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Resumen

Métodos Lax-Wendroff aproximados para sis-
temas de leyes de conservación

Caṕıtulo 1. Introducción

Motivación

Los métodos Lax-Wendroff para sistemas lineales de leyes de conservación avanzan en el
tiempo mediante desarrollos de Taylor en el que las derivadas temporales se transforman
en derivadas espaciales usando la ecuación: ver [1], [2], [3], [4]. Las derivadas espaciales son
entonces discretizadas por medio de fórmulas centradas de diferenciación de alto orden.
Este procedimiento permite derivar métodos numéricos de orden arbitrario.
Esta tesis se centra en la extensión de los métodos Lax-Wendroff a sistemas no lineales
de leyes de conservación. La principal dificultad para extender los métodos Lax-Wendroff
a problemas no lineales proviene de la transformación de las derivadas temporales en
derivadas espaciales. Una primera estrategia para hacerlo es el procedimiento de Cauchy-
Kovalevsky (CK). El principal inconveniente de este proceso es que conduce a expresiones
cuyo número de términos crece exponencialmente, tiene alto costo computacional y es
dif́ıcil de implementar. En el contexto de los métodos ADER introducidos por Toro y
colaboradores (véase [5], [6], [7]), esta dificultad ha sido salvada mediante la sustitución
del procedimiento CK por al resolución de problemas espacio-temporales locales usando
un método de Galerkin: ver [8], [9].
Una alternativa al procedimiento CK y a la resolución de problemas locales ha sido
introducida recientemente en [10]), en el que se sigue una estrategia basada en métodos de
Taylor aproximados(AT): las derivadas temporales se aproximan utilizando fórmulas de
diferenciación numéricas centradas combinadas con desarrollos de Taylor en el tiempo que
se calculan de manera recursiva. Sin embargo, los esquemas AT no son generalizaciones
genuinas de los métodos Lax-Wendroff, ya que son necesarios stenciles de (4p+ 1)-puntos
para conseguir métodos de orden p en lugar de (2p+1) como ocurre en el caso linea. Este
aumento en el tamaño del stencil conlleva además peores propiedades de estabilidad que
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los métodos Lax-Wendroff originales.
No obstante, los métodos AT pueden ser estabilizados mediante el uso de reconstrucciones
WENO en el cálcuos de las derivadas en tiempo de primer orden, como en [11]. Los
métodos resultantes suelen dar buenos resultados bajo una condición de tipo CFL− 0.5.
Estos métodos son fáciles de implementar en mallas uniformes cartesianas.

Objetivos de la tesis

Los objetivos principales de este trabajo son los siguientes:

• Desarrollar una familia de métodos numéricos de alto orden para sistemas no lineales
de leyes de conservación basados en un procedimiento aproximado de Taylor (AT)
que constituya una generalización genuina de los métodos Lax-Wendroff, i.e. que se
reduzcan a los métodos de alto orden Lax-Wendroff cuando el flujo es lineal.

• Combinar este nuevo procedimiento AT con técnicas de captura de choque conocidas
y/o desarrollar técnicas propias y adecuadas a este nuevo método.

Organización de la memoria

Estos objetivos se han cumplido satisfactoriamente en tres art́ıculos. El primero,
titulado Métodos Aproximados de Taylor Compactos, fue publicado en 2019 en la revista
Journal of Scientific Computing, véase [12]. Este art́ıculo introduce una variante de los
procedimientos AT que constituye una extensión genuina de alto orden de los métodos
Lax-Wendroff a los sistemas no lineales de leyes de conservación.

Una vez derivados y probados los nuevos métodos, se abordó el segundo objetivo:
encontrar formas efectivas y apropiadas de evitar oscilaciones cercanas a discontinuidades
o choques. En colaboración con G. Russo, E. Macca (Universidad de Catania, Italia) y
D. Zoŕıo (Universidad de Concepción, Chile) presentamos una nueva familia de métodos
numéricos que se basan en el uso de una adaptación local del orden del esquema en función
de la suavidad de la solución numérica en función de una nueva familia de indicadores de
suavidad. El documento resultante, titulado Métodos Aproximados de Taylor Compactos
Adaptativos, está disponible en el repositorio arXiv y será enviado en breve para su
publicación [13].
El último trabajo, titulado Métodos Aproximados de Taylor con reconstrucciones de
tipo WENO rápidas y optimizadas (ver [14]) fue desarrollado en colaboración con D.
Zoŕıo (Universidad de Concepción, Chile). Este art́ıculo también está disponible en el
repositorio arXiv y fue enviado en Febrero de 2020 a la revista cient́ıfica Journal of
Scientific Computing.

El contenido de esta tesis se compone principalmente de las tres publicaciones
mencionadas anteriormente y esta organizado como sigue:
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El Caṕıtulo 2 contiene los conceptos preliminares y la notación que consideramos
importantes y/o necesarios para entender los caṕıtulos subsiguientes (en este resumen no
se incluyen). El Caṕıtulo 3 se compone esencialmente del contenido del art́ıculo Métodos
Aproximados de Taylor Compactos. El caṕıtulo 4 está dedicado al texto del articulo
Métodos Aproximados de Taylor Compactos Adaptativos o CAT. El Caṕıtulo 5 se centra
en el texto del art́ıculo Métodos Aproximados de Taylor con reconstrucciones de tipo
WENO rápidas y optimizadas. Finalmente las conclusiones y trabajo futuro se presentan
en el Caṕıtulo 6.

Caṕıtulo 2. Preliminares

En este caṕıtulo, revisamos hechos básicos sobre los sistemas hiperbólicos de leyes de
conservación y algunos métodos numéricos de alto orden para resolverlos. En particular,
nos centramos en los métodos de alto orden que proporcionan antecedentes pertinentes
para los caṕıtulos siguientes.

Caṕıtulo 3. Métodos Aproximados de Taylor Com-

pactos

En este caṕıtulo se presenta una nueva familia de métodos numéricos (en diferencias
finitas) para la solución de sistemas de conservación no lineales. Dichos métodos son una
variante compacta de los métodos de tipo Taylor Aproximados AT, denominados Métodos
Aproximados de Taylor Compactos (CAT).

Con el fin de simplificar la explicación de los métodos nos centraremos en su aplicación
a leyes de conservación escalares:

ut + f(u)x = 0, u(x, t), x ∈ R, t ≥ 0. (0.0.1)

La forma genérica de los métodos de tipo Taylor es la siguiente:

un+1
i = uni +

m∑
k=1

∆tk

k!
u

(k)
i , (0.0.2)

donde u
(k)
i representa una aproximación de la derivada temporal ∂kt u(xi, tn). Esta

expresión se obtiene al aplicar un desarrollo de Taylor de grado m en el tiempo. En
los métodos de tipo Lax-Wendroff el procedimiento seguido para aproximar las derivadas
temporales se basa en su sustitución por derivadas espaciales usando la ecuación seguida
de una aproximación de las derivadas espaciales usando fórmulas de derivación numérica
de alto orden.
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Métodos de alto orden Lax Wendroff

Cuando el problema (0.0.1) es lineal, es decir si f(u) = au, siendo a un número real, es
fácil sustituir las derivadas temporales por derivadas espaciales derivando reiteradamente
la ecuación:

∂kt u = (−1)kak∂kxu, k = 1, 2 . . .

A continuación, las derivadas espaciales son aproximadas con la fórmula de derivación
numérica interpoladora centrada de (2p+ 1) puntos

f (k)(xi) ' Dk
p,i(f,∆x) =

1

∆xk

p∑
j=−p

δkp,jf(xi+j), (0.0.3)

donde f (k) representa la k-esima derivada de la función f (con el convenio f (0) = f) y
δkp,j son los coeficientes de la fórmula de derivación. La expresión del método numérico
resultante es

un+1
i = uni +

m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u
n
i+j, (0.0.4)

donde {xi} son los nodos de una malla uniforme de tamaño de paso ∆x; uni es una
aproximación de los valores puntuales xi en el tiempo n∆t, donde ∆t es el paso del
tiempo; p ≥ 1 es un numero natural y c = a∆t/∆x.

Formulas de derivación numérica

Antes de extender el método (0.0.4) a problemas no lineales, se estudian en el Caṕıtulo 2
algunas propiedades importantes de los coeficientes de las fórmulas de derivación numérica
que serán utilizadas:

• Además de (0.0.3), usaremos la siguiente familia de fórmulas interpolatorias de
derivación numérica de 2p puntos:

f (k)(xi + q∆x) ' Ak,qp,i (f,∆x) =
1

∆xk

p∑
j=−p+1

γk,qp,j f(xi+j),

i.e. Ak,qp,i (f,∆x) es la fórmula interpoladora que aproxima la k-esima derivada en el
punto xi + q∆x usando los valores de la función en los 2p puntos xi−p+1, . . . , xi+p.
Obsérvese que los coeficientes, como en (0.0.3), no dependen de i.

• Dada una variable w, la siguiente notación sera usada:

Dk
p,i(w∗,∆x) =

1

∆xk

p∑
j=−p

δkp,jwi+j,
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Ak,qp,i (w∗,∆x) =
1

∆xk

p∑
j=−p+1

γk,qp,jwi+j,

para indicar que las fórmulas son aplicadas a las aproximaciones de w, wi, y no a
sus valores puntuales exactos w(xi). El śımbolo ∗ se usara para indicar si se deriva
respecto al tiempo ó al espacio. Esto es:

∂kxu(xi + q∆x, tn) ' Ak,qp,i (u
n
∗ ,∆x) =

1

∆xk

p∑
j=−p+1

γk,qp,j u
n
i+j, (0.0.5)

∂kt u(xi, tn + q∆t) ' Ak,qp,n(u∗i ,∆t) =
1

∆tk

p∑
r=−p+1

γk,qp,ru
n+r
i . (0.0.6)

Con esta notación el algoritmo (0.0.4) se escribe como sigue:

un+1
i = uni +

m∑
k=1

(−1)kak∆tk

k!
Dk
p,i(u

n
∗ ,∆x). (0.0.7)

El método numérico (0.0.4) puede ser escrito en forma conservativa usando la igualdad

Dk
p,i(f,∆x) =

1

∆x

(
A
k−1,1/2
p,i (f,∆x)− Ak−1,1/2

p,i−1 (f,∆x)
)
,

que se demuestra en [12]. En efecto, el uso de esta igualdad permite reescribir el método
en la forma

un+1
i = uni +

∆t

∆x

(
F p
i−1/2 − F

p
i+1/2

)
, (0.0.8)

con

F p
i+1/2 =

2p∑
k=1

(−1)k−1a
k∆tk−1

k!
A
k−1,1/2
p,i (un∗ ,∆x). (0.0.9)

En [12] se estudia con detalle el orden del método (0.0.4) y se ve que la combinación
óptima entre el grado del desarrollo de Taylor en tiempo y el número de puntos de las
fórmulas de derivación numérica se obtiene con la elección m = 2p, que conduce a métodos
de orden 2p. Se estudia además la estabilidad de estos métodos óptimos mediante técnicas
de Fourier, llegándose a que son estables con la condición CFL-1, es decir si:

|a|∆t
∆x
≤ 1.
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Método Compacto Taylor Aproximado

Pasamos a la extensión de (0.0.4) a leyes de conservación no lineales. En los métodos
aproximados de Taylor (LAT) introducidos en [10], la sustitución de las derivadas
temporales por derivadas espaciales se basa en las identidades:

∂kt u = −∂1
x∂

k−1
t f(u), k = 1, 2 . . .m. (0.0.10)

Aśı, para aproximar las derivadas temporales, se obtienen en primer lugar aproximaciones

f̃
(k−1)
i

∼= ∂k−1
t f(u)(xi, tn),

a las que se aplica, en segundo lugar, una fórmula centrada de (2p+1) puntos, obteniéndose
aśı las aproximaciones de las derivadas temporales

ũ
(k)
i = −D1

p,i(f̃
(k−1)
∗ ,∆x)

que permiten avanzar en el tiempo usando (0.0.2).

El cálculo de las aproximaciones ũ
(k)
i y f̃

(k−1)
i se lleva a cabo de forma recursiva: una vez

conocidas u
(l)
i , l = 0, . . . , k−1, se utiliza un desarrollo de Taylor en tiempo de grado k−1

para obtener aproximaciones de f(u(xi, (n + r)∆t), r = −p, . . . , p; se aplica la fórmula

centrada de diferenciación numérica con (2p+1) puntos para obtener f̃
(k−1)
i ; finalmente se

aplica la fórmula D1
p,i a las aproximaciones obtenidas f̃

(k−1)
i+j , j = −p, . . . , p para calcular

ũ
(k)
i .

A diferencia de este procedimiento, los métodos CAT se basan en la escritura conservativa
de los métodos de Lax-Wendroff (0.0.8): el flujo numérico CAT F p

i+1/2 se calcula usando
solo las aproximaciones

uni−p+1, . . . , u
n
i+p, (0.0.11)

Esto asegura que los valores usados para actualizar un+1
i son únicamente aquellos

contenidos en el stencil centrado de (2p + 1), como ocurre en el caso lineal. De hecho,
esta propiedad les permite ser una generalización genuina del método Lax-Wendroff para
los problemas lineales.
Para poder calcular los flujos numéricos usando únicamente (0.0.11), para cada i se
calculan aproximaciones locales de

∂k−1
t f(u(xi−p+1, t

n), . . . , ∂k−1
t f(u(xi+p, t

n),

que serán representadas por

f̃
(k−1)
i,j

∼= ∂k−1
t f(u)(xi+j, tn), j = −p+ 1, . . . , p.

Estas aproximaciones son locales en el sentido que i1 + j1 = i2 + j2, no implica que
f̃

(k−1)
i1,j1

= f̃
(k−1)
i2,j2

. Una vez estas aproximaciones han sido calculadas, el flujo numérico
viene dado por
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F p
i+1/2 =

2p∑
k=1

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x),

con

A
0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x) =

p∑
j=−p+1

γ
0,1/2
p,j f̃

(k−1)
i,j .

El cálculo de las aproximaciones f̃
(k−1)
i,j se lleva a cabo nuevamente mediante un

procedimiento recursivo basado en el uso de desarrollos de Taylor de grado creciente:

• k = 1: calcule f̃
(0)
i,j = f(uni+j), j = −p+ 1, . . . , p.

• Para k = 2 . . . 2p:

- Calcule

ũ
(k−1)
i,j = −A1,j

p,0(f̃
(k−2)
i,∗ ,∆x).

- Calcule

f̃k−1,n+r
i,j = f

(
uni+j +

k−1∑
l=1

(r∆t)l

l!
ũ

(l)
i,j

)
, j, r = −p+ 1, . . . , p.

- Calcule

f̃
(k−1)
i,j = Ak−1,0

p,n (f̃k−1,∗
i,j ,∆t), j = −p+ 1, . . . , p.

Obsérvese que, mientras que en los métodos LAT todas las derivadas son aproximadas us-
ando una formula centrada de (2p+1) puntos, en este algoritmo el stencil xi−p+1, . . . , xi+p
es usado para las derivadas en el espacio y el stencil tn−p+1, . . . , tn+p para las derivadas
en el tiempo.

En el Caṕıtulo 3 se demuestra que, si se toma m = 2p, el método correspondiente
CAT2p

• se reduce a (0.0.4) cuando f(u) = au;

• es linealmente L2-estable bajo la condición CFL

max
i

(|f ′(ui)|)
∆t

∆x
≤ 1;

• es de orden de precision 2p.
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Extender el procedimiento anterior a sistemas de conservación es simple, basta con repetir
el proceso anterior variable a variable.

Aunque los métodos CAT son linealmente L2-estables bajo la condición usual CFL-1,
pueden producir fuertes oscilaciones en las proximidades de una discontinuidad de la
solución. Dos técnicas son introducidas en este caṕıtulo para eliminar las oscilaciones
espúreas. En primer lugar se introduce el método FL-CAT2 que combina el método CAT2
con un método robusto de primer orden usando un limitador de flujo estándar. En segundo
lugar se introducen los métodos CAT-WENO, en los que, siguiendo a los autores de [10], se
utilizan Weighted Essentially Non-Oscillatory (WENO) reconstrucciones espaciales (ver
[15], [16]) para calcular la primera derivada en tiempo.

Caṕıtulo 4. Métodos Aproximados de Taylor Com-

pactos Adaptativos

En este caṕıtulo se extiende a cualquier orden la estrategia seguida en el anterior para
evitar oscilaciones espúreas combinando los flujos numéricos CAT con uno de primer orden
robusto. La estrategia consiste en seleccionar automáticamente el stencil utilizado para
calcular Fi+1/2 a fin de que su longitud sea máxima entre aquellos para los que la solución
es suave. Espećıficamente, supongamos que las soluciones en el tiempo n∆t {uni } han
sido ya calculado. La longitud máxima del stencil para calcular Fi+1/2 se establece en,
digamos, 2P , donde P es un número natural. Por tanto, los stenciles candidatos para
calcular Fi+1/2 son

Sp = {xi−p+1, . . . , xi+p}, p = 1, . . . , P.

Para seleccionar el stencil, se introducen una nueva familia de indicadores de suavidad
ψpi+1/2, p = 1, . . . , P tales que:

ψpi+1/2 ≈
{

1 si {uni } es ’suave’ en Sp,
0 otro caso.

Definimos entonces:

A = {p ∈ {1, . . . , P} s.t. ψpi+1/2
∼= 1}.

La idea seŕıa calcular el flujo numérico como sigue:

FA
i+1/2 =

{
F lo
i+1/2 si A = ∅;
F ps
i+1/2 donde ps = max(A) otro caso;

donde F ps
i+1/2 es el flujo numérico CAT2ps y F lo

i+1/2 es un flujo de algún método robusto
de primer orden. Sin embargo, no es posible determinar si la solución es suave o no en el
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stencil S1 donde únicamente se dispone de los valores uni , uni+1 . Por lo tanto, lo que se
hará en la práctica es definir:

A = {p ∈ {2, . . . , P} s.t. ψpi+1/2
∼= 1}. (0.0.12)

y luego:

FA
i+1/2 =

{
F ∗i+1/2 si A = ∅;
F ps
i+1/2 donde ps = max(A) otro caso;

(0.0.13)

donde F ∗i+1/2 es el flujo numérico FL-CAT2 introducido en el caṕıtulo anterior (que

también usa el stencil S2).

Flujo numérico FL-CAT2

La expresión del flujo numérico FL-CAT2 es la siguiente:

F ∗i+1/2 = ψ1
i+1/2 F

1
i+1/2 + (1− ψ1

i+1/2)F lo
i+1/2, (0.0.14)

donde F 1
i+1/2 esta dado por

F 1
i+1/2 =

1

4
(f̃ 1,n+1
i,1 + f̃ 1,n+1

i,0 + fni+1 + fni ),

y

f̃ 1,n+1
i,j = f

(
uni+j −

∆t

∆x

(
f(uni+1)− f(uni )

))
, j = {0, 1}.

F lo
i+1/2 es un flujo numérico de algún método robusto de primer orden; y ψ1

i+1/2 es un

limitador de flujo usual , véase [3]:

ψ1
i+1/2 = ψ1(ri+1/2), (0.0.15)

donde

ri+1/2 =
∆upw

∆loc
=


r−i+1/2 :=

uni − uni−1

uni+1 − uni
si ai+1/2 > 0,

r+
i+1/2 :=

uni+2 − uni+1

uni+1 − uni
si ai+1/2 < 0;

y ai+1/2 es una estimación de la velocidad de onda.

Indicadores de suavidad

Se introduce una nueva familia de indicadores locales de suavidad ψpi+1/2, p ≥ 2, para
sistemas de leyes de conservación definida como sigue: dada una aproximación nodal fi
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de una función f en el stencil Sp, p ≥ 2, centrado en xi+1/2, se definen en primer lugar
los pesos laterales

Ip,L :=
−1∑

j=−p+1

(fi+1+j − fi+j)2 + ε, Ip,R :=

p−1∑
j=1

(fi+1+j − fi+j)2 + ε,

donde ε es un número positivo pequeño que se añade para evitar que los pesos se anulen
cuando la función es constante. A continuación, se calcula:

Ip :=
Ip,LIp,R
Ip,L + Ip,R

. (0.0.16)

Finalmente se define el indicador de suavidad para el stencil Sp:

ψpi+1/2 :=

(
Ip

Ip + τp

)
, (0.0.17)

donde

τp :=
(
∆2p−1
i−p+1f

)2
.

Aqúı, ∆2p−1
i−p+1f representa las diferencias divididas de {fi−p+1, . . . , fi+p}, que pueden

se calculadas de forma recursiva ó usando los coeficientes γ
2p−1,1/2
p,j de la formula de

diferenciación numérica A
2p−1,1/2
p,i (f) como en (0.0.5).

Se demuestra el siguiente resultado:

Proposition 0.0.1 Sean fj = f(xj), j = i − p + 1, . . . , i + p los valores de una función
f en el stencil Sp, con p > 2. Se tiene:

ψpi+1/2 =

{
1−O(∆x4(p−1)−2k) si f ∈ Cmax(2p−1,k+2);

Ō(∆x2(k+1)) si f es Ck+2 a trozos y Sp contiene una discontinuidad de salto aislada de f ;

donde k = 0 si f no tiene puntos cŕıticos en el stencil o k es el orden del punto cŕıtico
cuando hay uno, siendo el orden de un punto cŕıtico el de la primera derivada que no se
anula.

En el caso p = 2 el indicador puede fallar cuando el stencil S2 contiene un punto cŕıtico
situado exactamente entre dos de los nodos y tal que f (3)(x∗) = 0. Aunque es un caso
poco probable, se propone una modificación del indicador para solucionar este posible
fallo.
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ACAT2P methods

La expresión del Métodos Aproximados de Taylor Compactos Adaptativo (ACAT2P ) de
orden máximo 2P para una ley de conservación escalar viene dada por:

un+1
i = uni +

∆t

∆x

(
FAi−1/2 −FAi+1/2

)
. (0.0.18)

Los flujos numéricos FAi+1/2 son definidos por (0.0.12)-(0.0.13) donde F ∗i+1/2 es el flujo

numérico FL-CAT2 (0.0.14) y los indicadores de suavidad son dados por (0.0.15), (0.0.17).
Observe que, por definición, FAi+1/2 se reduce a:

• un flujo de primer orden si ψ1
i+1/2 = 0 y ψpi+1/2 = 0 para todo p = 2, . . . , P ;

• un flujo de segundo orden si ψ1
i+1/2 = 1 y ψpi+1/2 ≈ 0 para todo p = 2, . . . , P ;

• un flujo de orden 2ps si ψpsi+1/2 ≈ 1.

Además, si ps = P , entonces ACAT2P coincide con CAT2P que tiene una precisión de
2P -orden y es L2-estable bajo CFL ≤ 1.

ACAT para sistemas de leyes de conservación

Para sistemas de leyes de conservación la expresión del método ACAT2P es la misma que
en el caso escalar: la única diferencia es el computo de los indicadores de suavidad. En el
caso de sistemas, los indicadores de suavidad son calculados primero para cada variable:

ψj,pi+1/2, p = 1, . . . , P,

donde

• ψj,1i+1/2 es obtenido al aplicar los indicadores de suavidad (0.0.15) a el j-esimo

componente de las soluciones numéricas {uj,ni }.

• ψj,pi+1/2, p > 2 es obtenido al aplicar los indicadores de suavidad (0.0.17) a el j-esimo

componente de las soluciones numéricas {uj,ni }.

• ψj,2i+1/2 es obtenido al aplicar los indicadores de suavidad (0.0.17) a el j-esimo

componente de las soluciones numéricas {uj,ni }.

Una vez calculados estos indicadores de suavidad escalar, definimos

ψpi+1/2 = min
j=1,...,m

ψj,pi+1/2,

para que el stencil seleccionado sea el de longitud máxima entre aquellos en las que todas
las variables sean suaves.
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Caṕıtulo 5. Métodos Taylor aproximados con recon-

strucciones tipo WENO rápidas y optimizadas

El uso de las reconstrucciones espaciales Weighted Essentially Non-Oscillatory WENO
para calcular la primera derivada en el tiempo en los métodos tipo Taylor (ó Lax- Wendroff
en el caso lineal) previene la aparición de oscilaciones cerca de las discontinuidades u
ondas de choque (véase [15], [16]). Esta técnica también es usada en los métodos Taylor
Aproximados LAT [10] y los métodos Compactos Taylor Aproximados CAT [12], conocidos
como WENO-LAT y WENO-CAT respectivamente, como se vió en el Caṕıtulo 2.

El objetivo de este caṕıtulo es explorar la potencialidad de dichos métodos cuando se
implementan en las reconstrucciones WENO las siguientes mejoras:

• Los indicadores de suavidad introducidos en [17] que requieren un menor número
de operaciones que los propuestos originalmente por Jiang y Shu en [16].

• Los métodos optimizados introducido en [18] y en [19], para evitar la pérdida de
precisión cerca de los puntos cŕıticos de las soluciones.

Aśı, en este sentido, las nuevas reconstrucciones WENO serán óptimas y rápidas: nos
referiremos a ellas como reconstrucciones FOWENO.

Reconstrucciones FOWENO

Dados los valores puntuales de la función f en un stencil de 2p+ 1 puntos:

Si = {fi−p, . . . , fi+p},

donde fj = f(xj), los operadores WENO proveen reconstrucciones de f en

xi+1/2 = xi +
h

2
,

donde h es el paso de la malla (asumiendo que es constante). Esta reconstrucción está
basada en los polinomios de Lagrange ps(x), 0 ≤ s ≤ p que interpolan los valores puntuales
en los p+ 1 sub-stencils

Sp,s = {fi−p+s, . . . , fi+s}, s = 0, . . . , p.

Siendo más precisos, la estrategia de WENO consiste en definir las reconstrucciones como
una combinación convexa

q(xi+1/2) =

p∑
s=0

wsps(xi+1/2),
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donde los pesos w0, . . . , wp satisfacen ws ∼= cs en zonas suaves, siendo c0, . . . , cp los pesos
para los que se verifica que

P (xi+1/2) =

p∑
s=0

csps(xi+1/2),

es el polinomio que interpola todos los valores puntuales del stencil total Si. A estos
pesos c0, . . . , cp se les denomina pesos ideales. Los pesos wi han de ser función de algunos
indicadores de suavidad. En los métodos FWENO se proponen los siguientes:

Is :=

p∑
j=1

(f−p+i+s − f−p−1+i+s)
2, 0 ≤ s ≤ p, (0.0.19)

Resumamos ahora los métodos FOWENO. La expresión de FOWENO3, (i.e. OWENO3)
es la siguiente: dados i y ε > 0,

1. Se incrementa en primer lugar el stencil:

S̄ = {fi−1, fi, fi+1, fi+2},

con fi = f(xi).

2. Se calculan los correspondientes polinomios de interpolación evaluados en xi+1/2,
que, tanto en caso de reconstrucciones a partir de valores puntuales como de
promedios en las celdas, vienen dados por

p0(xi+1/2) = −1

2
fi−1 +

3

2
fi, p1(xi+1/2) =

1

2
fi +

1

2
fi+1.

3. Se calculan los indicadores Jiang-Shu correspondientes I0, I1 y I2 (incluyendo el que
considera el nodo de más) de la forma

I0 = (fi − fi−1)2, I1 = (fi+1 − fi)2, I2 = (fi+2 − fi+1)2.

4. Se calculan los pesos preliminares ω̃0 y ω̃1:

ω̃s :=
Is + ε

I0 + I1 + 2ε
, s = 0, 1

5. Se define τ como

τ := dI, d := (−fi−1 + 3fi − 3fi+1 + fi+2)2, I := I0 + I1 + I2.
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6. Se calculan los pesos correctores ω:

ω =
J

J + τ + ε
, with J = I0(I1 + I2) + (I0 + I1)I2.

7. Se calculan los pesos corregidos ω0 y ω1:

ω0 := ωc0 + (1− ω)ω̃0, ω1 := ωc1 + (1− ω)ω̃1,

donde c0, c1 son los pesos ideales.

8. Se obtienen las reconstrucciones en xi+1/2:

q(xi+1/2) = ω0p0(xi+1/2) + ω1p1(xi+1/2).

A diferencia de FOWENO3, FOWENO(2p + 1) para p ≥ 2 no requieren aumentar
artificialmente el stencil. Su expresión, combinada con los indicadores de suavidad
(0.0.19), puede resumirse como sigue:

Dado i, el stencil Si y ε > 0.

1. Se calculan los polinomios interpoladores pj, j = 0 ≤ j ≤ p.

2. Se calculan los indicadores rápidos (0.0.19).

3. Se calcula el discriminante

Dp = |Bp − 4ApCp|,

con

Ap =
1

2

p∑
j=−p

δ2p
p,jfi+j, Bp =

p∑
j=−p

δ2p−1
p,j fi+j, Cp =

p∑
j=−p

δ2p−2
p,j fi+j.

para j = −p, . . . , p.

4. Se obtiene el cuadrado de las diferencias divididas de orden 2p:

τp = (2Ap)
2.

5. Se calcula

dp :=
τa1p D

a1
p

τa1p +Da1
p + ε

para algún a1 a elegir tal que a1 ≥ 1, como en [19].
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6. Se calcula

αs = cs

(
1 +

dp
Ia1s + ε

)a2
, 0 ≤ s ≤ p,

donde cs son los pesos lineales ideales. a2 ha de satisfacer a2 ≥ p+1
2a1

, que es condición
suficiente para lograr precisión (p+ 1) óptima cerca de las discontinuidades [17].

7. Se generan los pesos FOWENO:

ωs =
αs

α0 + · · ·+ αp
, s = 0, . . . , p.

8. Se obtiene la reconstrucción en xi+1/2:

qp(xi+1/2) =

p∑
s=0

ωsps(xi+1/2).

Métodos FOWENO-AT

En los métodos FOWENO-AT se usa la ecuación, ut = −f(u)x, para aproximar la derivada
primera en tiempo: se usan las reconstrucciones FOWENO de los valores puntuales del
flujo para aproximar su derivada primera en espacio. Más concretamente, en los métodos
LAT se aproxima la derivada primera como sigue:

ũ
(1)
t,i = −

f̂i+1/2 − f̂i−1/2

∆x
.

donde f̂i+1/2 denota el flujo FOWENO de orden (2p + 1) reconstruido en xi+1/2. En los
métodos CAT la expresión conservativa del flujo se reemplaza por:

F p
i+1/2 = f̂i+1/2 +

m∑
k=2

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x).

Las reconstrucciones FOWENO son calculadas en variables conservadas usando el
procedimiento descrito en [20], aśı que su extension a sistemas es directo.

Caṕıtulo 6. Conclusiones y trabajo futuro

En esta tesis se han introducido nuevas familias de métodos numéricos de alto orden para
los sistemas de leyes de conservación basados en técnicas de Taylor Aproximadas que se
han descrito en el Caṕıtulo 3. En dicho caṕıtulo:
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• Se han revisado los métodos Lax-Wendroff de alto orden para problemas hiperbólicos
lineales incluyendo el estudio del orden, la L2-estabilidad y el cálculo y las
propiedades de los coeficientes.

• A continuación, se ha introducido una extensión a las leyes de conservación no
lineales con un orden par arbitrario 2p de precisión, los llamados métodos Compact
Approximate Taylor (CAT). A diferencia de aplicaciones anteriores de los métodos
de Taylor a las leyes de conservación, estos métodos usan stenciles centrados de
(2p + 1)-puntos al igual que los métodos de Lax-Wendroff para problemas lineales.
Además son linealmente L2-estable bajo una condición CFL-1.

Además, se han aplicado dos formas originales y apropiadas de mantener bajo control
las oscilaciones espúreas generadas por los métodos CAT en las proximidades de las
discontinuidades u ondas de choques. En primer lugar, se ha introducido el método
Adaptive Compact Taylor ACAT en el caṕıtulo 4. En dicho caṕıtulo:

• Se ha presentado una versión adaptativa de los métodos CAT que incorpora la
técnica de limitación de flujo (FL-CAT2 ó ACAT2) para el esquema de orden bajo.

• Se ha introducido y analizado una nueva familia de indicadores de suavidad de alto
orden que son capaces de detectar la suavidad de la solución numérica en stenciles
centrados.

• Se ha presentado la ampliación a los problemas 2D de los métodos CAT y ACAT.

Y finalmente, la combinación de métodos LAT y CAT con reconstrucciones WENO
rápidas y óptimas ha sido estudiada en el Caṕıtulo 5. En dicho caṕıtulo:

• Se han considerado dos operadores diferentes de reconstrucción espacial de alto
orden: los operadores estándar WENO y FOWENO. Este último combina el
uso de indicadores de suavidad rápidos (que coinciden con los indicadores de
suavidad originales en el caso de tercer orden) y el cálculo de pesos óptimos que
permiten preservar la precisión de las reconstrucciones cercanas al punto cŕıtico
independientemente de su orden. En nuestro conocimiento, esta es la primera vez
que estas dos técnicas se han combinado.

Trabajo futuro:

• Implementación optimizada de métodos CAT en arquitecturas GPU.

• Combinación de métodos CAT con la estrategia MOOD (véase [21], [22], [23],...)
para remediar las oscilaciones espúreas.
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• Extensión a los sistemas de leyes de equilibrio, incluyendo el análisis de la propiedad
well-balanced.

• Extensión a sistemas hiperbólicos no conservativos. En particular, los métodos de
CAT se pueden combinar con los métodos Well-controlled dissipation WCD .(véase
[24]).
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Abstract

In this thesis a new family of high-order methods for systems of conservation laws is
introduced: the Compact Approximate Taylor (CAT) methods. As in the Approximate
Taylor methods proposed by Zoŕıo, Baeza, and Mulet in [10] the Cauchy-Kovalevsky
procedure is circumvented by using Taylor approximations in time that are computed in
a recursive way. The difference is that here this strategy is applied locally to compute
the numerical fluxes what leads to methods that have (2p + 1)-point stencil and order
of accuracy 2p, where p is an arbitrary integer. Moreover we prove that they reduce
to the high-order Lax-Wendroff methods for linear problems and hence they are linearly
L2-stable under the usual CFL condition. Although CAT methods present an extra
computational cost due to the local character, this extra cost is compensated by the fact
that they still give good solutions with CFL values close to 1.

In order to prevent the spurious oscillations that appear close to discontinuities
two shock-capturing methods have been considered: first a new family of high-order
numerical methods, the Adaptive Compact Approximate Taylor Methods, based on the
use of a local adaptation of the order of the scheme according to the smoothness of
the numerical solution that is measured using a new family of smoothness indicators.
Next, the Approximate Taylor methods with fast and optimized weighted essentially non-
oscillatory reconstructions, which is an original variant of WENO combined with the
high-order Approximate Taylor Methods. Both methods are compared with standard
WENO methods combined with TVDRK methods or the Approximate Taylor methods
proposed in [10] in a number of test cases ranging from linear scalar conservation laws to
the 2D Euler system of gas dynamics.
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Chapter 1

Introduction

1.1 Motivation

Lax-Wendroff methods for linear systems of conservation laws are based on Taylor
expansions in time in which the time derivatives are transformed into spatial derivatives
using the equations [1], [2], [3], [4]. The spatial derivatives are then discretized by means
of centered high-order differentiation formulas. This procedure allows to derive numerical
methods of order 2p, where p is an arbitrary integer, using a centered (2p+1)-point stencil
that are L2-stable under the usual CFL condition.

This thesis focuses on the extension of Lax-Wendroff methods to nonlinear systems
of conservation laws. Many authors have developed numerical methods that use this
approach for the time discretization as an alternative to multistep or multistage one-step
methods like the SSP Runge-Kutta schemes (see [25]): this is the case of the original
finite volume ENO schemes (see [26]). This approach was also followed by E.F. Toro
and collaborators in the design of the so-called ADER (arbitrary high-order schemes
utilizing higher order derivatives) methods: see [5], [6], [7]). . . The computation of time
derivatives in these methods is based on the modified generalized Riemann problem
introduced by Toro in [27]. A Lax-Wendroff, second order evolution, Galerkin method
for multidimensional hyperbolic systems was also introduced in [28]. More recently, in
[11] this procedure has been used together with WENO reconstructions for the spatial
discretization. The main benefit, compared to RK time discretizations, is that only one
WENO reconstruction is needed at each spatial cell per time step.

The main difficulty to extend Lax-Wendroff methods to nonlinear problems comes from
the transformation of time derivatives into spatial derivatives. A first strategy to do this
is given by the Cauchy-Kovalevskaya (CK) procedure, in which the PDE is used to replace
time derivatives by spatial derivatives. The main drawback of this procedure comes from
the fact that it leads to expressions whose number of terms grows exponentially, implying
high computational costs and difficult implementations. In the context of ADER methods,
this difficulty has been circumvented in ADER-WENO methods (see [8]) by replacing the
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CK procedure by local space-time problems that are solved with a Galerkin method.
The so-called PNPM methods introduced in [9], that generalize ADER-WENO and DG
methods, also follow this approach. These methods can be applied both on structured
and unstructured meshes with CFL− 1 condition for stability.

An alternative to both CK and local space-time problems has been proposed recently in
[10] based on an Approximate Taylor (AT) method: the time derivatives are approximated
using high-order centered differentiation formulas combined with Taylor approximations
in time that are computed in a recursive way. Nevertheless AT schemes are not proper
generalizations of Lax-Wendroff methods: they have (4p + 1)-point stencils and worse
linear stability properties than the original Lax-Wendroff methods. Nevertheless, they
can be stabilized by using one WENO reconstruction per spatial cell and time step, as
shown in [11], and the resulting methods typically give good results under a CFL − 0.5
condition. These methods are easy to implement in Cartesian uniform meshes and perform
well.

1.2 Scope of this thesis

This thesis has two main objectives:

• To develop a family of high order numerical methods for nonlinear systems of
conservation laws based on an approximate Taylor (AT) procedure that constitute
a proper generalization of Lax-Wendroff methods, i.e. that reduce to the standard
high-order Lax-Wendroff methods when the flux is linear.

• To combine this new AT procedure with some well known shock capturing techniques
and/or obtain a new, appropriate new one to cure the spurious oscillations generated
close to discontinuities by the AT methods.

1.3 Outline

These objectives have been satisfactorily satisfied in three papers, the first one, titled
Compact Approximate Taylor Methods, was published in 2019 by the Journal of Scientific
Computing, see [12]. This article introduces a variant of the AT procedures that
constitutes a proper high-order extension of Lax-Wendroff methods to non-linear systems
of conservation laws. Two shock-capturing techniques were tested in this first paper: a
combination of the second-order method of the family with a robust first-order methods
based on the use of a flux limiter was first tested. Then, following [10], Weighted
Essentially Non-Oscillatory (WENO) spatial reconstructions (see [15], [16]) were used
to compute the first-order time derivatives.
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Once the new methods were derived and tested, the second objective was faced: to
find effective and appropriate ways of avoiding spurious oscillations close to discontinuities
or shocks. In collaboration with G. Russo, E. Macca (University of Catania, Italy) and
D. Zoŕıo (University of Concepción, Chile) we introduced a new family of high-order
numerical methods which based on the use of a local adaptation of the order of the
scheme according to the smoothness of the numerical solution according to a new family of
smoothness indicators. The resulting paper titled Adaptive Compact Approximate Taylor
Methods, which is available in the arXiv repository and is expected to be published soon,
see [13].

The last paper, titled Approximate Taylor methods with fast and optimized weighted
essentially non-oscillatory reconstructions (see [14]) was developed in collaboration with
the D. Zoŕıo (University of Concepcion, Chile). In this work an original variant of WENO
combined with the high-order AT methods was introduced. This paper is also available
in the arXiv repository and was submitted in February 2020 to Journal of Scientific
Computing.

The content of this thesis consists mainly of the three publications mentioned above
and the organization is as follows:

Chapter 2 contains the preliminary concepts and notation that we consider important
and/or necessary to understand the subsequent chapters. In addition to the basic
concepts related to hyperbolic systems of conservation laws, we include an introduction
to WENO reconstructions that will play an important role in Chapters 2, 3, and 4:
WENO reconstructions will be used in the design of some of the numerical methods
and comparison with WENO methods will be used to test the new numerical schemes.
WENO reconstructions are frequently combined with a time discretization based on the
classical TVD Runge-Kutta (TVDRK) methods that will be also recalled. Approximate
Taylor methods as an alternative to TVDRK methods for the time discretization have
been used in several well-known methods, as it was mentioned above, but here we will
focus on two of them that are at the basis of our work: the original second-order Lax-
Wendroff method [1] and its extension to high-order methods for non-linear conservation
law systems introduced by Qiu and Shu [11].

Chapter 3 takes over essentially the contents of the article Compact Approximate
Taylor Methods for systems of conservation laws.

Chapter 4 is devoted to the paper An order-adaptive compact approximation Taylor
method for systems of conservation laws or CAT.

Chapter 5 focuses on the article Lax Wendroff approximate Taylor methods with fast
and optimized weighted essentially non-oscillatory reconstructions.

Finally, conclusions and future work are presented in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we review basic facts about hyperbolic system of conservation laws and
some high-order finite differences numerical methods used for solve them. In particular, we
focus on the high-order methods that give relevant background for the following chapters.

2.1 Hyperbolic conservation laws

Conservation laws are systems of first order partial differential equations that can be
written as:

∂u

∂t
+

d∑
i=1

∂f i(u)

∂xi
= 0, x ∈ Rd, t ∈ R+, (2.1.1)

where u = (u1, . . . , um)T : Rd × R+ −→ Rm is the vector of conserved variables and
f i : Rm −→ Rm are the flux functions, i = 1, . . . , d.

Equation (2.1.1) is provided with initial conditions

u(x, 0) = u0(x), x ∈ Rd.

Solving this Cauchy problem allows one to find the state of the system at a certain
time t = T , given the state at time t = 0. System (2.1.1) is hyperbolic if any linear
combination of the Jacobian matrices of f i,

∑d
i=1 αi(f

i)′(v), is diagonalizable with real
eigenvalues for each v ∈ Rm. This conditions ensures the stability of Cauchy problems
for systems linearized about constant states. Boundary conditions have to be specified
when considering a bounded domain Ω ⊆ Rd. At the end of this chapter, we include some
comments about to numerical treatment of boundary conditions for high-order methods.

System (2.1.1) can be written in quasi-linear form as:

∂u

∂t
+

d∑
i=1

(f i)′(u)
∂u

∂xi
=
∂u

∂t
+

d∑
i=1

m∑
j=1

∂f i(u)

∂uj

∂uj
∂xi

= 0.
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The particular case m = 1, referred as scalar conservation law, will be used often in this
work for the design and validation of numerical methods due to its simplicity. In 1D, i.e.
if d = 1, this conservation law can be written as

ut + f(u)x = 0, x ∈ R, t ∈ R+, (2.1.2)

with the conserved variable u : R× R+ −→ R and flux function f : R −→ R.
Conservation laws regularly come from an integral relationship representing the

conservation of a certain quantity u. Conservation means that the amount of quantity
contained in a given volume can only change due to the flux of this quantity crossing the
interfaces of the given volume. In one space dimension this is written as:∫ x2

x1

(u(x, t2)− u(x, t1))dx =

∫ t2

t1

f(u(x1, t))dt−
∫ t2

t1

f(u(x2, t))dt, (2.1.3)

where the control volume in the x− t plane is V = [x1, x2]× [t1, t2] ⊆ R× R.
The characteristic structure of the hyperbolic conservation laws refers to the eigen-

structure of the Jacobian matrix of the fluxes. The characteristic structure is important
for exact and approximate solutions of the equations. The characteristic speeds are the
eigenvalues of the Jacobian matrices. For one-dimensional systems of conservation laws,
we will assume that there are smooth functions λk : Rm → R, k = 1, . . . ,m, such that
λk(u) is the k-th eigenvalue of f ′(u). For scalar conservation laws, these characteristic
speeds are just the flux derivatives f ′(u). For one-dimensional systems of conservation
laws, the characteristics for a solution u are curves (t, x(t)) satisfying x′(t) = λk(u(x(t), t)).
For scalar equations, this reduces to x′(t) = f ′(u(x(t), t). In this case, it can be easily
shown that the solution u is constant along these curves so that they are straight lines of
slope f ′(u0(x(0))).

A classical solution of (2.1.2) is a smooth function u : R×R+ −→ R that satisfies the
equations pointwise. As pointed out in the previous section, an essential feature of this
problem is that, given an initial condition, in general there are no classical solutions of
(2.1.2) beyond some finite time, even if the initial condition u0 is a smooth function.

In order to be able to consider non-smooth solutions, the classical concept of solution
can be relaxed by using the integral form of the equation which is more general than
the differential form: the derivation of the latter form is based on some smoothness
assumptions that do not hold in general. The use of the integral form allows one to
obtain a weak formulation that involves fewer derivatives on u, and hence, requiring less
smoothness.

Definition 1 A function u(x, t) is a weak solution of (2.1.1) with given initial data u(x, 0)
if

∫
R+

∫
Rd

[
u(x, t)

∂φ

∂t
(x, t) +

d∑
j=1

f j(u)
∂φ

∂xj

]
dxdt = −

∫
Rd

φ(x, 0)u(x, 0)dx (2.1.4)
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is satisfied for all φ ∈ C1
0(Rd × R+), where C1

0(Rd × R+) is the space of continuously
differentiable functions with compact support in Rd × R+.

Weak solutions provide an adequate generalization of the concept of classical solution
for hyperbolic conservation laws. It is easy to see that strong solutions are also weak
solutions, and continuously differentiable weak solutions are strong solutions.

The Rankine-Hugoniot condition [29], [30], whose derivation can be found for example
in [31], [32], [33], follows from the definition of weak solution. This condition characterizes
the movement of the discontinuities of the admissible weak solutions and gives information
about the behavior of the conserved variables across discontinuities.

For a general conservation law the Rankine-Hugoniot condition reads:

[f ] · n = [u](n · s), (2.1.5)

where f = (f 1, . . . fd) is a matrix containing the fluxes, u is the solution, s is the speed
of propagation of the discontinuity and n is the vector normal to the discontinuity. The
notation [·] indicates the jump on a variable across the discontinuity. For scalar problems
(2.1.5) reduces to:

f(uL)− f(uL) = s(uL − uR)

where uL and uR are the states at the left and the right side of the discontinuity
respectively. It can be shown that a function piecewise smooth function u(x, t) is a
weak solution of (2.1.1) if and only if (2.1.1) is satisfied in regions where u is smooth and
the Rankine-Hugoniot condition is satisfied at the discontinuities of u: see [31].

However, weak solutions are often not unique (see [34]), and there are entropy
conditions proposed to single out a unique weak solution known as entropy solution
whose discontinuities behave according to the underlying physics of the system. For
instance, according to Lax’s E-condition [35], a discontinuity is admissible if there exists
p, 1 ≤ p ≤ m, such that:

λp(uL(t)) ≥ s′(t) ≥ λp(uR(t)). (2.1.6)

where λp is the p-th eigenvalue of the flux Jacobian; x = s(t) is the location of the
discontinuity at time t; and uL(t), uR(t), the left and right limits of the solution
respectively.

There is also an entropy inequality based on entropy-entropy flux pairs, due to Lax [35]
as well, which is closely related to vanishing viscosity solutions. There are other entropy
criterion such as Oleinik’s condition [36], Kružkov’s condition [37], Wendroff’s condition
[38] or Liu’s condition [39]. To prove the existence of weak solutions satisfying a given
entropy conditions is in general a great challenge. Positive answers to this existence
question can be found for wide classes of multi-dimensional scalar conservation laws or
one-dimensional systems. For scalar conservation laws and some hyperbolic systems of
conservation laws, existence can be established by the front tracking method [40], [41], [42].
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Other means of establishing existence may apply in some cases, such as Lax-Oleinink’s
formula [43] for scalar conservation laws with convex flux.

Cauchy problems whose initial conditions are piecewise constant with only one
discontinuity are of special importance. The solution of these problems, called Riemann
problems, play an important role in the design of numerical methods. Knowledge of
the characteristic structure, Riemann invariants, and solution of the Rankine-Hugoniot
conditions are necessary to find the solutions of Riemann problems.

2.2 Numerical methods

Next, we review some notions and results related to numerical methods for hyperbolic
systems of conservation laws.

Many high-order finite difference schemes are based on the method of lines in which
the system is first discretized in space using a high-order reconstruction operator and then
a high-order method is applied to the resulting ODE system. Although the design of the
numerical methods introduced in this work don’t follow this approach, their results will be
compared with standard numerical methods whose design do, such as the high-order finite
difference methods of Shu-Osher based on WENO reconstructions and on TVDRK time
solvers. [25], [44], [45], [46]. For this reason, we will briefly explain these methods. The
original second-oder Lax-Wendroff method Lax-Wendroff will be also recalled, followed
by its extension to higher order proposed by Qiu and Shu [11] that can be considered as
the first step in the direction of the methods designed in this thesis.

2.2.1 Computational grids

The first step to solve numerically a PDE system is to replace the continuous problem,
represented by the PDE’s, by a discrete approximation of it. If the system has only
one space coordinate x, first the x − t plane is discretized by choosing a mesh (or grid)
composed by a finite set of points or volumes defined below. Then the PDE is discretized
on this grid, and the resulting discrete, finite-dimensional problem, is solved. In the case
of finite difference methods a point-value discretization is used: the unknowns of the
discretized problem are approximation of the value of the PDE solution at the points
of the mesh, while in the case of finite volume methods they are approximations of the
averages of the PDE solution at the cells or volumes that compose the mesh.

Consider a scalar Cauchy problem in one space dimension,{
ut + f(u)x = 0, x ∈ R, , t ∈ R+,
u(x, 0) = u0(x),

(2.2.1)

where u, f : R −→ R.
To define the mesh, a discrete subset of points (nodes) {xj}j∈Z, xj ∈ R ∀j will be

considered. Uniform meshes will be considered here, i.e., xj − xj−1 = ∆x > 0, for each
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j ∈ Z. This constant is called mesh size and it will be also represented by h = ∆x. From
the points {xj} we define the cells cj as the subintervals whose respective centers are xj:

cj =

[
xj−1 + xj

2
,
xj + xj+1

2

]
=
[
xj−1/2, xj+1/2

]
.

Depending on the context, one may understand the mesh or grid as the set of cells
{cj}j∈Z or the set of nodes {xj}j∈Z.

The time variable t is discretized by a set of points {tn}n∈N, with tn < tn+1, ∀n ∈ N.
If tn+1−tn is constant with respect to n, we denote it by ∆t and call it the time increment.
In the methods considered here ∆t is not constant: it will be computed on the basis of
a stability criterion. We will denote by un = {unj }j∈Z the approximation of the exact
solution u(xj, t

n) of (2.2.1).
In real problems, the domain of definition of the equations is restricted to a bounded

subset of R and a finite time interval, so the grid has to be restricted to a finite number
of nodes or cells.

If we consider the interval I = [0, 1] and a fixed time T > 0, then, we can take positive
numbers M and N and define a set of nodes {xj}0≤j<M given by xj = (j + 1/2)∆x, with
∆x = 1

M
. The points in time {tn}0≤n<N can be defined by tn = n∆t, with ∆t = 1

N
.

We can extend all of these concepts to two-dimensional problems. Let us consider a
scalar conservation law in 2D with the form:

{
ut(x, y, t) + f(u(x, y, t))x + g(u(x, y, t))y = 0, (x, y) ∈ R× R, t× R+,
u(x, y, 0) = u0(x),

and two sets of ordered points, {xi}i∈Z and {yj}j∈Z, satisfying xi < xi+1 for all i ∈ Z
and yj < yj+1 for all j ∈ Z. Moreover, we assume as before that ∆x = xi+1 − xi and
∆y = yj+1 − yj are constant with respect to i and j respectively. We can define cells ci,j
by

ci,j =
[
xi−1/2, xi+1/2

]
×
[
yj−1/2, yj+1/2

]
,

so that each node (xi, yj) is the center of the cell ci,j.

2.2.2 Conservative methods

The simplest way to approximate derivatives is by means of finite-differences schemes. If
the solution to approximate is discontinuous, in principle, finite-differences schemes may
not give a satisfactory approximation of the partial derivatives appearing in the equations.
Finite-volume methods and Discontinuous Galerkin methods overcome this difficulty by
resorting to weak formulations like (2.1.3) or (2.1.4) that do not require derivatives of the
unknowns.

On the other hand, there may be more than one weak solution and the method may
not converge to the right one or it may converge to a function that is not a weak solution
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of the PDE. Some examples of these facts can be found, e.g. in [34]. There exists a simple
requirement that we can impose on the numerical methods to guarantee that they do not
converge to non-solutions. Conservative methods ensure that convergence can only be
achieved to weak solutions (Lax-Wendroff’s theorem).

Definition 2 A numerical method is said to be conservative if it can be written in the
form

un+1
j = unj −

∆t

∆x

(
f̂(unj−p+1, . . . , u

n
j+q)− f̂(unj−p, . . . , u

n
j+q−1)

)
, (2.2.2)

where the function f̂ : Rp+q → R is called the numerical flux function and p, q ∈ N, p, q ≥
0.

The purpose of conservative methods is to reproduce at a discrete level the conservation
of the physical variables in the continuous equations. In fact (2.2.2) can be seen as a
discrete version of the integral form (2.1.3) of the PDE.

An essential requirement on the numerical flux is the consistency condition:

Definition 3 We say that the numerical flux function of a conservative numerical method
is consistent with the conservation law if the numerical flux function f̂ reduces to the exact
flux f for the case of constant flow, i.e,

f̂(u, . . . , u) = f(u).

The consistency condition is necessary to ensure that a discrete form of conservation,
analogous to the conservation law, is provided by conservative methods.

In general, some smoothness is required in the way in which f̂ approaches a certain
value f(u). Hence we suppose that the flux function is locally Lipschitz continuous in
each variable.

Lax-Wendroff’s theorem states that, if a conservative method produces a sequence
of approximations that converges to a function u(x, t) as the grid is refined, then u is
necessarily a weak solution of the conservation law:

Theorem 2.2.1 (Lax-Wendroff, [1],[42]) Consider a sequence of grids indexed by k =
1, 2, . . . with grid sizes (∆xk,∆tk), satisfying

lim
k→+∞

∆xk = 0,

lim
k→+∞

∆tk = 0.

Let {uk(x, t)} denote the piecewise constant function defined from the numerical solu-
tion obtained by a conservative numerical method consistent with (2.1.1) on the k-th
grid. If the total variation of the function uk(·, t) is uniformly bounded in k, t, i.e.,
supk,t∈[0,T ] TV (uk(·, t)) <∞ and uk(x, t) converges in L1

loc to a function u(x, t) as k →∞,
then u is a weak solution of the conservation law.
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Nevertheless, a sequence of numerical approximations produced by a conservative
method may converge to a weak solution that is not an entropy solution and thus that it
is not admissible. Some extra conditions for convergence to entropy solutions have to be
imposed: see [47], [48].

2.2.3 High-resolution conservative methods

The term “high-resolution” is applied to methods whose local truncation error has
order higher than two, thus giving second or even higher order global errors in smooth
parts of the solution, while giving well-resolved non-oscillatory approximations near
discontinuities.

Although, there are several high-order resolution techniques for conservative methods,
see [5], [6], [7]. . . , we will focus on two approaches;

• The method of lines, which refers to numerical methods for evolutionary PDEs in
which the spatial derivatives are first discretized leading to a system of ordinary
differential equations that is then solved by applying a numerical method for
ODEs. The high-order discretization of the spatial derivatives will be discretized
here by using the well-known essentially non-oscillatory (WENO) reconstructions in
conservative form: [16], [49] in a conservative form. And, for discretization in time,
we use the high-order methods TVD Runge- Kutta.

• Lax-Wendroff (LW) methods in the time and space discretization are performed at
the same time and are based on Taylor expansions.

2.2.3.1 ENO and WENO reconstructions

The Essentially Non-Oscillatory (ENO) and the Weighted Essentially Non-Oscillatory
(WENO) reconstruction operators are based on special polynomial interpolation tech-
niques that, given the set of the values of a function at the center of the cells or its
cell averages, provide approximations of the point values of the function at the intercells
(one to the left and one to the right) in such a way that, if the function is smooth these
approximations are high-order accurate but if the function has discontinuities, Gibbs
phenomena is avoided. To compute the reconstruction at an intercell only the values at
some neighbor cells called the stencil are used. In the case of the ENO reconstruction [26],
the stencil choice is based on the ’smoothness’ of the cell values, that is measured using
undivided differences: the stencil containing the smoothest data is selected. Although
ENO reconstruction of order r uses stencils of r cells, during the selection procedure r
possible stencils are considered that contain in total 2r − 1 cells.

Weighted Essentially Non-Oscillatory (WENO) reconstructions, introduced by Liu,
Osher and Chan in [49], are based on the idea of increasing the order of accuracy of
the method in smooth regions by considering a convex combination of the different
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interpolating polynomials at the candidate stencils of the ENO method. Spatially varying
weights are chosen in order to increase the accuracy of the individual reconstructions
corresponding to the different stencils. Using this technique, the authors of [49] raised
the order of accuracy of the ENO method using r-point stencils from r to r + 1 in
smooth regions, while retaining the rth-order near discontinuities. The weight assigned
to the interpolating polynomial associated to a given stencil depends on a smoothness
indicator, for which a suitably weighted sum of squares of (undivided) differences of the
data corresponding to that stencil was used. A new smoothness indicator was proposed
by Jiang and Shu in [16] to achieve fifth-order reconstructions from third-order ENO
reconstructions, i.e. an order of 2r − 1 when r = 3.

2.2.3.2 ENO and WENO algorithms

We will focus here on reconstruction operators that, given the set {f(xi)} of the values
at the center of the cells, provide approximations of the point values of the function at
the intercells {f(xi+1/2)}. Let h = ∆x be the grid size. In the ENO algorithm [26] a
left-biased approximation to the value f(xj+1/2) is computed using the values fl = f(xl)
at stencils of r nodes (r ≥ 2) that contain the node xj. There are r stencils of r nodes
that contain xj, given by

Srj+k = {xj+k−r+1, . . . , xj+k}, k = 0, . . . , r − 1.

From them, r different polynomial reconstructions of degree at most r − 1, denoted by
prk(x), can be constructed, each of them satisfying

prk(xj+1/2) = f(xj+1/2) +O(hr),

if f is smooth in the corresponding stencil.
Among all the candidate substencils, the ENO algorithm selects the substencil

producing the smallest divided differences, in an attempt to produce less oscillatory
interpolants, see [26, 50] for further details.

Weighted ENO reconstructions appeared in [49] as an improvement upon ENO
reconstructions. In [49], Liu et al. stated that there is no need of selecting just one
of the possible stencils, and that a combination of them can give better results in smooth
regions. If f is smooth in all stencils, a (2r − 1)-th order reconstruction

p2r−1
r−1 (xj+1/2) = f(xj+1/2) +O

(
h2r−1

)
,

can be computed using the stencil S2r−1
j+r−1 = {xj−r+1, . . . , xj+r−1}, instead of the r-th order

reconstruction provided by the ENO algorithm.
If we consider the r candidate stencils of the ENO algorithm,

Srj+k = {xj−r+1+k, . . . , xj+k}
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for k = 0, . . . , r−1, and the (r−1)-th degree polynomial reconstructions prk(x), defined on
each stencil Srj+k, satisfying prk(xj+1/2) = f(xj+1/2) +O(hr) , then a (left-biased) WENO
reconstruction of f is given by the convex combination:

q(xj+1/2) =
r−1∑
k=0

wj,kp
r
k(xj+1/2), (2.2.3)

where:

wj,k ≥ 0, k = 0, . . . , r − 1,
r−1∑
k=0

wj,k = 1

and the corresponding (left-biased) reconstruction evaluation operator is given by:

R(fj−r+1, . . . , fj+r−1) =
r−1∑
k=0

wj,kp
r
j,k(xj+1/2).

The weights should be selected with the goal of achieving the maximal order of
accuracy 2r− 1 wherever f is smooth, and r−th order, as the ENO algorithm, elsewhere.
To do this, in [49], it was pointed out that,for r ≥ 2, coefficients Cr

k , called optimal
weights, can be computed such that:

p2r−1
r−1 (xj+1/2) =

r−1∑
k=0

Cr
kp

r
k(xj+1/2),

where,

Cr
k ≥ 0 ∀k,

r−1∑
k=0

Cr
k = 1.

A closed explicit formula for the optimal weights have been given in [51]. The optimal
weights for r = 2, 3, 4, 5 are displayed in Table 2.1.

r k = 0 k = 1 k = 2 k = 3 k = 4
2 1/3 2/3
3 1/10 6/10 3/10
4 1/35 12/35 18/35 4/35
5 1/126 20/126 60/126 40/126 5/126

Table 2.1: Optimal weights for r = 2, 3, 4, 5.

Notice that to accomplish the requirements on the non-linear weights wk one can define
them satisfying the condition:

wj,k = Cr
k +O(hm), k = 0, . . . , r − 1, (2.2.4)
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with m ≤ r − 1. Then, there holds , (see [49],[51]) that

f(xj+ 1
2
)− q(xj+ 1

2
) = O(hr+m), (2.2.5)

and, if m = r − 1 in (2.2.4), then the approximation (2.2.5) has maximal order 2r − 1.
Another requirement for the weights is that the ones corresponding to polynomials

constructed using stencils where the function has a singularity should be very small,
so that the WENO reconstruction does not take those polynomials into account and,
as required, yields an approximation of an order not worse than that of the ENO
interpolators. Also, the weights should be smooth functions of the cell-averages of the
reconstructed function and efficiently computable.

Weights satisfying these conditions are defined in [49] as follows:

wj,k =
αk∑r−1
i=0 αi

, αk =
Cr
k

(ε+ Ik)p
, k = 0, . . . , r − 1, (2.2.6)

where p ∈ N, Cr
k are the optimal weights, Ik = Ik(h) is a smoothness indicator of the

function f on the stencil Sk and ε is a small positive number, possibly dependent on h,
introduced to avoid null denominators.

Jiang and Shu’s smoothness indicators (see [16]) are defined as follows:

Ik =
r−1∑
l=1

∫ xj+1/2

xj−1/2

h2l−1(p
(l)
k (x))2dx. (2.2.7)

They allow to obtain WENO schemes with optimal order 2r − 1 for r = 2, 3. The term
h2l−1 was introduced to remove h-dependent factors in the derivatives of the polynomial
reconstructions pk(x).

In [51], Aràndiga et al. showed that the choice of ε crucial for the achievement of
optimal order: they showed that if ε is proportional to the square of h, then the order of
WENO reconstruction is 2r− 1 at smooth regions regardless of neighboring extrema, and
the order is r when the function has a discontinuity in the stencil but it is smooth in at
least one of the sub-stencils.

2.2.3.3 WENO conservative methods

WENO conservative methods for (2.1.2) have the form

dui(t)

dt
+

1

∆x
(f̂i+1/2 − f̂i−1/2) = 0. (2.2.8)

where f̂i+1/2 denotes the WENO reconstruction of the numerical fluxes {f(ui(t))} at the
intercell xi+1/2.

For instance, for the third-order WENO scheme, the numerical flux f̂i+1/2 is defined
as follows:
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• The smoothness indicators (2.2.7) are

I1 = (fi − fi−1)2, I2 = (fi+1 − fi)2. (2.2.9)

• The optimal weights are

C2
1 =

1

3
, C2

2 =
2

3
.

• Finally

f̂i+1/2 = wi,1f̂
(1)
i+1/2 + wi,2f̂

(2)
i+1/2, (2.2.10)

where

f̂
(1)
i+1/2 = −1

2
fi−1 +

3

2
fi, f̂

(2)
i+1/2 =

1

2
fi +

1

2
fi+1. (2.2.11)

and the weights are given by (2.2.6).

Notice that, in order to compute f̂i+1/2 only the values fi−1, fi, fi+1 have been used so that
the reconstruction is left-biased. Due to this, (2.2.8) is only stable if the eigenvalues of the

Jacobian of the flux funtion ∂f(u)
∂u

are positive. If all of them are negative, the right-biased
WENO reconstruction should be applied. For the general case in which eigenvalues have
different signs and may change their sign, a splitting of the flux function

f(u) = f+(u) + f−(u). (2.2.12)

is usually considered, such that all the eigenvalues of ∂f+(u)
∂u

are positive and all the ones

of ∂f−(u)
∂u

are negative. Then, the left-biased reconstruction is applied to f+ and the
right-biased one to f−. An example of such splitting is given by the Lax-Friderichs one:

f± =
1

2
(f(u)± αu) ,

where α is a positive number bigger than the eigenvalues of the Jacobian of the flux
function either at global or at local level.

2.2.3.4 High-order TVD Runge-Kutta time discretization

To achieve high-order accuracy in time, the Total Variation Diminishing (TVD) Runge-
kutta method are commonly used, due to the fact that they ensure that the total variation
of the solutions does not increase under some time step restrictions: [44], [45], [52].

Let us write (2.2.8) in the form of a system of ODE:

ut = L(u), (2.2.13)
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In the 3rd-order, 3 stages TVD Runge-Kutta method the solution is updated as follows:

u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
(u(1) + ∆tL(u(1)))

un+1 =
1

3
un +

2

3
(u(2) + ∆tL(u(2)))

with effective CFL Ceff = 0.33, which is known as the Shu-Osher method [52]. We will
also consider the 4th-order method with 10 stages and effective CFL Ceff = 0.6,

u(1) = un +
1

6
∆tf(un),

u(i+1) = u(i) +
1

6
∆tF (u(i)), i = 1, 2, 3,

u(5) =
3

5
un +

2

5
(u(4) +

1

6
∆tF (u(4))),

u(i+1) = u(i) +
1

6
∆tF (u(i)), i = 5, 6, 7, 8,

un+1 =
1

25
un +

9

25
(u(4) +

1

6
∆tF (u(4))) +

3

5
(u(9) +

1

6
∆tF (u(9))).

This method belongs to the family of the Strong Stability Preserving Runge-Kutta
methods (SSPRK) see [25]. Also, it is know as the low storage SSPK 10 4 and was found
by Ketcheson [46].

2.2.3.5 Lax-Wendroff type time discretizations

In [1] P.D. Lax and B. Wendroff proposed a numerical technique for solving approximately
systems of hyperbolic conservation laws (2.2.1). Two essential contributions to the field
were made in their article: Theorem 2.2.1 and the explicit second-order Lax-Wendroff
method. For the scalar linear advection equation

ut + aux = 0,

in which the flux is the linear function f(u) = a, with a is a constant value, the derivation
of the method is based on the second-order Taylor expansion:

u(xi, t
n+1) = u(xi, t

n) + ∆t∂1
t u(xi, t

n) +
∆t2

2
∂2
t u(xi, t

n) +O(∆t3). (2.2.14)

Then, assuming that the solution is smooth, one can replace time derivatives by space
derivatives using the equation:

∂kt u(x, t) = (−a)k∂kxu(x, t).
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Finally, the space derivatives are approximated by centered 3-point formulas of numerical
differentiation:

∂xu(xi, tn) ∼=
1

2∆x
(u(xi+1, tn)− u(xi−1, tn)),

∂(2)
x u(xi, tn) ∼=

1

∆x2
(u(xi+1, tn)− 2u(xi, tn) + u(xi−1, tn))

what leads to the Lax-Wendroff method:

un+1
i = uni −

a∆t

2∆x
(uni+1 − uni−1) +

a2∆t2

2∆x2
(uni+1 − 2uni + uni−1) (2.2.15)

that can be written in conservative form:

un+1
i = uni −

∆t

∆x
(fi+1/2 − fi−1/2), (2.2.16)

where

fi+1/2 =
a

2

(
uni + uni+1

)
− a2∆t

2∆x
(uni+1 − uni ). (2.2.17)

It can also be written in the form:

un+1
i = b−1u

n
i−1 + b0u

n
i + b1u

n
i+1, (2.2.18)

where, the coefficients bk are functions of the Courant number

c = a
∆t

∆x

as follows:

b−1 =
1

2
c(1 + c), b0 = 1− c2, b1 = −1

2
c(1− c).

The scheme has a 3rd local truncate error, is a second-order method and L2 stable under
the CFL condition

|c| ≤ 1.

This scheme can be easily extended to linear systems of conservation laws

ut + Aux = 0,

where A is now a N × N matrix: the numerical method can be still written by (2.2.16)
with

fi+1/2 =
1

2
A
(
uni + uni+1

)
− ∆t

2∆x
A2(uni+1 − uni ). (2.2.19)

Moreover for linear problems it can be extended to methods of higher order, as it will
be seen in Chapter 3 following the same ansatz: consider the Taylor expansion in time of
the solution, replace time derivatives by spacial derivatives using the equation, approach
spatial derivatives using centered formulas of numerical differentiation.
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2.2.3.6 Lax-Wendroff procedure for nonlinear problems

There are different way to extend the Lax-Wendroff methods to second-order methods
for nolinear systems of balance laws. If we let A(u) be the Jacobian of the flux function
f(u), a possible extension is (2.2.16) with numerical flux

fi+1/2 =
1

2

(
f(uni ) + f(uni+1)

)
− ∆t

2∆x
A2
i+1/2(uni+1 − uni ).

where Ai+1/2 is some approximation of A(u(xi+1/2, tn)). Another extensiona are given by
the Richtmeyer two-step Lax-Wendroff method [53] or MacCormack’s method [54].

The design of high-order methods for nonlinear problems that advance in time using
Taylor expansions may be an interesting alternative to methods of lines combined with
TVDRK methods that requires more and more stages as the order increases. The ansatz
mentioned in the previous paragraph for linear problems can be followed: Taylor expansion
in time - replacement of time derivatives by spacial derivatives using the equation -
application of spatial derivatives using centered formulas of numerical differentiation.
This is called the Cauchy-Kowalewski (CK) procedure.

In the ADER methods, (see [8]) the CK procedure is replaced by local space-
time problems that are solved with a Galerkin method. The so-called PNPM methods
introduced in [9] that generalize ADER-WENO and DG methods also follow this
approach. These methods can be applied both on structured and unstructured meshes
with CFL− 1 condition for stability.

The Qiu and Shu finite difference Lax-Wendroff method [11] for nonlinear hyperbolic

systems of conservation laws is also based on the CK procedure. Let us denote by u
(s)
t,i

the s-th order time derivative of u. The starting point is again the Taylor expansion:

u(xi, t
n+1) ≈ ui + ∆tu

(1)
t (xi, tn) +

∆t2

2
u

(2)
t (xi, tn) +

∆t3

6
u

(3)
t (xi, tn) + · · ·+ ∆tk

k!
u

(k)
t (xi, tn).

(2.2.20)

Then the time derivatives u
(1)
t , . . . , u

(k)
t are approximated as follows:

• The first time derivative u
(1)
t is approached by using the conservative WENO

reconstruction of order (2r − 1), that will be denoted by WENO(2r − 1), i.e.

u
(1)
t (xi, tn) = −∂xf(u(xi, tn)) ∼= u

(1)
t,i = − 1

∆x
(f̂i+1/2 − f̂i−1/2).

Observe that r = 2, 3, 7 produce a spatial reconstruction WENO3, WENO5 and
WENO7 respectively.

• For the second time derivative one has

u
(2)
t = −(f (1)(u)u

(1)
t )x,
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where f (1)(u) = A(u) represents the Jacobian. Due to the factor ∆2 in the Taylor

expansion, this derivative can be approached with one order lower than u
(1)
t . This

is done by applying to
gi = f (1)(uni )u

(1)
t,i (2.2.21)

a (2r−2)th-order centered formula of numerical differentiation to approach the first-

order spatial derivative at xi. Let us denote by u
(2)
t,i the obtained approximations.

• For the third time derivative one has

u
(3)
t = −(f (1)(u)u(2) + f (2)(u)(u

(1)
t )2)x. (2.2.22)

where f (2) is the Hessian of f . This derivative is approximated by applying to

gi = f (1)(uni )u
(2)
t,i + f (2)(uni )(u

(1)
t,i )2, (2.2.23)

a (2r−2)th-order centered formula of numerical differentiation to approach the first-

order spatial derivative at xi. Let us denote by u
(3)
t,i the obtained approximations.

• For the fourth-order time derivative one has

u
(4)
t = −(f (1)(u)u

(2)
t + 3f (2)(u)u

(1)
t u

(2)
t + f (3)(u)(u

(1)
t )3)x. (2.2.24)

This derivative is approximated by applying to

gi = f (1)(ui)u
(2)
t,i + 3f (2)(ui)u

(1)
t,i u

(2)
t,i + f 3(ui)(u

(1)
t,i )3 (2.2.25)

a (2r−4)th-order centered formula of numerical differentiation to approach the first-

order spatial derivative at xi. Let us denote by u
(4)
t,i the obtained approximations.

• The derivatives u
(j)
t , j = 5, . . . , k are computed in a similar way.

This procedure requires symbolic calculus and tensor products, as the second and
higher-order time derivatives, when converted to spatial derivatives as before, involve
expressions like f (1)(u), which is a matrix (the Jacobian) and f (2)(u), is a three-
dimensional tensor, etc. Moreover, the set of values required to compute uni , i.e. the
stencil, increases with the order the method.

High-order methods based on Taylor expansions that avoid the CK procedure and the
stencil growth will be discussed in the following chapters.
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Chapter 3

Compact Approximate Taylor
Method

In this Chapter a new family of numerical methods for nonlinear systems of conservation
laws that are an extension of the high-order Lax-Wendroff methods for linear systems.
Lax-Wendroff methods are based on Taylor expansions in time in which the time
derivatives are transformed into spatial derivatives using the governing equations [2]-
[3]-[4]. The spatial derivatives are then discretized by means of centered high-order
differentiation formulas. This procedure allows to derive numerical methods of order
2p, where p is an arbitrary integer, using a centered (2p + 1)-points stencil that are L2

stables.

The main difficulty to extend Lax-Wendroff methods to nonlinear problems comes
from the transformation of time derivatives into spatial derivatives through the Cauchy-
Kovalesky (CK) procedure, but this approach may be impractical from the computational
point of view (symbolic calculus, tensor matrix, excessive computations...) In the context
of ADER methods introduced by Toro and collaborators (see [5], [6], [7]), this difficulty
have been circumvented by replacing the CK procedure by local space-time problems that
are solved with a Galerkin method: see [8], [9].

We follow here the strategy introduced in [10] to avoid the CK procedure in which
time derivatives are computed in a recursive way using high-order centered differentiation
formulas combined with Taylor expansions in time. This strategy leads to high-order Lax-
Wendroff Approximated methods (LAT) that are oscillatory close to discontinuities: in
[10] they were combined with WENO reconstructions to compute the first time derivatives.
The resulting methods (LAT) give non-oscillatory and accurate results.

Compact Approximated Taylor methods (CAT) circumvent the CK procedure using
the same strategy as LAT methods. These methods are compact in the sense that the
length of the stencils is minimal: (2p+1)-point stencils are used to get order 2p compared
to 4p+ 1-point stencils in LAT methods. The technique used to reduce the length of the
stencil makes that the computational cost of a time step in CAT methods is bigger than
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in LAT methods: the Taylor expansions are computed locally, so that the total number
of expansions needed to update the numerical solution is multiplied by (2p + 1). On
the other hand, unlike LAT methods, CAT methods reduce to the standard high-order
Lax-Wendroff methods when applied to linear problems and, due to this, they have better
stability properties than LAT and allows one to increase the length of time steps, what
compensates the extra cost of every time iteration: see [12].

The chapter is organized as follows. In Section 3.1 a review of high-order Lax-
Wendroff methods for the linear transport equation is presented, including the study
of the order, a heuristic study of the L2-stability, and a discussion about the computation
and properties of the coefficients. Section 3.2 is devoted to their extension to nonlinear
problems: first the AT technique is recalled and then CAT methods are presented. We
show that they reduce to Lax-Wendroff methods when applied to a linear problem and
we analyze the order of accuracy. In Section 3.3 the techniques considered to cure the
spurious oscillations near the discontinuities are presented. In Section 3.4 CAT methods
are compared in a number of test cases with WENO-RK methods and AT methods. The
linear transport equation, Burgers equation, the 1D compressible Euler and the ideal
Magnetohydrodynamics equations are considered.

3.1 The high-order Lax-Wendroff method for linear

problems

Let us first consider the linear scalar equation:

ut + aux = 0. (3.1.1)

We consider the numerical method:

un+1
i = uni +

m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u
n
i+j, (3.1.2)

where {xi} are the nodes of a uniform mesh of step ∆x; uni is an approximation of the
point value of the solution at xi at the time n∆t, where ∆t is the time step; p ≥ 1 is a
natural number; c = a∆t/∆x; and δkp,j are the coefficients of the centered interpolatory
formula of numerical differentiation based on a (2p + 1)-point stencil, i.e. the unique
formula of the form

f (k)(xi) ' Dk
p,i(f,∆x) =

1

∆xk

p∑
j=−p

δkp,jf(xi+j), (3.1.3)

such that
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p
(k)
f (xi) =

1

∆xk

p∑
j=−p

δkp,jf(xi+j), ∀f,

where pf is the Lagrange interpolation polynomial characterized by

pf (xi+j) = f(xi+j), j = −p, . . . , p.

Here f (k) represents the k-th derivative of a one-variable function f and f (0) = f .

The expression of the numerical method is obtained by applying a Taylor expansion
in time, and replacing time derivatives by space derivatives through the identities

∂kt u = (−1)kak∂kxu, k = 1, 2 . . . (3.1.4)

3.1.1 Formulas of numerical differentiation

Besides (3.1.3) the following family of interpolatory formulas based on a 2p-point stencil
will be used in this work:

f (k)(xi + q∆x) ' Ak,qp,i (f,∆x) =
1

∆xk

p∑
j=−p+1

γk,qp,j f(xi+j), (3.1.5)

i.e. Ak,qp,i (f,∆x) is the numerical differentiation formula that approximates the k-th
derivative at the point xi + q∆x using the values of the function at the 2p points
xi−p+1, . . . , xi+p. Observe that the coefficients, like in (3.1.3), do not depend on i.

Given a variable w, the following notation will be used:

Dk
p,i(w∗,∆x) =

1

∆xk

p∑
j=−p

δkp,jwi+j,

Ak,qp,i (w∗,∆x) =
1

∆xk

p∑
j=−p+1

γk,qp,jwi+j,

to indicate that the formulas are applied to the approximations of w, wi, and not to its
exact point values w(xi). In cases where there are two or more indexes, the symbol ∗ will
be used to indicate with respect to which the differentiation is applied. For instance:

∂kxu(xi + q∆x, tn) ' Ak,qp,i (u
n
∗ ,∆x) =

1

∆xk

p∑
j=−p+1

γk,qp,j u
n
i+j,
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∂kt u(xi, tn + q∆t) ' Ak,qp,n(u∗i ,∆t) =
1

∆tk

p∑
r=−p+1

γk,qp,ru
n+r
i .

Using this notation, (3.1.2) writes as follows:

un+1
i = uni +

m∑
k=1

(−1)kak∆tk

k!
Dk
p,i(u

n
∗ ,∆x). (3.1.6)

Let us discuss some properties of the coefficients of the numerical differentiation
formulas (3.1.3) and (3.1.5) and some relations between them that will be used in that
follows. Since the coefficients are independent of ∆x and i, we can consider, without loss
of generality, the case i = 0, x0 = 0, ∆x = 1:

f (k)(0) ' Dk
p,0(f, 1) =

p∑
j=−p

δkp,jf(j), (3.1.7)

f (k)(q) ' Ak,qp,0(f, 1) =

p∑
j=−p+1

γk,qp,j f(j). (3.1.8)

Since (3.1.7) is exact for polynomials of degree ≤ 2p, by applying the formula to xs,
s = 0, . . . , 2p at x = 0, we get that the coefficients have to satisfy the equalities

p∑
j=−p

jkδkp,j = k!,

p∑
j=−p

jsδkp,j = 0, s 6= k , 0 ≤ s, k ≤ 2p. (3.1.9)

Analogously:

p∑
j=−p+1

jkγk,0p,j = k!,

p∑
j=−p+1

jsγk,0p,j = 0, s 6= k , 0 ≤ s, k ≤ 2p− 1. (3.1.10)

p∑
j=−p+1

γk,qp,j =

{
1 if k = 0,
0 otherwise.

(3.1.11)

As it is well known, the coefficients δkp,j are related to the Lagrange basis polynomials

Fp,j(x) =

p∏
r=−p,r 6=j

(x− r)
(j − r)

, −p ≤ j ≤ p, (3.1.12)

through the equalities:
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δkp,j = F
(k)
p,j (0), (3.1.13)

which allow us to write the Taylor expansion of Fp,j centered at x = 0 as follows:

Fp,j(x) =

2p∑
k=0

δkp,j
k!
xk. (3.1.14)

Proposition 1 The coefficients δkp,j of the formula (3.1.7), satisfy:

δkp,j = (−1)kδkp,−j; (3.1.15)

δkp,0 = 0 if k is odd; (3.1.16)
p∑

j=−p

δkp,j j
(2p+1) = 0 if k is even; (3.1.17)

p∑
j=−p

δkp,j j
(2p+2) = 0 if k is odd. (3.1.18)

Proof. (3.1.15) is deduced from the equality

Fp,−j(x) = Fp,j(−x). (3.1.19)

Using (3.1.15) we get (3.1.16). (3.1.17) and (3.1.18) are deduced from (3.1.15) and (3.1.16).

�

Proposition 2 For k ≥ 1 the following relations hold:

δkp,p = γk−1,1/2
p,p ; (3.1.20)

δkp,j = γ
k−1,1/2
p,j − γk−1,1/2

p,j+1 , j = −p+ 1, . . . , p− 1; (3.1.21)

δkp,−p = −γk−1,1/2
p,−p+1 . (3.1.22)

Proof. Let us consider the formulas

f (k−1)(1/2) ' A
k−1,1/2
p,0 (f, 1) =

p∑
j=−p+1

γk−1
p,j f(j), (3.1.23)

f (k−1)(−1/2) ' A
k−1,1/2
p,−1 (f, 1) =

p∑
j=−p+1

γk−1
p,j f(j − 1), (3.1.24)
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that are exact for polynomials of degree ≤ 2p− 1. Let us consider now the formula

f (k)(0) ' A
k−1,1/2
p,0 (f, 1)− Ak−1,1/2

p,−1 (f, 1). (3.1.25)

If f is a polynomial of degree 2p, then (3.1.23) and (3.1.24) are exact for f , furthermore

A
k−1,1/2
p,0 (f, 1)− Ak−1,1/2

p,−1 (f, 1) =f (k−1)(1/2)− f (k−1)(−1/2)

=f (k)(0),

where we have used that the formula

g′(0) ' g(1/2)− g(−1/2),

is exact for polynomials of degree 1. Therefore, (3.1.25) coincide with (3.1.7). The proof
is finished by writing (3.1.25) in the form

f (k)(0) 'γk−1,1/2
p,p f(p) + (γ

k−1,1/2
p,p−1 − γk−1,1/2

p,p )f(p− 1) + . . .

+ (γ
k−1,1/2
p,−p+1 − γ

k−1,1/2
p,−p+2 )f(−p+ 1)− γk−1,1/2

p,−p+1 f(−p),

and matching the weights.

�

Proposition 3 Given 1 ≤ k ≤ 2p− 1, 0 ≤ s ≤ k:

p∑
j=−p+1

γs,qp,jγ
k−s,j
p,l = γk,qp,l , l = −p+ 1, . . . , p. (3.1.26)

Proof. The proof is similar to the one of the preceding in Proposition 2: consider the
formula

f (k)(q) '
p∑

j=−p+1

γs,qp,jf
(k−s)
j ,

with

f
(k−s)
j =

p∑
l=−p+1

γk−s,jp,l f(l);

check that it is exact for polynomials of degree 2p− 1; write it in the form:

f (k)(q) '
p∑

l=−p+1

(
p∑

j=−p+1

γs,qp,jγ
k−s,j
p,l

)
f(l);

and match its weights with those of (3.1.8).

�
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3.1.2 Conservative form

From the proof of Proposition 2 we deduce an alternative form for (3.1.3):

f (k)(xi) '
1

∆x

(
A
k−1,1/2
p,i (f,∆x)− Ak−1,1/2

p,i−1 (f,∆x)
)
. (3.1.27)

Using this form in (3.1.6), the numerical method (3.1.2) can be written as:

un+1
i = uni +

∆t

∆x

(
F p
i−1/2 − F

p
i+1/2

)
, (3.1.28)

with

F p
i+1/2 =

2p∑
k=1

(−1)k−1a
k∆tk−1

k!
A
k−1,1/2
p,i (un∗ ,∆x). (3.1.29)

Using (3.1.11) it is straightforward to verify that F p
i+1/2 is a consistent numerical flux,

what proves that (3.1.2) is a conservative method.

3.1.3 Computation of the coefficients: an iterative algorithm

Notice that (3.1.9) constitutes a (2p + 1) × (2p + 1) linear system with a Vandermonde
matrix that can be used to compute δkp,i . Nevertheless, as it is well-known, this system
is ill-conditioned, so that it is recommendable to compute them by using an alternative
algorithm: we adapt the recursive algorithm proposed in [55]. The following notation is
adopted:

δkp,j = 0 if k > 2p or k < 0.

Let us derive some recurrence formulas to compute the coefficients:

1. δkp,j for j = 0, .., p− 1.

From (3.1.12), we obtain

Fp,j(x) =
(x+ p)..̂(x− j)..(x− p)
(j + p)..(̂j − j)..(j − p)

, (3.1.30)

where factors with a hat have to be left out. Then one has

Fp,j(x) =
x2 − p2

j2 − p2
Fp−1,j(x). (3.1.31)

Using then the Taylor expansions (3.1.14) in (3.1.31) we get
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δkp,j
k!

=
1

j2 − p2

[
δk−2
p−1,j

(k − 2)!
− p2

δkp−1,j

k!

]
,

that is

δkp,j =
1

p2 − k2

[
p2δkp−1,j − k(k − 1)δk−2

p−1,j

]
, (3.1.32)

2. δkp,j with j = p.

Substituting j=p in (3.1.12), we get

Fp,p(x) =
(x+ p)..(x− p+ 1)

(2p)..(2)(1)

=
1

(2p)!
(x+ p)(x− p+ 1)

(x+ p+ 1)..(x− p+ 2)

(2p− 2)..(1)
(2p− 2)!

=
1

(2p)(2p− 1)
(x2 + x− p(p− 1))Fp−1,p−1(x),

(3.1.33)

using (3.1.14) we obtain

δkp,p
k!

=
1

2p(2p− 1)

[
δk−2
p−1,p−1

(k − 2)!
+
δk−1
p−1,p−1

(k − 1)!
− p(p− 1)

δkp−1,p−1

k!

]
, (3.1.34)

in explicit form

δkp,p =
1

2p(2p− 1)

[
k(k − 1)δk−2

p−1,p−1 + kδk−1
p−1,p−1 − p(p− 1)δkp−1,p−1

]
. (3.1.35)

3. δkp,j for j = −p, . . . ,−1. (3.1.15) is used.

The algorithm is computed only once in increasing order of p for a specific k-th numerical
derivative. The coefficients γk,qp,j are computed using the algorithms described in [55],[56]

and γ
k,1/2
p are obtained from Prop. 2.

3.1.4 Order of accuracy

Proposition 4 The formula of numerical differentiation (3.1.3) has order of accuracy
αk − k,

with,

αk =

{
2p+ 1 if k is odd,
2p+ 2 if k is even.
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k � p 1 2 3 4

1 2 4 6 8
2 2 4 6 8
3 2 4 6
4 2 4 6
5 2 4
6 2 4
7 2
8 2

Table 3.1: Order of the formula (3.1.3).

Proof. Let f be a function of class Cαk+1. Applying Taylor expansions and properties
(3.1.9) and (3.1.17), we obtain:

if k is odd;

1

∆xk

p∑
j=−p

δkp,jf(xi+j) = f (k)(xi) +

p∑
j=−p

δkp,j j
2p+1 ∆x2p+1−k

(2p+ 1)!
f (2p+1)(xi) +O(∆x2p+2−k),

(3.1.36)
and if k is pair,

1

∆xk

p∑
j=−p

δkp,jf(xi+j) = f (k)(xi) +

p∑
j=−p

δkp,j j
2p+2 ∆x2p+2−k

(2p+ 2)!
f (2p+2)(xi) +O(∆x2p+3−k),

(3.1.37)
in compact form

1

∆xk

p∑
j=−p

δkp,jf(xi+j) = f (k)(xi) + ϕk
∆xαk−k

αk!
f (αk)(xi) +O(∆xαk−k+1), (3.1.38)

where

ϕk =

p∑
j=−p

δkp,j j
αk . (3.1.39)

�

Table 3.1 shows the order of (3.1.3) for different values of p and k.

Proposition 5 The discretization error of the numerical method (3.1.2) is of order
O(∆tm+1 + ∆x2p+1).
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Proof. Let u be a smooth enough solution of (3.1.1). Using Proposition 4 we obtain

u(xi, tn+1)− u(xi, tn)−
m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u(xi+j, tn)

= u(xi, tn+1)− u(xi, tn)

−
m∑
k=1

(−1)kak∆tk

k!

(
∂kxu(xi, tn) + ϕk

∆xαk−k

αk!
∂αk
x u(xi, tn) +O(∆xαk−k+1)

)
= u(xi, tn+1)− u(xi, tn)−

m∑
k=1

∆tk

k!
∂kt u(xi, tn)

−
m∑
k=1

ϕk
(−1)kck

k!αk!
∆xαk ∂αk

x u(xi, tn) +O(∆xαk+1)

=
1

(m+ 1)!
∂m+1
t u(xi, tn)∆tm+1

+

(
p−1∑
k=0

ϕ2k+1c
2k+1

(2p+ 1)!(2k + 1)!

)
∂2p+1
x u(xi, tn)∆x2p+1 +O(∆tm+2 + ∆x2p+2),

where (3.1.4) has been used.

�
As a consequence, the order of accuracy of (3.1.2) is min(m, 2p). Therefore, the

optimal combination of these parameters is m = 2p. From now on, we shall assume that
this relation holds.

3.1.5 Modified equation and stability

Taking into account that m = 2p and (3.1.18), we find that the local discretization error
is as follows:

u(xi, tn+1)− u(xi, tn)−
m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u(xi+j, tn)

=
1

(2p+ 1)!
∂2p+1
t u(xi, tn)∆t2p+1 +

1

(2p+ 2)!
∂2p+2
t u(xi, tn)∆t2p+2

+

(
p−1∑
k=0

ϕ2k+1c
2k+1

(2p+ 1)!(2k + 1)!

)
∂2p+1
x u(xi, tn)∆x2p+1

−

(
p∑

k=1

ϕ2kc
2k

(2p+ 2)!(2k)!

)
∂2p+2
x u(xi, tn)∆x2p+2 +O(∆x2p+3).
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Using (3.1.39) and (3.1.14) we get:

p−1∑
k=0

ϕ2k+1c
2k+1

(2k + 1)!
=

p∑
j=−p

(
p−1∑
k=0

δ2k+1
p,j c2k+1

(2k + 1)!

)
j2p+1

=
1

2

p∑
j=−p

(
2p∑
l=1

(
δlp,j
l!
−
δlp,−j
l!

)
cl

)
j2p+1

=
1

2

p∑
j=−p

(Fp,j(c)− Fp,−j(c)) j2p+1

=
1

2

[
p∑

j=−p

Fp,j(c)j
2p+1 −

p∑
j=−p

Fp,j(−c)j2p+1

]

=
1

2
[q(c)− q(−c)]

where q(c) is the polynomial of degree ≤ 2p that interpolates the points

{(−p, (−p)2p+1), . . . , (0, 0), . . . , (p, p2p+1)}.
Since q is clearly an odd function, we finally obtain:

p−1∑
k=0

ϕ2k+1c
2k+1

(2k + 1)!
= q(c). (3.1.40)

Reasoning in a similar way, we obtain:

p∑
k=1

ϕ2kc
2k

(2k)!
=

1

2

p∑
j=−p

(
2p∑
l=1

(
δlp,j
l!

+
δlp,−j
l!

)
cl

)
j2p+2

=
1

2

p∑
j=−p

(Fp,j(c) + Fp,−j(c)) j
2p+2

=
1

2

[
p∑

j=−p

Fp,j(c)j
2p+2 +

p∑
j=−p

Fp,j(−c)j2p+2

]

=
1

2
[r(c) + r(−c)]

= r(c).

(3.1.41)

where r is the polynomial of degree ≤ 2p that interpolates the points

{(−p, (−p)2p+2), ..., (0, 0), ..., (p, p2p+2)}.
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Using now (3.1.4), (3.1.40), and (3.1.41), we can writhe the local discretization error as
follows:

u(xi, tn+1)− u(xi, tn)−
m∑
k=1

(−1)kck

k!

p∑
j=−p

δkp,j u(xi+j, tn)

=
h1(c)

(2p+ 1)!
∂2p+1
x u(xi, tn)∆x2p+1 − h2(c)

(2p+ 2)!
∂2p+2
x u(xi, tn)∆x2p+2 +O(∆2p+3),

with

h1(c) = q(c)− c2p+1, (3.1.42)

h2(c) = r(c)− c2p+2. (3.1.43)

Therefore, the numerical method solves with order O(∆2p+2) the following modified
equation

ut + aux = µ1∂
2p+1
x u− µ2∂

2p+2
x u, (3.1.44)

where

µ1 =
h1(c)

(2p+ 1)!∆t
∆x2p+1, µ2 =

h2(c)

(2p+ 2)!∆t
∆x2p+2. (3.1.45)

Following the heuristic theory proposed in [57] to study the stability in the small
wave-number limit, we look for an elementary solution u(x, t) of (3.1.45) of the form

u(x, t) = eαt · eikx,

where α is complex number, and

u
(1)
t = αeαt · eikx,
u(2p)
x = eαt · (−1)pk2peikx,

u(2p+1)
x = eαt · i(−1)pk2p+1eikx,

The following equality has to be satisfied:

αu+ ikau = µ1(−1)pik2p+1u+ µ2(−1)pk2p+2u.

Therefore:
α = −µ2(−1)p+1k2p+2 − (ka− µ1(−1)p+1k2p+1)i.



3.1 The high-order Lax-Wendroff method for linear problems 33

The numerical method is thus expected to be stable if the real part is negative, i.e.

µ2(−1)p ≤ 0,

or, equivalently
h2(c)(−1)p ≤ 0. (3.1.46)

h2 is an even polynomial of degree 2p+ 2 such that

lim
c→±∞

h2(c) = −∞.

Moreover, 0 is a double root of h2 and ±1, . . . ,±p are single roots. Analyzing the change
of signs of h2, we obtain:

h2(c) ≤ 0, ∀c ∈ [0, 1] if p even,

h2(c) ≥ 0, ∀c ∈ [0, 1] if p odd,

and thus (3.1.46) is satisfied if c ∈ [0, 1] (see Figure 3.1).
This argument shows that the method is expected to be stable at least for small

wave-numbers under the standard CFL condition c ≤ 1. In fact, in [57] (see also [11]) it
has been shown that (3.1.46) is a necessary condition for stability in the von Neumann
sense. The analysis of the sufficiency of this condition is out of the scope of this thesis.
Nevertheless the numerical experiments seem to confirm that the method is L2-stable
under the standard CFL condition.
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Figure 3.1: Function h2(c) for p = 1, .., 4.
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3.2 Extension to nonlinear problems

3.2.1 Approximate Taylor method

Following [10], instead of using the Cauchy-Kovalevskaya process to extend (3.1.28)-
(3.1.29) to nonlinear problems

ut + f(u)x = 0, (3.2.1)

we use the equalities
∂kt u = −∂x∂k−1

t f(u). (3.2.2)

To derive the expression of the numerical method, let us suppose that approximations

f̃
(k−1)
i

∼= ∂k−1
t f(u)(xi, tn),

are available. Then,

∂kt u(xi, tn) ∼= ũ
(k)
i = −D1

pk−1,i
(f̃ (k−1)
∗ ,∆x) = − 1

∆x

pk−1∑
j=−pk−1

δ1
pk−1,j

f̃
(k−1)
i+j ,

being

pk = d(p− k/2)e, (3.2.3)

where, d·e denotes the ceiling function.
Using these approximations to approximate the Taylor expansion, we obtain the method

un+1
i = uni +

2p∑
k=0

∆tk

k!
ũ

(k)
i . (3.2.4)

Equivalently, using (3.1.27), we can write the numerical method in conservative form
(3.1.28) with numerical flux

F p
i+1/2 =

2p∑
k=1

∆tk−1

k!
A

0,1/2
pk−1,i

(f̃ (k−1)
∗ ,∆x), (3.2.5)

being

A
0,1/2
pk−1,i

(f̃ (k−1)
∗ ,∆x) =

pk−1∑
j=−pk−1+1

γ
0,1/2
pk−1,j

f̃
(k−1)
i+j . (3.2.6)

Now, to compute the approximations f̃
(k−1)
i , new Taylor expansions in time are used

recursively as follows:

• k = 1: compute f̃
(0)
i = f(uni ).



3.2 Extension to nonlinear problems 35

• For k = 2 . . . 2p:

- Apply correspondent boundary conditions on f̃
(k−2)
i

- Compute
ũ

(k−1)
i = −D1

pk−2,i
(f̃ (k−2)
∗ ,∆x).

- Compute

f̃k−1,n+r
i = f

(
uni +

k−1∑
l=1

(r∆t)l

l!
ũ

(l)
i

)
, r = −pk−1, . . . , pk−1.

- Compute
f̃

(k−1)
i = Dk−1

pk−1,n
(f̃k−1,∗
i ,∆t),

where

Dk−1
pk−1,n

(f̃k−1,∗
i ,∆t) =

1

∆tk−1

pk−1∑
r=−pk−1

δk−1
pk−1,r

f̃k−1,n+r
i .

Observe that Taylor expansions are used to approximate f(u(xi, tn + r∆t)) and
once these approximations have been computed, the centered formula of numerical
differentiation (3.1.3) is used to approximate the temporal derivatives.

This method is order 2p, but it is not a generalization of (3.1.2) in the sense that this
latter method is not recovered if f(u) = au. To see this, consider p = 1 and f(u) = au:
it can be easily checked that (3.2.4) writes as follows

un+1
i = uni −

c

2
(uni+1 − uni−1)− c2

8
(uni+2 − 2uni + uni−2), (3.2.7)

which is different from the standard Lax-Wendroff method: (3.2.4) is a (4p + 1)-point
method whose stability properties are worse than those of the standard Lax-Wendroff
method. (see [2]).

3.2.2 Compact Approximate Taylor method

In order to prevent the increase of the stencil observed for Approximate Taylor methods,
we consider a modification based on the conservative form of the method. The numerical
flux F p

i+1/2 will be computed using only the approximations

uni−p+1, . . . , u
n
i+p, (3.2.8)

so that the values used to update un+1
i are only those of the centered (2p + 1)-point

stencil, like in the linear case. In fact, we will show that this modification is a proper
generalization of the Lax-Wendroff method for linear problems.
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In order to be able to compute the numerical fluxes using only (3.2.8), for every i we
will compute local approximations of

∂k−1
t f(u(xi−p+1, t

n), . . . , ∂k−1
t f(u(xi+p, t

n),

that will be represented by

f̃
(k−1)
i,j

∼= ∂k−1
t f(u)(xi+j, tn), j = −p+ 1, . . . , p.

These approximations are local in the sense that i1 + j1 = i2 + j2, does not imply that
f̃

(k−1)
i1,j1

= f̃
(k−1)
i2,j2

. Once these approximations have been computed, the numerical flux is
given by

F p
i+1/2 =

2p∑
k=1

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x), (3.2.9)

with

A
0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x) =

p∑
j=−p+1

γ
0,1/2
p,j f̃

(k−1)
i,j . (3.2.10)

Now, given i, to compute the approximations f̃
(k−1)
i,j , new Taylor expansions in time

are used recursively as follows:

• k = 1: compute f̃
(0)
i,j = f(uni+j), j = −p+ 1, . . . , p.

• For k = 2 . . . 2p:

- Compute
ũ

(k−1)
i,j = −A1,j

p,0(f̃
(k−2)
i,∗ ,∆x),

where

A1,j
p,0(f̃

(k−2)
i,∗ ,∆x) =

1

∆x

p∑
r=−p+1

γ1,j
p,r f̃

(k−2)
i,r .

- Compute

f̃k−1,n+r
i,j = f

(
uni+j +

k−1∑
l=1

(r∆t)l

l!
ũ

(l)
i,j

)
, j, r = −p+ 1, . . . , p.

- Compute
f̃

(k−1)
i,j = Ak−1,0

p,n (f̃k−1,∗
i,j ,∆t), j = −p+ 1, . . . , p.

with

Ak−1,0
p,n (f̃k−1,∗

i,j ,∆t) =
1

∆tk−1

p∑
r=−p+1

γk−1,0
p,r f̃k−1,n+r

i,j .
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Notice that, unlike the Approximate Taylor methods (in which all the derivatives
were approximated using the centered (2p + 1)-point formula), in this algorithm
the stencil xi−p+1, . . . , xi+p is used for the space derivatives and the stencil
tn−p+1, . . . , tn+p for the time derivative.

Theorem 3.2.1 The compact approximate Taylor method reduces to (3.1.2) when f(u) =
au.

Proof. For k > 1 we have:

f̃
(k−1)
i,j =

1

∆tk−1

p∑
r=−p+1

γk−1,0
p,r f̃k−1,n+r

i,j

=
a

∆tk−1

p∑
r=−p+1

γk−1,0
p,r

(
uni+j +

k−1∑
l=1

(r∆t)l

l!
ũ

(l)
i,j

)

=
a

∆tk−1

((
p∑

r=−p+1

γk−1,0
p,r

)
uni+j +

k−1∑
l=1

∆tl

l!

(
p∑

r=−p+1

γk−1,0
p,r rl

)
ũ

(l)
i,j

)
= aũ

(k−1)
i,j ,

where (3.1.10) has been used. On the other hand:

ũ
(k)
i,j = − 1

∆x

p∑
r=−p+1

γ1,j
p,r f̃

(k−1)
i,r

= − a

∆x

p∑
r=−p+1

γ1,j
p,r ũ

(k−1)
i,r

=
a2

∆x2

p∑
r=−p+1

γ1,j
p,r

p∑
s=−p+1

γ1,r
p,s ũ

(k−2)
i,s

=
a2

∆x2

p∑
s=−p+1

(
p∑

r=−p+1

γ1,j
p,rγ

1,r
p,s

)
ũ

(k−2)
i,s

=
a2

∆x2

p∑
s=−p+1

γ2,j
p,s ũ

(k−2)
i,s ,

where (3.1.26) has been used. By recurrence:

ũ
(k)
i,j =

(−1)kak

∆xk

p∑
r=−p+1

γk,jp,ru
n
i+r. (3.2.11)
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Next,

A
0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x) =

1

∆x

p∑
j=−p+1

γ
0,1/2
p,j f̃

(k−1)
i,j

=
a

∆x

p∑
j=−p+1

γ
0,1/2
p,j ũ

(k−1)
i,j

= (−1)k−1 ak

∆xk

p∑
j=−p+1

γ
0,1/2
p,j

p∑
r=−p+1

γk−1,j
p,r uni+r

= (−1)k−1 ak

∆xk

p∑
r=−p+1

(
p∑

j=−p+1

γ
0,1/2
p,j γk−1,j

p,r

)
uni+r

= (−1)k−1 ak

∆xk

p∑
r=−p+1

γ
k−1,1/2
p,j uni+r

= (−1)k−1akA
k−1,1/2
p,i (un∗ ,∆x),

where (3.1.26) has been used. Finally,

F p
i+1/2 =

2p∑
k=1

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x)

=

2p∑
k=1

(−1)k−1a
k∆tk−1

k!
A
k−1,1/2
p,i (un∗ ,∆x),

what is the numerical flux (3.1.29) corresponding to (3.1.2), as we wanted to prove.

�
As a consequence, we obtain that the compact approximate Taylor method is linearly

stable (in the L2 sense) under the usual CFL condition

max
i

(|f ′(ui)|)
∆t

∆x
≤ 1. (3.2.12)

Theorem 3.2.2 The compact approximate Taylor method is order 2p.

Proof. Let us perform a step of the method starting from the point values at time tn,
u(xi, tn), of a smooth enough exact solution. We assume that ∆t/∆x remains constant.

First we have:

ũ
(1)
i,j = −A1,j

p,0(f̃
(0)
i,∗ ,∆x) = −∂xf(u)(xi+j, tn) +O(∆x2p−1) = ∂tu(xi+j, tn) +O(∆x2p−1).
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Next:
f̃ 1,n+r
i,j = f(u(xi+j, tn) + ũ

(1)
i,j r∆t) = f(P 1

i,j(r∆t)) +O(∆x2p),

where
P 1
i,j(s) = u(xi+j, tn) + s∂tu(xi+j, tn),

is the first-order Taylor polynomial in time of u in (xi+j, tn). Then

f̃
(1)
i,j = A1,0

p,n(f̃k,∗i,j ,∆t)

=
1

∆t

p∑
r=−p+1

γ1,0
p,j f̃

1,n+r
i,j

=
1

∆t

p∑
r=−p+1

γ1,0
p,j f(P 1

i,j(r∆t)) +O(∆x2p)

=
1

∆t

p∑
r=−p+1

γ1,0
p,j

2p−1∑
k=0

1

k!
dk(f ◦ P 1

i,j)(tn)rk∆tk +O(∆x2p−1)

=
1

∆t

2p−1∑
k=0

1

k!
dk(f ◦ P 1

i,j)(tn)∆tk
p∑

r=−p+1

γ1,0
p,j r

k +O(∆x2p−1)

= d1(f ◦ P 1
i,j)(tn) +O(∆x2p−1)

= ∂tf(u)(xi+j, tn) +O(∆x2p−1),

where (3.1.10) has been used. This result can be extended by induction to every k between
1 and 2p− 1 as follows:

f̃
(k)
i,j = ∂kt f(u)(xi+j, tn) +O(∆t2p−k), k = 1, . . . , 2p− 1. (3.2.13)

Using this equality we get:

u(xi, tn+1)− u(xi, tn) +
∆t

∆x

(
F p
i+1/2 − F

p
i−1/2

)
= u(xi, tn+1)− u(xi, tn) +

1

∆x

2p∑
k=1

∆tk

k!

(
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x)− A0,1/2

p,0 (f̃
(k−1)
i−1,∗ ,∆x)

)
= u(xi, tn+1)− u(xi, tn) +

1

∆x

2p∑
k=1

∆tk

k!

(
A

0,1/2
p,i (∂k−1

t f(u),∆x)− A0,1/2
p,i−1(∂k−1

t f(u),∆x)
)

+O(∆x2p+1)

= u(xi, tn+1)− u(xi, tn) +
1

∆x

2p∑
k=1

∆tk

k!
D1
p,i(∂

k−1
t f(u),∆x) +O(∆x2p+1)
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= u(xi, tn+1)− u(xi, tn) +
1

∆x

2p∑
k=1

∆tk

k!
∂k−1
t f(u)(xi, tn) +O(∆x2p+1)

= u(xi, tn+1)− u(xi, tn)− 1

∆x

2p∑
k=1

∆tk

k!
∂kt u(xi, tn) +O(∆x2p+1)

= O(∆x2p+1).

�

Remark: In the Approximate Taylor method proposed in [10] the derivatives ũ
(k+1)
i are

computed by applying the 2pk+1-point centered differentiation formula for first derivatives
to f̃

(k)
i , where pk is given by (3.2.3): notice that pk decreases as k increases. The same

reduction of the stencil used to compute ũ
(k)
i,j could be applied here, what would allow

us to reduce the number of computations while preserving the overall order of accuracy.
Nevertheless, the resulting method will not be an extension of the linear Lax-Wendroff
method. On the other hand, the CPU reduction will be not significant.

3.2.3 Examples of CAT schemes

In this section the expressions of the CAT2 and CAT4 methods in 1D (second and
fourth-order respectively) are explicitly given. Since the method is conservative, only
the computation of the numerical flux (3.2.9) has to be given.

3.2.3.1 Second-order compact approximate Taylor method

Let us consider (3.2.9) computed with p = 1, then the second-order CAT numerical flux
is:

F 1
i+1/2 =

2∑
k=1

∆tk−1

k!
A

0,1/2
1,0 (f̃

(k−1)
i,∗ ,∆x) (3.2.14)

=
1

2
(f̃

(0)
i,1 + f̃

(0)
i ) +

1

2
(f̃

(1)
i,1 + f̃

(1)
i,0 ) (3.2.15)

=
1

2
(fni,1 + fni,0) +

1

4
(f̃ 1,n+1
i,1 + f̃ 1,n+1

i,0 − fni,1 − fni,0) (3.2.16)

=
1

4
(f̃ 1,n+1
i,0 + f̃ 1,n+1

i,0 + fni,1 + fni,0), (3.2.17)

where

f̃ 1,n+1
i,s =f(uni,s + ∆t ũ

(1)
t,i,s), (3.2.18)
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=f(uni,s −
∆t

∆x
(uni,1 − uni,0)), s = {0, 1}. (3.2.19)

Observe that if f(u) = au then (3.2.14) it reduces to the standard second-order Lax-
Wendroff method.

3.2.3.2 Fourth-order compact approximate Taylor method

Calculate (3.2.9) for p = 2 is not so straightforward as in second-order scheme. To
simplify, we will compute each component of (3.2.9) by separated i.e.

κki+1/2 = A
0,1/2
2,0 (f̃

(k−1)
i,∗ ,∆x), for k = 1, 2, 3, 4. (3.2.20)

then procedure is as follows:

• κ1
i+1/2: First the assignment

f̃
(0)
i,j = f(uni+j), j = −1, ..., 2,

is done and then:

κ1
i+1/2 = A

0,1/2
2,0 (f̃

(0)
i,∗ ,∆x) =

−f̃ (0)
i,−1 + 7f̃

(0)
i,0 + 7f̃

(0)
i,1 − f̃

(0)
i,2

12
.

• κ2
i+1/2: The first-order time derivatives of u at the nodes i − 1, . . . , i + 2 are

approximated by applying the corresponding differentiation numerical formula to
f̃

(0)
i,j :

ũ
(1)
i,−1 = −A1,−1

2,0 (f̃
(0)
i,∗ ,∆x) = −

11/6f̃
(0)
i,−1 − 3f̃

(0)
i,0 + 3/2f̃

(0)
i,1 − 1/3f̃

(0)
i,2

∆x
,

ũ
(1)
i,0 = −A1,0

2,0(f̃
(0)
i,∗ ,∆x) = −

1/3f̃
(0)
i,−1 + 1/2f̃

(0)
i,0 − f̃

(0)
i,1 + 1/6f̃

(0)
i,2

∆x
,

ũ
(1)
i,1 = −A1,1

2,0(f̃
(0)
i,∗ ,∆x) = −

−1/6f̃
(0)
i,−1 + f̃

(0)
i,0 − 1/2f̃

(0)
i,1 − 1/3f̃

(0)
i,2

∆x
,

ũ
(1)
i,2 = −A1,2

2,0(f̃
(0)
i,∗ ,∆x) = −

1/3f̃
(0)
i,−1 − 3/2f̃

(0)
i,0 + 3f̃

(0)
i,1 − 11/6f̃

(0)
i,2

∆x
.

Next first-order Taylor expansions are used to approximate the values of the flux
sixteen space-time local nodes: for r = −1, . . . , 2
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f̃ 1,r
i,−1 = f(uni−1 + r∆t ũ

(1)
i,−1),

f̃ 1,r
i,0 = f(uni,0 + r∆t ũ

(1)
i,0 ),

f̃ 1,r
i,1 = f(uni+1 + r∆t ũ

(1)
i,+1),

f̃ 1,r
i,2 = f(uni+2 + r∆t ũ

(1)
i,+2).

Then, the first-order time derivates of the flux at the nodes i − 1, . . . , i + 2 are
approximated by applying the corresponding differentiation numerical formula to
f̃ 1,r
i,j :

f̃
(1)
i,−1 = A1,0

2,n(f̃ 1,∗
i,−1,∆t) =

−1/3f̃ 1,n−1
i,−1 − 1/2f̃ 1,n

i,−1 + f̃ 1,n+1
i,−1 − 1/6f̃ 1,n+2

i,−1

∆t
,

f̃
(1)
i,0 = A1,0

2,n(f̃ 1,∗
i,0 ,∆t) =

−1/3f̃ 1,n−1
i,0 − 1/2f̃ 1,n

i,0 + f̃ 1,n+1
i,0 − 1/6f̃ 1,n+2

i,0

∆t
,

f̃
(1)
i,1 = A1,0

2,n(f̃ 1,∗
i,1 ,∆t) =

−1/3f̃ 1,n−1
i,1 − 1/2f̃ 1,n

i,1 + f̃ 1,n+1
i,1 − 1/6f̃ 1,n+2

i,1

∆t
,

f̃
(1)
i,2 = A1,0

2,n(f̃ 1,∗
i,2 ,∆t) =

−1/3f̃ 1,n−1
i,2 − 1/2f̃ 1,n

i,2 + f̃ 1,n+1
i,2 − 1/6f̃ 1,n+2

i,2

∆t
.

Finally;

κ2
i+1/2 = A

0,1/2
2,0 (f̃

(1)
i,∗ ,∆x) =

−f̃ (1)
i,−1 + 7f̃

(1)
i,0 + 7f̃

(1)
i,1 − f̃

(1)
i,2

12
.

• κ3
i+1/2: the second-order time derivatives at the nodes are approximated by

ũ
(2)
i,−1 = −A1,−1

2,0 (f̃
(1)
i,∗ ,∆x) = −

11/6f̃
(1)
i,−1 − 3f̃

(1)
i,0 + 3/2f̃

(1)
i,1 − 1/3f̃

(1)
i,2

∆x
,

ũ
(2)
i,0 = −A1,0

2,0(f̃
(1)
i,∗ ,∆x) = −

1/3f̃
(1)
i,−1 + 1/2f̃

(1)
i,0 − f̃

(1)
i,1 + 1/6f̃

(1)
i,2

∆x
,

ũ
(2)
i,1 = −A1,1

2,0(f̃
(1)
i,∗ ,∆x) = −

−1/6f̃
(1)
i,−1 + f̃

(1)
i,0 − 1/2f̃

(1)
i,1 − 1/3f̃

(1)
i,2

∆x
,

ũ
(2)
i,2 = −A1,2

2,0(f̃
(1)
i,∗ ,∆x) = −

1/3f̃
(1)
i,−1 − 3/2f̃

(1)
i,0 + 3f̃

(1)
i,1 − 11/6f̃

(1)
i,2

∆x
.
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Second-order Taylor expansions are used to compute the fluxes at the sixteen nodes
in the space-time mesh: for r = −1, . . . 2

f̃ 2,r
i,−1 = f

(
uni−1 + r∆t ũ

(1)
i,−1 + r2∆t2

2
ũ

(2)
i,−1

)
,

f̃ 2,r
i,0 = f

(
uni + r∆t ũ

(1)
i,0 + r2∆t2

2
ũ

(2)
i,0 ]
)
,

f̃ 2,r
i,1 = f

(
uni+1 + r∆t ũ

(1)
i,1 + r2∆t2

2
ũ

(2)
i,1

)
,

f̃ 2,r
i,2 = f

(
uni+2 + r∆t ũ

(1)
i,2 + r2∆t2

2
ũ

(2)
i,2

)
.

Next, compute

f̃
(2)
i,−1 = A2,0

2,n(f̃ 2,∗
i,−1,∆t) =

f̃ 2,n−1
i,−1 − 2f̃ 2,n

i,−1 + f̃ 2,n+1
i,−1

∆t2
,

f̃
(2)
i,0 = A2,0

2,n(f̃ 2,∗
i,0 ,∆t) =

f̃ 2,n−1
i,0 − 2f̃ 2,n

i,0 + f̃ 2,n+1
i,0

∆t2
,

f̃
(2)
i,1 = A2,0

2,n(f̃ 2,∗
i,1 ,∆t) =

f̃ 2,n−1
i,1 − 2f̃ 2,n

i,1 + f̃ 2,n+1
i,1

∆t2
,

f̃
(2)
i,2 = A2,0

2,n(f̃ 2,∗
i,2 ,∆t) =

f̃ 2,n−1
i,2 − 2f̃ 2,n

i,2 + f̃ 2,n+1
i,2

∆t2
.

And finally;

κ3
i+1/2 = A

0,1/2
2,0 (f̃

(2)
i,∗ ,∆x) =

−f̃ (2)
i,−1 + 7f̃

(2)
i,0 + 7f̃

(2)
i,1 − f̃

(2)
i,2

12
.

• κ4
i+1/2: the third-order time derivatives at the nodes are approximated by

ũ
(3)
i,−1 = −A1,−1

2,0 (f̃
(2)
i,∗ ,∆x) = −

11/6f̃
(2)
i,−1 − 3f̃

(2)
i,0 + 3/2f̃

(2)
i,1 − 1/3f̃

(2)
i,2

∆x
,

ũ
(3)
i,0 = −A1,0

2,0(f̃
(2)
i,∗ ,∆x) = −

1/3f̃
(2)
i,−1 + 1/2f̃

(2)
i,0 − f̃

(2)
i,1 + 1/6f̃

(2)
i,2

∆x
,

ũ
(3)
i,1 = −A1,1

2,0(f̃
(2)
i,∗ ,∆x) = −

−1/6f̃
(2)
i,−1 + f̃

(2)
i,0 − 1/2f̃

(2)
i,1 − 1/3f̃

(2)
i,2

∆x
,
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ũ
(3)
i,2 = −A1,2

2,0(f̃
(2)
i,∗ ,∆x) = −

1/3f̃
(2)
i,−1 − 3/2f̃

(2)
i,0 + 3f̃

(2)
i,1 − 11/6f̃

(2)
i,2

∆x
.

Compute the approximations of the fluxes: for r = −1, . . . , 2

f̃ 3,r
i,−1 = f

(
uni−1 + r∆t ũ

(1)
i,−1 + r2∆t2

2
ũ

(2)
i,−1 + r3∆t3

6
ũ

(3)
i,−1

)
,

f̃ 3,r
i,0 = f

(
uni + r∆t ũ

(1)
i,0 + r2∆t2

2
ũ

(2)
i,0 + r3∆t3

6
ũ

(3)
i,0

)
,

f̃ 3,r
i,1 = f

(
uni+1 + r∆t ũ

(1)
i,1 + r2∆t2

2
ũ

(2)
i,1 + r3∆t3

6
ũ

(3)
i,1

)
,

f̃ 3,r
i,2 = f

(
uni+2 + r∆t ũ

(1)
i,2 + r2∆t2

2
ũ

(2)
i,2 + r3∆t3

6
ũ

(3)
i,2

)
.

Next, compute:

f̃
(3)
i,−1 = A3,0

2,n(f̃ 3,∗
i,−1,∆t) =

−f̃ 3,n−1
i,−1 + 3f̃ 3,n

i,−1 − 3f̃ 3,n+1
i,−1 + f̃ 3,n+2

i,−1

∆t3
,

f̃
(3)
i,0 = A3,0

2,n(f̃ 3,∗
i,0 ,∆t) =

−f̃ 1,n−1
i,0 + 3f̃ 3,n

i,0 − 3f̃ 3,n+1
i,0 + f̃ 3,n+2

i,0

∆t3
,

f̃
(3)
i,1 = A3,0

2,n(f̃ 3,∗
i,1 ,∆t) =

−f̃ 3,n−1
i,1 + 3f̃ 3,n

i,1 − 3f̃ 3,n+1
i,1 + f̃ 3,n+2

i,1

∆t3
,

f̃
(3)
i,2 = A3,0

2,n(f̃ 3,∗
i,2 ,∆t) =

−f̃ 3,n−1
i,2 + 3f̃ 3,n

i,2 − 3f̃ 3,n+1
i,2 + f̃ 3,n+2

i,2

∆t3
.

Finally;

κ4
i+1/2 = A

0,1/2
2,0 (f̃

(2)
i,∗ ,∆x) =

−f̃ (2)
i,−1 + 7f̃

(2)
i,0 + 7f̃

(2)
i,1 − f̃

(2)
i,2

12
.

If f(u) = au, then:

F 2
i+1/2 =

a

12
(−uni−1 + 7uni + 7uni+1 − uni+2) +

a2∆t

24∆x
(−uni−1 + 15uni − 15uni+1 + uni+2)

+
a3∆t2

12∆x2
(uni−1 − uni − uni+1 + uni+2) +

a4∆t3

24∆x3
(uni−1 − 3uni + 3uni+1 − uni+2),

which coincides with the numerical flux of the fourth-order linear Lax-Wendroff in
conservative form.
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3.3 Shock-capturing techniques

Although the Compact Approximate Taylor methods are linearly stable in the L2

sense under the usual CFL condition, they may produce strong oscillations close to a
discontinuity of the solution. The goal of this section is to modify the numerical method
to avoid these oscillations. Since CAT2 can be considered a generalization of the second-
order Lax-Wendroff method, we will be apply it the well known technique of flux limiters
methods. For CAT2p (p ≥ 2), WENO reconstructions will be applied as is done in [10].

3.3.1 Flux limiter - CAT methods

Let us consider the numerical method (3.1.28) with

Fi+1/2 = (1− ϕi+1/2)FL
i+1/2 + ϕi+1/2F

2
i+1/2, (3.3.1)

where FL
i+1/2 is a first-order robust numerical flux, F 2

i+1/2 is given by (3.2.14), and ϕi+1/2

is a TVD centered flux limiter function, see [3], [58], [59]. In addition, we consider here

ϕi+1/2 = ϕ(ri+1/2), (3.3.2)

where ϕ is the van Albada second version flux limiter:

ϕ(r) = max

(
0,

2r

1 + r2

)
, (3.3.3)

and

ri+1/2 =
∆upw

∆loc
=


uni − uni−1

uni+1 − uni
if ai+1/2 > 0,

uni+2 − uni+1

uni+1 − uni
if ai+1/2 < 0,

where ai+1/2 is an estimate of the wave speed, for instance the one corresponding to Roe’s
method:

ai+1/2 =


f(uni+1)− f(uni )

uni+1 − uni
if uni 6= uni+1;

f ′(uni ) otherwise.

3.3.2 WENO-CAT methods

Following [11] we use WENO reconstructions of the flux to stabilize the method. The
only differences with the algorithm described in Section (3.2.2) are the computation of

ũ
(1)
i,j , that is now performed as follows:

ũ
(1)
i,j = −

f̂i+j+1/2 − f̂i+j−1/2

∆x
,
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where f̂i+1/2 denotes the WENO flux splitting, reconstructions at xi+1/2 of the flux
function described in [60]. The expression of the numerical flux is then given by:

F p
i+1/2 = f̂i+1/2 +

2p∑
k=2

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x). (3.3.4)

3.3.3 Systems of conservation laws

For systems of conservation laws

ut + f(u)x = 0, (3.3.5)

where u = [u1, . . . , uM ]T , f(u) = [f1(u1, . . . , uM), . . . , fM(u1, . . . , uM)]T , the expression
of CAT methods is given again by ((3.2.9)) and ((3.2.10)) just using bold characters for
vectors.

Concerning the shock-capturing techniques:

• The implementation of the flux-limiter technique for systems of M conserved
variables, is done by computing (3.3.2) for every component uk, with k = 1, ...,M ,
as follows:

First compute:

rLk,i+1/2 =
unk,i − unk,i−1

unk,i+1 − unk,i
, rRk,i+1/2 =

unk,i+2 − unk,i+1

unk,i+1 − unk,i
,

next, compute

ϕk(r) = min{ϕ(rLk ), ϕ(rRk )}, (3.3.6)

where ϕk(r) is the flux limiter for the uk component. See [3] for more details.

Finally, apply ϕk(r) for each conserved variables by separate do not insure the
stability of solutions, a right procedure is the decomposition of the correction terms
of the flux limiter as wave limiters (see [34], [59]) which is not our interest case for
now. Instead of this, we use only one value per node i.e.

ϕi+1/2 = mink{ϕk(r)}. (3.3.7)

• WENO reconstructions are computed in conserved variables using the procedure
described in [60].
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3.4 Numerical Experiments

The following numerical methods

• CAT2p: Compact Approximate Taylor method of order 2p (space and time);

• FL-CAT2: Compact Approximate Taylor method of order 2 with flux limiter
technique. The first-order methods considered are Lax-Friedrich for scalar problems
and HLL for systems;

• WENOs-CAT2p: Compact Approximate Taylor method of order 2p with WENO
reconstructions of order s = 2p+ 1 to compute ũ

(1)
t,i ;

• WENOs-RK3: WENO method of order s = 2p+ 1 for the space discretization and
TVD-RK3 for the time discretization, see [45];

• WENOs-LATq: Approximate Taylor method of order q = 2p + 1 with WENO
reconstructions of order s = 2p+ 1 to compute ũ

(1)
t,i , see [10];

will be applied to different 1D scalar conservation laws and systems: transport and Burgers
equations, Euler and the ideal Magnetohydrodynamics equations (MHD). All cases time
t is in seconds.

3.4.1 1D scalar equations

3.4.1.1 Test 3.1 Transport equation - Discontinuous solutions 1

We consider first (3.1.1) with a = 1, in the spatial interval [0, 1], with initial condition

u(x, 0) =


1 0 ≤ x < 7/10,
2 2/10 ≤ x < 7/10,
1 7/10 ≤ x < 1,

(3.4.1)

periodic boundary conditions, a uniform mesh with N = 80 points and t = 1 is considered.
The CAT method (that, in this case, coincides with the Lax-Wendroff method) is applied
for p = 1, . . . , 5.

Numerical simulations are shown in Figure 3.2: the L2 stability of the scheme and the
appearance of oscillations near the discontinuities can be observed.

3.4.1.2 Test 3.2 Transport equation - Discontinuous solutions 2

We apply to the previous problem the CAT4, FL-CAT2, WENO5-CAT4, WENO5-RK3,
and WENO5-LAT5 methods. A general view is shown in Figure 3.3 together with a
enlarged view of the area of interest. As it can be observed, the results given by WENO5-
CAT4, WENO5-RK3 and WENO5-LAT5 are almost identical. Nevertheless, as it will be
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Figure 3.2: Test 3.1. Transport equation with initial condition ((3.4.1)), CFL= 0.9 and
t = 1. Solutions using CAT2p methods with p = 1, 2, 3, 4, 5.
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Figure 3.3: Test 3.2. Transport equation with initial condition (3.4.1), CFL= 0.5 and
t = 1. Left-top: general view. a,b,c and d : enlarged view of interest areas.

seen in the next test problem, WENO5-CAT4 still gives good results for CFL close to
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one, what is not the case for WENO5-RK3 or WENO5-LAT5.
Increasing the order of CAT methods implies a significant increase of flops (number

of operations required), that should be considered, see Table 3.2.

Order CAT2 CAT4 CAT6 CAT8 CAT10
Rate flops 1 1.61 2.51 3.69 5.16

Table 3.2: Average rate flops to increase from CAT2 to CAT2p, for p = 2, 3, 4, 5 using the
scalar transport equation with initial conditions (3.4.1).

3.4.1.3 Test 3.3 Transport equation - Accuracy order

We consider (3.1.1) in the spatial interval [0, 2] with initial condition,

u(x, 0) = 0.25 sin(πx), (3.4.2)

and periodic boundary conditions. Table 3.3 shows the error and the empirical order
for CAT2, CAT4, CAT6, and Table 3.4 for WENO5-RK3 and WENO5-LAT5 which
coincides in all cases with the theoretical one. For smooth solutions WENO-CAT2p
reduce to the corresponding CAT2p, so that the accuracy test is not necessary.

Remark: in order to achieve fifth order accuracy in time for WENO5-RK3 we set
∆t = h5/3.

CAT2 CAT4 CAT6
∆x Error ‖ · ‖1 Order Error ‖ · ‖1 Order Error ‖ · ‖1 Order

0.1053 3.68e-02 1.40e-02 7.88e-03
0.0526 6.84e-03 2.43 3.50e-05 8.64 4.25e-08 7.50
0.0263 1.70e-03 2.00 2.19e-06 4.00 6.49e-10 6.03
0.0132 4.27e-04 2.00 1.36e-07 4.00 9.89e-12 6.04
0.0066 1.06e-04 2.00 8.55e-09 4.00 1.53e-13 6.01
0.0033 2.66e-05 2.00 5.34e-10 4.00 2.64e-15 5.96

Table 3.3: Test 3.3. Transport equation with initial condition (3.4.2), CFL= 0.5 and
t = 1: L1 errors and accuracy order for CAT2p, p = 1, 2, 3.

3.4.1.4 Test 3.4 Burgers equation - Discontinuous solutions 1

Let us consider (3.2.1) with

f(u) =
u2

2
.
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WENO5-RK3 WENO-LAT5
∆x Error ‖ · ‖1 Order ‖ · ‖1 Error ‖ · ‖1 Order ‖ · ‖1

0.1053 2.03e-03 5.44e-05
0.0526 6.06e-05 5.06 1.65e-06 5.04
0.0263 1.87e-06 5.02 5.04e-08 5.04
0.0132 5.83e-08 5.00 1.51e-09 5.05
0.0066 1.82e-09 5.00 4.41e-11 5.10
0.0033 5.65e-11 5.01 1.15e-12 5.25

Table 3.4: Test 3.3. Transport equation with initial condition (3.4.2), CFL= 0.5 and
t = 1: L1 errors and accuracy order for WENO5-RK3 and WENO5-LAT5.

When CAT methods are applied to approximate a discontinuous solution of this nonlinear
problem, the oscillations appearing close to the shocks tend to grow and to spoil the
numerical solution. Nevertheless, it is still possible to apply these methods by reducing the
CFL parameter (the reduction increases with p): for instance, Figure 3.4 shows the results
obtained with CAT2p, p = 1, 2, 3, 4 and CFL= 0.8, 0.4, 0.2, 0.1, respectively, with initial
conditions (3.4.1), periodic boundary conditions, a grid of 80-point mesh and t = 1.2s .
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Figure 3.4: Test 3.4. Burgers equation with initial condition (3.4.1), CFL=
0.8, 0.4, 0.2, 0.1, 0.05 and t = 1.2. Solutions for CAT2p, p = 1, 2, 3, 4. Left: general
view. Right: enlarged view.

3.4.1.5 Test 3.5 Burgers equation - Discontinuous solutions 2

The previous test problem is solved using CAT4, FL-CAT2, WENO5-RK3 and WENO5-
LAT5 methods. Using CFL= 0.5 and t = 2, we obtain numerical solutions without
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spurious oscillations for all the methods (except for CAT4). Figure 3.5 shows a general
view of solutions and the van Albada flux limiter function on every inter cell used for
FL-CAT2. In order to show solutions for CFL close to 1, the same test is solved using
N = 250, CFL= {0.5, 0.9} and t = {1.2, 12}. From Figure 3.6 we can conclude:
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Figure 3.5: Test 3.5. Burgers equation with initial condition (3.4.1), CFL= 0.5 and
t = 1.2. Top: general view. Bottom: flux limiter function ϕi+1/2 for FL-CAT2.

• CFL≤ 0.5

- CAT4 shows oscillations near the discontinuities, but it is stable.

- FL-CAT2 is very diffusive near to the discontinuities, due to the selected first-
order accurate flux limiter function.

- WENO5-CAT4, WENO5-LAT5 and WENO5-RK3 show good results, stable
and essentially the same values.

• CFL> 0.5

- CAT4: the amplitude of oscillations increases near the discontinuities. How-
ever, they remain stable.

- FL-CAT2: conversely to the previous CFL condition, it shows acceptable
solutions near the discontinuities.
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- WENO5-CAT4 ,WENO5-LAT5 and WENO5-RK3 : slight oscillations appear
near the discontinuities at the beginning of the simulations. Nevertheless, as
the time increases, these oscillations tend to diminish and the result remains
acceptable and stable for WENO5-CAT4, while the solutions given by WENO5-
LAT5 is very diffusive and the one given by WENO5-RK3 is overdamped.
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Figure 3.6: Test 3.5. Burgers equation with initial condition (3.4.1), CFL= 0.5 and
CFL= 0.9, t = 1.2 and t = 12: enlarged view of the numerical results. Left-top: CFL= 0.5
and t = 1.2. Left-bottom: CFL= 0.5 and t = 12. Right-top: CFL= 0.9 and t = 1.2.
Right-bottom: CFL= 0.9 and t = 12.

Although FL-CAT2 shows better results for bigger CFL, it fails in smooth regions close
to critical points and for systems (as it will be seen in Euler equations).

3.4.1.6 Test 3.6 Burgers equation - Order of accuracy

We consider again initial condition (3.4.2) and periodic boundary conditions. A reference
solution at time t = 0.5 (when the solution is still smooth) is obtained with WENO5-RK3
using a fine grid of 1400 nodes. The errors and the empirical order are shown in Table
3.5: the numerical results verify the theoretical analysis.

3.4.2 1D Euler equations

We solve the 1D Euler equations for gas dynamics

ut + f(u)x = 0, (3.4.3)



3.4 Numerical Experiments 53

CAT2 CAT4 CAT6
∆x Error ‖ · ‖1 Order Error ‖ · ‖1 Order Error ‖ · ‖1 Order

0.1053 7.94e-03 9.01e-04 2.09e-04
0.0526 2.08e-03 1.93 6.13e-05 3.88 4.27e-06 5.62
0.0263 5.22e-04 1.99 3.89e-06 3.98 7.49e-08 5.83
0.0132 1.29e-04 2.01 2.44e-07 4.00 1.20e-09 5.96
0.0066 3.08e-05 2.00 1.51e-08 4.00 1.87e-11 6.00
0.0033 6.16e-06 2.00 8.76e-10 4.00 2.84e-13 6.00

Table 3.5: Test 3.6. Burgers equation with initial condition (3.4.2), CFL= 0.5 and t = 0.5:
L1 errors and accuracy order for CAT2p, p = 1, 2, 3.

with

u =

 ρ
ρu
E

 , f(u) =

 ρu
p+ ρu2

u(E + p)

 , (3.4.4)

where ρ is the density, u the velocity, E the total energy per unit volume, and p the
pressure. We assume an ideal gas with the equation of state,

p(ρ, e) = (γ − 1)ρe, (3.4.5)

being γ the ratio of specific heat capacities of the gas taken as 1.4 and e is the internal
energy per unit mass given by:

E = ρ(e+ 0.5u2). (3.4.6)

3.4.2.1 Test 3.7 Order of accuracy

We consider the spatial interval [0, 2] with the initial condition:

ρ(x, 0) = 0.75 + 0.5 sin(πx),
ρu(x, 0) = 0.25 + 0.5 sin(πx),
E(x, 0) = 0.75 + 0.5 sin(πx),

(3.4.7)

and periodic boundary conditions. For this test we take CFL= 0.5 and t = 0.5. We use a
fine grid with 1400-point mesh to compute CAT8 as a reference solution. The results in
Table 3.6 support the theoretically obtained accuracy.



54 Compact Approximate Taylor Method

CAT2 CAT4 CAT6
∆x Error ‖ · ‖1 Order Error ‖ · ‖1 Order Error ‖ · ‖1 Order

0.1053 3.34e-03 8.57e-04 5.49e-04
0.0526 8.82e-03 1.92 9.93e-05 3.11 3.53e-05 4.96
0.0263 2.28e-04 1.95 7.31e-06 3.76 1.01e-06 5.12
0.0132 5.69e-05 2.01 4.81e-07 3.93 1.94e-08 5.71
0.0066 1.35e-05 2.07 3.02e-08 3.99 3.21e-10 5.92
0.0033 2.71e-06 2.30 1.78e-09 4.08 4.99e-12 6.01

Table 3.6: Test 3.7. 1D Euler equations with initial condition (3.4.7), CFL= 0.5 and
t = 0.5: L1 errors and order of accuracy for CAT2p, p = 1, 2, 3.

3.4.2.2 Test 3.8 Sod shock tube problem

(ρ, u, p) =

{
(1, 0, 1) if x < 1/2,
(0.125, 0, 0.1) if x > 1/2.

Here, x ∈ [0, 1], CFL= 0.5, t = 0.25, and outflow- boundary conditions are considered
at both sides. For details of this problem see [61]. We compare FL-CAT2, WENO5-CAT4,
WENO5-LAT5 and WENO5-RK3 using 450 points. A reference solution is computed with
the algorithm HE-E1RPEXACT by Toro, see [3].

While all numerical solutions show stable and similar values over smooth regions (see
Figure 3.7), the quality is different in the interest regions (a,b,c,d): an enlarged view
of them can be seen in Figure 3.8. By using CFL= 0.5 we observe that the solution
given by FL-CAT2 is the most diffusive one, meanwhile, WENO5-CAT4, WENO5-LAT5
and WENO5-RK3 plots essentially the same results. Choosing the CFL= 0.9, we find
notorious differences in the solutions, mostly in the approximate Taylor solutions. WENO-
CAT4 and WENO-RK3 remains similar solutions to those obtained with CFL= 0.5, which
is not the case for WENO-LAT5, see Figure 3.9.

3.4.2.3 Test 3.9 Shu-Osher problem

(ρ, u, p) =

{
(3.8571, 2.6293, 10.3333) if x < −4,
(1 + 0.2 sin(5x), 0, 1) if x > −4.

We consider the spatial interval x ∈ [−5, 5], CFL= 0.5 and time t = 1. For details see
[20] test 8. We compare FL-CAT2, WENO5-CAT4, WENO5-LAT5 and WENO5-RK3
using 450- point mesh and a reference solution computed with WENO5-RK3 method
using a 2500-point mesh. For this test, all solutions are closely similar and near to the
reference solution with the exception of FL-CAT2.
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Figure 3.7: Test 3.8. The Sod shock tube problem, CFL= 0.5 and t = 0.25. Left-
top: general view of numerical solutions for density ρ and ϕρi+2. Left-bottom: general
view of numerical solutions for the internal energy and ϕEi+2. Right-top: general view
of numerical solutions for velocity u and ϕρui+2 FL-CAT2. Right-down: general view of
numerical solutions for the pressure p.

3.4.3 1D MHD equations

Finally we consider the 1D ideal Magnetohydrodynamics (MHD) system of equations
whose expression is the following:

ut + f(u)x = 0, (3.4.8)

with

u =



ρ
ρvx
ρvy
ρvz
Bx

By

Bz

E


, f(u) =



ρvx
ρv2

x + p∗ −B2
x

ρvxvy −BxBy

ρvxvz −BxBz

0
vxBy − vyBx

vxBz − vzBx

vx(E + p∗)−Bx(v ·B)


, (3.4.9)

where ρ is the mass density, v = [vx, vy, vz]
T and B = [Bx, By, Bz]

T are the velocity
and magnetic fields respectively, E is the total energy per unit volume, and p∗ the total



56 Compact Approximate Taylor Method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

1.2

D
e

n
s

it
y

 (
k

g
/m

3
)

FL-CAT2

WENO5-CAT4

WENO5-LAT5

WENO5-RK3

REFERENCE

0.48 0.485 0.49 0.495 0.5

b

0.424

0.426

0.428

0.43

D
e

n
s

it
y

 (
k

g
/m

3
)

0.718 0.72 0.722 0.724 0.726 0.728 0.73 0.732

c

0.38

0.39

0.4

0.41

0.42

0.43
D

e
n

s
it

y
 (

k
g

/m
3
)

0.73 0.735 0.74 0.745 0.75 0.755

d

0.26

0.265

0.27

0.275

0.28

0.285

D
e

n
s

it
y

 (
k

g
/m

3
)

0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215

a

0.99

0.995

1

1.005

D
e

n
s

it
y

 (
k

g
/m

3
)

d

c

a

b

Figure 3.8: Test 3.8. The Sod shock tube problem, CFL= 0.5 and t = 0.25. General view
and enlarge view of the numerical results for ρ close to regions a,b,c,d.
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Figure 3.9: Test 3.8. The Sod shock tube problem, CFL= 0.5 and t = 0.25. General view
and enlarge view of the numerical solutions for internal energy e close to regions a,b,c,d.

pressure. We assume an ideal gas with the equation of state

p(ρ, e) = (γ − 1)ρe, (3.4.10)
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Figure 3.10: Test 3.9. The Shu-Osher problem, CFL= 0.5 and t = 1. Left: general view
of numerical solutions for density. Right-top: enlarged view. Right-bottom: enlarged
view.

where p is the hydrostatic pressure; γ, the adiabatic constant; and e, the internal energy
per unit mass related to the total energy by the equation

E =
1

2
ρ|v|2 +

1

2
|B|2 + ρe. (3.4.11)

Finally, the total pressure p∗ is given by p+ pm, where

pm =
1

2
|B|2

is the magnetic pressure. The spectral structure of (3.4.9) has been analyzed in [62].

Following [62], we consider two tests for the MHD equations involving discontinuous
weak solutions.

3.4.3.1 Test 3.10 Brio-Wu shock tube problem

(ρ,v,B, p) =

{
(1, 0, 0, 0, 0, 0.75, 1, 0, 1) if x < 0,
(0.125, 0, 0, 0, 0, 0.75,−1, 0, 0.1) if x > 0.

We consider the spatial interval [−1, 1], a γ = 2, 800-point mesh, Dirichlet boundary
conditions, CFL= 0.8, and time t = 0.2. A reference solution is computed using the HLL
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method with a 20000-point mesh. The solution of this test presents a compound wave
consisting of an intermediate shock followed by a slow rarefaction wave.

Plots of the numerical solutions for ρ, vx, By, and p, using WENO5-CAT4, WENO5-
RK3 and WENO5-LAT5 methods are shown in Figure 3.11. From the solutions we can
observe that all methods give similar solutions. The numerical solutions given by all
of the methods present oscillations that remain bounded: see Figure 3.11. While the
numerical results for the density are similar, WENO5-RK3 is more oscillatory for vx in
some areas and WENO5-LAT5 produces non-smooth behaviors near shocks caused by the
choice CFL= 0.8: see Figures 3.12 and Figure 3.13.
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Figure 3.11: Test 3.10. The Brio-Wu shock tube problem, CFL= 0.8 and t = 0.2.
Numerical solutions for ρ, vx, By, p.

3.4.3.2 Test 3.11 High mach shock tube problem

(ρ,v,B, p) =

{
(1, 0, 0, 0, 0, 0, 1, 0, 1000) if x < 0,
(0.125, 0, 0, 0, 0, 0,−1, 0, 0.1) if x > 0.

In this case we consider the spatial interval [−1, 1], a 400-point mesh, γ = 2, Dirichlet
boundary conditions, CFL= {0.5, 0.8}, and time t = 0.12. The reference solution is
computed as in the previous test. From plots of solutions of ρ, vx, By, p using WENO5-
CAT4, WENO5-RK3, and WENO5-LAT5 methods we observe that, with CFL= 0.5,
acceptable and stable solutions are obtained for all of the methods: see Figure 3.14.
With CFL= 0.8 WENO5-LAT5 is not stable and WENO5-RK3 is more oscillatory than
WENO-CAT although discontinuities are captured slightly better: Figure 3.15 shows a



3.4 Numerical Experiments 59

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x

0.2

0.4

0.6

0.8

1

1.2

D
e

n
s

it
y

-0.15 -0.1 -0.05 0 0.05 0.1

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

WENO5-CAT4

WENO5-RK3

WENO5-LAT5

REFERENCE

0.12

0.2

Figure 3.12: Test 3.10. The Brio-Wu shock tube problem, CFL= 0.8 and t = 0.2.
Enlarged view for ρ.
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Figure 3.13: Test 3.10. The Brio-Wu shock tube problem, CFL= 0.8 and t = 0.2.
Enlarged view for vx.
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general view of solutions for ρ, vx, By, p and Figure 3.15 enlarged views of ρ and By are
shown.
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Figure 3.14: Test 3.11. The high mach shock problem, CFL= 0.5 and t = 0.012.
Numerical solutions for ρ, vx, By, p.
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Figure 3.15: Test 3.11. The high mach shock problem, CFL= 0.8 and t = 0.012. General
view of the numerical solutions provided by WENO5-CAT4 and WENO5-RK3 for ρ, vx,
By and p.

Figure 3.16: Test 3.11. 1D MHD equations with the High mach shock tube problem,
CFL= 0.8 and t = 0.012. Left: enlarged views for ρ. Right: enlarged views for By.
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Chapter 4

Adaptive Compact Approximate
Taylor Method

The Compact Approximated Taylor methods (CAT) introduced in the previous Chapter
circumvent the CK procedure using the same strategy as LAT methods [10]. These
methods are compact in the sense that the length of the stencils is minimal: (2p + 1)-
point stencils are used to get order 2p compared to (4p+1)-point stencils in LAT methods.
The technique used to reduce the length of the stencil makes that the computational cost
of a time step in CAT methods is higher than in LAT methods: the Taylor expansions are
computed locally, so that the total number of expansions needed to update the numerical
solution is multiplied by (2p+1). On the other hand, unlike LAT methods, CAT methods
reduce to the standard high-order Lax-Wendroff methods when applied to linear problems
and, due to this, they have better stability properties than LAT and allows one to increase
the length of time steps, what compensates the extra cost of every time iteration: see [12].

Both LAT and CAT methods produce oscillations close to the discontinuities of the
solution. The use of Weighted Essentially Non-Oscillatory (WENO) reconstructions
(see [15], [16]) to compute the first-order time derivatives allows one to prevent these
oscillations: this technique has been used in [10] and also in Section 3.3.2. Chapter 5 will
focus on the combination of CAT and LAT with different WENO implementations.

A different strategy was also considered in Section 3.3.1 to avoid spurious oscillations
close to a discontinuity: to combine CAT2 with a robust first-order numerical method by
using a flux-limiter function. The flux-limiter is based on a smoothness indicator, so that
the first-order method is used when large gradients are detected and the second-order one
is used otherwise. The goal of this chapter is to introduce a new family of shock-capturing
high-order numerical methods, called Adaptive Compact Approximation Taylor (ACAT)
schemes, which are based on an extension of this strategy: these methods use centered
(2p+1)-point stencils, where p may take values in {1, 2, . . . , P} according to a new family
of smoothness indicators in the stencils. The methods are based on a combination of a
robust first-order scheme and the Compact Approximate Taylor(CAT) methods of order
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2p-order, p = 1, 2, . . . , P so that they are first-order accurate near discontinuities and
have order 2p in smooth regions, where (2p+ 1) is the size of the biggest stencil in which
data are smooth according to the smoothness indicators.

The advantage of this technique compared to the use of WENO reconstructions is
that, in this case, all the combined methods (but the first-order one) are of even order,
while WENO methods have odd order of accuracy so that its combination with CAT is
not optimal. Moreover, the restriction of the time step imposed by WENO methods may
spoil the advantages due to the better stability property of CAT methods.

This chapter is organized as follows. In Section 4.1, we introduce the new family
of high-order smoothness indicators. In Section 4.2, first the expression of the ACAT
methods for the 1D scalar problems is summarized and then they are extended to 1D
systems and 2D problems. Finally in Section 4.3 the results of the numerical experiments
for some selected tests, involving 1D and 2D linear and nonlinear systems of conservation
laws, are given in order to compare the performance of the ACAT methods with WENO
methods.

4.1 Adaptive Compact Approximate Taylor Method

Although Compact Approximate Taylor methods are linearly stable in the L2 sense under
the usual CFL condition, they may produce strong oscillations close to a discontinuity
of the solution. Two different techniques were considered in 3, section 3.3 to avoid these
oscillations: to combine CAT2 with a first-order robust method using a flux limiter (FL-
CAT2 method) or, following [10], to use WENO reconstructions to compute the first-order
time derivatives (WENO-CAT methods).

The strategy to be followed here consists on selecting automatically the stencil used
to compute Fi+1/2 so that its length is maximal among those for which the solution is
smooth. More specifically, let us suppose that solutions at time n∆t {uni } have been
computed. The maximum length of the stencil to compute Fi+1/2 is set to, say, 2P , where
P is a natural number. Then, the candidates stencils to compute Fi+1/2 are

Sp = {xi−p+1, . . . , xi+p}, p = 1, . . . , P.

In order to select the stencil, some smoothness indicators ψpi+1/2, p = 1, . . . , P are
computed such that:

ψpi+1/2 ≈
{

1 if {uni } is ’smooth’ in Sp,
0 otherwise.

(4.1.1)

Define now:

A = {p ∈ {1, . . . , P} s.t. ψpi+1/2
∼= 1}.
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The idea would be then to define:

FA
i+1/2 =

{
F lo
i+1/2 if A = ∅;
F ps
i+1/2 where ps = max(A) otherwise;

where F ps
i+1/2 is the numerical flux of CAT2ps and F lo

i+1/2 is a robust first-order numerical
flux. Nevertheless, it is not possible to determine if the solution is smooth or not in the
stencil S1 where only two values uni , uni+1 are available. Therefore, what will be done in
practice is to define:

A = {p ∈ {2, . . . , P} s.t. ψpi+1/2
∼= 1}. (4.1.2)

and then:

FA
i+1/2 =

{
F ∗i+1/2 if A = ∅;
F ps
i+1/2 where ps = max(A) otherwise;

(4.1.3)

where F ∗i+1/2 is the numerical flux of the FL-CAT2 (that uses the stencil S2 as well).
In what follows, we recall first the expression of the FL-CAT2 numerical flux; next, we
introduce the smoothness indicators; then, we summarize the expression of the high-order
ACAT methods; and finally we briefly discuss its application to systems of conservation
laws.

4.1.1 FL-CAT2 numerical flux

Let us consider the one-dimensional system of conservation laws

ut + f(u)x = 0, u(x, 0) = u0(x), −∞ < x <∞. (4.1.4)

with m = 1.
The expression of the FL-CAT2 numerical flux is as follows:

F ∗i+1/2 = ψ1
i+1/2 F

1
i+1/2 + (1− ψ1

i+1/2)F lo
i+1/2, (4.1.5)

where F 1
i+1/2 is given by

F 1
i+1/2 =

1

4
(f̃ 1,n+1
i,1 + f̃ 1,n+1

i,0 + fni+1 + fni ), (4.1.6)

where

f̃ 1,n+1
i,j = f

(
uni+j −

∆t

∆x

(
f(uni+1)− f(uni )

))
, j = {0, 1}. (4.1.7)

F lo
i+1/2 is a first-order robust numerical flux; and ψ1

i+1/2 is a standard flux limiter:

ψ1
i+1/2 = ψ1(ri+1/2), (4.1.8)
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where

ri+1/2 =
∆upw

∆loc
=


r−i+1/2 :=

uni − uni−1

uni+1 − uni
if ai+1/2 > 0,

r+
i+1/2 :=

uni+2 − uni+1

uni+1 − uni
if ai+1/2 < 0;

(4.1.9)

and ai+1/2 is an estimate of the wave speed like for instance Roe’s intermediate speed:

ai+1/2 =


f(uni+1)− f(uni )

uni+1 − uni
if uni 6= uni+1;

f ′(uni ) otherwise.

An alternative that avoids the computation of an intermediate speed was introduced in
[3]: it consists in defining

ψ1
i+1/2 = min(ψ1(r+

i+1/2), ψ1(r−i+1/2)). (4.1.10)

4.1.2 Smoothness indicators

Let us introduce a new family of local smoothness indicators ψpi+1/2, p ≥ 2, for scalar
conservation laws and analyze their properties.

Given the nodal approximations fi of a function f at the stencil Sp, p ≥ 2, centered
at xi+1/2, first define the lateral weights:

Ip,L :=
−1∑

j=−p+1

(fi+1+j − fi+j)2 + ε, Ip,R :=

p−1∑
j=1

(fi+1+j − fi+j)2 + ε, (4.1.11)

where ε is a small quantity that is added to prevent the lateral weights to vanish when
the function is constant. Next, compute:

Ip :=
Ip,LIp,R
Ip,L + Ip,R

. (4.1.12)

Finally, define the smoothness indicator of the stencil of Sp by

ψpi+1/2 :=

(
Ip

Ip + τp

)
, (4.1.13)

where

τp :=
(
∆2p−1
i−p+1f

)2
. (4.1.14)

Here, ∆2p−1
i−p+1f represents the undivided difference of {fi−p+1, . . . , fi+p}:

∆2p−1
i−p+1f =(2p− 1)!

p∑
j=−p+1

γ
2p−1,1/2
p,j fni+j. (4.1.15)
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Before going into technical details, let us give a motivation of this choice. If data in the
stencil Sp are smooth, then

Ip,L = O(∆x2), Ip,R = O(∆x2), τp = O(∆x4p).

Since
1

Ip
=

1

Ip,L
+

1

Ip,R

then Ip = O(∆x2) and thus

ψpi+1/2 =
Ip

Ip + τp
=

O(∆x2)

O(∆x2) +O(∆x4p)
≈ 1.

On the other hand, if there is an isolated discontinuity in the stencil then

τp = O(1)

and
Ip,L = O(1), Ip,R = O(∆x2)

or
Ip,L = O(∆x), Ip,R = O(1).

In both cases Ip = O(∆x2) and thus:

ψpi+1/2 =
Ip

Ip + τp
=

O(∆x2)

O(∆x2) +O(1)
≈ 0.

Nevertheless, in the case of smooth data, special care has to be taken if there is a critical
point in the stencil, since in this case the order of Ip depends on the order of the critical
point, what can prevent the smoothness indicator to be close of 1, as it will be seen in
Propositions 4.1.1-4.1.3 below. The following definition is assumed in these results: a
point x is said to be a critical point of f of order n if f (j)(x) = 0, j = 1, . . . , n and
f (n+1) 6= 0.

Before analysing the smoothness indicators, let us introduce some definitions and
notation, taken from [17]: we refer to Section 2.1 of this reference for further details.

Given α ∈ R+ and f : (0, h∗) 7→ R with h∗ ∈ (0,∞], the notation f(h) = O(hα)
means, as usual, that

lim sup
h→0+

∣∣∣∣f(h)

hα

∣∣∣∣ < +∞,

and the notation f(h) = Ō(hα) means that

lim sup
h→0+

∣∣∣∣f(h)

hα

∣∣∣∣ < +∞ and lim inf
h→0+

∣∣∣∣f(h)

hα

∣∣∣∣ > 0.
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If f, g : (0, h∗) 7→ R and α, β are two positive real numbers, the following relations
hold:

f(h) = O(hα), g(h) = O(hβ) =⇒ f(h)g(h) = O(hα+β);

f(h) = Ō(hα), g(h) = Ō(hβ) =⇒ f(h)g(h) = Ō(hα+β);

f > 0, f(h) = Ō(hα) =⇒ f(h)−1 = Ō(h1/α).

Lemma 4.1.1 Let c, d, z ∈ R. Assume that{
f (j)(z) = 0 for j = 1, . . . , k, f (k+1)(z) 6= 0, and f ∈ Ck+2 if c+ d 6= 0;
f (2j−1)(z) = 0 for j = 1, . . . , n, f (2n+1)(z) 6= 0, and f ∈ C2n+2 if c+ d = 0.

Then

f(z + dh)− f(z − dh) = Ō(hs),

where

s =

{
k + 1 if c+ d 6= 0;
2n+ 1 if c+ d = 0.

From this lemma, whose proof is given in [17], one can deduce that, given the values
fj = f(xj), j = i − p + 1, . . . , i + p of a smooth enough function f in the stencil Sp, the
following estimates hold:

fj+1 − fj = O(h), j = i− p+ 1, . . . , i+ p− 1

if the stencil does not contain any critical point of f ;

fj+1 − fj = Ō(hk+1), j = i− p+ 1, . . . , i+ p− 1, (4.1.16)

if the stencil contains a critical point x∗ of even order k or a critical point of odd order
that is not located at the center of any sub-interval of the stencil.

Finally, if there exists i0 such that x∗ = 0.5(xi0 +xi0+1) is a critical point of odd order,
then (4.1.16) holds for every j 6= i0 and

fi0+1 − fi0 = Ō(h2n+1) (4.1.17)

where 2n+ 1 is the first odd number such that

f (2n+1)(x∗) 6= 0.

Let us analyze the behavior of the smoothness indicators (4.1.13) assuming that ε = 0
(the role of ε is only relevant for the implementation of the method):
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Proposition 4.1.1 Let fj = f(xj), j = i− p+ 1, . . . , i+ p be the values of a function f
in the stencil Sp, with p > 2. The following estimates hold:

ψpi+1/2 =

{
1−O(∆x4(p−1)−2k) if f ∈ Cmax(2p−1,k+2);

Ō(∆x2(k+1)) if f is piecewise Ck+2 and Sp contains an isolated jump discontinuity of f ;

where k = 0 if there is no critical point of f in Sp or k equal to the order of the critical
point if there is one.

Proof. If f ∈ C2p−1 there exists ξ such that

∆2p−1
i−p+1f = (2p− 1)!f (2p−1)(ξ)∆x2p−1,

and thus
∆2p−1
i−p+1f = O(∆x2p−1),

what implies
τp = O(∆x4p−2).

On the other hand, if Sp contains an isolated jump discontinuity, then

∆2p−1
i−p+1f = O(1),

and thus
τp = Ō(1).

From the discussion above, the estimate

fj+1 − fj = Ō(∆xk+1),

holds for every j ∈ i− p+ 1, . . . , i+ p− 1 with the exception of at most one index i0, in
which the order is higher.

Nevertheless, since both Ip,L and Ip,R are the sum of at least two terms of the form
(fj+1 − fj)2, we can conclude that

Ip,L = Ō(∆x2+2k), Ip,R = Ō(∆x2+2k).

Hence:

Ip =
Ip,LIp,R
Ip,L + Ip,R

=
Ō(∆x2+2k)Ō(∆x2+2k)

Ō(∆x2+2k) + Ō(∆x2+2k)
=
Ō(∆x4+4k)

Ō(∆x2+2k)
= Ō(∆x2+2k).

Now, if Sp contains a discontinuity, then, by construction, there exists a side α ∈ {L,R}
such that Ip,α = Ō(1) (the side that contains the discontinuity) while the other side,
β ∈ {L,R} \ {α}, satisfies Ip,β = Ō(∆x2+2k). Therefore

Ip =
Ip,LIp,R
Ip,L + Ip,R

=
Ip,αIp,β
Ip,α + Ip,β

=
Ō(1)Ō(∆x2+2k)

Ō(1) + Ō(∆x2+2k)
=
Ō(∆x2+2k)

Ō(1)
= Ō(∆x2+2k).
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Combining the above results, we have that, if f is smooth:

ψpi+1/2 =
Ip

Ip + τp
=

1

1 +
τp
Ip

=
1

1 +
O(∆x4p−2)

Ō(∆x2+2k)

=
1

1 +O(∆x4(p−1)−2k)
= 1−O(∆x4(p−1)−2k).

On the other hand, if Sp contains a discontinuity, then

ψpi+1/2 =
Ip

Ip + τp
=

1

1 +
τp
Ip

=
1

1 +
Ō(1)

Ō(∆x2+2k)

=
1

1 + Ō(∆x−2(k+1))
= Ō(∆x2(k+1)),

which finishes the proof. �

Observe that the indicator ψpi+1/2 is able to detect smoothness in the presence of a

critical point whose order is lower than 2(p− 1).
In the case p = 2 similar arguments lead to prove the following estimates:

Proposition 4.1.2 Let fj = f(xj), j = i − 1, . . . , i + 2 be the values of a function f in
the stencil S2. The following estimates hold:

ψ2
i+1/2 =

{
1−O(∆x4−2k) if f ∈ C3;

Ō(∆x2(k+1)) if f is piecewise Ck+2 and Sp contains an isolated jump discontinuity of f ;

where k = 0 if there is no critical point of f in S2 and k = 1 if there is a critical point x∗

of order 1 such that f (3)(x∗) 6= 0 or such that x∗ 6= 0.5(xj + xj+1) for j = i− 1, i+ 1.

Nevertheless, the estimate cannot be proved when S2 includes a critical point of order 1
located at 0.5(xi−1+xi) or 0.5(xi+1+xi+2) and such that f (3)(x∗) 6= 0: the argument in the
proof of Proposition 4.1.1 cannot be used since there is only one term in the definition of
the local weights. This is not a limitation in many applications, since this situation is very
specific and, even if it happens, unless there is a discontinuity close to the critical point,
smoothness will be detected by at least one of the indicators ψpi+1/2 with p > 2 so that the
stencil Sp will be used to update the solution. In any case, the smoothness indicator for
p = 2 can be modified to properly handle these situations as follows: compute the couple
of lateral weights:

I1
2,L := (fi − fi−1)2 + ε, I1

2,R := (fi+1 − fi)2 + (fi+2 − fi+1)2 + ε, (4.1.18)

I2
2,L := (fi − fi−1)2 + (fi+1 − fi)2 + ε, I2

2,R := (fi+2 − fi+1)2 + ε. (4.1.19)

Next, compute:

Ij2 :=
Ij2,LI

j
2,R

Ij2,L + Ij2,R
, j = 1, 2. (4.1.20)
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and then, the smoothness indicator of the stencil S2 is given by

ψ̃2
i+1/2 := max

(
I1

2

I1
2 + τ2

,
I2

2

I2
2 + τ2

)
. (4.1.21)

The following estimate can be then proved:

Proposition 4.1.3 Let fj = f(xj), j = i − 1, . . . , i + 2 be the values of a function f in
the stencil S2. The following estimates hold:

ψ̃2
i+1/2 =

{
1−O(∆x4−2k) if f ∈ C3;

Ō(∆x2(k+1)) if f is piecewise Ck+2 and Sp contains an isolated jump discontinuity of f ;

where k = 0 if there is no critical points of f in S2 or k = 1 if there is a critical point x∗

or order 1.

Proof. The arguments of the proof of Proposition (4.1.1) are used again. The difference
comes from the case in which there is a critical point of order 1 located at at 0.5(xi−1 +xi)
or 0.5(xi+1 +xi+2) and such that f (3)(x∗) = 0. In this case, there exists j ∈ {1, 2} (the one
in which the sub-interval with the critical point and the central sub-interval are considered
together in the same lateral weight) such that

Ij2
Ij2 + τ2

= 1−O(∆x2).

Using this estimate we can conclude the proof as in Proposition (4.1.1)

Let us remark finally that the smoothness indicators (4.1.13) and (4.1.21) have finally
the following homothetic invariance property: given a function f and positive numbers
α, β, define

g(x) = αf(βx).

Then the smoothness indicator of f at a stencil Sp centered at xi+1/2 in a mesh with step
∆x is equal to the smoothness indicator of g at the stencil Sp centered at βxi+1/2 in a
mesh with step β∆x. This property is very important in practice to have smoothness
indicators whose behaviour do not depend on ∆x and scaling factors of f .

4.1.3 ACAT2P methods

The expression of the Adaptive Compact Approximate Taylor Method (ACAT2P ) of
maximal order 2P for a scalar conservation law is given then by:

un+1
i = uni +

∆t

∆x

(
FAi−1/2 −FAi+1/2

)
. (4.1.22)
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The numerical fluxes FAi+1/2 are defined by (4.1.2)-(4.1.3) where F ∗i+1/2 is the numerical

flux of the FL-CAT2 (4.1.5) and the smoothness indicators are given by (4.1.8), (4.1.13).
For p = 2 (4.1.13) can be replaced by (4.1.21).

Observe that, by definition, FAi+1/2 reduces to:

• a first-order flux if ψ1
i+1/2 = 0 and ψpi+1/2 = 0 for all p = 2, . . . , P ;

• a second-order flux if ψ1
i+1/2 = 1 and ψpi+1/2 ≈ 0 for all p = 2, . . . , P ;

• 2ps-order flux if ψpsi+1/2 ≈ 1.

Furthermore, if ps = P , then ACAT2P coincides with CAT2P which has 2P -order
accuracy and is L2-stable under CFL≤ 1.

Let us suppose that f is smooth and has an isolated critical point x∗ of order k in
S1 = {xi, xi+1}. Then:

• If k < 2(P − 1) the smoothness indicator ψPi+1/2 is close to one and the maximum
allowed stencil SP is used, so that the local accuracy of the method is 2P .

• If k > 2(P − 1) then all the smoothness indicators would fail, so that the first-
order robust numerical method will be used. Nevertheless in this case, f (j)(x∗) = 0
for j = 1, . . . , 2P − 1 so that, when the local error of the first-order method is
estimated through Taylor expansions, only terms of order O(∆x2P ) or bigger will
remain. Therefore, in this case the local accuracy of the method is again 2P .

• If k = 2(P −1) again the smoothness indicators would fail and the first-order robust
numerical method will be used. Since in this case, f (j)(x∗) = 0 for j = 1, . . . , 2P −2
the local error of the first-order method is of order 2P − 1.

Summing up, the local accuracy of the method close to a critical point is always 2P with
the only exception of critical points of order 2P − 2: in that case, the order of accuracy
will be reduced by one. This order reduction could be avoided by introducing optimal
smoothness indicators in the spirit of [17],[18].

4.1.4 Systems of conservation laws

For systems of conservation laws (4.1.4) with m < 1 the expression of the ACAT2P
method is the same as in the scalar case: the only difference is the computation of the
smoothness indicators. In the case of systems, smoothness indicators are first computed
for every variable:

ψj,pi+1/2, p = 1, . . . , P,

where
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• ψj,1i+1/2 is obtained by applying the smoothness indicator (4.1.8), (4.1.10) to the jth

component of the numerical solutions {uj,ni }.

• ψj,pi+1/2, p > 2 is obtained by applying the smoothness indicator (4.1.13) to the jth

component of the numerical solutions {uj,ni }.

• ψj,2i+1/2 is obtained by applying the smoothness indicator (4.1.13) or (4.1.21) to the

jth component of the numerical solutions {uj,ni }.

Once these scalar smoothness indicators have been computed, we define

ψpi+1/2 = min
j=1,...,m

ψj,pi+1/2,

so that the selected stencil is the one of maximal length among those in which all the
variables are smooth.

Remark 4.1.1 Standard WENO schemes applied componentwise usually produce oscil-
latory solutions near shock discontinuities. To alleviate this problem, it is possible to
perform a WENO reconstruction on the characterisctic variables, as described in [11].
This technique reduces the oscillations but dramatically increases the computational cost.
Here we do not feel the need of such a procedure, since our reconstructions are usually
much less oscillatory than componentwise WENO.

4.2 Two-dimensional problems

In this section we focus on the extension of ACAT methods to non-linear two-dimensional
systems of hyperbolic conservation laws

ut + f(u)x + g(u)y = 0. (4.2.1)

The following multi-index notation will be used:

i = (i1, i2) ∈ Z× Z,

and
0 = (0, 0), 1 = (1, 1), 1/2 = (1/2, 1/2), e1 = (1, 0), e2 = (0, 1).

We consider Cartesian meshes with nodes

xi = (i1∆x, i2∆y).

Using this notation, we can write the general form of the CAT2p method as follows:

un+1
i = uni +

∆t

∆x

[
Fp

i− 1
2
e1
−Fp

i+ 1
2
e1

]
+

∆t

∆y

[
Gp
i− 1

2
e2
− Gp

i+ 1
2
e2

]
, (4.2.2)
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where the numerical fluxes Fp
i+ 1

2
e1

, Gp
i+ 1

2
e2

will be computed using the values of the

numerical solution uni in the p2-point stencil centered at xi+1/2 = ((i1 + 1/2)∆x, (i2 +
1/2)∆y)

Sp = {xi+j, j ∈ Ip},

where
Ip = {j = (j1, j2) ∈ Z× Z, −p+ 1 ≤ jk ≤ p, k = 1, 2}.

See Figure 4.1 for an example.

Figure 4.1: Stencil S2 centered in x1/2 = (0.5∆x, 0.5∆y)

For instance, the expression of the CAT2 numerical flux is as follows:

F ∗
i+ 1

2
e1

=
1

4

(
f̃ 1,n+1
i,0 + f̃ 1,n+1

i,e1
+ fni + fni+e1

)
, (4.2.3)

G∗
i+ 1

2
e2

=
1

4

(
g̃1,n+1
i,0 + g̃1,n+1

i,e2
+ gni + gni+e2

)
, (4.2.4)

where

f̃ 1,n+1
i,j = f

(
uni+j + ∆tũ

(1)
i,j

)
,

g̃1,n+1
i,j = g

(
uni+j + ∆tũ

(1)
i,j

)
,

for j = 0, e1, e2. Furthermore,

ũ
(1)
i,0 = − 1

∆x

(
fni+e1

− fni
)
− 1

∆y

(
gni+e2

− gni
)
,

ũ
(1)
i,e1

= − 1

∆x

(
fni+e1

− fni
)
− 1

∆y

(
gni+1 − gni+e1

)
,
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ũ
(1)
i,e2

= − 1

∆x

(
fni+1 − fni+e2

)
− 1

∆y

(
gni+e2

− gni
)
,

where
fnj = f(unj ), gnj = g(unj ), ∀j.

Observe that ũ
(1)
i,0 6= ũ

(1)
i,e1

and ũ
(1)
i,0 6= ũ

(1)
i,e2

in opposition to the 1D case where ũ
(1)
i,0 = ũ

(1)
i,1 .

The following algorithm will be used to compute the numerical fluxes of the CAT2p
method:

1. Define
f̃

(0)
i,j = fni+j, g̃

(0)
i,j = gni+j, j ∈ Ip.

2. For k = 2 . . . 2p:

(a) Compute

ũ
(k−1)
i,j = −A1,j1

p,0 (f̃
(k−2)
i,(∗,j2),∆x)− A1,j2

p,0 (g̃
(k−2)
i,(j1,∗),∆y), j ∈ Ip.

(b) Compute

f̃k−1,n+r
i,j = f

(
uni+j +

k−1∑
l=1

(r∆t)l

l!
ũ

(l)
i,j

)
, j ∈ Ip, r = −p+ 1, . . . , p.

(c) Compute

f̃
(k−1)
i,j = Ak−1,0

p,n (f̃k−1,∗
i,j ,∆t), j ∈ Ip.

3. Compute

F p

i+ 1
2
e1

=

2p∑
k=1

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,(∗,0) ,∆x), (4.2.5)

Gp

i+ 1
2
e2

=

2p∑
k=1

∆tk−1

k!
A

0,1/2
p,0 (g̃

(k−1)
i,(0,∗),∆y). (4.2.6)

The notation used for the approximation of the spacial partial derivatives is the following:

Ak,qp,j1(fi,(∗,j2),∆x) =
1

∆xk

p∑
l=−p+1

γk,qp,l fi,(l,j2)

Ak,qp,j2(gi,(j1,∗),∆y) =
1

∆yk

p∑
l=−p+1

γk,qp,l gi,(j1,l)
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Remark 4.2.1 In the last step of the algorithm above the set Ip can be replaced by its
(2p− 1)-point subset

I0
p = {j = (j1, j2) s.t j1 = 0 or j2 = 0}

since only the corresponding values of f̃
(k−1)
i,j are used to compute the numerical fluxes

(4.2.5) and (4.2.6).

Once the numerical flux of the CAT2p method has been introduced, the numerical
flux of ACAT2 is extended to two-dimensional problems as follows:

F1
i+ 1

2
e1

= ψ1
i+ 1

2
e1
F ∗
i+ 1

2
e1

+ (1− ψ1
i+ 1

2
e1

)F lo
i+ 1

2
e1
, (4.2.7)

G1
i+ 1

2
e2

= ψ1
i+ 1

2
e2
G∗

i+ 1
2
e2

+ (1− ψ1
i+ 1

2
e2

)Glo
i+ 1

2
e2
, (4.2.8)

where, F lo
i+ 1

2
e1

and Glo
i+ 1

2
e2

are some robust first-order methods; ψ1
i+ 1

2
e1

and ψ1
i+ 1

2
e2

are the

flux limiters computed dimension by dimension.
Finally, the expression of the ACAT2P method for two-dimensional problems is

un+1
i = uni +

∆t

∆x

(
FA1

i− 1
2
e1
−FA1

i+ 1
2
e1

)
+

∆t

∆y

(
GA2

i− 1
2
e2
− GA2

i+ 1
2
e2

)
, (4.2.9)

where the numerical fluxes are defined as follows: first define the set

A1 = {p ∈ {2, . . . , P} s.t. ψp
i+ 1

2
e1∼=1
}, (4.2.10)

A2 = {p ∈ {2, . . . , P} s.t. ψp
i+ 1

2
e2
∼= 1}, (4.2.11)

(4.2.12)

where ψp
i+ 1

2
e1

, ψp
i+ 1

2
e2

are the smoothness indicators introduced in Section 4.1.2 computed

dimension by dimension. Then define:

FA1

i+ 1
2
e1

=

F
∗
i+ 1

2
e1

ifA1 = ∅;
F p1
i+ 1

2
e1

where p1 = max(A1) otherwise;
(4.2.13)

GA2

i+ 1
2
e2

=

G
∗
i+ 1

2
e2

if A2 = ∅;
Gp2

i+ 1
2
e2

where p2 = max(A2) otherwise.
(4.2.14)

Observe that, since the smoothness indicators are computed dimension by dimension,
a rectangular stencil

Sp1,p1 = {xi,j, i1 − p1 + 1 ≤ j1 ≤ i1 + p1, i2 − p2 + 1 ≤ j2 ≤ i2 + p2},

is used in practice to compute the numerical fluxes F p1
i+ 1

2
e1

, Gp2
i+ 1

2
e2

. The extension of CAT

methods to such rectangular stencils is straightforward. using the values
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4.3 Numerical experiments

In this section we apply ACAT2P methods to several 1D and 2D problems: the 1D linear
transport equation, Burgers equation, and the 1D and 2D Euler equation for gas dynamic.
The Super Bee flux limiter [63] is used in FL-CAT2 and the smoothness indicators (4.1.13)
are used for p ≥ 2: no loss of precision for first-order critical points has been observed in
any of the test problems considered here due to the use of ψ2

i+1/2. Fornberg’s algorithm
is used to compute the coefficients of the numerical differentiation formulas. ACAT
methods will be compared with the Lax-Friedrichs (LF), HLL first-order schemes and
with WENO(2p + 1) finite difference methods based on the Lax-Friedrichs splitting (see
[60]) combined with SSPRK3 ([25]) for the time discretization. The order and the number
of points of their stencils in 1d are recalled in Table 4.1. Since ACAT2P reduces to CAT2P
and the order of accuracy of the latter have been checked in Chapter 3, no test order will
be considered here.

Method Stencil Order

LF 3 1
HLL 3 1

ACAT2 or FL-CAT2 3 2
ACAT2P 2P + 1 2P

WENO(2p+ 1)-RK3 2p+ 1 2p+ 1

Table 4.1: Numerical methods: order of accuracy and number of points of the stencils for
1d problems.

4.3.1 1D Scalar equations

4.3.1.1 Test 4.1 Transport equation - Smooth solutions

Let us consider the linear scalar conservation law

ut + ux = 0. (4.3.1)

with initial condition:

u0(x) =
1

2
sin(πx) (4.3.2)

We solve numerically this problem in the spatial interval [0, 2], using a 160-mesh points,
CFL= 0.9, and periodic boundary conditions.

Figure 4.2 and 4.3 show the numerical solutions at time t = 4 and t = 40 respectively.
Zooms of an interest area are included, in which the loss of accuracy with time for the
lower order methods can be clearly seen. As it can be observed, the numerical solutions
of ACAT4 and ACAT6 match the exact solution at both times while ACAT2 is more
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Figure 4.2: Test 4.1. Transport equation with initial condition (4.3.2). Numerical
solution at t = 4: general view (left-top); local order of accuracy for ACAT6 (sub-frame);
consecutive zooms close to the local maximum ( left-bottom, right-top and right-bottom).
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Figure 4.3: Test 4.1 Transport equation with initial condition (4.3.2). Numerical solution
at t = 40: general view (left-top); local order of accuracy for ACAT6 (sub-frame);
consecutive zooms close to the local maximum ( left-bottom, right-top and right-bottom).
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diffusive near the critical points. This loss of accuracy close to the critical points can also
be observed for WENO-RK methods, although this drawback can be overcome by using
optimal weights in the WENO reconstructions: see [17], [18].

The loss of accuracy of ACAT2 close to the critical points compared to ACAT4 or 6
is due to the fact that, while the smoothness indicators ψ2

i+1/2 and ψ3
i+1/2 are always close

to one, the Superbee flux limiter ψsb,i+1/2 detects a discontinuity at the critical points and
the first-order methods is then locally used: to make this clear, Figure 4.4 (top) shows
the solution obtained with ACAT6 at time t = 4 for (4.3.1) with initial condition

u0(x) =
1

2
sin(2πx) (4.3.3)

in the interval [0, 2] using again a 160-point mesh, CFL = 0.9, and periodic boundary
conditions. Figure 4.4 (down) shows the graph of the three smoothness indicators.
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Figure 4.4: Test 4.1. Transport equation with initial condition (4.3.3). Solution obtained
with ACAT6 at time 4 (top) and graphs of the smoothness indicators ψsb, ψ

2 and ψ3

(bottom).

4.3.1.2 Test 4.2 Transport equation - Discontinuous solutions

We consider next equation (4.3.1) with a piecewise continuous initial condition

u0(x) =


1 if 1

2
≤ x ≤ 1;

0 if 0 ≤ x < 1
2

or 3
2
< x ≤ 2;

−1 if 1 < x ≤ 3
2
.

(4.3.4)
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We solve numerically this problem in the spatial interval [0, 2], using again a 160-mesh
points, CFL= 0.9, and periodic boundary conditions. Figure 4.5 shows solutions from

0.4 0.6 0.8 1 1.2 1.4 1.6

-1

-0.5

0

0.5

1

u
(x

,t
)

a) 

LAX-FRIED

ACAT2

WENO3-RK3

ACAT4

WENO5-RK3

ACAT6

REFERENCE

0

5

R
i+

1
/2

0.4 0.6 0.8 1 1.2 1.4 1.6

-1

-0.5

0

0.5

1

u
(x

,t
)

b)

0

5

R
i+

1
/2

0.85 0.9 0.95 1 1.05 1.1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
c) 

0

5

R
i+

1
/2

0.85 0.9 0.95 1 1.05 1.1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
d) 

0

5

R
i+

1
/2

Figure 4.5: Test 4.2. Transport equation with initial condition (4.3.4). Numerical
solutions at t = 2 (a) and t = 20 (b). Zoom of the numerical solutions at time t = 2 (c)
and t = 20 (d). Sub-frames: local order of accuracy for ACAT6.

ACAT2P , P = 2, 4, 6 and WENOq-RK3, q = 3, 5 after 2 and 20 seconds. As it can
be observed, ACAT methods capture better the discontinuity than WENO-RK schemes.
In this case, ACAT4 and ACAT6 reduce to ACAT2 at the discontinuities due to the
order adaptation technique. WENO methods give accurate solutions for short times but
spurious oscillations appear with time due to the choice CFL= 0.9.

4.3.1.3 Test 4.3 Burgers equation - Discontinuous solutions

Let us consider the Burgers equation

ut +

(
u2

2

)
x

= 0, (4.3.5)

with initial condition (4.3.2). The problem is numerically solved in the interval [0, 2] using
an uniform mesh with 160, CFL= 0.9, and periodic boundary conditions. A reference
solution has been computed with the Lax-Friedrichs methods using 1400-point mesh.

Figures 4.6 and 4.7 show respectively the general view and a zoom of the numerical
solutions obtained with the different methods at times t = {0.25, 0.5, 1, 10}. The local
order of accuracy of ACAT6 is also shown: as it can be seen, this method reduces to the
first-order one only at the shock once it has been generated.
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Figure 4.6: Test 4.3. Burgers equation with initial condition (4.3.2). Numerical solutions
obtained at times t = 0.25 (left-top), t = 0.5 (right-top), t = 1 (left-bottom), and t = 10
(right-bottom). Sub-frames: local order of accuracy for ACAT6.
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Figure 4.7: Test 4.3. Burgers equation with initial condition (4.3.2). Zoom of the
numerical solutions obtained at times t = 0.25 (a), t = 0.5 (b), t = 0.1 (c), and t = 10
(d). Sub-frames: local accuracy order for ACAT6.
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4.3.2 1D Euler equations

Let us now consider the 1D Euler equations for gas dynamics

ut + f(u)x = 0, (4.3.6)

with

u =

 ρ
ρv
E

 , f(u) =

 ρv
p+ ρv2

v(E + p)

 , (4.3.7)

where ρ is the density measured in Kg/m3; v, the velocity in m/s; E the total energy per
unit volume in Kg/(ms2); and p is the pressure in Pascal Pa. We assume an ideal gas
with the equation of state

p(ρ, e) = (γ − 1)ρe, (4.3.8)

being γ the ratio of specific heat capacities of the gas taken as 1.4 and e is the internal
energy per unit mass is related to E by:

E = ρ(e+ 0.5v2). (4.3.9)

We consider three Riemann problems for (4.3.6): the Sod problem [61], the Einfeldt
problem [64], and the right blast wave Woodward and Colella problem [65]. In all the
cases: the initial discontinuity is placed at x = 0.5, the equations are numerically solved
at the spatial interval [0, 1] and the exact solution is provided by the HE-E1RPEXACT
solver introduced in [3]. The CFL parameter is set to 0.8 and outflow-inflow boundary
conditions are considered.

4.3.2.1 Test 4.4 Sod shock tube problem

(ρ, v, p) =

{
(1, 0, 1) if x < 1/2,
(0.125, 0, 0.1) if x > 1/2.

(4.3.10)

The solution involves a rarefaction wave, a contact discontinuity and a shock. We
compare the numerical solutions with the exact one: see [3].

Figure 4.8 shows the solutions provided by ACAT2-4-6 and WENO3-5 for density,
velocity, internal energy and pressure p using a 200 points. The local accuracy of ACAT6
is also shown. Zooms of the behaviour of the numerical densities can be observed in
Figure 4.9. As it can be seen in zooms a and b, WENO5-RK3 gives sharper but more
oscillatory solutions than ACAT methods. Moreover, increasing the accuracy order for
ACAT methods we obtain sharper results. Similar conclusions for the internal energy can
be drawn: see Figure 4.10.
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Figure 4.8: Test 4.4. 1D Euler equations: the Sod problem. Numerical solutions at
t = 0.25 using CFL= 0.8 and 200 points: density (left-top), velocity (right-top), internal
energy (left-bottom), pressure (right-bottom). Sub-frames: local order of accuracy for
ACAT6.
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Figure 4.9: Test 4.4. 1D Euler equations: the Sod problem. Numerical density at t = 0.25
using CFL= 0.8 and 200 points: general view and zooms close to the points a,b, c and d.
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Figure 4.10: Test 4.4 1D Euler equations: the Sod problem. Numerical internal energy
at t = 0.25 using CFL= 0.8 and 200 points: general view and zooms close to the points
a,b, c and d.1D Euler equations.

4.3.2.2 Test 4.5 123 Einfeldt problem

(ρ, v, p) =

{
(1.0,−2.0, 0.4) if x < 1/2,
(1.0, 2.0, 0.4) if x > 1/2.

(4.3.11)

The solutions of this problem involves two strong rarefaction waves and an interme-
diate state that is close to vacuum, what makes this problem a hard test for numerical
methods. ACAT methods give stable solutions under CFL≤ 1 condition: Figure 4.11
shows the time evolution of the numerical results obtained with ACAT6. The smoothness
indicators ψ3

i+1/2 is also depicted: it can be seen how the discontinuities of the first-order
derivatives are correctly captured. It can be also observed that, while at the rarefaction
waves order 6 is selected, lower accuracy is used at the constant regions close to the
boundaries: this order reduction is due to the numerical oscillations produced by the 6th-
order method. A comparison of the different methods at time t = 0.15 is shown in Figure
4.12, where ACAT methods provide similar stable solutions. Although WENO solutions
are stable, the third-order one is diffusive and the fifth-order one is oscillatory.

4.3.2.3 Test 4.6 Right blast wave problem of Woodward & Colella

(ρ, u, p) =

{
(1.0, 0.0, 1000) if x < 1/2,
(1.0, 0.0, 0.01) if x > 1/2.

(4.3.12)

For this test we use 450 points. The solution involves two strong shocks. Figure 4.13
shows the numerical densities obtained at time t = 0.012s: it can be observed that WENO
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Figure 4.11: Test 4.5. 1D Euler equations: the 123 Einfeldt problem using CFL= 0.8 and
200 points. Density obtained with ACAT6 and graph of the smoothness indicator ψ3 for
t = ts/4 (left-top), ts/2 (right-top), 3ts/4 (left-bottom), ts (right-bottom), with ts = 0.15.
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Figure 4.12: Test 4.5. 1D Euler equations: the 123 Einfeldt problem using CFL= 0.8 and
200 points. Numerical densities at time t = 0.15: general view (left-top) and zooms close
to the points a (left-bottom), b(right-top), and c (right-bottom).

methods produce oscillating solutions, while ACAT methods give stable solutions whose
accuracy increase with the order. In particular, this behavior can be seen in the two
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Figure 4.13: Test 4.6. 1D Euler equations: right blast wave of the Woodward & Colella
problem. Numerical densities at time t = 0.012, using CFL= 0.8 (left) and zooms close
to the shocks (center and right).

zooms close to the shocks.

Table 4.2 shows the CPU time rates for this last one-dimensional test. A non-
optimized implementation using Matlab has been used for all the numerical methods.
Therefore, this table has to be taken as a rough indication about computational cost.
In particular, ACAT methods are highly parallelisable and do not need the storage
of intermediate temporal stages: therefore, an optimized parallel implementation can
lead to very different conclusions. With the implementations used here, ACAT2 is the
cheapest method and its CPU time is taken as a reference. ACAT4 is competitive both
in quality and computational cost compared to WENO-RK 3 and 5. The practical use of
ACAT of order higher or equal than 6 requires an efficient implementation, otherwise the
computational cost to increase the order is very big. The same happens with WENO-RK
methods when the accuracy in time is increased due to the large number of stages required
by SSPK methods.

ACAT2 ACAT4 ACAT6
1.00 5.88 12.46

WENO3-RK3 WENO5-RK3
2.86 5.08

Table 4.2: CPU time rates for the Woodward and Colella problem.
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4.3.3 2D Equations

4.3.3.1 Test 4.7 Transport equation

Let us consider the 2D transport equation

ut + aux + buy = 0, (4.3.13)

with initial conditions

u =

{
1 if x+ y ≤ 1/4,
0 otherwise.

(4.3.14)

We solve (4.3.13) on the spatial domain [0, 2]× [0, 2], using: a, b = 1, 100× 100-point
grid, CFL=0.5, and t = 1. Figure 4.14 shows a 1D cut over the line y = x of the solutions
obtained with ACAT2, ACAT4, WENO3-RK3 and WENO5-RK3 at time t = 1.

4.3.3.2 Test 4.8 - 4.10 Euler equations

Let us consider the two-dimensional Euler equations for gas dynamics

ut + f(u)x + g(u)y = 0, (4.3.15)

where

u =


ρ
ρv
ρw
E

 , f(u) =


ρv

ρv2 + p
ρvw

v(E + p)

 , g(u) =


ρw
ρvw

ρw2 + p
w(E + p)

 .

Here, ρ is the density; v, w are the components of the velocity in the x and y directions;
E, the total energy per unit volume; p, the pressure. We consider the equation of state

p(ρ, v, w,E) = (γ − 1)(E − ρ

2
(v2 + w2)), (4.3.16)

and γ is the ratio of specific heat capacities of the gas taken as 1.4.
We solve numerically (4.3.15) using ACAT2 and ACAT4 for three of the nineteen

configurations of the 2-D Riemann problems presented in [66] whose initial conditions
are given in Tables 4.3-4.4. These initial conditions consist of constant states at every
quadrant of the spatial domain that are chosen so that the 1D Riemann problems
corresponding to two adjacent states consist of only one one-dimensional simple wave: a
shock S, a rarefaction wave R, or a slip line i.e. a contact discontinuity with discontinuous
tangential velocity J. The sub-indexes (l, r) ∈ {(2, 1), (3, 2), (3, 4), (4, 1)} indicate the
involved quadrants. For shocks and rarefactions an over-arrow indicate the direction
(backward or forward). And for contact discontinuities a sign +/− is used (instead of the
over-arrow), to denote whether it is a positive or negative slip line.
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Figure 4.14: Test 4.7. 2D Transport equation: solution obtained with ACAT2, ACAT4,
WENO3 RK3 and WENO5 RK3 at time t = 1: cut with a vertical plane passing through
the line y = x . Subplot: zoom close to the discontinuity

These Riemann problems are numerically solved using a 400× 400-point grid and free
boundary conditions. The CFL condition used to set the time steps is the following

∆t =
CFL

2
min

(
∆x

smaxx
,

∆y

smaxy

)
,

where

smaxx = max
i,j
{
∣∣vni,j∣∣+ ci,j}, smaxy = max

i,j
{
∣∣wni,j∣∣+ ci,j},
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with

c =

√
γp

ρ
.

The CFL parameter is set to 0.475.

Lax Configuration 4
p2 = 0.35 ρ2 = 0.5065 p1 = 1.1 ρ1 = 1.1

u2 = 0.8939 v2 = 0.0 u1 = 0.0 v1 = 0.0
←−
S 2,1

p3 = 1.1 ρ3 = 1.1 p4 = 0.35 ρ4 = 0.5065
−→
S 3,2

−→
S 4,1

u3 = 0.8939 v3 = 0.8939 u4 = −0.0 v4 = 0.8939
←−
S 3,4

Table 4.3: 2D Euler equations: test 8. Initial condition.

Lax Configuration 6
p2 = 1.0 ρ2 = 2.0 p1 = 1.0 ρ1 = 1.0
u2 = 0.75 v2 = 0.5 u1 = 0.75 v1 = −0.5 J−2,1
p3 = 1.0 ρ3 = 1.0 p4 = 1.0 ρ4 = 3.0 J+

3,2 J+
4,1

u3 = −0.75 v3 = 0.5 u4 = −0.75 v4 = −0.5 J−3,4

Table 4.4: 2D Euler equations: test 9. Initial condition.

Lax Configuration 8
p2 = 1.0 ρ2 = 1.0 p1 = 0.4 ρ1 = 0.5197

u2 = −0.6259 v2 = 0.1 u1 = 0.1 v1 = 0.1
←−
R 2,1

p3 = 1.0 ρ3 = 0.8 p4 = 1.0 ρ4 = 1.0 J−3,2
←−
R 4,1

u3 = 0.1 v3 = 0.1 u4 = 0.1 v4 = −0.6259 J−3,4

Table 4.5: 2D Euler equations: test 10. Initial condition.

Figures 4.15, 4.16 and 4.17 show the numerical solutions for the density density given
by ACAT2 and ACAT4. We include in each figure a general view of the numerical
density given by ACAT2 (left-top) and ACAT4 (right-top); the smoothness indicators ψ1

x

(left-center) and ψ2
x (right-center) in the x-direction; the smoothness indicators ψ1

y (left-
bottom) and ψ2

y (right-bottom) in the y-direction. In all cases, the solutions are stable and
similar of those obtained in [67] with a finite volume method. Observe how the indicators
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ψ2
x and ψ2

y detect better the smoothness regions than ψ1
x and ψ1

y, what implies a better
resolution in the numerical solutions obtained with ACAT4. However, the computational
cost increases with the order as it happens for 1d problems, see table 4.6.

ACAT2 ACAT4 ACAT6
1.00 9.98 96.91

WENO3-RK3 WENO5-RK3
3.23 9.968

Table 4.6: 2D Euler equations test 10: CPU time rates.

In Figure 4.18 the numerical densities obtained with ACAT2, ACAT4, WENO3 RK3, and
WENO5 RK5 at time t = 0.25 are compared.
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Figure 4.15: Test 4.8. 2D Euler equations: contour plots of the density at time t = 0.25
obtained with ACAT2 (left-top) and ACAT4 (right-top). Contour plots of the smoothness
indicators ψ1

x(left-center), ψ2
x (right-center), ψ1

y (left-bottom) and ψ2
y (right-bottom).
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Figure 4.16: Test 4.9. 2D Euler equations: contour plots of the density at time t = 0.3
obtained with ACAT2 (left-top) and ACAT4 (right-top). Contour plots of the smoothness
indicators ψ1

x(left-center), ψ2
x (right-center), ψ1

y (left-bottom) and ψ2
y (right-bottom).
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Figure 4.17: Test 4.10. 2D Euler equations: contour plots of the density at time t = 0.25
obtained with ACAT2 (left-top) and ACAT4 (right-top). Contour plots of the smoothness
indicators ψ1

x(left-center), ψ2
x (right-center), ψ1

y (left bottom) and ψ2
y (right-bottom).
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Figure 4.18: Test 4.10 2D Euler equations: contour plots of the density at time t = 0.25
obtained with ACAT2 (left-top), ACAT4 (right-top), WENO3 RK3 (left-bottom) and
WENO5 RK3 (right-bottom).



Chapter 5

Approximate Taylor methods with
fast and optimized weighted
essentially non-oscillatory
reconstructions

As it has been seen in Chapter 4 LAT and CAT methods produce oscillations close to the
discontinuities of the solution. The use of Weighted Essentially Non-Oscillatory (WENO)
reconstructions (see [15], [16]) to compute the first-order time derivatives allows one to
prevent these oscillations: this technique has been used in [10] and also in Section 3.3.2.
The goal of this chapter is to explore the potentiality of the combination WENO-CAT by
considering different WENO implementations.

WENO methods present high-order accuracy in smooth zones and avoid oscillatory
behaviours close to discontinuities through the construction of non-linear weights based
on some smooth indicators. Many variants of the original WENO reconstruction have
been introduced. For instance, in FWENO methods introduced in [17], new smoothness
indicators have been proposed that require a lower number of calculations than the ones
proposed by Jiang and Shu.

On the other hand, the expression of the weights in the original WENO method leads to
an undesired loss of accuracy near critical points. Different variants have been introduced
to deal with this difficulty: see [51], [68], [69], [70]. To the best of our knowledge the
only approach that allows one to unconditionally attain the optimal order of accuracy
regardless of the order of critical points is, for third-order reconstructions, the OWENO3
method introduced in [18] and, for reconstructions of order higher than 3, the OWENO
methods presented in [19]. In this latter reference, the Jiang-Shu smoothness indicators
are used to define the weights (for third-order methods these indicators coincide with
those of FWENO methods). In this work, the following WENO reconstructions will be
used:
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• OWENO3 method for third-order reconsructions;

• WENO methods based on the expression of the OWENO weights and the
smoothness indicators of FWENO, so that they are both fast and optimal.

For shortness, we will refer to these methods as FOWENO reconstructions.
In this chapter we introduce two new families of high-order numerical methods based

on FOWENO reconstructions for the spacial discretization and on LAT or CAT for the
time discretization. These methods will be compared between them and against the
standard WENO-TVDRK schemes in a number of test cases ranging from scalar linear
1D problems to nonlinear systems of conservation laws in 2D.

The chapter is organized as follows. In section 5.1, the Approximate Taylor
Lax-Wendroff [10] and the Compact Approximate Taylor Lax-Wendroff (see chapter5)
methods are briefly recalled. In section 5.2, we introduce the fast and optimal WENO
reconstructions: the general idea behind the fast smoothness indicators described in [17] is
given as well as their extension to the OWENO smoothness indicators [17] for high-order
optimal reconstructions. In section 5.3, the ingredients already described in section 5.1
and 5.2 are combined to construct FOWENO-LAT and FOWENO-CAT methods. Section
5.4 focuses on the comparison of the numerical methods obtained by combining WENO
or FOWENO spatial discretization with TVDRK, LAT, or CAT time discretization. A
number of tests involving the 1D linear transport equation, Burgers equation, and the 1D
and 2D Euler equations of gas dynamics are considered. The quality of the solutions and
the CPU run-time are compared and discussed. Finally in Section 5.5 numerical errors
corresponding to the ACAT methods and the WENO/FOWENO-APT methods for some
selected problems are shown and the efficiencies of the methods are compared.

5.1 Approximate Taylor Methods

For the sake of simplicity, let us describe briefly the AT methods for the one-dimensional
scalar case.

5.1.1 Lax-Wendroff Approximate Taylor Methods

In Lax-Wendroff Approximate Taylor(LAT) methods, the time derivatives ∂kt u are
approximated by applying a first-order numerical differentiation formula in space to some
approximations

f̃
(k−1)
i

∼= ∂k−1
t f(u)(xi, tn) (5.1.1)

that will be computed by using recursively Taylor expansions in time.
LAT methods are based on centered (2p+ 1)-point numerical differentiation formulas

f (k)(xi) ' Dk
p,i(f,∆x) =

1

∆xk

p∑
j=−p

δkp,jf(xi+j). (5.1.2)
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The following notation

Dk
p,i(f∗,∆x) =

1

∆xk

p∑
j=−p

δkp,jfi+j, (5.1.3)

will be used to indicate that the formula is applied to some approximations fi of f and
not to its exact point values f(xi). In cases where there are two or more indexes, the
symbol ∗ will be used to indicate with respect to which the differentiation is applied. For
instance:

∂kxu(xi, tn) ' Dk
p,i(u

n
∗ ,∆x) =

1

∆xk

p∑
j=−p

δkp,ju
n
i+j,

∂kt u(xi, tn) ' Dk
p,n(u∗i ,∆t) =

1

∆tk

p∑
r=−p

δkp,ru
n+r
i .

Once the approximations (5.1.1) have been computed, the time derivatives of the
solution are approximated by:

∂kt u(xi, tn) ' ũ
(k)
i = −D1

p,i(f̃
(k−1)
∗ ,∆x) = − 1

∆x

p∑
j=−p

δ1
p,j f̃

(k−1)
i+j .

A recursive procedure is followed to compute the approximation of the time derivatives:
once uli, l = 0, . . . , k have been computed, a Taylor expansion of degree k is used to
compute approximations f̃k−1,n+r

i of f(u(xi, (n + r)∆t), r = −p, . . . , p; the centered

differentiation formula is then used to obtain f̃
(k−1)
i ; and, finally, the first-order derivative

in space is applied to f̃
(k−1)
i+j , j = −p, . . . , p to compute uk+1

i . Once all the time derivatives
are approximated, the Taylor expansion

un+1
i = uni +

m∑
k=1

∆tk

k!
ũ

(k)
i +O

(
∆tm+1

)
(5.1.4)

is used to update the numerical solutions.
The procedure can be summarized as follows:

1. Define

f̃
(0)
i = f(uni ).

2. Compute

ũ
(1)
i = −D1

p,i(f̃
(0)
∗ ,∆x). (5.1.5)

3. For k = 2, . . . ,m:
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(a) Compute

f̃k−1,n+r
i = f

(
uni +

k−1∑
l=1

(r∆t)l

l!
ũ

(l)
i

)
, r = −p, . . . , p.

(b) Compute

f̃
(k−1)
i = Dk−1

p (f̃k−1,∗
i ,∆t). (5.1.6)

(c) Compute

ũ
(k)
i = −D1

p,i(f̃
(k−1)
∗ ,∆x). (5.1.7)

4. Update the solution by (5.1.4).

The order of the method is min(m, 2p).

Remark 5.1.1 Although, for the sake of clarity, m and p have been considered as two
arbitrary positive integers in the presentation of LAT methods, in [10] m is an odd number
(since the method is combined with WENO reconstructions) and p is chosen adequately
to obtain order m. More precisely, in formulas (5.1.7),

p =

⌈
m+ 1− k

2

⌉
,

where d·e is the ceiling function, and in formulas (5.1.6)

p =
m− 1

2
.

LAT methods can be written in conservative form. To see this, let us introduce the
family of interpolatory numerical differentiation formulas

f (k)(xi + q∆x) ' Ak,qp,i (f,∆x) =
1

∆xk

p∑
j=−p+1

γk,qp,j f(xi+j), (5.1.8)

that approximates the k-th derivative of a function at the point xi + q∆x using its values
at the 2p points xi−p+1, . . . , xi+p. The symbol ∗ will be used again to indicate whit respect
to which index the differentiation is performed.

The following relation holds (see [12]):

Dk
p,i(f,∆x) =

1

∆x

(
A
k−1,1/2
p,i (f,∆x)− Ak−1,1/2

p,i−1 (f,∆x)
)
. (5.1.9)

Using this equality with k = 1, we can write LAT methods in the form

un+1
i = uni +

∆t

∆x

(
F p
i−1/2 − F

p
i+1/2

)
, (5.1.10)

where

F p
i+1/2 =

m∑
k=1

∆tk−1

k!
A

0,1/2
p,i (f̃

(k−1)
i,∗ ,∆x). (5.1.11)
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5.1.2 Compact Approximate Taylor methods

CAT methods are based on the conservative expression (5.1.10)-(5.1.11), with the
difference that now only the values

uni−p+1, . . . , u
n
i+p, (5.1.12)

are used to compute the numerical flux Fi+1/2, so that a centered (2p+ 1)-point stencil is
used to compute un+1

i . The numerical flux is thus computed as follows:

F p
i+1/2 =

m∑
k=1

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x). (5.1.13)

where

f̃
(k−1)
i,j

∼= ∂k−1
t f(u)(xi+j, tn), j = −p+ 1, . . . , p (5.1.14)

are local approximations of the time derivatives of the flux. By local we mean that these
approximations depend on the stencil, i.e.

i1 + j1 = i2 + j2 6⇒ f̃
(k−1)
i1,j1

= f̃
(k−1)
i2,j2

.

Local approximations of the time derivatives of the solution

ũ
(k)
i,j
∼= ∂

(k)
t u(xi+j, tn), j = −p+ 1, . . . , p

are obtained then by using the non-centered differentiation formulas

ũ
(k)
i,j = −A1,j

p,0(f̃
(k−1)
i,∗ ,∆x) = − 1

∆x

p∑
r=−p+1

γ1,j
p,r f̃

(k−1)
i,r .

Like in LAT methods, these local approximations of the time derivatives are recursively
used to compute approximations of the flux forward and backward in time using Taylor
expansions in a recursive way.

Given i, the procedure to compute F p
i+1/2 is as follows:

1. Define

f̃
(0)
i,j = f(uni+j), j = −p+ 1, . . . , p.

2. For k = 2 . . .m:

(a) Compute

ũ
(k−1)
i,j = −A1,j

p,0(f̃
(k−2)
i,∗ ,∆x).
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(b) Compute

f̃k−1,n+r
i,j = f

(
uni+j +

k−1∑
l=1

(r∆t)l

l!
ũ

(l)
i,j

)
, j, r = −p+ 1, . . . , p.

(c) Compute

f̃
(k−1)
i,j = Ak−1,0

p,n (f̃k−1,∗
i,j ,∆t), j = −p+ 1, . . . , p.

3. Compute F p
i+1/2 by (5.1.13)

Once the numerical fluxes have been computed, the numerical solution is updated by
using (3.1.28).

In [12] it has been shown that:

• The order of the method is min(m, 2p) so that the optimal choice is m = 2p: the
corresponding numerical method will be represented by CAT2p in the sequel.

• CAT2p reduces to the standard Lax-Wendroff method for linear problems.

• CAT2p is linearly stable under the standard CFL condition.

The extension of LAT and CAT methods to systems is straightforward by applying the
schemes component by component. The extension to multiple dimensions using Cartesian
grids can be done through the methods of lines. For a 2D problem, CAT uses a rectangular
stencil of p2 points centered in a point (xi+1/2, yj+1/2) to compute the horizontal component
of the numerical flux at (xi+1/2, yj) and the vertical component at (xi, yj+1/2) on the basis
of local approximations of the time derivatives and applications of Taylor expansions.

5.2 Fast and optimal WENO reconstructions

Approximate Taylor methods produce spurious oscillations near discontinuities due to the
Gibbs phenomenon. In order to get rid of these oscillations, WENO reconstructions will
be used to compute the first-order derivatives in time.

Given the point values of a function f at a stencil of 2p+ 1 points:

Si = {fi−p, . . . , fi+p},

where fj = f(xj), WENO operators provide a reconstruction of f at

xi+1/2 = xi +
h

2
,
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where h is the step of the mesh (assumed to be constant). This reconstruction is based
on the Lagrange interpolation polynomials ps(x), 0 ≤ s ≤ p that interpolates the point
values at p+ 1 sub-stencils

Sp,s = {fi−p+s, . . . , fi+s}, s = 0, . . . , p.

More precisely, the WENO strategy consists in defining the reconstruction as a convex
combination

q(xi+1/2) =

p∑
s=0

wsps(xi+1/2),

where the weights w0, . . . , wp satisfy ws ∼= cs on smooth zones, where c0, . . . , cp are the
linear ideal weights satisfying

P (xi+1/2) =

p∑
s=0

csps(xi+1/2),

where P (x) is the polynomial that interpolates all the point values of the stencil Si. The
weights wi are function of some smoothness indicators. In FWENO methods introduced
in [17], the following smoothness indicators have been proposed

Is :=

p∑
j=1

(f−p+i+s − f−p−1+i+s)
2, 0 ≤ s ≤ p, (5.2.1)

that require a lower number of calculations than the smoothness indicators by Jiang and
Shu (see [16]).

On the other hand, the expression of the weights in the original WENO method leads
to an undesired loss of accuracy near critical points. To the best of our knowledge the only
approach that allows to unconditionally attain the optimal order of accuracy regardless
of the order of critical points is, for third-order reconstructions, the OWENO3 method
introduced in [18] and, for reconstructions of order higher than 3, the OWENO methods
presented in [19]. In this latter reference, the Jiang-Shu smoothness indicators are used
to define the weights (for third-order methods these indicators coincide with (5.2.1)).

Let us summarize here the expression of FOWENO methods (see [18] and [19] for the
accuracy analysis). The expression of FOWENO3, (i.e. OWENO3) is the following:

Given i and ε > 0,

1. Increase the dependence data stencil

S̄ = {fi−1, fi, fi+1, fi+2}, (5.2.2)

with fi = f(xi).
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2. Compute the corresponding interpolating polynomials evaluated at xi+1/2, which,
both in case of reconstructions from point values and from cell averages, are given
by

p0(xi+1/2) = −1

2
fi−1 +

3

2
fi, p1(xi+1/2) =

1

2
fi +

1

2
fi+1. (5.2.3)

3. Compute the corresponding Jiang-Shu smoothness indicators I0, I1 and I2 (including
the one considering the rightmost node) by

I0 = (fi − fi−1)2, I1 = (fi+1 − fi)2, I2 = (fi+2 − fi+1)2. (5.2.4)

4. Compute the preliminary weights ω̃0 and ω̃1:

ω̃s :=
Is + ε

I0 + I1 + 2ε
, s = 0, 1 (5.2.5)

5. Define τ by

τ := dI, d := (−fi−1 + 3fi − 3fi+1 + fi+2)2, I := I0 + I1 + I2. (5.2.6)

6. Compute the corrector weight ω:

ω =
J

J + τ + ε
, with J = I0(I1 + I2) + (I0 + I1)I2. (5.2.7)

7. Compute the corrected weights ω0 and ω1:

ω0 := ωc0 + (1− ω)ω̃0, ω1 := ωc1 + (1− ω)ω̃1, (5.2.8)

where c0, c1 are the ideal linear weights.

8. Obtain the OWENO reconstruction at xi+1/2:

q(xi+1/2) = ω0p0(xi+1/2) + ω1p1(xi+1/2).

Unlike FOWENO3, FOWENO(2p+1) reconstructions for p ≥ 2 do not require to
increase artificially the stencil. Their expression, combined with the smoothness indicators
(5.2.1) can be summarized as follows:

Given i, the stencil Si and ε > 0.

1. Compute the interpolating polynomials pj, j = 0 ≤ j ≤ p,

2. Compute the fast smoothness indicators (5.2.1).
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3. Compute the discriminant

Dp = |Bp − 4ApCp|,

with

Ap =
1

2

p∑
j=−p

δ2p
p,jfi+j, Bp =

p∑
j=−p

δ2p−1
p,j fi+j, Cp =

p∑
j=−p

δ2p−2
p,j fi+j. (5.2.9)

for j = −p, . . . , p.

4. Obtain the squared undivided difference of order 2p:

τp = (2Ap)
2. (5.2.10)

5. Compute

dp :=
τa1p D

a1
p

τa1p +Da1
p + ε

for some a1 chosen by the user such that a1 ≥ 1, as done in [19].

6. Compute

αs = cs

(
1 +

dp
Ia1s + ε

)a2
, 0 ≤ s ≤ p, (5.2.11)

where cs are the ideal linear weights. a2 is chosen by the user such that a2 ≥
p+1
2a1

, which is a sufficient condition to attain the optimal (p + 1)-th accuracy near
discontinuities [17].

7. Generate the FOWENO weights:

ωs =
αs

α0 + · · ·+ αp
, s = 0, . . . , p. (5.2.12)

8. Obtain the reconstruction at xi+1/2:

qp(xi+1/2) =

p∑
s=0

ωsps(xi+1/2). (5.2.13)

Combining the results obtained in [17] and [19] one can see that this method attains
the optimal order regardless of the order of the critical point, without having to artificially
tune ε.
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5.3 FOWENO-AT Methods

With the FOWENO spatial reconstructions already defined, we incorporate them in
the Approximate Taylor methods to avoid the appearance of oscillations near the
discontinuities or shocks, substituting the first derivative in time of the Taylor expansion
by those reconstructions. More precisely, in LAT methods of Section (5.1.5) is replaced
by:

ũ
(1)
t,i = −

f̂i+1/2 − f̂i−1/2

∆x
. (5.3.1)

where f̂i+1/2 denotes the (2p+1)th-order FOWENO flux splitting reconstructions at xi+1/2.
In CAT methods, (5.1.13) is replaced by:

F p
i+1/2 = f̂i+1/2 +

m∑
k=2

∆tk−1

k!
A

0,1/2
p,0 (f̃

(k−1)
i,∗ ,∆x). (5.3.2)

FOWENO reconstructions are computed in conserved variables using the procedure
described in [20], so that their extension to systems is straightforward.

5.4 Numerical experiments

In order to simplify the notation and save space for the labels, from now on the following
abbreviations will be used for the different numerical methods to be compared:

Abbreviation Numerical method

WqRs WENOq with SSPRKs
WqCs WENOq with CATs
WqLs WENOq with LATs
FOWqRs FOWENOq with SSPRKs
FOWqCs FOWENOq with CATs
FOWqLs FOWENOq with LATs

Here, SSPRK denotes the well-known Strong Stability Preserving Runge-Kutta methods
[25], q is the order of accuracy of the spatial WENO reconstructions and s is the order
of accuracy of the time discretization. We present some numerical experiments using
FOWENO and the traditional WENO [20] reconstructions combined with CAT{2, 4, 6},
LAT{3, 5, 7} and SSPRK{3, 4} over some classical 1D scalar conservation laws (linear
transport and Burgers equations) and 1D and 2D systems (Euler equations of gas
dynamics).
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5.4.1 Scalar conservation laws

Let us consider first the one-dimensional scalar conservation law:

ut + f(u)x = 0. (5.4.1)

5.4.1.1 Test 5.1 Transport equation

We consider (5.4.1) with linear flux function f(u) = au in the spatial interval x ∈ [0, 2]
with initial condition:

u(x, 0) =


e−1200(x−1/3)2 0 ≤ x < 2/3,
6(x− 2/3) 2/3 ≤ x < 5/6,
−6(x− 1) 5/6 ≤ x < 1,
1 7/6 ≤ x ≤ 4/3,√

1− 100(x− 5/3)2 3/4 < x ≤ 2.

(5.4.2)

Figures 5.1, 5.2, 5.3 and 5.4 show the results obtained with the methods W3R3, W3C2,
W3L3, W5R3, W5C4, W5L5, W7R4, W7C6, W7L7, FOW3R3, FOW3C2, FOW3L3,
FOW5R3, FOW5C4, FOW5L5, FOW7R4, FOW7C6, and FOW7L7 at time t = 2. using
a 200-point mesh, a = 1, periodic boundary conditions, and CFL= {0.5, 0.9}. This test
is a slight modification of the one proposed by Jiang and Shu in [16].

From these plots we can conclude:
For CFL= 0.5

• Third-order reconstructions (Figure 5.1): FOWENO reconstructions give better
results than WENO reconstructions in all cases. We stress the fact that, in spite of
its lower order of accuracy, CAT2 gives very good results particularly when combined
with FOW3 reconstruction: see enlarged views.

• Fifth-order reconstructions (Figure 5.2): SSPRK3 gives worse results than CAT4
and LAT5 in the two first areas of interest with both WENO5 and FOWENO5.
While CAT4 and LAT5 give similar results when combined with W5, LAT5 gives
better results for FOWENO5: see enlarged views.

• Seventh-order reconstructions (Figure 5.3) : WENO and FOWENO SSPRK4 give
solutions that are slightly better than those given by CAT6 and LAT7.

For CFL= 0.9.

• Fifth-order reconstructions (Figure 5.4): LAT5 methods are not stable for this CFL
value, and SSPRK4 methods give oscillatory solution, especially near discontinuities.
CAT4 combined with FOWENO5 is stable and gives very good solutions: see
enlarged views.
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Figure 5.1: Test 5.1. Transport equation with initial conditions (5.4.2), CFL= 0.5 and
t = 2s. Methods based on 3rd-order reconstructions: general view (top) and zoom of the
areas of interest (bottom).

Table 5.1 shows the CPU times corresponding to the different methods for t = 2. and
CFL= 0.5. The values are obtained by averaging the computational cost of ten runs. The
entries of the table show the ratio between the computational time of each method and
the corresponding to W5R3 which is the reference.

FOW3C2 FOW3L3 FOW3R3 W3C2 W3L3 W3R3
0.3695 0.4509 0.8351 0.3742 0.734 0.6468

FOW5C4 FOW5L5 FOW5R3 W5C4 W5L5 W5R3
1.0546 0.7540 0.9980 1.1936 0.7589 1

FOW7C6 FOW7L7 FOW7R4 W7C6 W7L7 W7R4
2.5049 1.1818 4.4116 3.4330 1.715 5.1513

Table 5.1: CPU time ratios for Test 5.1: linear transport equation with initial conditions
(5.4.2), CFL= 0.5, and t = 2.

The following conclusions can be drawn:

• The cheapest method is FOW3C2 (that is only second-order accurate in time) and
the most expensive is W7R4 (due to the extra cost of the smoothness indicators and
to the 10 stages of SSPRK4).
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Figure 5.2: Test 5.1. Transport equation with initial conditions (5.4.2), CFL= 0.5 and
t = 2s. Methods based on 5th-order reconstructions: general view (top) and zoom of the
areas of interest (bottom).

• Methods based on WENO reconstructions are more costly than their corresponding
FOWENO counterparts with the only exception of FOW3R3 and W3R3. Moreover
the differences increase with the order.

• Methods based on CATs are more costly than their LAT(s + 1) counterparts with
the only exception of CAT2. The differences increase with the order. Nevertheless,
this extra cost is compensated by the better stability properties of CAT methods
for CFL values bigger than 0.5.

5.4.1.2 Test 5.2 Burgers equation

Let us consider now Burgers equation i.e. (5.4.1) with f(u) = u2/2, in the spatial interval
[0, 1] with initial condition

u(x, 0) = e−10(x−1/2)2 . (5.4.3)

Figure 5.5 shows the numerical solutions obtained with W3R3, W3C2, W3L3, W5R3,
W5C4, W5L5, W7R4, W7C6, W7L7, FOW3R3, FOW3C2, FOW3L3, FOW5R3,
FOW5C4, FOW5L5, FOW7R4, FOW7C6 and FOW7L7 methods using a 160-point mesh,
periodic boundary conditions, CFL= 0.5, and t = 2s. The numerical results are shown



108
Approximate Taylor methods with fast and optimized weighted essentially

non-oscillatory reconstructions

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x

0

0.2

0.4

0.6

0.8

1

u
(x

,t
)

REF W7C6 W7R4 W7L7 FOW7C6 FOW7R4 FOW7L7

0.25 0.3 0.35 0.4

x

0

0.2

0.4

0.6

0.8

1

u
(x

,t
)

0.82 0.83 0.84 0.85

x

0.88

0.9

0.92

0.94

0.96

0.98

1

u
(x

,t
)

1.15 1.2 1.25 1.3 1.35

x

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

u
(x

,t
)

1.64 1.66 1.68 1.7

x

0.6

0.7

0.8

0.9

1

u
(x

,t
)

Figure 5.3: Test 5.1 Transport equation with initial conditions (5.4.2), and t = 2s.
Methods based on 7th-order reconstructions with CFL= 0.5: general view (top) and
zoom of the areas of interest (bottom).

in groups of three to facilitate the comparisons. From the enlarged views (close to the
shock) the following conclusions can be drawn:

• Methods based on third-order reconstructions (Figure 5.5 row 2): all the methods
based on WENO3 give essentially the same solutions. Some improvements are
achieved with FOWENO3 and CAT2 is slightly sharper than the rest.

• Methods based on fifth-order reconstructions (Figure 5.5 row 3): the results are
better than the ones corresponding to third-order reconstructions as expected.
There are no big differences between them, but a slight improvement can be observed
when FOWENO reconstructions are used.

• Methods based on seventh-order reconstructions (Figure 5.5 row 4): WENO7 and
FOWENO7 reconstructions give non-oscillatory solutions and better results than
third or fifth-order reconstructions for CAT6 and RK4, which is not the case for
LAT7.

Concerning the quality of the numerical results with CFL= 0.9 or the computational
cost, we draw similar conclusions to the previous test case.
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Figure 5.4: Test 5.1. Transport equation with initial conditions (5.4.2), and t = 2s.
Methods based on 5th-order reconstructions with CFL= 0.9: general view (top) and
zoom of the areas of interest (bottom).

5.4.2 1D Systems of conservation laws

We consider the 1D Euler equations of gas dynamics:

wt + f(w)x = 0 , (5.4.4)

where

w =

 ρ
ρu
E

 , f(w) =

 ρu
ρu2 + p
u(E + p)

 .

Here, ρ is the density, u the velocity, E the total energy per unit volume and p the
pressure. We assume an ideal gas with the equation of state

p(ρ, e) = (γ − 1)ρe,

where γ is the ratio of specific heat capacities of the gas and e the internal energy per
unit mass given by:

E(ρ, u, e) = ρ(e+
1

2
u2).

We consider the following 1D Riemann problems whose data are given in Table 5.2:
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Figure 5.5: Test 5.2. Burgers equation with initial conditions (5.4.3), CFL= 0.5 and
t = 2s. Row 1: methods based on 5th-order reconstructions: general view. Rows 2-4:
zooms of an area of interest.

5.4.2.1 Test 5.3 Sod shock tube problem

The solution of this problem consists of a left rarefaction, a left contact and a right shock.
More details in [61].

5.4.2.2 Test 5.4 123 Einfeldt problem

The solution consists of two strong rarefactions and a stationary contact discontinuity.
The pressure p is small (close to vacuum). More details in [64]
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5.4.2.3 Test 5.5 Left half of the blast wave problem

The solution contains a left rarefaction, a contact and a right shock. More details in [65].

5.4.2.4 Test 5.6 Right half of the blast wave problem

The solution contains a left shock, a contact discontinuity and a right rarefaction. More
details in [65].

5.4.2.5 Test 5.7 Blast wave problem

The solution represents the collision of the right and left shocks corresponding to tests
3 and 4, and consists of a left facing shock (travelling very slowly to the right), a right
contact discontinuity and a right shock wave. More details in [65].

The equations are solved in the spatial domain x ∈ [0, 1] with outflow-inflow boundary
conditions and a 200-point mesh. CFL= 0.9, 0.5, 0.25 are used for methods based on with
3rd, 5th, and 7th-order reconstructions respectively. We consider WENO reconstructions
with ε = 1e − 6 as in [20] and FOWENO reconstructions with ε = 1e − 100 as in [17].
The numerical solutions are compared against the exact solution provided by the HE-
E1RPEXACT solver introduced in [3]

Test ρL uL pL ρR uR pR time (sec.)
3 1.0 0.0 1.0 0.125 0.0 0.1 0.25
4 1.0 -2.0 0.4 1.0 2.0 0.4 0.15
5 1.0 0.0 1000.0 1.0 0.0 0.01 0.012
6 1.0 0.0 0.01 1.0 0.0 100.0 0.035
7 .99924 19.5975 460.894 5.99242 -6.19633 46.0950 0.035

Table 5.2: Riemann problems for 1D Euler equations.

The numerical results are shown in Figures 5.6-5.15. Two figures are shown for every
test case, the first one corresponds to densities and the second one to internal energies. In
the first row of the figures corresponding to the densities, we show the global views of the
reference and the numerical solutions obtained using third and fifth-order reconstructions.
Rows 2-4 show enlarged views of the areas of interest labelled a, b and c in the global
view of the reference solution. In the figures corresponding to internal energy we plot
global views of the numerical results for third, fifth and seventh-order reconstructions
(left column) and enlarged views of an interest area of each one of them (right column).

• Test 5.3: Figures 5.6 and 5.7. In general, all the solutions are acceptable and
their quality improve with the order of accuracy. Methods based on FOWENO
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Figure 5.6: Test 5.3. 1D Euler equations. Sod problem: density. Row 1: exact solution
(left), methods using 3rd-order (center) and 5th-order (right) reconstruction operators.
Rows 2-4: zooms corresponding to areas a, b and c. CFL= 0.9, 0.5, 0.25 for methods
based on with 3rd, 5th, and 7th-order reconstructions respectively.

reconstruction are slightly sharper than those based on WENO with exception of
FOW7C6 near the contact discontinuity (the approximation obtained of this wave
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Figure 5.7: Test 5.3. 1D Euler equations. Sod problem: internal energy. Methods using
3rd order (row 1 ), 5th order (row 2 ), and 7th order (row 3 ) reconstruction operators.
Left: general view. Right: zoom of an area of interest. Exact solution: black line.
CFL= 0.9, 0.5, 0.25 for methods based on with 3rd, 5th, and 7th order reconstructions
respectively.

is worse but oscillations appear, even for long-time simulation). Concerning the
internal energies, solutions obtained with LAT and CAT are less oscillatory: see the
enlarged views.

• Test 5.4: Figures 5.8 and 5.9. This is a hard test in which significant differences
between WENO and FOWENO reconstructions can be seen. For densities,
FOW3C2 and FOW3L3 give the closest solutions to the reference in area b.
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Figure 5.8: Test 5.4. 1D Euler equations. 123 Einfeldt problem: density. Row 1: exact
solution (left), methods using 3rd (center) and 5th order (right) reconstruction operators.
Rows 2-4: zooms corresponding to areas a, b and c. CFL= 0.9, 0.5, 0.25 for methods based
on with 3rd, 5th, and 7th-order reconstructions respectively.

Moreover, all FOWENO-AT solutions are stable and non-oscillatory. For internal
energies, solutions corresponding to WENO methods show oscillations but they are
closer to the exact solution.

• Test 5.5: Figures 5.10 and 5.11. 3rd-order accuracy is not enough in this case
to capture good solutions, especially in area c. FOW5CAT4 and FOW5LAT5 give
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Figure 5.9: Test 5.4. 1D Euler equations. 123 Einfeldt problem: internal energy.
Methods using 3rd-order (row 1 ), 5th-order (row 2 ), and 7th-order (row 3 ) reconstruction
operators. Exact solution: black line. CFL= 0.9, 0.5, 0.25 for methods based on with 3rd,
5th, and 7th-order reconstructions respectively.

better solutions than W5R3, which is under dissipative. However, for 7th-order
reconstruction the situation is the opposite, due to the use of SSPRK 10 4 for
WENO7. For internal energies, no significant differences are detected.

• Test 5.6: Figures 5.12 and 5.13. Similar conclusions to Test 5.5.

• Test 5.7: Figures 5.14 and 5.15. In order to compare the cpu times, CFL= 0.25 has
been chosen for all the methods. Methods based on 7th-order reconstructions give
the best approximations in areas a and c but produce some oscillations in area b.
These oscillations are particularly noticeable in the top part of the internal energy
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Figure 5.10: Test 5.5. 1D Euler equations. Left half of the blast wave problem of
Woodward and Colella: density. Row 1: exact solution (left), methods using 3rd (center)
and 5th-order (right) reconstruction operators. Rows 2-4: zooms corresponding to areas
a, b and c. CFL= 0.9, 0.5, 0.25 for methods based on with 3rd, 5th, and 7th-order
reconstructions respectively.
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Figure 5.11: Test 5.5. 1D Euler equations. Left half of the blast wave problem of
Woodward and Colella: internal energy. Methods using 3d-order (row 1 ), 5th-order
(row 2 ), and 7th-order (row 3 ) reconstruction operators. Exact solution: black line.
CFL= 0.9, 0.5, 0.25 for methods based on with 3rd, 5th, and 7th-order reconstructions
respectively.

solutions, in which the solutions provided by AT methods are less oscillatory. CPU
times are shown in Table 5.3. WENO3-CAT2 (which is the faster method) is the
reference. Some conclusions can be drawn from this table:

1. 3rd-order methods based on WENO are cheaper than FOMENO3: in this case
the smooth indicators are the same and FOWENO has the extra computational
cost due to the computation of the optimal weights.

2. For reconstructions of order 5 or greater, methods based on FOWENO are
faster than those based on WENO.
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Figure 5.12: Test 5.6. 1D Euler equations. Right half of the blast wave problem of
Woodward and Colella: density. Row 1: exact solution (left), methods using 3rd-order
(center) and 5th-order (right) reconstruction operators. Rows 2-4: zooms corresponding
to areas a, b and c. CFL= 0.9, 0.5, 0.25 for methods based on with 3rd, 5th, and 7th-order
reconstructions respectively.

3. To pass from CAT2 to CAT4 using the same reconstruction operator multiplies
the computational time approximately by 3. And to pass from CAT4 to CAT6
by a factor between 4 and 6.

4. To pass from LAT3 to LAT5 using the same reconstruction operator multiplies
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Figure 5.13: Test 5.6. 1D Euler equations. Right half of the blast wave problem of
Woodward and Colella: internal energy. Methods using 3rd-order (row 1 ), 5th-order (row
2 ) and 7th-order (row 3 ) reconstruction operators. Left: general view. Right: zoom of
an area of interest. Exact solution: black line. CFL= 0.9, 0.5, 0.25 for methods based on
with 3rd, 5th, and 7th-order reconstructions respectively.

the computational time approximately by 5. And to pass from LAT5 to LAT7
by a factor between 6 and 7.

5. To pass from RK3 ( SSPRK 3-3, i.e. third-order and 3 stages) to RK4 ( SSPRK
4-10, i.e. fourth-order and 10 stages) the computational time approximately
by a factor between 6 and 8.5.
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Figure 5.14: Test 5.7. 1D Euler equations. Woodward and Colella problem:
density. Row 1: exact solution (left), methods using 3rd-order (center) and 5th-order
(right) reconstruction operators. Rows 2-4: zooms corresponding to areas a, b and c.
CFL= 0.9, 0.5, 0.25 for methods based on with 3rd, 5th, and 7th-order reconstructions
respectively.

5.4.3 2D Systems of conservation laws

We consider now the two-dimensional Euler equations of gas dynamics:

wt + f(w)x + g(w)y = 0 , (5.4.5)
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Figure 5.15: Test 5.7. 1D Euler equations. Woodward and Colella problem: internal
energy. Methods using 3rd-order (row 1 ), 5th-order (row 2 ) and 7th-order (row 3 )
reconstruction operators. Left: general view. Right: zoom of an area of interest. Exact
solution: black line. CFL= 0.9, 0.5, 0.25 for methods based on with 3rd, 5th, and 7th-order
reconstructions respectively.

where

w =


ρ
ρu
ρv
E

 , f(w) =


ρu

ρu2 + p
ρuv

u(E + p)

 , g(w) =


ρv
ρuv

ρv2 + p
v(E + p)

 .

ρ is again the density; u, v are the components of the velocities in the x, y directions
respectively; E, the total energy per unit volume; and p, the pressure. The equation of
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FOW3C2 FOW3L3 FOW3R3 W3C2 W3L3 W3R3
1.1830 1.6352 2.8026 1.0000 1.3744 2.1764

FOW5C4 FOW5L5 FOW5R3 W5C4 W5L5 W5R3
5.0546 3.4400 3.2980 5.1642 3.7589 3.5268

FOW7C6 FOW7L7 FOW7R4 W7C6 W7L7 W7R4
23.8827 18.1818 19.7516 29.9430 22.7150 29.9490

Table 5.3: CPU time ratios for test 5.7. 1D Euler equations with the Woodward and
Colella problem, CFL= 0.25, and t = 0.035s.

state

p(ρ, u, v, E) = (γ − 1)
(
E − ρ

2
(u2 + v2)

)
, (5.4.6)

is assumed again where γ is the ratio of specific heat capacities of the gas.

From the nineteen configurations of the 2-D Riemann problems presented in [66] six
relevant configurations have been selected, namely: 3, 6, 11, 13, 17 and 19. The initial
data of the Riemann problems consist of constant states at every quadrant of the spatial
domain that are chosen so that the 1D Riemann problems corresponding to two adjacent
states consist of only one one-dimensional simple wave: a shock S, a rarefaction wave R,
or a slip line i.e. a contact discontinuity with discontinuous tangential velocity J. The
sub-indexes (l, r) ∈ {(2, 1), (3, 2), (3, 4), (4, 1)} indicate the involved quadrants. For shock
and rarefactions an over-arrow indicate the direction (backward or forward). And for
contact discontinuities a sign +/− is used (instead of the over-arrow), to denote whether
it is a positive or negative slip line. Full information and analysis can be found in [66].

The methods are run in a 400 × 400 point mesh of the computational domain
[0, 1] × [0, 1] with CFL= 0.475 and outflow-inflow boundary conditions. Lax-Friedrichs
flux-splitting is used in both WENO and FOWENO implementations. Figures 5.16 to
5.22 show the numerical densities obtained for the Lax configurations 3, 6, 11, 13, 17
and 19, respectively. Only the numerical solutions obtained with methods based on
FOWENO reconstructions of order 3 or 5 are plotted with the exception of Test 9 for
which the solutions given by methods based on WENO reconstructions are also plotted
for comparison. Plots are made in Matlab with 25 contour lines.

5.4.3.1 Test 5.8 - 5.13 Euler equations

In all cases methods based on third-order reconstructions give similar solutions to those
provided in [67], even for FOW3C2 in spite of its lower order of accuracy in time.
Qualitatively, no significant differences between the results obtained using CAT2 or LAT3
are detected. Methods based on fifth-order reconstructions are sharper in all cases, as
expected. The quality of the solutions obtained with CAT and LAT are mostly identical
again. A comparison between Figures 5.17 and 5.18 makes noticeable the improvements
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Test Lax 5.8 Configuration 3
p2 = 0.3 ρ2 = 0.5323 p1 = 1.5 ρ1 = 1.5

u2 = 1.206 v2 = 0 u1 = 1 v1 = 0
←−
S2,1

p3 = 0.029 ρ3 = 0.138 p4 = 0.3 ρ4 = 0.5323
←−
S3,2

←−
S4,1

u3 = 1.206 v3 = 1.206 u4 = 0 v4 = 1.206
←−
S3,4

Test 5.9 Lax Configuration 6
p2 = 1 ρ2 = 2 p1 = 1 ρ1 = 1
u2 = 0.75 v2 = 0.5 u1 = 0.75 v1 = −0.5 J−2,1
p3 = 1 ρ3 = 1 p4 = 1 ρ4 = 3 J+

3,2 J+
4,1

u3 = −0.75 v3 = 0.5 u4 = −0.75 v4 = −0.5 J−3,4
Test 5.10 Lax Configuration 11
p2 = 0.4 ρ2 = 0.5313 p1 = 1 ρ1 = 1

u2 = 0.8275 v2 = 0 u1 = 0.1 v1 = 0
←−
S2,1

p3 = 0.4 ρ3 = 0.8 p4 = 0.4 ρ4 = 0.5313 J+
3,2

←−
S4,1

u3 = 0.1 v3 = 0 u4 = 0.1 v4 = 0.7276 J+
3,4

Test 5.11 Lax Configuration 13
p2 = 1 ρ2 = 2 p1 = 1 ρ1 = 1
u2 = 0 v2 = 0.3 u1 = 0 v1 = −0.3 J−2,1
p3 = 0.4 ρ3 = 1.0625 p4 = 0.4 ρ4 = 0.5313

←−
S3,2

←−
S4,1

u3 = 0 v3 = 0.8145 u4 = 0 v4 = 0.4276 J−3,4
Test 5.12 Lax Configuration 17
p2 = 1 ρ2 = 2 p1 = 1 ρ1 = 1
u2 = 0 v2 = −0.3 u1 = 0 v1 = −0.4 J−2,1
p3 = 0.4 ρ3 = 1.0625 p4 = 0.4 ρ4 = 0.5197

←−
S3,2

−−→
R4,1

u3 = 0 v3 = 0.2145 u4 = 0 v4 = −1.1259 J−3,4
Test 5.13 Lax Configuration 19
p2 = 1 ρ2 = 2 p1 = 1 ρ1 = 1
u2 = 0 v2 = −0.3 u1 = 0 v1 = 0.3 J+

2,1

p3 = 0.4 ρ3 = 1.0625 p4 = 0.4 ρ4 = 0.5197
←−
S3,2

−−→
R4,1

u3 = 0 v3 = 0.2145 u4 = 0 v4 = −0.4259 J−3,4
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provided by FOWENO compared to standard WENO.

Table 5.4 shows the CPU time rates for Test 5.9. Again W3C2 is the cheapest one
and its CPU time is takes as the reference. For 3rd-order methods, FOW3R3 is the most
expensive method. However, for 5th-order methods FOW5L5 is the cheapest one and
W5C4, the most expensive one.

W3R3 W3C2 W3L3 W5R3 W5C4 W5L5
2.5269 1.0000 1.1228 4.7006 5.5358 3.715

FOW3R3 FOW3C2 FOW3L3 FOW5R3 FOW5C4 FOW5L5
2.9967 1.2697 1.8280 4.0197 5.1386 3.3760

Table 5.4: CPU time rates for 2D numerical solutions of Test 5.9.

5.5 Comparison of errors and efficiency

Throughout this work, the numerical results obtained with FOWENO-CAT and ACAT
methods have been compared with those obtained with some other WENO-based methods
but not between them. Moreover, a qualitative point of view has been used to compare
the numerical solutions provided by different methods and efficiency plots have not been
shown so far. The objective of this section is three-fold:

• To compare FOWENO-CAT and ACAT methods between them.

• To compare the different methods from a quantitative point of view.

• To compare the efficiency of the methods.

Nevertheless, these objectives are no easy to achieve due to the following reasons:

• While ACAT and FOWENO-CAT methods are of even order, WENO-RK or
WENO-LAT methods are of odd order.

• The main advantage of methods based on CAT are the possibility of considering
larger time steps, so that if comparisons are performed with CFL = 0.5 or lower,
they are less efficient than other methods, while comparisons performed with CFL
close to 1 are not fair for methods that are not stable or oscillatoriy for those values
of the CFL parameter.
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• The implementation of CAT, FOWENO-CAT, or ACAT methods carried out to
compute the numerical results shown in this work is not optimal and does not take
advantage of the potentiality of these methods due to the facts that they are highly
parallelizable and do not need the storage of intermediate temporal stages.

Therefore, the conclusions drawn from the comparisons of this section have to be
considered as preliminary: a more rigorous and systematic comparison of optimized
implementation in GPU architectures is among the lines to be developed in the short
future.

In this section we consider again the linear transport equation, Burgers equation, and
the 1D and 2D Euler equations. Since the graphs of the numerical solutions obtained with
the different methods have been already shown in previous chapters, we only consider here
error tables (computed using the exact solution if available or reference solutions obtained
with a fine mesh if not) and efficiency curves.

5.5.1 1D Scalar equations

5.5.1.1 Test 5.14. Linear transport equation

Let us consider the linear transport equation

ut + ux = 0 (5.5.1)

with the piecewise continuous initial condition

u0(x) =


1 if 1

2
≤ x ≤ 1;

0 if 0 ≤ x < 1
2

or 3
2
< x ≤ 2;

−1 if 1 < x ≤ 3
2
.

(5.5.2)

We solve in the spatial interval [0, 2], from time t = 0 to t = 4, periodic boundary
conditions, N = {50, 100, 200, 400, 800, 1600} point meshes and CFL = {0.5, 0.9}. Table
5.5 shows the error in L1-norm provided by the numerical solutions of WENO-CAT,
WENO-LAT, WENO-RK FOWENO-CAT, FOWENO-LAT, FOWENO-RK and ACAT
methods. The reference solution is the exact one. Efficiency plots are shown in Figures
5.23 and 5.24.

The following conclusions can be drawn:

• ACAT methods give the lower errors for both CFL = 0.5 and 0.9, although it is
only second order accurate.

• The error of all methods increase when CFL goes from 0.5 to 0.9, except ACAT2
and ACAT4.
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• The error corresponding to FOWENO implementations are always lower than their
WENO counterparts.

• For CFL = 0.5 ACAT2 is the most efficient method among those whose order of
accuracy is 2 or 3 followed by FOWENO-CAT methods. FOWENO5L5 is the more
efficient among those whose order is 3 or 5 followed by ACAT4.

• For CFL = 0.9 ACAT2 and ACAT4 are the most efficient methods.

Since the solution of this problem is piecewise constant, ACAT4 reduces to second
order close to the discontinuities so that its efficiency and errors are almost identical to
those of ACAT2. However, the ACAT4 advantages over ACAT2 are relevant when solving
smooth solutions that involve critical points as test 4.3.1.1 in section 4.3.

5.5.1.2 Test 5.15. Burgers Equation

Let us consider now Burgers equation with initial condition

u0(x) =
1

2
sin(πx). (5.5.3)

We solve numerically this problem in the spatial interval [0, 2] using periodic boundary
conditions from t = 0 to t = 1.25. Table 5.6 shows the errors in L1-norm provided by
WENO-CAT, WENO-LAT, WENO-RK FOWENO-CAT, FOWENO-LAT, FOWENO-
RK and ACAT methods using N = {50, 100, 200, 400, 800, 1600} point mesh and CFL
= {0.5, 0.9}. The reference solution is provided by a first-order method using a 25000-
point mesh. Efficiency plots are shown in Figures 5.25 and 5.26.

The following conclusions can be drawn:

• In this case, the errors have not a significant increase when the CFL parameter goes
from 0.5 to 0.9, except for WENO3-CAT2.

• The errors corresponding to FOWENO implementations are again lower than their
WENO counterparts.

• ACAT2 methods give the lower errors for both CFL = 0.5 and 0.9 among all the
second and third order methods.

• ACAT4 is the most accurate method but also the less efficient one due to the facts
that WENO methods behave correctly with CFL=0.9 in this case and to the non-
optimal implementation.
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CFL=0.5
N W3C2 W3L3 W3R3 W5C4 W5L5 W5R3 ACAT2

50 0.4997 0.4957 0.4766 0.2580 0.2647 0.2567 0.1433
100 0.2703 0.2673 0.2628 0.1451 0.1499 0.1446 0.0715
200 0.1637 0.1612 0.1589 0.0815 0.0829 0.0816 0.0357
400 0.0986 0.0968 0.0956 0.0457 0.0461 0.0459 0.0178
800 0.0593 0.0579 0.0573 0.0257 0.0258 0.0258 0.0089
1600 0.0357 0.0346 0.0342 0.0146 0.0145 0.0145 0.0044
N FOW3C2 FOW3L3 FOW3R3 FOW5C4 FOW5L5 FOW5R3 ACAT4

50 0.3976 0.3874 0.3669 0.1988 0.2166 0.2055 0.1426
100 0.1987 0.1922 0.1951 0.1066 0.1135 0.1149 0.0719
200 0.1212 0.1132 0.1124 0.0579 0.0599 0.0645 0.0359
400 0.0719 0.0647 0.0646 0.0317 0.0321 0.0364 0.0179
800 0.0419 0.0380 0.0372 0.0174 0.0174 0.0207 0.0089
1600 0.0252 0.0217 0.0215 0.0096 0.0095 0.0118 0.0044

CFL=0.9
N W3C2 W3L3 W3R3 W5C4 W5L5 W5R3 ACAT2

50 1.0397 1.0061 0.5407 0.4751 0.6666 0.3109 0.1216
100 0.8768 0.8790 0.2990 0.3683 0.4822 0.2840 0.0662
200 0.6126 0.6485 0.1740 0.2353 0.3285 0.2403 0.0350
400 0.4065 0.4568 0.1013 0.1640 0.2300 0.1745 0.0182
800 0.2947 0.3087 0.0593 0.1036 0.1578 0.1310 0.0093
1600 0.2063 0.2152 0.0348 0.0567 0.1125 0.0902 0.0047
N FOW3C2 FOW3L3 FOW3R3 FOW5C4 FOW5L5 FOW5R3 ACAT4

50 1.0468 1.0021 0.3959 0.2540 0.5608 0.2947 0.1271
100 0.8262 0.8236 0.2030 0.1354 0.4184 0.1702 0.0703
200 0.5821 0.5793 0.1170 0.0738 0.2928 0.0968 0.0382
400 0.4032 0.4077 0.0673 0.0399 0.1954 0.0569 0.0200
800 0.2865 0.2891 0.0389 0.0216 0.1417 0.0310 0.0102
1600 0.1974 0.2022 0.0225 0.0117 0.1027 0.0181 0.0051

Table 5.5: Test 5.14. Linear transport equation with initial condition 5.5.2: errors in
L1-norm for CFL= {0.5, 0.9} and t = 4.
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CFL=0.5
N W3C2 W3L3 W3R3 W5C4 W5L5 W5R3 ACAT2

50 0.00632 0.00633 0.00691 0.00334 0.00336 0.00367 0.00487
100 0.00142 0.00143 0.00149 0.00024 0.00024 0.00030 0.00079
200 0.00062 0.00063 0.00066 0.00012 0.00012 0.00015 0.00029
400 0.00026 0.00026 0.00028 0.00006 0.00007 0.00007 0.00011
800 0.00011 0.00012 0.00012 0.00003 0.00003 0.00003 0.00004
1600 0.00005 0.00005 0.00005 0.00001 0.00001 0.00001 0.00001
N FOW3C2 FOW3L3 FOW3R3 FOW5C4 FOW5L5 FOW5R3 ACAT4

50 0.00494 0.00506 0.00563 0.00277 0.00277 0.00300 0.00286
100 0.00113 0.00113 0.00114 0.00022 0.00023 0.00032 0.00037
200 0.00045 0.00045 0.00048 0.00011 0.00011 0.00014 0.00016
400 0.00019 0.00019 0.00020 0.00005 0.00006 0.00007 0.00006
800 0.00008 0.00008 0.00009 0.00003 0.00003 0.00003 0.00002
1600 0.00004 0.00004 0.00004 0.00001 0.00001 0.00001 0.00001

CFL=0.9
N W3C2 W3L3 W3R3 W5C4 W5L5 W5R3 ACAT2

50 0.00736 0.00751 0.00738 0.00308 0.00310 0.00373 0.00435
100 0.00211 0.00187 0.00158 0.00020 0.00024 0.00030 0.00064
200 0.00129 0.00086 0.00070 0.00011 0.00012 0.00014 0.00025
400 0.00062 0.00036 0.00029 0.00006 0.00006 0.00007 0.00010
800 0.00040 0.00016 0.00012 0.00003 0.00003 0.00003 0.00003
1600 0.00016 0.00007 0.00005 0.00001 0.00001 0.00001 0.00001
N FOW3C2 FOW3L3 FOW3R3 FOW5C4 FOW5L5 FOW5R3 ACAT4

50 0.00597 0.00613 0.00618 0.00244 0.00246 0.00300 0.00247
100 0.00138 0.00103 0.00121 0.00012 0.00015 0.00032 0.00024
200 0.00050 0.00043 0.00046 0.00007 0.00007 0.00014 0.00010
400 0.00032 0.00021 0.00020 0.00004 0.00005 0.00006 0.00004
800 0.00019 0.00011 0.00009 0.00003 0.00003 0.00003 0.00002
1600 0.00012 0.00005 0.00004 0.00001 0.00001 0.00001 0.00000

Table 5.6: Test 5.15. Burgers equations with initial conditions (5.5.3): errors in L1-norm
for CFL= {0.5, 0.9} and t = 1.25.
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5.5.2 Test 5.16. 1D Euler equations: the Sod shock tube
problem

We consider again the 1D Euler equations with initial condition:

(ρ, v, p) =

{
(1, 0, 1) if x < 1/2,
(0.125, 0, 0.1) if x > 1/2.

(5.5.4)

We solve numerically this problem in the spatial interval [0, 1] using inflow-outflow
boundary conditions and t = 0.25. Table 5.7 shows the errors in L1-norm corre-
sponding to the numerical solutions provided by WENO-CAT, WENO-LAT, WENO-
RK FOWENO-CAT, FOWENO-LAT, FOWENO-RK and ACAT methods using N =
{50, 100, 200, 400, 800, 1600} point-meshes and CFL = 0.5. The exact solution is provided
by the HE-E1RPEXACT solver: see [3].

The following conclusions can be drawn:

• The error corresponding to FOWENO implementations are slightly better than their
WENO counterparts for second and third order.

• For fourth and fifth order solutions, there is not significant differences between
FOWENO-APT (i.e. FOWENO-CAT and FOWENO-LAT) and WENO-APT.
Meanwhile, FOWENO-RK works better than WENO-RK.

• FOWENO-APT methods are the most efficient ones.

• The errors corresponding to ACAT2 and FOWENO3-APT are similar but ACAT2
is again the fastest method.

5.5.3 Test 5.17. 2D Euler equations: Lax configuration 6

Let us consider finally the two-dimensional Euler equations of gas dynamics (5.4.5) with
the Lax configuration 6 presented in [66]. We solve numerically this problem in the spatial
interval [0, 1] × [0, 1], CFL = 0.475, inflow-outflow boundary conditions and t = 0.3.
Table 5.8 shows the error in L1-norm corresponding to the solutions provided by WENO-
CAT, WENO-LAT, WENO-RK FOWENO-CAT, FOWENO-LAT, FOWENO-RK and
ACAT methods. The reference solution is computed using a 3200x3200-point mesh and
CFL= 0.475.

The following conclusions can be drawn:

• The errors corresponding to FOWENO implementations are again lower than their
WENO counterparts for all orders.

• ACAT4 is most accurate method in all the variables, followed by the fourth and
fifth order FOWENO methods.
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ρ ρu E ρ ρu E ρ ρu E
N W3C2 W3L3 W3R3

50 0.0177 0.3443 0.8752 0.0176 0.3445 0.8752 0.0175 0.3444 0.8752
100 0.0100 0.3360 0.8565 0.0097 0.3361 0.8565 0.0096 0.3361 0.8565
200 0.0055 0.3307 0.8586 0.0053 0.3308 0.8586 0.0053 0.3308 0.8586
400 0.0031 0.3282 0.8596 0.0030 0.3283 0.8596 0.0030 0.3283 0.8596
800 0.0019 0.3271 0.8601 0.0018 0.3271 0.8601 0.0018 0.3271 0.8601
1600 0.0012 0.3265 0.8604 0.0012 0.3265 0.8604 0.0012 0.3265 0.8604

N FOW3C2 FOW3L3 FOW3R3

50 0.0164 0.3435 0.8752 0.0160 0.3436 0.8752 0.0158 0.3436 0.8752
100 0.0090 0.3356 0.8565 0.0087 0.3357 0.8565 0.0085 0.3356 0.8565
200 0.0049 0.3305 0.8586 0.0047 0.3306 0.8586 0.0047 0.3306 0.8586
400 0.0027 0.3281 0.8596 0.0026 0.3282 0.8596 0.0026 0.3282 0.8596
800 0.0016 0.3270 0.8601 0.0016 0.3270 0.8601 0.0016 0.3270 0.8601
1600 0.0011 0.3265 0.8604 0.0011 0.3265 0.8604 0.0010 0.3265 0.8604

N W5C4 W5L5 W5R3

50 0.0130 0.3417 0.8753 0.0130 0.3417 0.8753 0.0127 0.3416 0.8753
100 0.0078 0.3347 0.8565 0.0078 0.3347 0.8565 0.0076 0.3346 0.8565
200 0.0043 0.3301 0.8586 0.0043 0.3301 0.8586 0.0042 0.3301 0.8586
400 0.0023 0.3279 0.8596 0.0023 0.3280 0.8596 0.0023 0.3279 0.8596
800 0.0014 0.3269 0.8601 0.0014 0.3269 0.8601 0.0014 0.3269 0.8601
1600 0.0009 0.3265 0.8604 0.0009 0.3265 0.8604 0.0010 0.3265 0.8604

N FOW5C4 FOW5L5 FOW5R3

50 0.0136 0.3412 0.8753 0.0134 0.3412 0.8753 0.0129 0.3411 0.8753
100 0.0078 0.3344 0.8565 0.0077 0.3344 0.8565 0.0075 0.3344 0.8565
200 0.0042 0.3300 0.8586 0.0042 0.3300 0.8586 0.0040 0.3300 0.8586
400 0.0023 0.3279 0.8596 0.0023 0.3279 0.8596 0.0022 0.3279 0.8596
800 0.0014 0.3269 0.8601 0.0014 0.3269 0.8601 0.0014 0.3269 0.8601
1600 0.0009 0.3264 0.8605 0.0009 0.3264 0.8604 0.0009 0.3264 0.8604

N ACAT2 ACAT4

50 0.0166 0.3436 0.8752 0.0153 0.3429 0.8752
100 0.0096 0.3356 0.8565 0.0088 0.3352 0.8565
200 0.0053 0.3306 0.8586 0.0048 0.3304 0.8586
400 0.0029 0.3282 0.8596 0.0026 0.3281 0.8596
800 0.0018 0.3271 0.8601 0.0015 0.3270 0.8601
1600 0.0011 0.3265 0.8604 0.0010 0.3265 0.8604

Table 5.7: Test 5.16. 1D Euler equations: Sod problem. Errors in L1-norm for ρ, ρu and
E, using CFL= 0.5 and t = 0.25.
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• ACAT2 is the most accurate among the second and third order methods and it is
again the fastest one.
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ρ ρux ρuy E ρ ρux ρuy E
N W3C2 W3L3

50 0.1171 0.1157 0.0803 0.0900 0.1171 0.1157 0.0803 0.0901
100 0.0774 0.0779 0.0521 0.0686 0.0774 0.0779 0.0524 0.0686
200 0.0486 0.0465 0.0341 0.0474 0.0485 0.0466 0.0342 0.0474
400 0.0287 0.0268 0.0208 0.0275 0.0283 0.0268 0.0207 0.0275

W3R3 ACAT2

50 0.1168 0.1153 0.0802 0.0899 0.0986 0.0935 0.0693 0.0917
100 0.0772 0.0777 0.0523 0.0685 0.0633 0.0603 0.0433 0.0626
200 0.0485 0.0466 0.0341 0.0473 0.0371 0.0327 0.0264 0.0389
400 0.0287 0.0268 0.0208 0.0275 0.0209 0.0165 0.0146 0.0216

FOW3C2 FOW3L3

50 0.1013 0.0998 0.0701 0.0829 0.1013 0.0999 0.0701 0.0831
100 0.0642 0.0630 0.0436 0.0600 0.0643 0.0630 0.0436 0.0601
200 0.0381 0.0350 0.0267 0.0387 0.0381 0.0350 0.0268 0.0388
400 0.0204 0.0205 0.0190 0.0211 0.0204 0.0205 0.0190 0.0211

FOW3R3 ACAT4

50 0.1013 0.0998 0.0701 0.0831 0.0784 0.0834 0.0592 0.0715
100 0.0643 0.0631 0.0437 0.0602 0.0530 0.0501 0.0330 0.0522
200 0.0380 0.0350 0.0268 0.0388 0.0245 0.0264 0.0208 0.0350
400 0.0203 0.0205 0.0191 0.0201 0.0131 0.0124 0.0162 0.0167

W5C4 W5L5

50 0.0804 0.0790 0.0593 0.0731 0.0804 0.0790 0.0593 0.0731
100 0.0501 0.0495 0.0353 0.0555 0.0501 0.0495 0.0353 0.0555
200 0.0285 0.0264 0.0208 0.0357 0.0285 0.0264 0.0208 0.0357
400 0.0146 0.0134 0.0172 0.0177 0.0146 0.0134 0.0172 0.0177

W5R3 FOW5C4

50 0.0814 0.0806 0.0591 0.0707 0.0814 0.0804 0.0591 0.0706
100 0.0506 0.0498 0.0354 0.0524 0.0505 0.0498 0.0354 0.0524
200 0.0288 0.0263 0.0237 0.0320 0.0285 0.0263 0.0207 0.0320
400 0.0147 0.0135 0.0182 0.0178 0.0145 0.0130 0.0108 0.0178

W5L3 FOW5R3

50 0.0815 0.0804 0.0591 0.0706 0.0719 0.0703 0.0530 0.0672
100 0.0505 0.0498 0.0354 0.0523 0.0432 0.0415 0.0303 0.0473
200 0.0285 0.0262 0.0207 0.0318 0.0231 0.0206 0.0169 0.0273
400 0.0144 0.0130 0.0108 0.0175 0.0145 0.0130 0.0102 0.0172

Table 5.8: Test 5.17. 2D Euler equations. Lax problem 6. Errors in L1-norm for ρ, ρux,
ρuy and E, using CFL= 0.475 and t = 0.3.
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Figure 5.16: Test 5.8. 2D Euler equations. Lax configuration 3: density computed with
FOWENO-RK, FOWENO-CAT and FOWENO-LAT.
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Figure 5.17: Test 5.9. 2D Euler equations. Lax configuration 6: density computed with
FOWENO-RK, FOWENO-CAT and FOWENO-LAT.
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Figure 5.18: Test 5.9. 2D Euler equations. Lax configuration 6: density computed with
WENO-RK, WENO-CAT and WENO-LAT.
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Figure 5.19: Test 5.10. 2D Euler equations. Lax configuration 11: density computed with
FOWENO-RK, FOWENO-CAT and FOWENO-LAT.
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Figure 5.20: Test 5.11. 2D Euler equations. Lax configuration 13: density computed with
FOWENO-RK, FOWENO-CAT and FOWENO-LAT.
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Figure 5.21: Test 5.12. 2D Euler equations. Lax configuration 17: density computed with
FOWENO-RK, FOWENO-CAT and FOWENO-LAT.
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Figure 5.22: Test 5.13. 2D Euler equations. Lax configuration 19: density computed with
FOWENO-RK, FOWENO-CAT and FOWENO-LAT.
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Figure 5.23: Test 5.14. Linear transport equation with initial condition 5.5.2:
efficiency plot for WENO-CAT, WENO-LAT, WENO-RK, FOWENO-CAT, FOWENO-
LAT, FOWENO-RK, and ACAT solutions at t = 4 and CFL= 0.5. Second and third-order
methods (left) and fourth or fifth-order methods (right).
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Figure 5.24: Test 5.14. Linear transport equation with initial condition 5.5.2:
efficiency plot for WENO-CAT, WENO-LAT, WENO-RK, FOWENO-CAT, FOWENO-
LAT, FOWENO-RK, and ACAT solutions at t = 4 and CFL= 0.9. Second or third-order
methods (left) and fourth or fifth-order methods (right).
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Figure 5.25: Test 5.15. Burgers equation with initial conditions (5.5.3): efficiency plot for
WENO-CAT, WENO-LAT, WENO-RK, FOWENO-CAT, FOWENO-LAT, FOWENO-
RK, and ACAT solutions at t = 1.25 and CFL= 0.5. Second and third-order methods
(left) and fourth or fifth-order methods (right).
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Figure 5.26: Test 5.15. Burgers equation with initial conditions (5.5.3): efficiency plot for
WENO-CAT, WENO-LAT, WENO-RK, FOWENO-CAT, FOWENO-LAT, FOWENO-
RK, and ACAT solutions at t = 1.25 and CFL= 0.9. Second and third-order methods
(left) and fourth or fifth-order methods (right).
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Chapter 6

Conclusions and future work

In this thesis, a new family of high-order numerical methods for systems of conservation
laws is introduced. The methods of this family are based on Approximate Taylor
techniques and they have been described in Chapter 3. In that chapter:

• High-order Lax-Wendroff methods for the linear transport equation are reviewed,
including the study of the order, a heuristic study of the L2-stability, and the
computation and properties of the coefficients.

• Next, these methods are extended to nonlinear conservation laws with arbitrary even
order 2p of accuracy, the so-called Compact Approximate Taylor (CAT) methods.
Unlike previous applications of Taylor methods to conservation laws, CAT methods
have (2p+1)-point centered stencils, like Lax-Wendroff methods for linear problems.
Moreover, since they inherit the stability properties of Lax-Wendroff methods, they
are linearly L2-stable under the standard CFL condition.

• Two shock-capturing techniques are considered to cure the spurious oscillations
appearing close to discontinuities: in FL-CAT2 method the second-order CAT
method has been combined with a robust first-order method on the basis of a
standard flux limiter; in CAT-WENO methods, WENO reconstructions are used
to compute the first time derivative of the solution.

• These new methods are compared in a number of test cases with WENO-RK
methods (Finite Differences WENO reconstructions in space, TVD-RK in time)
and with LAT-WENO methods introduced in [10] (Finite Differences WENO
reconstruction for the first time derivative, Approximate Taylor in time). The
linear transport equation, Burgers equation, the 1D compressible Euler and the
MHD equations are considered. For CFL ≤ 0.5 all the numerical methods
work correctly, and the results obtained with all the methods using WENO
reconstructions are similar, while the FL-CAT method is more diffusive as expected.
Nevertheless, CAT methods are more expensive in computational time and number
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of operations due to its local character (FL-CAT is less expensive than WENO-
CAT as reconstructions are avoided). However, the extra computational cost of
CAT methods is compensated by the fact that they still give good solutions with
CFL values close to 1.

In addition, two proper and original ways to keep under control the spurious
oscillations generated by CAT methods close to shocks are applied. First, the Adaptive
Compact Approximate Taylor Method is described in Chapter 4. In that chapter:

• An order adaptive version of the Compact Approximate Taylor methods (ACAT)
is presented, including the flux-limiter technique (FL-CAT2 or ACAT2) for the low
order scheme; a new family of high-order smoothness indicators is introduced that
are able to detect the smoothness of the numerical solution in centered stencils; the
theoretical analysis of the order of these smoothness indicators is performed; the
extension to 2D problems of both CAT and ACAT methods is presented.

• These new shock-capturing Methods are compared in a number of test cases with
WENO-RK methods (Finite Differences WENO reconstructions in space, TVD-
RK in time). The linear transport equation, Burgers equation, the 1D and 2D
compressible Euler equations are considered. For CFL ≤ 0.5 all the numerical
methods work correctly, and the results obtained using WENO reconstructions are
similar to the ACAT that, again, allow one to select larger time steps.

And finally, the combination of LAT and CAT methods with fast and optimal WENO
reconstructions is studied in Chapter 5. In that chapter:

• Several shock-capturing high-order finite difference methods for 1D and 2D systems
of conservation laws are presented and compared in a number of test cases. Two
different high-order reconstruction operators are considered: standard WENO and
FOWENO operators. The latter combines the use of fast smooth indicators (that
coincide with the original smooth indicators in the third-order case) and the
computation of optimal weights that allow one to preserve the accuracy of the
reconstructions close to critical point regardless of their order. For the best of our
knowledge, this is the first time that these two techniques have been combined.

• Concerning the time discretization TVDRK, LAT and CAT methods are considered.

• The numerical tests show that, for third-order reconstructions, FOWENO is more
expensive than WENO due to the computation of the optimal weights, as it happens
for CWENO [71], M-WENO [69] and other WENO versions. Nevertheless this extra
cost is relatively small and it is compensated by the quality of the solutions close to
critical points. For order 5 or higher, methods based on FOWENO reconstructions
give better solutions and are cheaper than those based on standard WENO: the
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extra cost due to the computation of the optimal weights is compensated by the
lower cost required by the computation of the smoothness indicators.

Concerning the time discretization, the following conclusions can be drawn from the
numerical tests:

- CAT2 combined with 3d-order reconstructions is a good choice in 1D and 2D:
the quality of the solutions is comparable to those obtained with LAT3 or RK3,
but with a significantly lower cost.

- LAT methods are cheaper for reconstructions of order 7 or higher in 1D and
of order 5 or higher in 2d.

- In some cases, the extra cost of CAT methods can be compensated by the fact
that bigger values of the CFL parameter can be taken with good results.

- For 1D problems, SSPRK3 gives results that are competitive both in quality
and computational time but SSPRK4 increases a lot the computational time.

• A subsection is added to this chapter (not included in the article [14]) where we
compare the errors and efficiencies of the FOWENO-LAT, FOWENO-CAT, and
ACAT methods. This information helps to support the conclusions.

Future developments include:

• Optimized implementation of CAT methods in GPU architectures. The implemen-
tation of CAT, FOWENO-CAT, or ACAT methods carried out to compute the
numerical results shown in this work is not optimal and does not take advantage
of the potentiality of these methods: they are highly parallelizable and do not
need the storage of intermediate temporal stages. Therefore, the comparisons of
computational costs or efficiency curves shown in the previous chapters lead only to
partial conclusions. Next developments include the implementation of the methods
in GPU architectures and the systematic comparison between them. The best
methods will be considered as candidates to be included in the HySEA package
[72] generated by the EDANYA team of the University of Málaga for the simulation
of geophysical flows.

• Combination of CAT methods with the MOOD strategy. Instead of using a priori
smoothness indicators to cure the spurious oscillations close to discontinuities, the
MOOD strategy is based on an a posteriori analysis of the updated numerical
solution: see [21], [22], [23],... This analysis is performed at every time step and
it is followed by a local recalculation of the solution where it is necessary using a
more robust numerical method. Besides the spurious oscillations, this methodology
allows one to control aspects such as the positivity of the numerical method. CAT
methods are excellent candidates to be combined with this technique, due to their
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good stability properties and the minimal size of their stencils. The idea would be
to update the numerical solutions at every time step with CAT2P . Then, this first
numerical solution is analyzed and the cells were wrong solutions are detected (due
to spurious oscillations, negative values of densities, NaN results, etc) are marked.
Next, the numerical solutions at the marked cells are computed again using now
CAT2(P − 1). This new numerical solution is then analyzed and the procedure
follows in a recursive way. In the worst-case scenario, the numerical solution will
be updated in part of the domain with a robust first order numerical method. This
strategy may lead to efficient and robust high-order numerical methods.

• Extension to systems of balance laws. The mathematical models which are at the
basis of the HySEA package contain source terms and/or non-conservative products:
shallow water models, multilayer models, avalanche models, etc. Therefore
the integration of the methods developed here in this package requires their
generalization to systems of balance laws as a first step. Moreover, beside the
order of accuracy and the stability properties, the well-balanced property of the
methods (i.e. their capability of preserving some or all the stationary solutions of
the system) play a key role in these applications. The first goal will be to derive
high-order numerical methods for the the shallow water model that preserve water
at rest solutions. Then, more complex systems and more demanding well-balance
properties will be addressed.

• Extension to nonconservative hyperbolic systems. The correct definition and
approximation of weak solutions for nonconservative systems is one of the major
challenges in the field of hyperbolic PDEs: standard finite-difference or finite-volume
methods fail in general to converge to the ’correct’ weak solutions due to the viscous
terms of the numerical methods. Therefore, the only numerical methods for which
convergence can be proved or at least observed are free-viscosity methods (such
as Glimm’s method) or methods in which the numerical viscosity and dispersion
are controlled. In this spirit, Well-Controlled Dissipation (WCD) methods, based
in Taylor expansions, allow one to correctly capture the shocks in nonconservative
problems: see [24]. Although these methods use high-order Taylor developments,
they are only first order accurate even in regions where the solution is smooth.
The original motivation of this thesis was to develop high-order methods based on
Taylor approach that could be easily combined with WCD methods so that shocks
are correctly capture but the numerical method is high-order accurate in smoothness
regions. The experience acquired in the development of this work will allow us to
address this goal in a short future.
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