computer Architecture at the Uni-
versity of Malaga. His main research interests
include computer memory systems and high-
performance computing, with special regard to
transactional memory.

Eladio Gutierrez received the MSc and PhD
degrees in telecommunication engineering both
from the University of Malaga, Spain, in 1995
and 2001 respectively. Since 2003 he has
been an associate professor in the Department
of Computer Architecture at the University of
Malaga. His research interests include parallel
architectures and algorithms, automatic paral-
lelization, engineering education and graphics
processing units.

Emilio L. Zapata received the MSc degree in
Physics from the University of Granada in 1978
and the PhD degree in Physics from the Uni-
versity of Santiago de Compostela, Spain, in
1983. Since 1991, he has been a full professor in
the Department of Computer Architecture at the
University of Málaga. His main research inter-
ests are numerical and audiovisual applications,
high performance architectures and compilation
techniques for parallel computers.

Oscar Plata received the MSc and PhD degrees
in physics from the University of Santiago de
Compostela, Spain, in 1985 and 1989, respec-
tively. He started as an assistant professor in the
University of Santiago de Compostela where he
became an associate professor in 1990. Since
2002, he is a full professor at the University of
Malaga, Spain. His research interests include
high-performance computing and parallel archi-
tectures and algorithms.

Authorized licensed use limited to: Universidad de Malaga. Downloaded on February 03,2021 at 11:32:29 UTC from IEEE Xplore. Restrictions apply.

