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con los que tanto tiempo he compartido y tanto he aprendido: Ricardo, Pedrero,

Denisa, Villegas, Vilches, Gloria, Alex, Óscar, Esteban, Sergio, Fran, Antonio,
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Abstract

Next generation workloads, especially for biomedical applications such as

genome sequencing, have an astounding impact on the healthcare sector, for

cancer research and drug discovery. The high demand for fast and low-cost ge-

nomic sequencing has pushed onward the rapid development of next-generation

sequencing (NGS) technologies. Usually the first step in NGS corresponds to

sequence alignment, where sequence reads must be aligned or compared to a

genomic reference to identify regions of similarity.

When dealing with large reference genomes, great efforts were devoted to re-

duce memory requirements for sequence alignment. As a result, a set of alignment

algorithms based on the FM-index structure have been developed. FM-index is

well suited for fast exact matches of short reads to large reference genomes while

keeping a small memory footprint.

As high-throughput sequencing systems produce a massive amount of data,

the usage of high-performance technologies is of crucial importance to deal with

the computational challenge.

A major performance bottleneck in high-performance computing (HPC) sys-

tems corresponds to the access patterns to memory due to the limited memory

bandwidth available (memory wall problem [113]). Unfortunately, due to the

data structure layout, the searching process using FM-index exhibits irregular

memory access patterns. In addition, sequence aligners based on that index in-

clude support for inexact matching built on exact alignments, that causes the

memory pattern to be even less predictable. These data access patterns cause a

high cache miss rate on typical cache hierarchies present in HPC systems. Be-

sides, it is common for the exact matching algorithm to be memory bound due

to the low arithmetic intensity (ratio of the computation to the memory traffic).

Each step of the algorithm accesses a section of the index that it is not known in

advance, making the cache hierarchy difficult to exploit.

On the other hand, the amount of power used by HPC systems has been
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non-stop increasing during the last decades, making energy consumption one of

the most pressing and important problems for computer architecture. In 2018,

the global data center energy demand was 198TWh, around 1% of the global

energy demand [1]. This brings, in addition to the memory-wall problem, also

the energy consumption into focus.

In this thesis, we address the problem of the low efficiency exhibited by the

FM-index based sequence aligners on current HPC systems, due mainly to the

memory bandwidth wall. We tackle this problem from different perspectives.

Firstly, we analyze the FM-index exact matching algorithm. We consider dif-

ferent versions presented previously in the literature and propose a new orga-

nization of the data structure. With our new data structure we successfully

minimize the demand for memory bandwidth and, therefore, improve the overall

throughput and performance. After this analysis, we focus on improving even

more the performance and energy efficiency of the mentioned application by de-

veloping a new Processing-In-Memory architecture. This architecture includes

embedded in-order, energy efficient general purpose processors in the logic layer

of a 3D-stacked memory. We analyze the results obtained after running several

benchmarks and applications on the proposed architecture and on several con-

ventional ones. Lastly, we continue with the architectural exploration focusing

on a real, well-known and widely used sequence alignment application, Bowtie2.

We conduct a detailed analysis of different architectural setups, comparing ARM

low-energy cores with high performance ones. Experiments were carried out us-

ing a modified version of the gem5 architectural simulator in full-system mode

for realistic results.
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1 Introduction

In recent years there has been tremendous growth in data generation and in

the number of applications that process large amounts of data, both in the scien-

tific and industrial context (for example, meteorology, genomics, environmental

sciences ...), as well as in social context (for example, social networks, finance,

searches on Internet...). Conventional parallel programming architectures and

models behave in an inefficient way when they execute this type of applications,

as it usually involves the movement of a large amount of data between the differ-

ent units of the system. This is mainly because the data must migrate from some

level of the memory hierarchy to the computing units where they are processed.

To solve this problem, some authors have designed new data-centric systems,

characterized by performing the processing in the same place where the data is

stored, minimizing data migration and, therefore, improving performance, energy

consumption and reliability.

Improvements in memory systems performance is keeping far behind the de-

velopment of computing systems for many years. This fact, together with the

previous mentioned increase in the amount and importance of data intensive

applications, has lead to the advent of the memory-wall problem [113]. In the lit-

erature, the term memory-wall is used to refer to the system bottleneck between

memory and processors, affecting both performance and energy consumption of

modern computing systems, specifically for those applications which do not take

enough advantage from traditional cache systems.

This bottleneck is due to the high cost of data movement. For traditional

memory systems, each memory operation requires a slow and energy consuming

procedure in order to retrieve the data from main memory, trasfer it to the CPU,

process it in the CPU and, if necessary, write back the output data to memory.

1
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Specifically, each memory access follows the next steps: 1) the CPU issues a

request to the memory controller; 2) the memory controller sends a series of

commands to the memory DRAM module across the off-chip bus; 3) the required

data and some more data around it (cache line) is read from memory, sent to

the CPU and stored there, passing by the cache memory hierarchy and being

replicated several times. Only after this process, the data can be processed and

used for computing. In addition to this, the data replicated in cache memories are

not always used again, specially when running some specific application workloads

with non-uniform data access patterns or with low or no data reuse.

On the other hand, power consumption is becoming a pressing problem for

High Performance Computing (HPC) systems. The amount of energy consumed

by HPC systems is non-stop increasing during the last years, reaching in 2018

the 1% of the global energy demand [1]. The increase in power consumption

leads to an ineluctable increase in heat generation, creating more challenges for

HPC. Data movement also supposes an important part of the energy consump-

tion, making any optimization of the memory system a priority in current HPC

research.

This thesis is organized as follows. In the rest of Chapter 1 we describe briefly

Processing in Memory (PIM) and Near Data Processing (NDP) architectures and

memory bound applications, such as sequence alignment, and provide a motiva-

tion for this thesis. Chapter 2 includes a description of some background and

related work necessary to understand the state of the art and introduces the

tools and frameworks used in the elaboration of this thesis. In Chapter 3, we

analyze the FM-index exact matching algorithm and data structures, the cur-

rent variants of the FM-index in the literature and perform an in-deep analysis

of the performance of FM-index focusing mainly on the usage of the memory.

After this analysis we present our new FM-index data structure and algorithm.

Chapter 4 presents a new PIM architecture able to improve the performance of

applications with random memory accesses and no data reuse, with special fo-

cus on the backward search algorithm based on FM-index. Chapter 5 presents

another data-centric architecture, focusing on the detailed analysis of the simu-

lations and the evaluated application, Bowtie2, a widely used sequence aligner.

Lastly, Chapter 6 presents the conclusions of this thesis.
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1.1 Memory Bound Application: Genomic Se-

quence Alignment

The high demand for fast and low-cost genomic sequencing has pushed onward

the rapid development of next-generation sequencing (NGS) technologies. As a

result, a number of high-throughput sequencing systems have appeared in in-

dustry, including those from Illumina, Roche 454, Life Technologies and Pacific

Biosciences. These systems are able to produce huge amounts of short reads (in

the order of giga base-pairs) per day of operation. For instance, the Illumina

NovaSeq 6000 sequencing system is able to produce up to 20 billion reads of 150

base pairs (bp) in less than two days. This represents up to 6 terabits of data

which have to be processed as fast as possible.

Usually the first step in NGS corresponds to sequence alignment, where se-

quence reads must be aligned or compared to a genomic reference to identify

regions of similarity [71]. Most popular alignment methods are based on two

types of index structures: suffix trees and variants, and hash tables.

When dealing with large reference genomes, great efforts were devoted to

reduce memory requirements for sequence alignment. As a result, a set of align-

ment algorithms based on the FM-index structure have been developed [33]. The

FM-index uses the Burrows-Wheeler transform (BWT), a method for rearrang-

ing a character string that is useful for data compression [21]. FM-index is well

suited for fast exact matches of short reads to large reference genomes while

keeping a small memory footprint. Many efficient sequence aligners are based on

FM-index, such as Bowtie [65], Bowtie2 [64], BWA [70] (BWA-SW [69] for long

reads), SOAP2 [72] and BWT-SW [63].

Due to the data structure layout, the searching process using FM-index algo-

rithms exhibits irregular memory access patterns. In addition, sequence aligners

based on FM-index include support for inexact matching based on exact align-

ment algorithms. This causes the memory pattern to be even less predictable.

Random memory access patterns cause a high cache miss rate on typical cache

hierarchies of multicore processors because each step of the algorithm accesses

a section of the index that it is not known in advance, making the cache hier-

archy difficult to exploit. Moreover, it is common for the sequence alignment

algorithm to be memory bound due to the low arithmetic intensity (ratio of the

computation to the memory traffic).
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1.2 Data-centric Computing

The concept of data-centric computing is known as Near-Data Processing (NDP)

[13]. NDP is not a new concept. By the end of the last century there was a lot

of research activity in similar lines, such as PIM (Processing-In-Memory) [107],

whose goal was to perform part of the data processing in specialized units lo-

cated in the physical memory itself. However, this type of works did not become

relevant enough as a result of significant difficulties related to their commercial

adoption (basically, manufacturing costs). Nevertheless, there has been recently

a resurgence of the concept of carrying the processing into memory. This ap-

pears as a consequence of the growing importance of big-data applications [25],

and the evolution of new manufacturing technologies, such as Through-Silicon-

Vias (TSVs) [83], that have allowed the development of 3D-stacked DRAM

memory[16].

These advances have led to the development of several relevant systems in

this field. The most significant would be the Hybrid Memory Cube (HMC) [81]

developed by Micron in collaboration with others manufacturers like Samsung,

ARM, etc., and the High Bandwidth Memory (HBM) [4] powered by AMD,

which has been already implemented in several GPUs. Significant parts of data

movement between memory and processors can be avoided using those modern

3D-stacked memory architectures which move the computation to the logic layer

underneath memory cubes. Applications running on this logic layer can take a

significant advantage from the huge memory bandwidth and low latency, as well

as significantly reduce the power consumption and increase the performance for

memory-bound applications.

1.3 Thesis motivation and research questions

The mentioned memory-wall bottleneck and the growing importance of scientific

memory-bound applications, specifically in the field of genomic sequence align-

ment in bioinformatics based on FM-index, create a problem which should be

addressed. We think that this problem must be approached from two points of

view:

• The algorithmic side of the problem, analysing and improving a well-known

sequence alignment algorithm based on FM-index.

• The architectural side of the problem, working on the development of new
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data-centric systems which could help to reduce the impact of the memory-

wall and power consumption problems.

As a result of this approach, we define the general goal of this thesis project

as the design of novel architectural and algorithmic solutions to overcome the

physical memory barrier. We focus on applications and workloads that process

massive amounts of data, and, specifically, those related to genome sequence

alignment. Moreover, we believe that nowadays and, in the future, is essential to

focus on energy efficiency, a factor whose importance is increasing every day and

one of the most key limiting factors in HPC.

Our main contributions in this thesis and the related publications, which

intend to answer the previous research questions are the following:

• We analyze the behavior of memory-bound applications with random mem-

ory access, which are not able to take advantage of modern memory archi-

tectures. Specifically, we analyze FM-index, an exact matching algorithm

widely used in sequence alignment.

• After obtaining a deeper knowledge of the memory-wall bottleneck, we work

in a new FM-index version, reducing the memory bandwidth and computing

power it uses, improving significantly the performance. Memory bandwidth

use is reduced around a 75% per operation and performance improves up

to 135% when compared with previous implementations.

• We propose a new energy-efficient architecture based on a 3D-stacked mem-

ory cube, adding some low-power in-order cores to the logic layer. This

architecture, oriented to random memory access, is able to provide high

memory bandwidth with low latency and an important energy saving , in-

creasing efficiency up to 40 times.

• We propose a second novel architecture, using HBM2 and we use Bowtie2

as test application. We simulate the architecture using a full-system archi-

tectural simulator, obtaining a more realistic view of the problem and how

this architectural exploration can help to solve it. This architecture makes

Bowtie2 performance improve up to 68% with an energy benefit up to 71%.





2 Background and Related
Work

In this chapter we present some background related to FM-index. In addi-

tion, we introduce the tools and architectures that we use or explore in this thesis

in order to address the issues brought up in the previous chapter. More specifi-

cally, section 2.2 is devoted to revise FM-index structures and algorithm, whereas

section 2.3 introduces other alignment applications. Section 2.4 is dedicated to

review the current 3D-stacked memory systems. In section 2.5 the character-

istics of the Intel Xeon Phi Knight Landing (KNL) architecture, that includes

on-package 3D-stacked memory, are presented. Section 2.6 summarizes the fea-

tures and the state-of-the-art of Processing-in-Memory (PIM) architectures. And

lastly, section 2.7 and section 2.8 present some of the tools used in this thesis to

analyze some of our proposals.

2.1 Next-Generation-Sequencing or NGS

NGS is the name given to a set of new methods and techniques for high speed

and low cost DNA sequencing. It is also known as second generation sequencing

or massively parallel sequencing. NGS applications are having a great impact on

numerous fields, like bioinformatics, cancer research or food microbiology [17, 94,

118].

An example of a Next Generation Sequencing process workflow can be the

following steps [27]:

1. Extraction of genomic DNA from samples.

7
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2. DNA shearing with a method of choice.

3. Ligation of specific reporters.

4. Library selection and purification.

5. Library amplification using PCR.

6. Sequencing.

7. Sequence alignment and assembly of gene annotations.

8. Bioinformatics analysis.

Most of the mentioned steps (1-6) are mainly conducted in biology or bio-

chemistry, staying out of the scope of this thesis. In Sequence Alignment, the 7th

step and the first strongly related to High Performance Computing, a sequence

read is aligned or checked against a genomics reference for regions of similarity.

This process usually supports non-exact matching, due to errors in the sequencing

process or differences between samples.

Several sequencing applications are based on FM-index, a compressed full-

text index which we are studying in this thesis. We focus on FM-index algorithm

because combines indexing and efficient storage with no significant slowdown in

query time compared to full-text indices and because exhibits random memory

access and is a memory-bound problem fulfilling one the goals of this thesis.

2.2 FM-index

FM-index is a data structure that allows fast substring searches over large texts [33].

This data structure is based on the Burrows-Wheeler transform (BWT) [21],

which rearranges a text string into a form that is easier to compress. In the

following subsections we show an analysis of some basic definitions concerning

FM-index data structures and search algorithms.

In the rest of the thesis, brackets are used to specify an entry in an array (e.g.,

A[k] is k-th entry of the array A), and a character or a substring in a string (e.g.,

A[k] is the character at position k in the string A, and A[k..r] is the substring

from position k to position r in A).
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2.2.1 Suffix Array

Let T [1..n] be a character string drawn from an alphabet Σ having σ symbols.

The suffix array SA[1, ..., n] of T is an array containing the starting positions

of all suffixes of T in lexicographical order [79]. For instance, if T = [gtaata]

then SA = [6, 3, 4, 1, 5, 2]. The suffix array requires n dlog2 ne bits, where n

is the length of T . The suffix array can be used as an index to locate every

occurrence of a pattern. Searching in a suffix array can be done using a binary

search algorithm in log2 n steps.

2.2.2 Burrows Wheeler Transform (BWT)

The BWT is a permutation of a character string. Originally it was used in text

compression algorithms, but it has other applications such as large text indexing.

The BWT [1..n+1] of a n-character string T is another string obtained as

follows:

1. Append to the end of the original text T the symbol $, which is lexico-

graphically smaller than any symbol in Σ.

2. Form a conceptual (n+1)×(n+1) matrix M whose rows are the cyclic shifts

of T$ sorted in lexicographical order. This matrix M is shown in Figure

2.1.

3. The last column of matrix M is the BWT of T , denoted by L. This last

column can be used to recover the original text T .

The suffix array of T$ contains the starting positions in T of every row of the

matrix M .

F L

$ G T A A T A
A $ G T A A T
A A T A $ G T
A T A $ G T A
G T A A T A $
T A $ G T A A
T A A T A $ G

Figure 2.1: Matrix M used for the BWT generation of the text GTAATA$
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2.2.3 FM-index Data Structures

FM-index combines indexing and efficient storage in such a way that no significant

slowdown in query time is achieved compared to full-text indices. FM-index is

composed of two data structures derived from L (BWT of T ): the C array and

the Occ matrix. The C array stores in C[c] the number of occurrences in L

of the symbols lexicographical smaller than c. Occ[c, i] contains the number of

occurrences of the symbol c in the prefix L[1..i], being 1≤ i≤ n+1. C and Occ

can be used to efficiently locate each occurrence of a character pattern within T .

The FM-index was designed as a compressed structure such that the index size

can be smaller than the original text. However, in the context of sequence align-

ment, it is usually not compressed in order to achieve better performance [71].

2.2.4 FM-index Search Algorithm

Given a pattern Q[1..p], the FM-index allows to find all occurrences of Q in the

text T [33]. The search process consists of two operations denoted as Count and

Locate.

2.2.4.1 Count

Count operation (shown in Figure 2.2) is a rank query process that calculates the

number of occurrences of Q in T by identifying the first and last rows of matrix

M (see sec. 2.2.2) prefixed by the query Q. This operation is explained in more

detail in the FM-index analysis presented in chapter 3.

$ G T A A T A
A $ G T A A T
A A T A $ G T
A T A $ G T A
G T A A T A $
T A $ G T A A
T A A T A $ G

G T A G T A G T A

$ G T A A T A
A $ G T A A T
A A T A $ G T
A T A $ G T A
G T A A T A $
T A $ G T A A
T A A T A $ G

$ G T A A T A
A $ G T A A T
A A T A $ G T
A T A $ G T A
G T A A T A $
T A $ G T A A
T A A T A $ G

Figure 2.2: Exact matching count operation
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2.2.4.2 Locate

The locate operation uses the indexes of the rows obtained by the count operation

to access the suffix array, where it finds the position of every occurrence of Q in

the text T .

The suffix array is usually a very large compressed data structure. However,

its size for the human genome is about 12 GB (3 gigabases x 4 bytes), so it

can be stored without compression in modern systems. In this way, the Locate

operation turns out to be very simple, as it only requires an access to the suffix

array. For this reason, our effort focuses on improving the performance of the

Count operation.

2.2.5 Rank Query Implementations

To speed-up the Count process, FM-index uses the Occ matrix as a look-up

table [33]. The main drawback of this solution is the large memory footprint of

Occ. It is a matrix with σ rows and n+1 columns. Hence, its footprint is:

Fp(Occ) = σ × (n+ 1)× Fp(Occentry), (2.1)

where the size of Occentry depends on n. For the human genome (DNA), σ is 4

(A, C, G, and T) and n is around 3G (3 gigabases). Hence, each Occ entry fits in

a 4-byte unsigned integer, and the footprint of Occ is about 4× 3G× 4 ≈ 48 GB.

Several techniques have been developed to reduce this large footprint based on

storing only a portion of Occ and calculating the rest of it [33, 24, 23]. These

techniques are described and analyzed in detail in the next section. In this thesis

we propose a new organization of Occ that improves the performance of the Count

operation, taking maximum advantage of the available memory bandwidth.

Another approach to reduce the memory usage uses wavelet trees to store the

Occ data [46, 34]. These structures are specially space efficient when performing

rank queries on large texts based on large alphabets. The efficiency of this so-

lution also depends on the entropy of the text. A rank query on an alphabet of

σ symbols is done by log2(σ) binary rank queries. Each binary query calculates

several indexes, accesses several memory locations, and performs some arithmetic

operations.

In the DNA context, the alphabet is very small and the text is relatively

small and with high entropy. Therefore, optimized versions of the Occ matrix

fit in contemporary memory systems making the space usage advantage of using

wavelet trees not so relevant. However, the computational cost of wavelet trees
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based algorithms is much higher than those implementations based on a table-

based Occ.

2.2.6 Previous Works on Accelerating FM-index

FM-index implementations for specific architectures or accelerators have been

published, including GPUs (Arioc [111], CUSHAW2 [74], BarraCUDA [62], [18]),

Clusters (CUSHAW3 [45]), Clouds (BigBWA [3]) and FPGAs (FHAST [32]).

Several works focus on improving the performance of the exact matching

algorithm (FM-index) for GPUs, like Chacon et al. [22] and Chen et al. [26].

FM-index is also included in the NVBIO [85] library, developed by Nvidia to

speed up bioinformatics using GPUs and CUDA technology.

The most relevant operation in the FM-index backward search algorithm is

the rank operation [54]. This operation, together with the select one, has been

addressed in numerous papers which focus on optimizing both the memory foot-

print and the pattern search time [77]. Most of these papers are based on succinct

data structures [93], [43], [42] and wavelet trees [38], [44].

2.3 Non-exact Matching using FM-index

FM-index is used in several applications in order to search for a non-exact pat-

terns in a reference text. This is particularly useful in some fields like bioinfor-

matics and specifically, for sequence alignment.

For sequence alignment, exact matching is insufficient. Alignments usually

may contain some mismatches, due to errors in the sequencing process, differ-

ences between reference and query organisms, or both. However, there are some

algorithms, built upon FM-index, able to quickly find approximate occurrences

of the pattern.

There are several alignment applications relying upon FM-index variations,

such as HISAT [58], Bowtie [65], Bowtie2 [64], BWA [69], [70] and SOAP [72], [76].

Bowtie and BWA are two of the most important ones and are described in the

following sections.
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2.3.1 Bowtie

Bowtie and Bowtie2 are open-source, ultrafast and memory-efficient alignment

applications used for aligning both short and long DNA reads to large genomes.

Bowtie relies upon Burrows-Wheeler transform and a modified FM-index algo-

rithm able to quickly find non-exact alignments that satisfy a specified alignment

policy. This algorithm uses backtracking to find the non-exact occurrences of

the pattern: when the exact matching basic FM-index algorithm finds an empty

range, the Bowtie algorithm selects a previously matched DNA base and replaces

it for a different one, and tries to match the new ’modified’ sequence (see Figure

2.3). This search is performed in a greedy way, namely, Bowtie alignment will

not necessarily be the ’best’, but it will find a valid alignment if it exists.

Bowtie indexes are optimized in order to use as less memory as possible. This

way, a Bowtie index for the human genome uses around 2.2GB on disk, and has

a memory footprint of just 1.3GB, being able to perform more than 25 million

read alignments per CPU hour.

Compared to other sequence alignment tools, Bowtie is much faster than most

of the alternative options. According to [65], Bowtie is between 216x and 691x

faster than SOAP aligner and between 14.9x and 36.7x times baster than Maq

aligner, depending on the read length, with very similar results.

Bowtie developers have released a new version of the software, called Bowtie2.

It also includes support for longer reads and gapped alignments. Bowtie2 is

described in more detail in section 5.2 and we use it as a test application in

chapter 5.

2.3.2 BWA

BWA is, like Bowtie, an alignment application used mainly for aligning short

DNA reads to large genomes. BWA inexact search algorithm recursively searches

for the suffix array intervals of substrings of the reference text that match the

searched pattern with no more than a fixed number of differences. This is

achieved, essentially, using the FM-index backward search to sample distinct

substrings from the reference genome. BWA uses a strategy to compress the

genome index similar to Bowtie, using around 2.3GB for a 3GB genome, like the

human one.

Compared with other similar alignment tools, according to [70], BWA is

faster than other similar sequence alignment tools like Maq [8], SOAP2 [72] and

Bowtie [65], aligning more sequences and achieving a higher confidence rate.
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Figure 2.3: Bowtie: Inexact matching diagram
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2.4 3D-Stacked Memory Architectures

In the last years, manufacturers have developed some commercial devices imple-

menting stacked memory in order to improve performance and memory band-

width of computing systems. There exist two architectures specially important

in this field: High Bandwidth Memory (HBM) [4] and Hybrid Memory Cube

(HMC) [81].

The first of them, HBM, has been developed by Samsung, AMD and SK

Hynix. It is a high-performance RAM interface for 3D-Stacked DRAM. It has

already been used in several commercial products, like the Intel Xeon Phi KNL

[105] and several GPUs manufactured by AMD and Nvidia. More recently, in

2016, a new version of HBM (HBM2) specification has been released with higher

memory speed and bandwidth.

On the other hand, HMC is another high performance RAM interface for

TSVs (through-silicon vias)-based stacked DRAM memory, developed by the Hy-

brid Memory Cube Consortium, leaded by Micron. HMC has not been included

in almost any commercial system, except for some Micron development boards.

However, in the scientific community, it has been widely studied and used as

basis for different Processing-In-Memory architectures (see section 2.6.1). It is

able to perform simple memory operations inside the memory module thanks to

the logic layer it includes.

2.5 Intel Xeon Phi Knights Landing

2.5.1 Knights Landing Architecture

Knights Landing (KNL) is the new architecture released for the Intel Xeon Phi

x200 processors. It introduces novel features with respect to previous Xeon Phi

coprocessors implementing Knights Corner architecture (KNC). Some of these

new features are described below.

2.5.1.1 AVX-512 Instruction Set

KNL is the first architecture that includes partial support of the new vector

instruction set AVX-512 [116]. This vector extension doubles the vector width

with respect to the previous 256-bit AVX2.
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The KNL architecture has a theoretical peak performance of 6 TFLOPS in

single precision, which is triple than that of the previous Xeon Phi. This im-

provement is due to the doubling of vector processing units per core (two vs.

one) and to the 50% frequency increase (1.5 GHz vs. 1 GHz) with respect to the

previous KNC generation.

The Intel AVX-512 is composed of 9 subsets of instructions. However, only 4

are supported by KNL: AVX512-F, AVX512-CD, AVX512-ER and AVX512-PF.

2.5.1.2 KNL HBM Memory

The new Intel Xeon Phi KNL processors include on-package high-bandwidth

memory (HBM) based on MCDRAM. KNL HBM is capable to deliver much

higher bandwidth rates than DDR4 SDRAM. It provides up to 400 GB/s against

the 90 GB/s provided by a 6-channel DDR4 SDRAM, as shown in Figure 2.4

which shows the results after running the STREAM benchmark [80] on a KNL

system (see 3.3 for more details on KNL architecture).
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Figure 2.4: STREAM Benchmark results

HBM in KNL processors can be configured in three modes: flat, cache and

hybrid [10]:
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1. Flat mode: the whole HBM is used as addressable memory. The code

requires modifications to take advantage of this mode, for instance, specific

system calls are needed to dynamically allocate and release HBM memory.

2. Cache mode: all the HBM is used as a new level of cache. This mode

requires no additional work on the code to run, but its performance may

be lower than that of optimized flat mode.

3. Hybrid mode: one part of the HBM is used as cache and other as ad-

dressable memory. It has the benefits of both previous modes, but smaller

available sizes for the flat and cache partitions.

In the experiments carried out in this thesis, we are using the flat mode. This

configuration allows us to allocate the critical data structures in the HBM memory

explicitly.

2.5.1.3 Clustering Modes

Each of the KNL cores has a private L1 cache. The L2 cache is divided into

1 MB slices that are symmetrically shared between two cores. Tiles comprising

two cores and a L2 slice are connected via a 2D-mesh.

To maintain cache coherency, KNL uses a distributed tag directory organised

as several tag directories which identify the state and the location of the L2 cache

lines.

The KNL architecture supports three clustering modes that provide different

levels of affinity between tiles, tag directories, and memory controllers [109]:

1. All-To-All: memory addresses are uniformly distributed across all tag di-

rectories.

2. Quadrant/Hemisphere: the processor tiles are divided into four or two

parts, mapping all the memory addresses to local directories.

3. SNC-4/SNC-2: the chip is partitioned into four quadrants or two hemi-

spheres as independent NUMA nodes.

The All-To-All mode is typically worse than Quadrant/ Hemisphere for al-

most any application. This mode is only recommended for special and specific

applications. The SNC modes add some complexity to the code because the pro-

grammer must select which memory node will the data be stored in. Besides,
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we performed several tests and observed that the local latency and bandwidth

measures do not show a significant improvement over the Quadrant/Hemisphere

modes.

Therefore, in order to improve the tag directory locality without increasing

the code complexity and without deteriorating the remote access latency and

bandwidth, we use the Quadrant clustering mode for our implementations, as we

will see in chapter 3.

2.6 PIM Architectures

Recently, new computer architectures and techniques are appearing to try to

overcome the previously mentioned memory-wall. The most promising ones are

called Processing in Memory (PIM) and Near-Data Processing (NDP). Both con-

cepts focus on reducing the amount of time and power used in memory accesses

in typical processor-centric systems by placing the data closer to the computing

units (together in the case of PIM), making them more data-centric.

PIM and NDP have a relevant impact on memory-intensive applications, spe-

cially those applications accomplishing some of the following requirements:

• Low arithmetic intensity, meaning that it requires low computing power for

each memory access.

• Highly parallelizable, because usually is more efficient to include more small

cores than increase CPU frequency rate.

• Not very dependant on deep cache hierarchies, for example, applications

with random memory access patterns.

Both PIM and NDP usually rely on new technologies, specially modern chip

manufacturing techniques and Through-Silicon Vias (or TSVs). The former make

possible reduce both the power consumption and area of the computing units and

the latter enable fast communication inside 3D-stacked memories.

Previous works show different implementations for this kind of architectures.

Some researches change minimally the classic memory chips in order to include

some computing units inside them, while others base their research on the Hybrid

Memory Cube (HMC)[81] or High Bandwidth Memory (HBM) [4], two different

3D-stacked memory technologies. In the case of HMC, the specification even

includes a lightweight logic layer able to perform simple memory operations.
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Figure 2.5: PIM Architecture diagram.

Finally, some implementations design entire new architectures. A typical PIM

configuration is shown in Figure 2.5.

Concerning to their goal, there are two separated types of PIM architectures.

On one hand, some approaches use general purpose processors inside the memory

units. These kind of processors can be used for almost any application which

requires an intensive use of memory; however, they can be power-hungry and

the area used by them is relatively high. On the other hand, some architectures

include specific purpose computing units, much more efficient but just useful for

applications using a specific operation.

Nevertheless, PIM architectures have some relevant challenges to solve. Pack-

ing memory and computing units in the same package while keeping the power

usage and temperature relatively low is one of the main challenges for these ap-

proaches. However, even more important can be the challenges derived from

creating a completely new architecture which needs to be adopted by industry in

the next years. This includes, for example, the development of a hardware stan-

dard being able to use PIM on real systems and a software standard to efficiently

program and control PIM architectures.

2.6.1 Previous Work in PIM Architectures

A significant amount of works around this topic has appeared during the last

years. Most of them, based on the Micron HMC [81] architecture, expanding

or completely reworking the logical layer. For example, some works based on

HMC are: [6] and [5], oriented to optimize Google PageRank and parallel graph

processing, respectively; [19], analyzing the performance of Google workloads; [84]

and [119], optimizing graph processing applications; [47], performing an analysis
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of MapReduce workloads on HMC; [29], presenting a Near-Memory-Processing

accelerator for basic data analytic operators. The work [39] includes general near-

data processors in the logic layer and analyzes their performance for common

applications like MapReduce, PageRank and neural networks. The papers [40]

and [59], are focused on neural-network acceleration; the paper [60], with some

common points with our work, improves bioinformatics applications performance

through PIM; other example is [55], which analyzes density and performance of

HMC and [20] that proposes a cache coherence protocol for near-data accelerators.

Furthermore, some works are oriented to use different architectures, like [50],

working with NDP on GPUs, or [117], mixing CPUs and GPUs close to the

data; others such as [30] introduces computational RAM and both [31] and [11],

implement these techniques with commodity DRAM modules. Other example is

[48] which introduces a new architecture called DIVA.

2.7 Simulators

Building real systems for testing and verification implies huge costs, completely

unfeasible for research purposes. Due to that, computer architects need reliable

simulation and modeling techniques in order to analyze different design options.

As described in [7], there are several ways to classify computer architecture

simulators:

• Functional vs. Timing. Functional simulators do not model microar-

chitectural details, simulating just the functionality of the target. Instead,

timing simulators keep track of all clock cycles on a simulated processor dur-

ing a specific application execution. Other simulators, like ZSim [97], use a

emulation-based approach, invoking both functional and timing models.

• Application-Level vs Full-System. Application-Level simulators are

able to run only target applications without the operating system (OS)

behind it, while Full-System simulators can run the entire target OS. ZSim

is an example of Application-Level simulator, whereas gem5 [14] can be

executed both in Full-System and Application-Level modes.

• Trace-Driven vs Execution-Driven. Depending on whether they simu-

late directly the target machine o they rely on trace files from real hardware.

Two of the most used computer architecture simulators in recent research are

gem5 [14] and Zsim [97]. All simulations and experiments performed in chapter 4
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have been conducted using Zsim and the ones performed in chapter 5 have been

conducted using a modified version of gem5 (gem5-X [90]). For the memory

model, we have used both Zsim and Ramulator [61].

2.7.1 Gem5

Gem5 [14] is a complete simulation infrastructure. It appeared from the union

of the best aspects of M5 and GEMS simulators. M5 provides a highly config-

urable simulation framework, with several ISAs and diverse CPU models, while

GEMS provides a detailed flexible memory system, with support for multiple

cache coherence protocols.

On the CPU side, gem5 is able to simulate most commercial ISAs (ARM, x86,

MIPS, Power, SPARC and ALPHA), while on the memory side, the classic mode

provides a fast and easily configurable memory system and the Ruby model [96],

a memory system included in gem5 which provides a flexible infrastructure for

cache coherence experimentation.

One of the most relevant advantages of gem5 is the availability of two modes

of execution: System-call emulation mode, avoiding the need to model devices

and the operating system; and Full-sytem, able to execute both user-level and

kernel level instructions and including operative system and devices.

Gem5 simulator has been greatly extended and improved over the last years,

becoming one the most used hardware simulators, and a very reliable tool for

hardware architects.

2.7.2 ZSim

ZSim [97] is an architectural simulator able to simulate thousand-core sytems

much faster than typical simulators (around 100-1000x). This is possible thanks

to the application of several simulation techniques:

• Fast sequential simulation using dynamic binary translation: ZSim

uses instrumentation with Pin [75] to perform dynamic binary translation

(DBT), eliminating the need for functional modeling of x86 and placing

most of the work on the instrumentation phase.

• Scalable and sccurate parallel simulation: it uses parallel simulation

for modeling multi-core chips, using an event-driven parallelization tech-

nique to improve accuracy.
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This simulator is also focused on flexibility and usability, being able to support

two main types of core models:

• Simple core: Small core with IPC=1 for all but load/store instructions.

• OoO core: Out of order modern cores with much more functionality

present in real-life processors, as branch predictor, complex instruction

fetching, etc.

2.7.3 Ramulator

Ramulator [61] is a fast and cycle-accurate simulation tool for current and future

DRAM systems. It is able to accurately provide models for a variety of different

memory standards, as, DDR3, DDR4, LPDDR, GDDR5, HBM, SALP, HMC,

etc.

It can be used in two different ways:

• Integrated: with an architecture simulator, like gem5 or ZSim.

• Standalone: being fed with a memory trace or an instruction trace.

In chapter 4, we use Ramulator to model the memory system. Ramulator is

more accurate and flexible than ZSim integrated memory model.

2.8 Roofline Model

The Roofline model [95, 110] is a method that provides the upper bound of

performance for an application running in a specific system, generally a multi-

core, many-core or accelerator processor architecture.

This model is very useful to provide insights to programmers and architects in

order to improve both parallel software and hardware when working on a specific

application.

With the memory bandwidth being a constraining resource, a model able to

relate processor performance to memory bandwidth becomes really important.

The Roofline model shows the main constraining resources for each implemen-

tation and computing hardware, helping us to change code or hardware to run

desired kernels optimally.
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The Roofline model is based on the concept of operational intensity, defined as

the ratio of the number of operations (often defined as floating points operations

per second) to the amount of data traffic (usually in bytes).

The result of this model is a two-dimensional graph with lines showing both

the peak operational (for example, floating-point) performance (modeled as a

horizontal line) of the system and the peak memory bandwidth, caches and offchip

(modeled as a diagonal line starting on 0). Those two lines intersect at the point

of peak computational performance and peak memory bandwidth.
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The emerging of data-intensive workloads that we are experiencing in recent

times has led to a great interest in the design of techniques for their efficient

and scalable processing. From the storage viewpoint, performance is boosted

if the data is properly organized in main memory and the reference patterns

exploit data access locality. However, handling a big amount of data becomes a

hard challenge when unpredictable access patterns are present. The large and

deep cache hierarchies found in modern processors work inefficiently with such

workloads, and frequently cause a high demand of memory bandwidth.

To satisfy this high memory bandwidth requirements, industry started to ap-

ply 3D-stacked manufacturing technologies to DRAM. Such initiatives resulted in

DRAM interfaces like Hybrid Memory Cube (HMC) [56], by Micron Technology,

and High Bandwidth Memory (HBM) [4] from AMD and Hynix, more extensively

explained in chapter 2.

The availability of these memory technologies, however, may not be enough

to achieve high performance if the application presents a very low data access

locality and operational intensity. In this chapter we tackle this challenge by

properly organizing the application data structures, with the aim of minimizing

the memory bandwidth demand. The FM-index [33] is used as a case study

throughout the thesis. It allows efficient pattern searching in large reference texts.

As a result, it has been applied with great success to sequence alignment [71].

However, searching algorithms based on FM-index exhibit non-uniform memory

access patterns that cause frequent cache misses. In this chapter we present a

new organization of the FM-index data structure capable of drastically reducing

memory bandwidth requirements for the searching process. As a result, the

25
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operational intensity of the search algorithm increases significantly, offering the

opportunity to take better advantage of the available memory bandwidth.

This chapter analyzes the searching method that allows exact pattern match-

ing based on the FM-index data structure. The study focuses on bottlenecks

related to data access patterns and computational capabilities. The evaluation

assumes a batch or offline setting, where a bulk of queries is issued to be processed

as fast as possible.

The main contributions of this chapter can be summarized as follows:

• Searching algorithms built upon FM-index are analyzed, focusing on those

aspects related to computing costs and access to data, which have a great

impact on performance.

• Proposal of a new organization of the FM-index data structure layout and

codification denoted split bit-vector sampled FM-index (bvSFMk), which

reduces the required traffic between memory and processor cores for the

exact search process.

• An optimized search algorithm has been implemented based on the pro-

posed FM-index data structure layout and evaluated in last generation

processors such as Skylake, Broadwell and KNL. We will show that our

optimized algorithm exploits the ultra high-bandwidth memory modules

integrated in the KNL processor.

3.1 Analysis of FM-index variants

FM-index is a compressed data structure that allows fast searching queries [33].

The FM-index search algorithm has been presented in section 2.2.4 and is based

in two operations: Count and Locate, being the latter simpler than the first one

(see subsection 2.2.4.2).

This section presents a computational analysis, in terms of memory and per-

formance, of the Count operation for different versions of the FM-index proposed

in the literature using a table-based Occ structure.

The following subsections present the original (basic) FM-index [33], the over-

lapped version presented in [23], the FM-index with sampled Occ [33, 24] and the

version that searches for several symbols in each iteration [23]. Finally, subsec-

tion 3.1.4.1 analyzes the size of the data structures, the memory access pattern

and the potential performance of the considered versions of the algorithm. This
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analysis serves as the basis to justify and develop our proposal, presented in

section 3.2.

3.1.1 Basic FM-index

The basic FM-index assumes that Occ is a pre-computed full look-up table, that

is, it stores counts for each possible symbol and index. It can be used to quickly

locate the occurrences of a pattern (query) Q[1..p] in a text T [1..n], being p�
n. An exact matching algorithm using FM-index has been presented in [33].

Figure 3.1 illustrates the Count step of this algorithm, called backward search

(BS). At the end of the algorithm, the sp and ep variables contain the start and

the end indices in the suffix array of T that contains Q as a prefix, respectively.

Algorithm BS: Backward Search Based on FM-index

Input: FM-index of T (C & Occ), Q query, n=|T|, p=|Q|

Ouput: (sp,ep): Interval pointers of Q in T

     begin

1:  sp = C[Q[p]]
2:  ep = C[Q[p]+1]

3:  for i from p-1 to 1 step -1

4:     sp = LF(Q[i],sp)

5:     ep = LF(Q[i],ep)

6:  end for

7:  return (sp+1,ep)

     end

2  LFM-chains

Figure 3.1: Basic backward search algorithm based on FM-index

The main operation in the backward search algorithm is a Last-to-First Map-

ping (LFM), which is performed by calling the function LF (), defined as follows:

LF (Q[i], u) = C[Q[i]] +Occ[Q[i], u], (3.1)

where i is the index of the loop and u is either sp or ep.

Each iteration of the loop 3−6 in the BS algorithm accesses the Q string and

makes two calls to the LF () function, one with sp and the other with ep. Note

that in every loop iteration, sp (ep) is updated using the value computed in the

previous iteration. That constitutes two dependency chains of calls to LF (), one

for sp and the other for ep. We denote these chains LFM-chains (see Figure 3.1

and Figure 3.2).
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Figure 3.2: a LFM-chain, where u is either sp or ep

3.1.2 Sampled FM-index

The basic FM-index requires a large amount of memory space (see equation (2.1))

but the BS algorithm exhibits low computing cost. The sampled FM-index is a

variant of the basic version that introduces a trade-off between memory footprint

and computing cost [24, 33].

The storage requirements can be reduced by replacing the Occ structure with

a smaller one that we denote rOcc. The structure rOcc stores one column out

of every d columns of Occ, that is, rOcc[c, i] = Occ[c, 1+(i − 1)×d]. Figure 3.3

depicts this new sampled data structure.

In order to reconstruct the content of Occ, both rOcc and BWT are needed.

Let us see an example for d=5. Consider that we need to know the number of

occurrences of the symbol s up to the entry 8 of the BWT text, that is, the

value of Occ[s, 8]. The nearest entry in the row s of Occ previous to Occ[s, 8]

that is stored in rOcc corresponds to rOcc[s, 2], because b(8-1)/d+1c=2. So, we

can obtain Occ[s, 8] by adding the value rOcc[s, 2] (which is equal to Occ[s, 6])

and the number of occurrences of the symbol s in the sub-string of BWT from

position 7 to 8. This equivalence can be expressed in general as follows:

Occ[s, p] = Occ[s, q] + occur(s,BWT [(q + 1)..p])

= rOcc[s, b(p− 1)/d+ 1c] + occur(s,BWT [(q + 1)..p]),
(3.2)

being q=1+d×b(p− 1)/dc≤p, and occur(s,str) the number of occurrences of the

symbol s in the string str.

A way of improving data locality consists of placing next in memory columns

of rOcc and the blocks of BWT required to reconstruct Occ. This is accomplished

in two steps (see Figure 3.3). Firstly, rearranging the BWT text in an array of

substrings of d consecutive symbols taken from BWT , called buckets [33]. The

new data structure, named bBWT , is defined as bBWT [u, v]=BWT [d×(u−1)+v],

representing the symbol v of the bucket u. Secondly, combining both rOcc and

bBWT data structures into a new one denoted by SFM (Sampled FM-index).

SFM associates the column j from rOcc with the row j from bBWT . Specifically,

a SFM row refers to a rOcc column (σ counters) and the bBWT bucket required
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Figure 3.3: Basic and sampled FM-index data structures

to reconstruct the discarded Occ counters up to the next rOcc column.

A search algorithm based on the sampled FM-index follows a similar struc-

ture as the original backward search algorithm, but it requires to re-write the

calculation of a LFM (see expression (3.1)) as follows:

sLF (Q[i],m, d) = C[Q[i]] + rOcc[Q[i], b(m− 1)/d+ 1c]
+ occur(Q[i], bBWT [b(m− 1)/dc+ 1, [1..(m mod d)]]).

(3.3)

Note that each sampled LFM uses rOcc instead of Occ, which is d times

smaller, but at the cost of performing more computation. We have to mention

that the higher the value of d, the higher the computational cost.
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3.1.3 K-step Sampled FM-index

The k-step sampled FM-index searches k symbols in a query in a single step [23].

This version reduces computing cost and improves data locality of the sampled

version but increases slightly memory footprint.

To search k symbols in a single query, the original alphabet, Σ, is replaced by

the set of k-tuples whose elements come from Σ (permutations with repetition).

The new alphabet is denoted Σk and its size is σk. Hence, the number of counters

required for C and rOcc increases exponentially.

This change in the alphabet implies modifications in the sampled FM-index

data structure. C is transformed into Ck, which is indexed by k-tuples in Σk

(hence, its size is σk). rOcc becomes rOcck, whose first dimension is also indexed

by k-tuples (thus, its size is σk×d(n+1)/de). BWT is transformed into BWTk,

which is composed of k (n+1)-symbol strings, namely the last k columns of the

M matrix (see section 2.2.2). These k strings, however, can be encoded as only

one (n+1)-symbol string, where each symbol is now the concatenation of the k

symbols of each row from the matrix M .

Similarly to bBWT , BWTk, encoded as a single string of k-tuples of symbols,

can be blocked into buckets of size d. This new structure is denoted bBWTk, an

array of sub-strings composed by the concatenation of d k-tuples of symbols. Just

as SFM, the extended data structures, rOcck and bBWTk, are combined into a

new one denoted by SFMk (k-step Sampled FM-index). Figure 3.4 shows these

new data structures for k=2. Note that Figure 3.3 represents the data structures

for the one-step version (k=1).

The k-step version of the calculation of a LFM (denoted by sLFk()) is an

extension of the single-step version, sLF () (see expression (3.3)), but using the

extended Σk alphabet and the extended data structures: Ck, rOcck and bBWTk.

The backward search steps, LFk(), are computed like the one-step version,

but with an extended Xk-alphabet and with larger data structures. A single

sLFk() call resolves k LFMs, that is, it is equivalent to k calls to sLF (). A

call to sLFk() reads one piece of main memory containing the data to resolve k

LFMs, exploiting in this way data locality.

Moreover, the computational cost of sLFk() is slightly higher than that of

sLF (). However, the cost typically increases in a significantly lower rate than k

factor, making the cost per LFM much lower.
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3.1.4 Memory and Performance Analysis

3.1.4.1 Memory footprint

The most memory consuming data structure is Occ, for basic FM-index, and

SFMk, for the sampled variants. In the case of DNA, the full Occ matrix is a

big data structure (see equation (2.1)). The sampled versions, however, reduces

largely this size depending on the parameters d (sampling factor) and k (symbols

searched in a single step).

Specifically, the memory footprint for the SFMk data structure is:

Fp(SFMk) = d(n+ 1)/de × (σk ×R+ d× dlog2σke) bits, (3.4)

where R is the size of a rOcck entry.

Taking the human genome example (n=3 Gbases, σ=4) and d=64, the mem-

ory footprint for SFMk is 1.5 GBs, for k=1, and 4.5 GBs, for k=2, considering
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Figure 3.4: k-step FM-index (k=2)
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that a rOcc entry fits in 32 bits. These sizes are much lower than the footprint

of the full Occ structure (48 GBs).

Values of k greater than 2 require a large amount of memory due to the

exponential dependency of Fp(SFMk) on the number of steps (k). Taking the

same example as above but for k=4, the size of SFMk increases to 51 GBs,

greater than the original Occ structure. For this reason, in the rest of the thesis

we assume that k=2.

3.1.4.2 Memory access pattern

One of the main performance limitations of the BS algorithm is related to the

memory system. When executing this algorithm in an out-of-order processor,

two LFM-chains are issued for each backward search query, overlapping their

execution. Considering the basic FM-index, a LFM in each chain accesses both

an element from the C array and other from the Occ matrix. The C array is

very small (for DNA) and probably fits completely in the processor L1 cache.

This is not the case for the Occ matrix, which is a very large structure. Each of

these LFMs obtains the Occ entry address (sp or ep) using the address from the

previous iteration. Given how the BS algorithm works, the Occ memory access

pattern for a LFM-chain is not predictable and it is distributed along the whole

Occ matrix, showing neither spatial nor temporal locality. Hence, accesses to Occ

result in a high cache miss rate.

However, computations from both LFM-chains are partially correlated. When

a part of the query has already been performed, there are usually few matches in

the reference text, and the start and end pointers (sp and ep) may have similar

values. In that case, the pair of LFMs executed in a loop iteration likely access two

Occ entries that are stored in the same cache block. We have measured the ratio

of these cache block correlations for query lengths of 200 and 400 symbols and

different text sizes, assuming 64-byte cache blocks, and the results are depicted

in Figure 3.5. From the figure, it can be noted a high degree of cache block

correlation between the two LF () calls within the same loop iteration.

To summarize, each pair of LFMs in a loop iteration reads two different cache

blocks from main memory at the beginning of a query, but they are likely to

access only one cache block when the query moves forward. Let α denote the

average number of cache blocks read from main memory by each LFM pair in

the same loop iteration, that is,

α = 1 + (1− r), (3.5)
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Figure 3.5: Fraction of LF (c, ep) calls that access the same cache block as com-

panion LF (c, sp) calls for different text and query sizes of 200 and 400 symbols

being r the probability of sp and ep referring data from the same cache block

(see Figure 3.5). The value of α depends on factors such as the index size and

the query length.

As an example, taking the values from Figure 3.5, an average 200-symbol

query in a 3G-base text would start with 69 miss-miss pairs (0.343×200) followed

by 131 miss-hit pairs (0.657 × 200), resulting in a small cache hit ratio (0.33 ≈
0.657/2) and a α = 1.343 (r = 0.657).

For the sampled FM-index variants, a LFM reads one rOcck entry and a

sub-string from bBWTk (see expression (3.3) for k=1), both belonging to the

same SFMk row. In order to minimize the number of cache blocks read from

main memory, the SFMk row has to be properly aligned to cross the minimum

number of cache block boundaries. As an example, the size of a complete SFM

row would be 24 bytes for d = 32, X = 4 and 32 bits (see equation (3.6)) for rOcc

entries, which implies that some SFM rows would cross a cache block boundary

(considering 64-byte cache blocks).

Fp(SFMrow) = σ × Fp(rOccentry) + d× dlog2Xe bits. (3.6)

Therefore, either d has a suitable value or the SFMk row has to be padded.

Equation (3.5) has to be adapted for the sampled FM-index versions because

d and k appear as new parameters. In particular, the average number of cache

blocks read from main memory for each query step (performing 2k LFMs) is:

αdk = ∆dk × (1 + (1− rdk)), (3.7)
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where ∆dk is the average number of accessed cache blocks for a pointer access

(either sp or a ep), and rdk is the probability that both sp and ep refer to elements

stored in the same SFMk row.

This parameter takes into account the case in which a SFMk row occupies

several cache blocks. In such case, rdk is calculated assuming that for both sp

and ep, either all blocks have been accessed or none of them. ∆dk corrects αdk

for the case that only some of the cache blocks are accessed.

Table 3.1 shows the footprint of Occ and α for the basic FM-index (first row

in table), as well as the footprint of SFMk and αdk for the sampled versions,

using different values of k and d, and 64-byte cache blocks. The parameters r

and rdk were obtained experimentally searching 20M sequences of DNA strings

with an average length of 200 symbols in a full human genome reference (σ=4 and

n=3G). The parameter ∆dk was calculated assuming random accesses to rOcck.

Note that, for k=1 and d=32, the SFMk row size is 24 bytes (see equation (3.6)),

which is padded with 8 extra bytes in order to store two complete rows in a

single cache block (similar situation occurs when k=2 and d=16). It is worth

noting that the huge memory footprint of Occ for the basic version may result in

frequent TLB misses for most of the modern processors.

Our design goal is to reduce αdk for a given k value. On the one hand, ∆dk

increases with growing values of d, since the SFMk row size increases. On the

other hand, the greater the value of d, the higher the probability rdk. For k=1

and k=2, this trade-off results in a minimum value of αdk with d=192 and d=128,

respectively. For 64-byte blocks, these are the sampling values that minimize the

average number of cache blocks read from main memory for each query step.

Table 3.1: Basic and sampled FM-index properties (B (GB) stands for bytes

(Giga bytes), CB for cache blocks and P for padding)

Basic Occ column size Occ size α SI
r (CB) (B) (GB) (CB) (LFMs/B)

0.657 1 16 48 1.34 0.0232

Sampled SFMk row size SFMk size αdk SIdk
k d ∆dk rdk (CB) (B) (GB) (CB) (LFMs/B)

1 32 1 0.916 1 24+8P 3 1.08 0.0288
1 192 1 0.934 1 64 1 1.07 0.0293
1 448 1.57 0.943 2 128 0.857 1.66 0.0188
1 704 2.09 0.947 3 192 0.818 2.02 0.0142
2 16 2 0.860 2 72+56P 13.5 2.28 0.0274
2 128 2 0.924 2 128 3 2.15 0.0290
2 256 2.5 0.932 3 192 2.25 2.67 0.0234
2 384 3 0.936 4 256 2 3.19 0.0196
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Lower d values do not exploit sp and ep locality. For higher values, the SFMk

size increment (in terms of cache blocks) outweighs the effect of pointers locality.

The low locality found in the memory access pattern and the huge size of

Occ demand other requirements related to the memory hierarchy to achieve high

performance: (i) Occ must be completely stored in main memory in order to

avoid any page fault (e.g., at least 48 GBytes of main memory is required in the

case of DNA), and (ii) the on-chip TLB hardware must be able to map all the

memory required by Occ in order to avoid costly TLB misses.

3.1.4.3 Search intensity

The arithmetic intensity is the ratio of the number of operations (work) to the

amount of data traffic (in bytes) [110]. In the case of the FM-index backward

search, we use the number of LFMs performed per transferred byte to measure

this ratio. Consequently, we name this metric search intensity (SI).

For the basic FM-index, a LFM pair needs to retrieve, in average, α cache

blocks from main memory. Hence, the SI of the BS algorithm for a B-byte cache

block is:

SI =
2

α×B
LFMs/byte. (3.8)

For the sampled versions, search intensity is calculated in a similar way, but

replacing α with αdk and taking into account that 2k LFMs are searched per

query step, that is:

SIdk =
2× k

αdk ×B
LFMs/byte. (3.9)

Table 3.1 shows the search intensity for the basic and sampled versions of

FM-index. As it can be seen, search intensity (SI) is maximized for the pairs

(k=1,d=192) and (k=2,d=128), obtaining similar values (0.0293 and 0.0290) and

slightly better than that for the basic version (0.0232). However, SFMk occupies

three times more memory (3 GB vs. 1 GB) for the pair (k=2,d=128) than for

the pair (k=1,d=192).

The impact of searching k symbols in a query step on search intensity is

compensated by the increase in the average number of blocks read from memory

(αdk).

For example, for k=2 and d=128, the matching algorithm performs 4 LFMs

in a query step (two sLFk=2()) instead of the 2 LFMs performed with k=1 and
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Figure 3.6: Backward search timing model, where Lx represents latencies for the

different phases.

d=192. However, each step loads from memory an average of 2.15 cache blocks

instead of 1.07, leaving the search intensity almost unchanged.

Taking a previous example with a 200-symbol query in a 3G-base text and 64-byte

cache blocks, the obtained search intensity, SI, is 0.0232 LFMs/byte.

3.1.4.4 Throughput

Latency. Considering the basic FM-index, the execution of the pair of LFMs

issued in a iteration of a search query can be modeled with two logical phases

(see Figure 3.6). The first phase, MEM, corresponds to the memory operations

associated to a LFM, which is mainly due to the access to Occ. The second

phase, OP, corresponds to the computing operations of a LFM. Basically, this

phase comprises the processing of three memory and one add instructions.

In an out-of-order processor with a non-blocking cache, the access to Occ

with ep can be initiated while the cache is still servicing the access to Occ with

sp in the same iteration (see Figure 3.6). However, the next access to Occ must

wait to finish the execution of the corresponding LFM of the previous iteration

(due to the data dependence in the LFM-chain). As the MEM phase requires

typically hundreds of cycles (Lmem), while the OP phase lasts few cycles (Lop),

the processor is idle most of the time (idle time in Figure 3.6).

Assuming that a single hardware thread per core is performing a complete

query, the throughput is:



3.1. Analysis of FM-index variants 37

ThLcore =
2

Liter
≈ 2

LLFM
≈ 2

Lmem
LFMs/s, (3.10)

where Liter is the latency of the iteration (see Figure 3.6), and LLFM is the la-

tency of a complete computation of a LFM.

Bandwidth. Equation (3.10) determines an upper bound of single-thread through-

put in terms of latencies. Memory bandwidth, on the other hand, also limits the

maximum achievable throughput. Given the search intensity (SI), the throughput

of a core (single thread) can be calculated as:

ThBW
core =

ThBW
system

Ncores
=
SI ×BWsystem

Ncores
LFMs/s, (3.11)

being ThBW
system the throughput of the complete system, Ncores the number of

cores executing independent queries in parallel, and BWsystem the main memory

bandwidth for the complete system.

Sampled versions.

With the sampled FM-index, the throughput upper bounds determined by

query latencies and memory bandwidth are calculated by equations (3.10) and (3.11),

respectively, but replacing SI with SIdk.

Regarding ThLcore, the LFM latency (LLFM ) increases compared with the

basic version because of the larger instruction count in the computing phase (OP).

Hence, the maximum throughput per core is lower in the sampled versions.

Regarding ThBW
core, throughput bound is maximum for k and d values that

maximize SIdk (see Table 3.1).

3.1.5 Optimizing Throughput: Overlapped FM-index

The basic and sampled FM-index variants have different characteristics in terms

of memory footprint and data locality exploitation. However, their impact on

throughput is much less important as the search intensity remains almost un-

changed (see Table 3.1).

The exact matching algorithm (BS algorithm) is typically query latency bound,

since many cycles are lost waiting for data (idle time in Figure 3.6), and as a
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Algorithm OBS: Query-Overlapped Backward Search

Input: FM-index of T text (C & Occ), Q[] array of queries

Input: n:|T[]|, Nq:|Q[]|, p:|Q[k]{}|, k=1...Nq

Ouput: (sp[k],ep[k]): Interval array of pointers of Q[k] in T

       begin

1:    sp[k] = C[Q[k]{p}], k=1...Nq

2:    ep[k] = C[Q[k]{p}+1], k=1...Nq

3:    for i from p-1 to 1 step -1

4:       for k from 1 to Nq step 1

5:          sp[k] = LF(Q[k]{i},sp[k])

6:          ep[k] = LF(Q[k]{i},ep[k])

7:          prefetch(Occ[Q[k]{i},sp[k]])

8:          prefecth(Occ[Q[k]{i},ep[k]])

9:       end for

10:  end for

11:  return (sp[k]+1,ep[k]), k=1...Nq

       end

2Nq  LFM-chains

Figure 3.7: Backward match algorithm overlapping Nq queries

consequence, wasting part of the available memory bandwidth. However, the

memory latency responsible of the idle time can be hidden by issuing a given

number of different independent queries, that is, by overlapping the memory

accesses of several queries (batch or offline processing). This way, the through-

put upper limit imposed by query latencies is increased. The high number of

queries which are usually involved in solving genome mapping problems makes

this approach feasible.

The resulting algorithm that we have denoted as Overlapped Backward Search

(OBS) is shown in Figure 3.7 for the basic FM-index. The OBS algorithm ex-

ecutes a total of 2Nq LFM-chains for each iteration of the outer loop 3−9, cor-

responding to an array of Nq different queries that are searched concurrently.

Note that after computing the two LFMs required for a given query, two prefetch

operations are issued to retrieve from memory the two Occ entries needed for

computing the next two LFMs of the same query. The latencies of these memory

reads are hidden by computing LFMs from other queries (see Figure 3.8). By

overlapping independent queries, the processor should be busy most of the time.

Assuming a single hardware thread per core, the minimum number of LFMs

that must be overlapped in order to nullify the idle time is Liter/L
′
op, where L′

op

is the latency of the fraction of the OP phase that is not overlapped with the

same phase of other LFMs (see Figure 3.8). Therefore, in order to reach such

situation, Nq must take a value such that 2×Nq=Liter/L
′
op. We calculate L′

op for

several implementations of the algorithm and for several processors in section 3.3.
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Figure 3.8: Backward search timing model with Nq overlapped queries

Using the above expression, the maximum throughput obtained by a core

with the OBS algorithm is:

ThCcore =
2×Nq

Liter
=

1

L′
op

LFMs/s. (3.12)

Current architectures support simultaneous multithreading (SMT) [108], a

technique that allows a single core to execute several interleaved independent

execution flows (hardware threads). In this situation, the Nq queries can be

distributed among the hardware threads of a core.

3.2 Split Bit-Vector Sampled FM-index

The sampled variants of FM-index have allowed to reduce memory footprint and

to improve data locality compared to the basic version. However, the impact

on search intensity is limited, as the increase in the number of LFMs per query

is somehow compensated by the increase in αdk, the average number of cache

blocks accessed (see equation (3.7)). For example, as shown in Table 3.1, for k=2

and d=128, the sampled matching algorithm solves two symbols (four LFMs)

in a single query, but it requires to load two cache blocks instead of one (basic
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Figure 3.9: FM-index data structures

Original SFMk (k=1) data structure (top) and new bvSFMk data structure

(bottom). The accessed data during the computation of a LFM is marked in

red (see expression (3.3)).

version), leaving the search intensity almost unchanged. According to equation

(3.11), the throughput limited by memory bandwidth is not improved.

In order to increase search intensity to improve bandwidth throughput, the

parameter αdk must be reduced. The upper part of Figure 3.9 shows a row of

the SFMk data structure, for k=1. All entries accessed in the computation of a

LFM are marked in red, according to expression (3.3). Note that only a single

entry in rOcc is accessed, so that if σ is large enough the substring accessed in

bBWT may be stored in a different cache block. This occurs, for example, in the

case of DNA (σ=4) and k=2. Since the alphabet size is 16 (σk), and each entry

in rOcc has a size of 4 bytes, a single rOcc2 column occupies a complete 64-byte

cache block (16 counters × 4 bytes/counter), forcing the whole SFMk entry to

occupy several cache blocks, as shown in Figure 3.10.

An approach to save cache space consists in reducing the size of the rOcc

entries. Ferragina et al. [33] propose a solution using a two-level structure based

on buckets and super-buckets. However, for big texts, the super-bucket data

would be too big to be stored on cache and would increase significantly the

amount of main memory traffic.

We propose to change the SFMk layout and data codification so that all data

needed to compute a LFM is stored in a minimum number of cache blocks.
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Figure 3.10: Sampled, k-Step and Bit-vector FM-Index cache mapping.

3.2.1 Our approach: Split Bit-Vector Sampled FM-index

We denote the new data structure by bvSFMk, called split bit-vector sampled

FM-index. Our solution comes from the observation that only one out of the σk

rOcck entries is read for each LFM computation (see upper part of Figure 3.9).

The bvSFMk structure is obtained from SFMk through two transformations:

1. Partition each row of SFMk into σk rows, where each of them consists of a

single rOcck entry combined with the complete associated bucket. Specifi-

cally, the row t of SFMk, that is, SFMk[t, ∗] ≡ rOcck[∗, t] | bBWTk[t] (a con-

catenation of the column t of rOcck and the bucket t), is transformed into σk

rows of bvSFMk, of the form, bvSFMk[(t-1)σk+i, ∗] ≡ rOcck[i, t] | bBWTk[t],

for i=1,...,σk.

2. Compression of each bucket using a bitmap where each symbol is repre-

sented by a single bit. This representation is as follows: given the row

bvSFMk[(t-1)σk+i, ∗] (1≤ i≤ σk), the corresponding bucket (bBWTk[t]) is

replaced by a bitmap of length d, where a symbol in the bucket is rep-

resented by a set bit (1) if it is equal to the one associated to the entry

rOcck[i, t], and by an unset bit (0) otherwise.

The lower part of Figure 3.9 shows, as an example, the σk rows of bvSFMk

for k=1. Note that now, all data required to calculate a LFM (in red) are placed

together in memory and in a compact way (As shown at the bottom part of

Figure 3.10), minimizing memory bandwidth consumption. The transformation

also allows the occur() function in expression (3.3) to be simplified. Now, it has

to count the number of set bits (1) in the accessed bucket, operation that can be

efficiently performed by the popcount instruction.
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Table 3.2: Split bit-vector k-step sampled FM-index parameters, for k = 2

d bvSFMk row size bvSFMk size αsk SIsk
(CB) (B) (GB) (CB) (LFMs/B)

32 1 8 12 1.108 0.0564
64 1 12+4P 12 1.088 0.0574
96 1 16 8 1.081 0.0578
224 1 32 6.86 1.069 0.0585
480 1 64 6.4 1.061 0.0589

3.2.2 Memory footprint of our approach

The new bvSFMk data structure has σk rows for each row of the original SFMk

structure, as shown in Figure 3.9. Therefore, the memory footprint of bvSFMk

is:

Fp(bvSFMk) = σk × d(n+ 1)/de × (R+ d) bits, (3.13)

where R is the size of the rOcck entry. Note that the row size does not depend

on the alphabet size (σk).

Table 3.2 shows the size of a bvSFMk row and of the complete structure for

the human genome for k=2 and different values of d. For all the selected d values,

a bvSFMk row fits in a cache block. For instance, with d=64, the bvSFM2 row

size would be 12 bytes, assuming 32-bit rOcck counters.

Compared to the corresponding SFMk values , the size of the whole data

structure increases. For instance, with d=64, the bvSFMk=2 and SFMk=2 foot-

prints are 12 GB and 4.5 GB, respectively. Current computing systems have

enough memory to allocate this up-sized bvSFMk=2 data structures.

Nevertheless, only high-end servers can allocate bvSFMk=3 footprints, and for

example, none of k=3 versions fits in the up to 16 GiB MCDRAM integrated on

Intel KNL processors.

3.2.3 Search Intensity and Throughput

To minimize memory traffic, a value must be chosen for d such that a bvSFMk

row fits in a single cache block. In addition, these rows must be cache-aligned in

order to avoid splitting a row between two consecutive cache blocks. That means

that the cache block size must be an integer multiple of the row size. Otherwise,

the rows must be padded accordingly.

Table 3.2 shows αdk and SIdk for different values of the sample distance d,
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assuming 64-byte cache blocks and k=2. Search intensity is calculated using

equation (3.9). These values have been obtained in the same way as those of

Table 3.1. Different from the SFMk=2 rows, which require two or more cache

blocks to be stored, the rows of bvSFMk=2 fit in a single cache block. As a result,

the value of αdk is lower for the bit-vector version, and consequently its search

intensity is about twice larger than that of SFMk. In addition, the sensitivity of

SIdk with d is minimum for bvSFM, as its row size does not depend on d for the

selected values.

The throughput upper bounds are calculated by equations (3.10) and (3.11).

The proposed split bit-vector version improves SIdk of the backward search al-

gorithm and, hence, increases the throughput upper bound given by memory

bandwidth.

In addition, as with the basic and sampled versions, it is feasible to combine

this data structure with the overlapping of independent queries (OBS algorithm).

Therefore, the backward search algorithm on bvSFMk that we propose is similar

to the OBS algorithm but implementing the count of set bits (1) when the oc-

cur() function is called during a LFM computation, as explained in section 3.2.

The resulting search algorithm also improves the throughput limited by query

latencies (see equation (3.12)).

3.3 Throughput Bounds Analysis

In this section, we assess the throughput bounds of the backward search algo-

rithms based on the analyzed versions of FM-index. In particular, we consider

the sampled versions with pairs:

• (k=1,d=32), denoted as k1d32-SFM,

• (k=1,d=192), denoted as k1d192-SFM,

• (k=2,d=16), denoted as k2d16-SFM,

• (k=2,d=128) denoted as k2d128-SFM,

and the split bit-vector version with pairs:

• (k=2,d=64), denoted as k2d64-bvSFM,

• (k=2,d=96), denoted as k2d96-bvSFM.
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Table 3.3: Features of processors used in the evaluation

Xeon E5-2630V4 Xeon Gold 5120 Xeon Phi 7210
(Broadwell) (Skylake) (KNL)

Cores 10× @ 2.2 GHz 14× @ 2.2 GHz 64× @ 1.3 GHz

IPC 4 4 2

HW Threads 2 2 4

Vector Unit AVX2 AVX-512 AVX-512

Memory - - 400 GB/s (MCDRAM)
Peak BW 68 GB/s (DDR4) 107 GB/s (DDR4) 95 GB/s (DDR4)

Memory - - 16 GiB (MCDRAM)
Size 256 GiB (DDR4) 48 GiB (DDR4) 192 GiB (DDR4)

Table 3.4: Instruction count and computation latency per sLFk() call

Broadwell Skylake KNL
Instr. L′

op L′
op L′

op

Algorithm count (cycles) (ns) (cycles) (ns) (cycles) (ns)

k1d32-SFM 33 8.25 3.8 8.25 3.8 16.5 12.7
k1d192-SFM 77.5 19.38 8.8 19.18 8.8 38.75 29.8
k2d16-SFM 37.5 9.38 4.3 9.38 4.3 18.75 14.4
k2d128-SFM 98.5 24.62 11.2 24.63 11.2 49.25 37.9
k2d64-bvSFM 23.5 5.88 2.7 5.88 2.7 11.75 9.0
k2d96-bvSFM 38 9.5 4.3 9.5 4.3 19 14.6

All versions use the query-overlapped technique (OBS) to maximize throughput.

(k,d) values have been selected so that a SFMk row occupies the minimum number

of cache blocks. k1d32-SFM, k2d16-SFM and k2d64-bvSFM have 64-bit buckets,

which matches the maximum data size of a 64-bit processor. We have not studied

the basic sequential algorithm (without task-parallel) because of its very low

throughput.

The assessment is carried out in three processor architectures from Intel whose

relevant features are given in Table 3.3.

3.3.1 Instruction count

Table 3.4 shows the average number of instructions in the OP phase (see Fig-

ure 3.6) of the calculation of a LFM for the different versions of the backward

search algorithm, as well as, the time spent by the processor to execute those in-

structions. We have analyzed optimized x86 machine codes. Note that both the

Broadwell and the Skylake processors work at 2.2 GHz and execute 4 instructions

per cycle, while the KNL processor works at 1.3 GHz and executes 2 instructions
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Table 3.5: Throughput limits imposed by query latencies and memory bandwidth

(in LFMs/s) for Broadwell and Skylake architectures. Underlined entries show

the minimum throughput

Broadwell Skylake

FM-index Computing Bandwidth Computing Bandwidth

version Core System Core System Core System Core System

Basic 36M 360M 105M 1.05G 36M 500M 117M 1.64G

Overl. FM 568M 5.68G 105M 1.05G 568M 7.95G 117M 1.64G

k1d32 267M 2.67G 126M 1.26G 267M 3.73G 140M 1.96G

k1d192 114M 1.14G 128M 1.28G 114M 1.59G 143M 2G

k2d16 469M 4.69G 128M 1.28G 469M 6.57G 133M 1.87G

k2d128 179M 1.79G 135M 1.35G 179M 2.50G 141M 1.98G

k2d64-bv 749M 7.49G 251M 2.51G 749M 10.49G 279M 3.91G

k2d96-bv 463M 4.63G 251M 2.52G 463M 6.48G 281M 3.94G

per cycle.

The Intel IACA tool [53] was used to analyze the hardware resource occu-

pation in Broadwell and Skylake processors, while a similar analysis was made

manually in KNL because the IACA tool does not support this architecture. In

all processors, the resource that limits most the computation of the LFMs is

the front-end unit, in charge of processing 2 (KNL) or 4 (Broadwell, Skylake)

instructions per cycle.

As expected, k1d32-SFM, k2d16-SFM and k2d64-bvSFM versions (those with

64-bit buckets) have low instruction counts because the operations in occur(s,str)

(see expression (3.2)) translate into a few processor instructions if the bucket size

is equal or smaller than the processor word (64 bits). Likewise, those versions

with larger d values have higher instruction counts because they have to loop

through d-symbol buckets.

3.3.2 Throughput Bounds

Tables 3.5 and 3.6 show the throughput upper bounds determined by query la-

tencies (processor computing capacity) and main memory bandwidth for all FM-

index versions. These values have been obtained through the equations (3.12)

for computing time and (3.11) for memory bandwidth, taking as BWsystem those

values shown in Figure A.3 from Appendix A.
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Table 3.6: Throughput limits imposed by query latencies and memory bandwidth

(in LFMs/s) for the KNL architecture. Underlined entries show the minimum

throughput

KNL

FM-index Computing Bandwidth

version Core System Core System

Basic 10M 640M 57M 3.64G

Overl. FM 168M 10.74G 57M 3.64G

k1d32-SFM 79M 5.04G 99M 6.33G

k1d192-SFM 34M 2.15G 101M 6.44G

k2d16-SFM 139M 8.87G 94M 6.02G

k2d128-SFM 53M 3.38G 100M 6.38G

k2d64-bvSFM 221M 14.16G 197M 12.61G

k2d96-bvSFM 137M 8.76G 198M 12.70G

As expected, the system throughput bounds imposed by memory bandwidth

are much higher in KNL than in Broadwell or Skylake. For instance, for k2d128-

SFM, the throughput bound in KNL is 6.38G LFMs/s while it is 1.35G LFMs/s

in Broadwell and 1.98G LFMs/s in Skylake. The reason is that, in KNL, the FM-

index structure is stored in its MCDRAM banks which provides a much higher

bandwidth than DDR4 DRAM. The basic version in KNL has, however, a lower

limit (3.64G LFMs/s) because the FM-index structure does not fit completely in

the MCDRAM memory.

KNL cores have a lower computing capacity than Broadwell/Skylake cores

(1.3GHz and 2 instructions per cycle versus 2.2GHz and 4 instructions per cycle)

but a much higher memory bandwidth. This fact results in more versions of

the backward search algorithm being compute bound for KNL than for Broad-

well/Skylake (in particular, basic FM, k1-32SFM, k1-192SFM, k2-128SFM and

k2-96bvSFM versions).

The split bit-vector version performs best, mainly due to its higher search

intensity compared to the other versions. Specifically, the memory bandwidth

throughput bound for bvSFM is around twice as large as that of the SFM versions.

In summary, the best result for Broadwell is 2.52G LFM/s and it is achieved

with the k2d96-bvSFM version, with a memory footprint of 8 GB. For Skylake,

the best result is 3.94G LFMs/s, obtained with the same version. Finally, for

KNL, this version is compute bound, achieving the best throughput with the

k2d64-bvSFM version (12.61G LFM/s), with a memory footprint of 12 GB. In
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general, the split bit-vector data structure strongly improves the throughput for

all processor architectures.

3.4 Experimental Evaluation

3.4.1 Experimental Setup and Methodology

The experimental evaluation was conducted on the three platforms already pre-

sented and whose specifications are shown in Table 3.3. More concretely the

evaluation was conducted on:

• A system with an Intel Xeon Phi 7210 processor (KNL), 16 GiB of MC-

DRAM and 192 GiB of DDR4 running Ubuntu 16.04.1 Linux.

• A system with an Intel Xeon Gold 5120 processor (Skylake) and 48 GiB of

DDR4 running CentOS Linux 7.

• And, a system with an Intel Xeon E5-2630v4 (Broadwell) and 256 GiB of

DDR4 running Ubuntu 16.04.

We used the Intel C Compiler (ICC version 17.0.4) with common flags, -O3

-qno-opt-prefetch, and architecture dependent flags, -xMIC-AVX512,

-xCORE-AVX512, and -xCORE-AVX2, for the KNL, Skylake and Broadwell systems,

respectively.

Thread-level parallelism has been exploited by using all the available threads

in all the physical cores. For the KNL system, all FM-index data structures

were placed in the MCDRAM, and it was configured in memory flat mode and in

quadrant clustering mode (see section 2.5). In addition, we used 1 GiB huge TLB

pages to avoid TLB misses. The overlapping factor, Nq, was set to 4 for KNL,

and to 20 for Broadwell and Skylake, being the minimum number of queries to

be overlapped to keep busy the processor for all the versions.

A set of 20M queries generated by the Mason simulation tool [49] was used

as input data. These queries (200 symbols in average) have been searched in the

human genome reference GRCh38 (3 gigabases). All experiments were conducted

after loading the sequences into memory.
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Figure 3.11: Throughput for different FM-index versions

3.4.2 Throughput

Figure 3.11 shows the throughput achieved by different FM-index versions. Each

bar is split into two parts. The colored part (bottom of the bar) shows the value

obtained experimentally (and shown in the figure) in each processor. The gray

part (top of the bar) shows the theoretical value achievable according to the

models presented in sections 3.1.4 and 3.3.

In general, the experimental values reasonably approximate the theoretical

ones. The differences are due to processor features not taken into account in

the models, specially, the penalty caused by branch miss-predictions. The actual

throughput is about 95% of the theoretical limit for the backward search algo-

rithms with 64-bit buckets, and it drops to around 80% for larger bucket sizes. In

these cases, the count of coincidences in a variable number of 64-bit pieces forces

to execute more branches, which also have unpredictable behaviour because they

are dependent on the input data.

Table 3.7 shows the branch predictor statistics when executing a query of

100,000 sequences with 200 symbols each on a text with 3G symbols (those exe-

cutions were carried out on several processors giving similar results).

The branch miss-prediction penalty of those versions with buckets larger than

64 bits adds to the substantial increase in the instruction count (see Table 3.4).

As a result, throughput for versions with large buckets (more than 64 bits) is
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Table 3.7: Branch predictor misses

FM-index version Total Misses % misses

k1-32SFM 80.1M 8.6M 10.77
k1-192SFM 215.9M 36.6M 16.96
k2-16SFM 71.4M 6.6M 9.23
k2-128SFM 158.7M 25.5M 16.05
k2-64bvSFM 13.4M 0.1M 0.41
k2-96bvSFM 52.2M 8.9M 17.05

lower than that of versions with shorter buckets.

Summarizing, from Figure 3.11 we can come to the conclusion that the back-

ward search algorithm based on the proposed split bit-vector data structure out-

performs by about 60% and 90% the best of previous implementations, executed

in Broadwell and Skylake processors, respectively. In KNL, our proposal outper-

forms by about 135% the best of previous solutions adapted to this processor.

In addition, the best throughput in KNL, obtained for k2d64-bvSFM version, is

about 6x and 3x that achieved by Broadwell and Skylake, respectively. This im-

provement is mainly due to the ultra high-bandwidth provided by the MCDRAM

memory.

3.4.3 Roofline Model

The roofline model [110, 28] is a simple and intuitive visual method that provides

performance upper bounds for an application running in a given architecture.

This model is based on the concept of arithmetic intensity. However, since

the backward search algorithm does not perform floating-point operations, the

search intensity is used instead.

Figs. 3.12, 3.13 and 3.14 show the roofline model of different FM-index back-

ward search algorithms on the three processor architectures. The model considers

the main memory peak bandwidth and the experimental results obtained when

performing random memory accesses (for this we run the RANDOM benchmark

described in appendix A) as the memory bandwidth bounds. This random ac-

cess bandwidth is, in fact, the hardware resource that really limits the algorithm

performance for the best FM-index implementation (k2d64-bvSFM) in all pro-

cessor architectures. This algorithm version is able to use up to 95% of the peak

bandwidth for the KNL processor (with vector extensions, AVX-512, extensively

used as intrinsics in the computation of a LFM) and almost all the available

bandwidth for the Broadwell and Skylake processors.
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Table 3.8: Match operation performance

Implementation Performance Index Size
(GLFM/s) (GB)

sdsl-lite library on Broadwell 0.122 1.25

sdsl-lite library on Skylake 0.147 1.25

sdsl-lite library on KNL 0.455 1.25

2-Step + AC on Intel Xeon E5-2650 CPU [22] 0.5 3

2-Step + AC on NVIDIA Kepler GTX Titan GPU [22] 3.8 3

NVBIO on Tesla P100* 2.7* 0.23*

*Test performed using a reduced 950 MiB reference file

3.4.4 Comparison with Other Implementations

Table 3.8 shows the performance of different FM-index implementations presented

in the literature when executing the input data queries described in 3.4.1 (except

when stated otherwise):

• sdsl-lite [42, 99] is a powerful and flexible library which implements several

succinct data structures. Succinct data structures focus on representing

an object in space close to the information-theoretic lower bound while

supporting operations of the original object efficiently. The results reported

in table 3.8 use Huffman shaped wavelet trees with no compression.
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• 2-steps with alternate counters (AC) performance shown in table 3.8 is

reported in [22]. They use the 2-steps FM-index version already analyzed in

this chapter and another variation called alternate counters. This variation

reduces the amount of counters to store, and thus, the whole footprint of the

data structure. However, this has two major disadvantages: i) increase in
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the computing power required; and ii) in a CPU, the amount of cache blocks

to bring from memory to caches increase significantly, reducing throughput.

• NVBIO [85] is a GPU-accelerated framework for sequence alignment. It

is a modular library developed by NVIDIA which uses CUDA to improve

the throughput of some bioinformatic workloads. We have run some exper-

iments using NVBIO on a NVIDIA Tesla Pascal P100, a modern GPU that

includes HBM2 high-bandwidth memory technology (results are shown in

table 3.8).

3.5 Related work

Many sequence alignment applications based on FM-index have emerged recently,

such as HISAT [58], Bowtie [65], BWA [69], [70] and SOAP [72], [76].

Several authors focus on improving the performance of the backward search

algorithm (FM-index) for GPUs, like Chacon et al. [22] and Chen et al. [26]. FM-

index is also included in the NVBIO [85] library, developed by Nvidia to speed

up bioinformatics using GPUs and CUDA technology.

The most relevant operation in the FM-index backward search algorithm is

the rank operation [54].This operation, together with the select one, has been

addressed in numerous papers which focus on optimizing both the memory foot-

print and the pattern search time [77]. Most of these papers are based on succinct

data structures [93], [43], [42] and wavelet trees [38], [44].

Unlike mentioned previous works, our work focuses on improving the pat-

tern search time for genomic data on CPU, specially those with many cores and

high bandwidth memory. Unlike CPUs, GPUs exploit fine-grained massive par-

allelism, but the performance drops when the control flow diverges or the data

access pattern is irregular. However, while improving pattern search time, we

increase memory footprint, getting close to other fast exact matching algorithms,

like suffix array binary search [78].

Even if these techniques can also be very fast, FM-index can be used for non-

exact matching. Several aligment tools are based on it and could be benefited

from the ideas and techniques described in this chapter.
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3.6 Conclusions

This chapter presents a new data layout organization of FM-index that boosts

throughput thanks to an increase in the search intensity. Basically, our optimized

data structure packs all relevant data needed in a query step within a single cache

block, minimizing the memory bandwidth demand.

We have experimentally evaluated the backward search algorithm based on

our proposed FM-index structure using three multi-core processors. Our proposal

outperforms by about 60%, 90% and 135% the best of previous implementations.

The best performance was obtained in the Intel Xeon Phi (KNL) architec-

ture, mainly because of the high peak random access memory bandwidth. Our

implementation is able to obtain a throughput of 12G LFM/s, being about 3x

faster than previous GPU implementations and about 4.4x faster than the GPU

version implemented in the NVIDIA NVBIO bioinformatics library executed on

a Tesla Pascal P100.





4
FM-index Exact Matching
Using Processing in
Memory

In previous chapter we have analyzed the behaviour of a memory intensive

application, genome sequence alignment using FM-index, which exhibits irregular

memory accesses. We have studied the behaviour and impact of both memory

bandwidth and memory latency on this kind of application in different processor

architectures. However, the issue of power consumption has not been addressed

yet.

Power consumption is a major problem for modern computing centers, both

for the energy consumed by the system itself, and for the intensive cooling so-

lutions most modern computing systems require. Memory systems consumption

is also very relevant for data intensive applications. This lead us to an interest-

ing opportunity to explore new memory architectures able to reduce both the

energy used per accessed byte and the total time the system is busy process-

ing a specific workload. Some new trending memory technologies, as Near-Data

Processing (NPD) and Processing-In-Memory (PIM), promise to address both

problems. They try to effectively improve the energy efficiency of HPC memory

systems.

As mentioned in chapter 3, applications with random and unpredictable mem-

ory accesses do not perform very well on traditional computing architectures, with

deep cache hierarchies of several levels.

Most of these applications does not take any advantage from cache systems

and hardware prefetching. Sometimes, they are even penalised by the latency

55



56 Chapter 4. FM-index Exact Matching Using Processing in Memory

increase introduced by the latter. This is mainly because those applications only

process little data from a cache block before accessing another block from remote

memory areas.

The recent proliferation of those workloads in several fields of HPC brings us

to the development and analysis of new computer architectures. Our work focuses

on improving the throughput and energy efficiency of low-computing (arithmetic

intensity), memory intensive applications presenting random memory access, with

special focus on our FM-index based application.

As it has been shown in chapter 3, FM-index is an example of this kind of

application. It exhibits a completely random and unpredictable access pattern

and requires low computing power per each accessed memory block, making it a

good candidate to be implemented on NDP/PIM architectures.

Our main contributions presented in this chapter can be summarized as fol-

lows:

• We propose three system architectures for evaluating random access appli-

cations. Those architectures are divided in two conventional DDR setups

and a PIM setup.

• We analyze the throughput of random access applications on several simu-

lated systems, comparing setups when the processing is performed near to

the data with typical computing systems.

• A study of the energy efficiency of all the different analyzed systems has

been conducted.

• The same evaluation has been carried out with the FM-index based exact

matching algorithm used as a case application.

For the evaluation of our proposals, we use a well-known hardware simulator

called ZSim [97] and an integrated power, area and timing modeling framework

called McPAT [73].

4.1 Hardware Design and Simulation

In this section we present the characteristics of the architectures we propose to

evaluate the performance of random access applications. Two of them are setups

based on DDR memory systems and one is a PIM architecture.
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Table 4.1: Hardware simulation setups summary

DDR Setup 1 DDR Setup 2 PIM Intel i7-8700

Cores 64 @ 2.4 GHz 36 @ 3.6 GHz 64 @ 1.5 GHz 6 @ 3.2-4.6GHz

Core type OoO OoO in-Order OoO

HW Threads 1 1 1 2

Architecture x86 x86 ARM-Like* x86

Memory channels 4 4 - 2

Memory Freq. 1600/2400 1600/2400 2500 2400
DDR3/DDR4 DDR3/DDR4 3D-stacked DDR4

Cache block 64B 64B 32/64B 64B

Technology 22 nm 22 nm 28 nm 14 nm

32K/32K 32K/32K 8K/8K 32K/32K
L1 Cache 3 cycles Latency 3 cycles Latency 3 cycles latency 8-way set
(L1D/L1I) associative

256K 256K 256K
L2 Cache 10 cycles Latency 10 cycles Latency - 4-way set

8-way set assoc. 8-way set assoc. associative.

16M Shared 16M Shared
30 cycles Latency 30 cycles Latency - 2M

L3 Cache 16-way set assoc. 16-way set assoc. - 16-way set
6 banks 6 banks associative
H3 Hash H3 Hash

*We simulate in-order cores with a similar performance to ARM cores.

The details of the three different computer architectures are shown in Ta-

ble 4.1. DDR Setup 1 and DDR Setup 2 are similar to modern systems and

include several Out-of-Order (OoO) cores (64 and 36 OoO cores respectively).

These architectures will be evaluated using both DDR3 and DDR4 memory tech-

nologies onward in this chapter. The third architecture that we propose is an

energy efficient and memory focused architecture with a 3D-stacked memory

module. This setup can be considered as PIM, as the computing cores (small

power-efficient cores) are allocated right under the 3D-stacked memory layers.

For the power-efficient small cores under 3D-stacked memory layers, we sim-

ulate the behaviour of ARM-like cores. The framework McPAT supports ARM

architectures. However, ZSim does not support either ARM ISA and architec-

tures. Therefore, with ZSim we have used x86 in-order cores (Zsim Simple in-

order model [97]) configured at low frequencies (defined in Figure 4.1), with a

performance comparable to commercial ARM-A35 [2] processors. On the memory

side, the 3D-stacked cube is simulated using the HMC memory model included

in Ramulator [103].

Typical modern architectures include several megabytes of cache memory

spread between two or three levels. As previously mentioned, applications heavily
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dependant on random memory access usually do not take advantage from typical

cache configurations. Therefore, for area and power consumption optimization,

we have heavily reduced the cache memories for the PIM setup. Specifically, we

have removed L2 and L3 caches and reduced L1 caches to 8K (for both data and

instruction caches), as 8K is enough for most random access applications while

allowing us to keep a very low area and power consumption (detailed in next

sections). Regarding the cache block size, we have considered both 64B and 32B

for PIM setup, rather than just the typical 64B block size. Smaller cache blocks

reduce the memory traffic between main memory and processor at the cost of

worsening throughput for applications with sequential memory accesses.

For comparison purposes, we have also considered a real commercial system

(Intel i7-8700 [52]). We have run experiments on both real i7-8700 and simulated

i7-8700 architecture in order to establish a baseline and compare the results

obtained from ZSim with those from the real machine. The details of this system

are shown in Table 4.1.

4.2 Area and Power Consumption Estimation

When developing new computer architectures, area and power consumption are

some of the most important factors to consider. Specially when we are working

with systems like PIM, with important constraints in terms of both area and

energy consumption.

In order to achieve an accurate power consumption and area of the cores of

the different architectures that we analyze, we have used two different methods:

1. Using McPAT, an integrated power, area and timing modeling framework.

2. Using the reported area and power consumption specifications of real pro-

cessors (which are similar to the simulated ones in the architectures that

we analyze) to estimate the area and power of the aforementioned architec-

tures.

Figure 4.1 shows all the estimated (in purple), simulated (in red) and reported

(in green) power consumption for both real systems and our simulated setups.

The grey top section of the bars shows the power consumption due to the memory

system.

For the real commercial Intel i7-8700 [52], we are simply considering the spec-

ifications reported by Intel which are around 65 W of power consumption.
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The details of the proposed architectures are elaborated in the next sections

as separate cases depending on the considered setup.

4.2.1 PIM Setup Case

According to McPAT, each small PIM core at 1500MHz has around 2 mm2 in

area and has a power consumption of approximately 0.5 W per core at 28 nm

technology, and 0.61 mm2 of area and 0.204 W consumption per core at 22 nm

technology (in red in Figure 4.1).

On the other hand, the cores included in our proposed PIM setup are very

similar to the smallest A35 cores shown by ARM, but at higher frequencies.

Considering this, we can estimate the area and consumed power based on the

ones of the real ARM processors. Power consumption reported by ARM per

core at 1 GHz frequency [35] is 90 mW (in green in Figure 4.1). Usually, power

consumption is not linear with frequency. We consider reasonable an increase of

2 times the energy for each 1.5 times the frequency. Therefore, we can assume

around 0.4 mm2 in area per each small core and a conservative estimation for

power consumption of 180 mW at 1.5GHz (in purple in Figure 4.1).

PI
M

 A
RM

-A
35

 
 64

@
1G

Hz
PI

M
 A

RM
-A

35
 

 64
@

1.5
GH

z
PI

M
 A

RM
 In

-O
rd

er
 

 64
@

1.5
GH

z
i7

-8
70

0
 12

@
3.2

GH
z

Xe
on

 G
ol

d 6
15

4 

 18
@

3G
Hz

Xe
on

 P
hi

 72
10

 

 64
@

1.3
GH

z
DD

R2
 x8

6 O
oO

 
 36

@
3.6

GH
z

DD
R2

 2x
 X

eo
n G

ol
d 

 36
@

3.6
GH

z
DD

R1
 M

od
. X

eo
n P

hi
 

 64
@

2.4
GH

z
DD

R1
 x8

6 O
oO

 
 64

@
2.4

GH
z

Architecture

0

100

200

300

400

Po
w

er
 c

on
su

m
pt

io
n 

(W
)

5.76 23.17 24.71
65.0

200.0 215.0

387.36
412.0 410.0

462.68
Memory power consumption
Official TDP value
Estimation
McPAT estimation

Figure 4.1: Processor power consumption for each architecture



60 Chapter 4. FM-index Exact Matching Using Processing in Memory

All these figures of merit are the three first bars depicted in Figure 4.1 (note

that each architecture has 64 cores). As mentioned before, the grey top section

of the bars shows the power consumption due to the memory system. In this

case, 3D-stacked memory power consumption has been estimated using Micron

HMC power consumption calculator tool [82], giving a value of 11.65W.

4.2.2 DDR Setup Case

DDR setups with high performance cores do not have heavy area limitations.

Therefore, we are not performing an in-depth analysis of area for them, but we

do it for power consumption.

Estimations from McPAT for high performance cores give us a TDP (Thermal

Design Power) of 450.68 W for the DDR Setup 1 (64 OoO cores at 2.4GHz) and

375.36 W for DDR Setup 2 (36 cores at 3.6GHz) shown in red in Figure 4.1.

As mentioned before, we also consider real systems power consumption. Some

commercial processors with an architecture similar to DDR setups are:

• Intel Xeon Phi 7210 [115] with 64 cores at 1.3 GHz-1.5 GHz similar to DDR

Setup 1.

• Intel Xeon Gold 6154 [114], with 36 cores at 3 GHz-3.7 GHz akin to the

DDR Setup 2.

Between DDR Setup 1 and Xeon Phi there is a significant frequency difference

(from around 1.4 GHz to 2.4 GHz), so we estimate that this setup should consume

around 370 W and 450 W. In Figure 4.1 we have represented in purple the mean

power consumption. We have to mention that in the case of Xeon Phi processor

the memory system power consumption is included in the power estimation of

the chip (hence the top section is not included in the bar).

In the case of DDR Setup 2 and a dual Xeon Gold processor, they should

be quite similar, so our DDR Setup 2 should have a TDP of around 400 W (in

purple in Figure 4.1).

Regarding to the power consumption of the memory system, DDR power

consumption has been roughly estimated around 3 W per memory module, con-

sidered a reasonable value for DDR4 DIMM modules. These values have been

added to the power estimations and represented (in grey) in Figure 4.1.

As mentioned earlier, we have included in the figure the reported power con-

sumption of real processors (in green), in this case, an Intel Xeon Phi 7210 and
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a Xeon Gold 6154.

4.3 Experimental Evaluation

We have evaluated the throughput of several benchmark and applications on the

proposed architectures. The benchmarks and applications are:

• STREAM benchmark: a well-known benchmark used to measure sustain-

able memory bandwidth [80].

• RANDOM benchmark: this is a benchmark that we have developed in

order to accurately measure the memory bandwidth when issuing random

memory access. More details can be found in Appendix A.

• Several configurations of FM-index exact matching applications.

4.3.1 Setup and Methodology

The evaluation was conducted on the three different simulated architectures de-

scribed in section 4.1 and a real machine (that was simulated as well). For

the simulation, we have used ZSim [97] git public version [120] together with

Ramulator-Pim public version [61, 103].

The public ZSim version has been modified to support direct communication

with Ramulator. This has been done imitating the way that ZSim communicates

with the DRAMSim2 memory simulator.

All experiments using PIM and DDR4 memory modules have been executed

using the combination of Ramulator memory model and ZSim core model, as

ZSim default memory model does not support DDR4 and HMC modules. Exper-

iments including DDR3 modules have been run using both Ramulator and ZSim

memory models for comparison purposes.

The platform where the experiments have been executed is a system including

two Intel Xeon Gold 6154 with 18 cores at 3 GHz each and 384 GB DDR4 memory

running Ubuntu 18.04.1. We used the GNU Compiler Collection (GCC), with

common flags and -O3 optimization, to compile the benchmarks and FM-index

applications.

In addition, the experiments have been conducted on a real system Intel i7-

8700[52] Coffee Lake processor with 6 cores (12 threads [110]) at 3.2 GHz each,
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Figure 4.2: STREAM [80] and RANDOM memory bandwidth results for several

architectures

able to reach 4.6 GHz using turbo-boost. It includes 64 GB of DDR4 memory and

runs Ubuntu 16.04.6. Applications and benchmarks have been compiled using

the GNU Compiler Collection with common flags and -O3 optimization.

Specific parameters of the experiments are:

• STREAM benchmark process an array size of 10,000,000. Reported values

are the maximum of all STREAM results.

• RANDOM benchmark generates 1024 MB data structure, with 3,000,000

random accesses.

• FM-index applications searches 500,000 sequences with around 200 bases

each in a reduced 1 GB genome.

All benchmarks and applications have been run on all the available threads

in each system. Experiments have been run at least three times and we have

reported the average value of them.
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4.3.2 Results of the Benchmarks

Figure 4.2 shows the maximum memory bandwidth obtained from both STREAM

and RANDOM benchmarks. Clearly, the performance for PIM setups is much

better, achieving between 2.7× and 3.4× higher throughput when compared with

i7-8700 architectures and around 1.4×-1.9× higher throughput for the 36 and 64

multicore systems.

We can also observe that RANDOM results are much closer to STREAM

results for PIM architectures, as these ones do not suffer of the higher latency

and deeper cache architectures of the typical DDR architectures.

Figures 4.3, 4.4 and 4.5 show different metric results from the RANDOM

benchmark for different arithmetic intensities. For each figure, top graph shows

the results when accessing a single block per step and bottom part shows the

results for accessing two consecutive blocks per step.

PIM architectures get better results for lower arithmetic intensities, but they

are worse than DDR architectures for high arithmetic intensities because of the

lower frequency and lower computing power of the in-order cores. This can be

specially appreciated in Figure 4.5, which shows the amount of integer operations

performed per second.

If we look at the results when we load two consecutive blocks, we can observe

that bandwidth results (Figures 4.3 and 4.4) improve for higher amount of oper-

ations, but the operations per second (Figure 4.5) decrease for the setups more

limited in memory. This can be easily explained because we are loading twice

the data for the same amount of operations.

Figure 4.4 shows that the PIM architecture with 32 bytes cache line reach

around half the memory bandwidth of the 64 bytes one. This sequential band-

width limitation does not affect any other benchmark because other applications

do not use more than 32 bytes from each block brought from main memory to

the processor.

For simulator validation, we can compare real and simulated i7-8700 setups.

Results are reasonably similar, with some small differences:

• Figures 4.3, 4.4 and 4.5 show that real i7-8700 achieves slightly worse band-

width for low arithmetic intensities and slightly better for higher ones.

• On the other hand, Figure 4.4 shows that the real system achieves slightly

better throughput for Stream benchmark, but slightly worse for Random

benchmark.
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Those small differences could be explained because of the differences between

real and simulated architectures imposed by simulation setup restrictions, like

the memory system frequency limitations and the absence of Intel Turbo-boost

technology.
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Figure 4.3: Benchmark memory bandwidth in memory blocks per second for

different arithmetic intensities. (*) Marked setups use Zsim memory model
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4.3.3 FM-index Results

We have chosen the FM-index based exact matching as a real application to

be evaluated with random memory access patterns. We have compared three

different versions of the algorithm: Basic FM-index [33] (k1d32), 2-Step FM-

index [23] (k2d16) and Bit-vector 2-step FM-index [57] (k2d64bv). The details

of these different versions can be found in chapter 3.

Figure 4.6 shows the throughput (in terms of Giga-LF operations per second)

for the different architectures and FM-index versions. PIM architectures achieve
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Figure 4.4: Benchmark memory bandwidth for different arithmetic intensities.

(*) Marked setups use Zsim memory model
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(*) Marked setups use Zsim memory model

around 2.7×-3.7× higher throughput than 12 cores setups and between 1.26×
and 1.87× more throughput than 36 and 64 cores setups with both DDR3 and

DDR4 memories. From the figure we can observe that DDR4 gets also around

25% more throughput than DDR3 memories. As expected, the split bit-vector

2-step version (k2d64bv) is able to perform around twice the amount of LFM

operations per second than other FM-index versions. Finally, let us note that

PIM architecture using 32 bytes cache lines gets almost the same performance as

the one using 64 bytes cache lines. This is easily explained because those versions

of FM-index does not use more than 32 bytes from each block.
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4.3.4 Roofline Model

As stated in section 2.8, the Roofline model defines arithmetic intensity as the

number of floating point operations per loaded byte from main memory. However,

since our application does not perform floating point operations, we consider any

kind of instruction instead of just floating point operations for our arithmetic

intensity.

Figures 4.7, 4.8, 4.9, and 4.10 show the roofline model for the intel i7-8700

system and for each simulated setup.

Horizontal line shows the computing limit for each architecture (both real and

simulated in the case of i7-7800 model). It has been measured with the RANDOM

benchmark, and a big amount of integer operations per each loaded block from

memory (4096 operations per block) in order to not be bounded by the memory

bandwidth. Diagonal lines show the bandwidth limit, both for sequential accesses

(measured with STREAM) and for random accesses (purple solid and dashed

lines respectively). As shown in previous sections, random accesses bandwidth

are always lower than sequential ones, being the differences almost non-existent

on PIM architectures.
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Roofline figures 4.7, 4.8, 4.9, and 4.10 show how our RANDOM benchmark

fits well to the roofline model, specially for the real i7-7800 setup. DDR Se-

tups get a better performance for high arithmetic intensities (up to almost 2×
instructions per second). On the other hand, the PIM setup has a much better

performance for low arithmetic intensity, and a higher memory bandwidth. This

can be appreciated on the bandwidth limits lines, much more close to the vertical

than the DDR ones.

i7-7800 shows some difference between real and simulated system, this can be

because of the higher turbo-boost processor frequency rate supported for the real

system, which can not be simulated on ZSim.

4.3.5 Power efficiency

Providing McPAT with the power consumption data presented in Section 4.2 and

the zsim output stats, we have obtained the efficiency for each setup measured

in operations performed per consumed joule. Figure 4.11 shows the efficiency for

both RANDOM benchmark and k2d64bv FM-index version.

We can observe a great improvement for the PIM architectures when com-
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pared with conventional DDR memory systems, being able to perform around 8×
more LF operations and random accesses than i7-8700 real system. We can ob-

serve, as well, that PIM architectures get even greater improvement than bigger

systems with more complex cores, using around 21× less energy per operation.

4.4 Related work

During last years, new memory technologies like Near-Data-Processing and spe-

cially Processing-In-Memory are gaining importance [41], in order to solve the

problems derived from the memory wall [113] and data-intensive applications.

Consequently, a significant amount of works around these topics has appeared

during the last years. Most of them, like ours, based on the Micron HMC[81]

architecture, expanding or completely reworking the logical layer. For example,

some works based on HMC are [6] and[5], oriented to optimize Google PageRank

and parallel graph processing respectively; [19], analyzing the performance of

google workloads; [84] and [119], optimizing graph processing applications; [47],

an analysis of MapReduce workloads on HMC; [29], presenting a Near-Memory-

Processing accelerator for basic data analytic operators. The work presented in
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architectures

[39], includes general near-data processors in the logic layer and analyzes their

performance for common applications like MapReduce, PageRank and Neural

Networks. Others, such as [40] and [59], are focused on Neural Networks acceler-

ation; and [60], with some common points with our work, improves bioinformatics

applications performance through PIM architectures; in [55], it is analyzed the

density and performance of HMC and [20], proposes a cache coherence protocol

for near-data accelerators.

Furthermore, some works are oriented to use different architectures, like [50],

working with Near-Data-Processing on GPUs; or [117], mixing CPUs and GPUs

close to the data; and [30], introducing Computational RAM; as well as [31] and

[11], implementing these techniques with commodity DRAM modules and [48],

introducing a new architecure called DIVA.

4.5 Conclusions

This chapter presents an analysis and research of several architecture with novel

memory architectures, specifically Processing-In-Memory and Near-Data-Processing,
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which improve the throughput of workloads using random memory access signif-

icantly.

We have developed new architectures, optimized for these type of workload

and compared them, using both real and simulated typical systems and architec-

tures.

Processing-In-Memory setups, using a 3D-stacked memory with power effi-

cient cores have been shown to achieve a much better performance and a much

lower energy consumption than conventional architectures with DDR-type mem-

ory technologies.

As explained in depth in section 4.3, our PIM setups achieve more than 3×
the throughput of RANDOM benchmark and FM-index algorithms and in some

cases, with an energy efficiency up to 40×, compared with systems using typical

DDR memory technologies and deep cache hierarchies.



5 Bowtie2 on Processing in
Memory Architectures

Our lives are increasingly reliant on new technologies, most of them based

on big data centres and huge high performance computing (HPC) nodes. This

kind of computing systems is used for a lot of different disciplines with a great

impact on our lives, from scientific ones (like particle physics, material sciences,

genomics, precision medicine, etc) to applications we use every day (like weather

forecast, global communications, entertainment services). However, this has also

a great impact on the global power consumption. In 2018, the global data center

energy demand was 198TWh, around 1% of the global energy demand [1].

With the recent and future development of exascale systems, power consump-

tion appears as one of the greatest challenges [12] for HPC systems, being con-

strained at 20MW [101]. Typically, HPC systems use float operations per second

(FLOPS) as performance measurement unit, however, this is not very representa-

tive for some workloads, more affected by the memory-processor communication

limits than by the raw computation power. Some examples of memory-bound

applications are pointer chasing [51], graph processing [102], and some bioinfor-

matics applications.

Next-Generation-Sequencing (or NGS) is a name used to refer to the new,

high performance methods and technologies used to sequencing both ADN and

ARN base pairs. It has a great impact in several fields, like genomics, cancer,

medical, food microbiology, precision medicine and drug discovery research [98,

17, 94, 118]. DNA sequence alignment is an example of relevant memory bounded

application. This application is usually based on full-text index, like FM-index,

which presents a random and unpredictable memory access pattern, similar to

some pointer chasing applications. These applications are great candidate for

73
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analysis and optimization focused in energy saving with low-power processors

and high bandwidth memory technologies.

In this chapter, we present architectural exploration for random memory ac-

cess applications, specifically using Bowtie2, a popular sequence alignment ap-

plication, as the case study, for energy efficient computation. Since these ap-

plications are memory bounded, we propose to use energy efficient ARMv8 64-

bit cores. In addition to the compute side we also propose to use 3D-stacked

high bandwidth memory (HBM2) [106] instead of traditional DDR memories like

DDR4. We compare the performance of ARM based system to that of Intel Xeon

Phi 7210 KNL processor [104], which has an integrated stacked 3D MCDRAM

on the package. The exploration is performed using gem5-X [90] which is an

extended and validated version of widely used gem5 architectural simulator [15]

with validation error of up to 4%.

The main contributions of this chapter are as follows:

• We get 69% performance and 71% energy benefit when using HBM2 instead

of DDR4.

• We demonstrate that using many ARMv8 in-order cores, results in 2x more

energy savings when compared to ARM out-of-order (OoO) cores.

• We demonstrate that scaling the number of cores and frequency results in

8x energy efficiency.

• We demonstrate that 16 ARM OoO cores outperform 32 threads running

on the Intel Xeon Phi KNL.

5.1 Related work

Most HPC infrastructures and data centers are based on typical x86 CPUs along

with GPUs, with some scarce exceptions like IBM POWER or ARM architec-

tures. Since it was released, Intel’s Xeon Phi KNL has been increasingly adopted

by the HPC community [104, 89], mainly due to its high parallelism, high scalar

and vector performance and the 3D-stacked MCDRAM memory, able to achieve

more than 400GB/s of peak memory bandwidth.

However, recent studies like [91, 92, 100, 67] have evaluated the use of energy-

efficient ARM cores in HPC domain. Some works, like [92, 100, 67, 87], state that

ARM based systems are more energy efficient than x86 based systems, but they

achieve a lower raw performance and computing power, making them not suitable
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for HPC workloads. Also, the authors in [91] oppose this opinion, suggesting that

ARM based systems are neither energy efficient nor high performing as compared

to current x86 systems. All those researches have been performed using compute-

bounded benchmarks, with x86 clearly outperforming ARM based systems.

Other papers, like [91, 92], analyze the memory bandwidth of ARM based

systems with traditional DDR modules as main memory when running memory

bounded applications and benchmarks. Those works conclude the ARM systems

fall behind x86. On the other hand, the authors in [92] suggest that ARM based

systems could be benefited from future 3D high bandwidth memories.

Bowtie2 is a memory bounded application with random memory access pat-

tern, based on the FM-index algorithm and data structures. Related to this,

previous studies [66] have been focused on parallelism using many-core Intel’s

Xeon Phi KNL. In addition to KNL, other typical HPC systems, like GPUs are

also used for bioinformatics workloads, as in [112]. Also, in [45], authors uti-

lize HPC type many-core x86 clusters for NGS. All these studies indicate that

genome sequencing is usually performed by high performing power hungry HPC

resources.

To the best of our knowledge, no studies have been conducted using ARM

based architectures along with 3D-stacked memories for memory bounded HPC

workloads, such as NGS. In this chapter, we demonstrate that random access

memory bounded workloads can be executed on energy efficient ARM based

platforms, with performance at par or surpassing that of existing x86 or acceler-

ators like KNL, provided there is high memory bandwidth available such as the

3D-stacked HBM2.

5.2 Sequence Alignment Application: Bowtie2

Bowtie2 [64] is an open-source, ultra-fast and memory-efficient alignment appli-

cation used for aligning DNA reads to large genomes, able to support gapped

alignments. It relies upon BWT and FM-index algorithm (see section 2.2 and

Figure 5.1.(a)) to quickly find non-exact alignments that satisfy a specified align-

ment policy. Bowtie2 algorithm is divided into four steps (Figure 5.1.(b)):

• Bowtie2 extracts ”seeds” substrings from each read.

• Those seeds substrings are aligned to the genome, without supporting gaps,

reporting the BWT ranges of the occurrences.
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Figure 5.1: Application phases for (a) FM-index and (b) Bowtie2

• Seed alignments are prioritized, calculating their positions in the reference

genome using the FM-index.

• Prioritized alignments from step 3 are extended into full alignments, con-

sidering gaps. This last step is performed using SIMD-accelerated dynamic

programming.

Bowtie2 indexes are optimized in order to use as less memory as possible.

This way, a Bowtie2 index for the human genome uses around 3.24GB on disk,
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and has a memory footprint of just 1.3GB.

Compared to other sequence alignment tools, Bowtie2 is around 2.5-3x faster

than Burrows Wheeler Aligner (BWA) when both applications are searching for

gapped alignments. Therefore, we have chosen Bowtie2 to analyze the perfor-

mance of the PIM architectures based on ARMv8 energy efficient processors.

5.3 Simulation Framework and Parameters for

Architectural Exploration

Simulation framework enables us to perform fast architectural exploration for

performance-energy optimized architectures for any given application. For HPC

applications, we need a simulation framework capable of running multi-threaded

applications on many-core simulated systems.

5.3.1 Experimental Setup

We use gem5-X [90], a validated and extended version of cycle-accurate gem5

architectural simulator [15], which exhibits a validation error of up to 4% when

simulating ARMv8 64-bit cores. ARM full-system (FS) simulation mode is used

with Ubuntu 16.04 as the OS and Linux kernel v4.14. FS mode is used to have

a complete picture of the system, with full software stack, and also because

Bowtie2 requires the multi-threading support only available in FS. Both ARMv8

64-bit in-order and OoO cores are used for the architectural exploration with L1

instruction (L1-I) and L1 data (L1-D) cache fixed at 32KB using ARM JUNO

platform [9] as the starting point. Main memory of 4GB is used with both DDR4

and HBM2 in gem5-X.

For energy evaluation, we use the power model for 28nm CMOS bulk technol-

ogy node for ARM Cortex A57 OoO core and ARM Cortex A53 in-order cores,

as proposed in [88] and [90]. The power model includes the core active, wait-

for-memory (WFM) and static energy. It also includes the LLC read/write and

static energy as well. For the memory power models, we use the DRAM power

values as reported in [68].

We have also performed experiments on a real system with an Intel Xeon

Phi 7210 processor (KNL), 16 GiB of MCDRAM and 192 GiB of DDR4 running

Ubuntu 16.04.1 Linux.
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5.3.2 Methodology

In the this section, we will discuss different architectural parameters we change

and explore to get an optimized architecture, as they have the most impact

on performance (in terms of execution time) and energy of the system. The

parameters we explore are:

High Bandwidth Memories: Memories with high bandwidth like high band-

width memory (HBM2) [106] help in alleviating the memory bottleneck in

memory bounded application. We propose to use HBM2 for such work-

loads. It is a 3D-stacked memory with a bandwidth of 307.2 GB/s [106], as

it is available in gem5-X [90] with 8 independent channels. Energy values

as in [86] are used for HBM2.

Core Type: We investigate how different core types like the ARMv8 64-bit

in-order cores and OoO cores affect energy efficiency and performance.

Core Count: We explore how performance and energy scale with the number

of cores. As the workload is parallelizable, we launch one thread per core.

We also explore if using many in-order cores is beneficial both in terms

of performance and energy, as compared to fewer OoO cores. We vary

the number of cores from 8 to 28. We do not go beyond 28 cores as the

simulations time drastically increases with the number of cores and the

scaling trend can already be captured with 28 cores simulation, except for

two cases with in-order cores, which we will discuss in section 5.4.

Core Frequency: We also vary the core frequency, and look into the scaling of

in-order and OoO core frequency along with the number of cores, analysing

the effects on energy and performance. We make frequency range between

1GHz to 2GHz as the extreme points.

Last Level Cache (LLC): We explore the effects on performance and energy

of changing LLC size. We size the LLC along with number of cores as

shown in Table 5.1. We first set the LLC size to 1MB irrespective of the

core count. We then change the LLC size according the number of cores, so

to have the same LLC size-to-core count ratio. We use two ratios, 1MB/8-

cores and 2MB/8-cores. The ratio scales well with 8 and 16 cores, but for

24 and 28 cores, according to the ratio of 1MB/8-core ratio LLC size should

be 3MB and 3.5MB, respectively. Since these sizes are not a power of 2,

we scale up the LLC to 4MB for 24 and 28 cores. Similarly, for 2MB/8-

cores, we use a size of 8MB LLC for both 24 and 28 cores. We also look

into systems with no-LLC and how this affects both the performance and
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energy consumption. Our experimental setups use one or two cache levels,

considering L2 cache as LLC. This seems reasonable for ARM architectures

and allows us to keep the system as simple as possible, reducing gem5-X

simulation time, processor area and power consumption.

Memory Type: As memory is the main bottleneck resource in memory-bounded

applications, we explore how HBM2 helps in alleviating this bottleneck and

what benefits we get when compared to DDR4, for all the above architec-

tural combinations.

Table 5.1: LLC Sizes and scaling with number of cores.

Core
Count

Fixed Size
LLC

LLC 1MB/8-
cores

LLC 2MB/8-
cores

8 cores LLC = 1MB LLC = 1MB LLC = 2MB

16 cores LLC = 1MB LLC = 2MB LLC = 4MB

24 cores LLC = 1MB LLC = 4MB LLC = 8MB

28 cores LLC = 1MB LLC = 4MB LLC = 8MB

5.4 Results and Discussion

All the experiments described below have been performed lauching Bowtie2 in

gem5-X simulator. Each test has performed 0.2 million read alignments, consid-

ering the execution time of the FM-index search algorithm within Bowtie2. The

energy consumption results correspond to the energy for the complete system,

including CPU cores, caches and memory during the Bowtie2 execution.

5.4.1 HBM2 vs DDR4

We first look into the performance and energy benefit of using HBM2 instead of

DDR4, comparing the same system except for the memory. Figure 5.2 shows that

HBM2 always gets better performance than typical DDR4 systems. At the same

frequency, OoO cores achieve higher performance benefit than in-order cores.

Performance benefit also scales well and increases with the increase in the core

count with fixed L2 size or fixed L2-core count ratio, because the increase in the

core count stresses more the memory channels and memory bandwidth of the

system, much higher for HBM2 than for DDR4.

Energy efficiency scales in a similar way than performance (Figure 5.3), being

always better for HBM2 than DDR4 and with a similar trend for both core count
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Figure 5.2: Performance benefit of HBM2 vs DDR4 with same cache hierarchy
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Figure 5.3: Energy benefit of HBM2 vs DDR4 with same cache hierarchy
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and core type. However, in-order cores energy efficiency gets more percentage

benefit of using HBM2 over DDR4 at 1GHz than when operated at 2GHz. Out

of order cores present a similar trend for lower core count up to 16 cores, but it

turns over with higher core count and more L2 cache.

From Figures 5.2 and 5.3 it can be seen that there is a performance benefit

of up to 69% and energy benefit of up to 71.5% in a system without L2 and up

to 50% performance and around 56% energy benefit in a system with L2.

5.4.2 Near Compute HBM2 (no L2) vs DDR4

As HBM2 is a 3D-stacked memory, it is packaged on the same die as the processor

core, in contrast to DDR4, which is usually a separate package. Hence, in this

section we look into the near-memory computation using HBM2 near to CPU

core with no L2 and compare it to a DDR4 system with L2.

Figures 5.4 and 5.5 show percentage performance and energy benefit of HBM2

in a no-L2 system as compared to DDR4 with L2 in the system.

We can see that OoO cores with no-L2 HBM2 always are better than DDR4

with L2 both in terms of performance (by up to 68%) and energy (by up to 71.5%),
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Figure 5.4: Performance benefit of HBM2 with no L2 vs DDR4 with L2
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Figure 5.5: Energy benefit of HBM2 with no L2 vs DDR4 with L2

except when the number of cores are 8 and L2 is 2MB, as in this configuration,

the cores have quite big L2 which helps in hiding away the latency to the memory.

The same trend is true for energy benefit for OoO cores. For in-order cores, the

performance and energy benefit increase with number of cores, except for the

configuration, when the number of L2-to-core ratio is larger, leading to slightly

negative, performance benefit. In that case, since in-order cores cannot stress

the HBM2 memory bandwidth sufficiently, L2 helps in hiding away the latency

to the memory. However, energy benefits still remain, even if the performance

benefits are negative.

5.4.3 Performance-Energy Scaling with Core Count

In this section, we explore the scaling of performance and energy with the number

of cores, both for in-order and OoO cores, with different cache sizes, as well as

with both HBM2 and DDR4.

Figures 5.6 and 5.7 show the performance and energy scaling at 2GHz, respec-

tively. The red horizontal line corresponds to the execution time for this KNL

processor. Firstly, we see that performance improves when increasing the number

of cores, except for OoO cores with LLC. This is because, higher number of cores
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Figure 5.6: Performance scaling at 2GHz

implies more memory request through LLC, causing a bottleneck. Systems with

in-order cores do not show this effect, as these cores are not able to generate as

much memory request as OoO cores.

Secondly, we can see how several configurations in Figure 5.6 either match

or outperform the performance of state-of-the-art 32 KNL cores. For example,

32 ARM in-order cores at 2GHz match the performance of 32 KNL cores. Also,

we observe that many in-order cores can match or outperform fewer OoO cores

performance with much lower energy consumption.

For example, performance of 8 OoO cores with HBM2 and no L2 is outper-

formed by 24 in-order cores with HBM2 and no L2, by 22%, with 37% less energy

as it can be seen in Figure 5.7. If we consider area, single OoO core area for 28nm

CMOS bulk (2.05mm2) is almost 3 times that of single in-order core (0.7mm2)

as reported in [90, 36, 37]. Hence within the same area budget, in-order cores

outperform OoO both in terms of performance and energy. If we look at Figures

5.6 and 5.7, we can find more cases where many in-order cores outperform or
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Figure 5.7: Energy scaling at 2GHz

match the performance of fewer OoO with up to 50% less energy.

5.4.4 Performance-Energy Scaling with Frequency

In this section, we also explore the performance and energy scaling at different

core frequencies. Figures 5.8 and 5.9 show the performance and energy scaling at

1GHz, respectively (in addition to the results at 2GHz discussed in section 5.4.3).

As previously mentioned, the red horizontal line corresponds to the performance

for this KNL processor and it will be discussed in section 5.4.5. We observe that

the performance and energy trend at 1GHz is similar to that at 2GHz. We can

observe that similar to 2GHz, at 1GHz also many in-order cores can outperform

fewer OoO cores, both in terms of performance and energy, with equal or less
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Figure 5.8: Performance scaling at 1GHz

area footprint. We also observe that many in-order cores at 1GHz match the

performance of fewer OoO cores at 2GHz. For example, 28 in-order cores at

1GHz with L2=2MB/8 cores and HBM2 match the performance of 8 OoO cores

at 2GHz with L2=1MB/8 cores and HBM2, giving an energy efficiency of 8x,

with an area overhead of 20%.

5.4.5 Comparison to Intel Xeon Phi KNL

We have also compared the performance of the application Bowtie2 in an Intel

Xeon Phi Knights Landing (KNL) proccessor (64 threads at 1.5Ghz, detailed

in section 5.3.1) with the different in-order and OoO ARM cores configurations.

Experiments on KNL processor have been performed using both conventional

DDR4 memory and the high bandwidth memory available for Intel Xeon Phi

KNL processors.

Figures 5.6, 5.8 and 5.10 show a red horizontal line corresponding to the
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Figure 5.9: Energy scaling at 1GHz

performance for this KNL processor. We can observe that 16 ARM cores at 2GHz

improves the performance of 32 Xeon Phi threads. In Figure 5.8, we observe that

28 ARM OoO cores at 1GHz match the performance of 32 Intel Xeon Phi KNL

cores at 1.5 GHz. To have a fair comparison we simulate more ARM in-order and

OoO systems with HBM2 at 1.5GHz, which is the operating frequency of KNL.

The results of this comparison are depicted in Figure 5.10, and from there it can

be seen that 16 OoO ARM cores match the performance of 32 KNL cores both

at 1.5GHz. Figure 5.6 also shows that some 16, 24 and 28 ARM OoO cores at 2

GHz outperforms KNL performance significantly. Specifically, we found that 24

ARM OoO cores without L2 and with HBM2, match the performance of 32 KNL

core and outperform KNL with just 28 cores.

However, when comparing the whole Bowtie2 sequence alignment application,
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Figure 5.10: Performance scaling at 1.5GHz for HBM2
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Figure 5.11: Bowtie2 execution times on Xeon Phi vs different ARM configura-

tions

as shown in Figure 5.11, KNL performance is never surpassed by ARM cores (at

least up to 28 cores). This can be explained because the no-FM-index part of the
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Bowtie2 application is less memory bounded and is able to benefit more from the

greater computing power from Intel Xeon Phi cores.

5.5 Conclusions

In this chapter, using the gem5-X architectural simulator, we explored architec-

tures for optimizing performance and energy of the system for genome sequence

alignment, using Bowtie2 for NGS which is memory bounded random access

workload. Such memory bounded workloads do not require power hungry HPC

compute nodes like Intel Xeon Phi KNL, but instead they require improvements

in the memory bandwidth to enhance the overall performance and energy. In

this work, we showed that by using high bandwidth memories like HBM2 along

with energy efficient compute cores, for memory bounded NGS application (i.e

Bowtie2), we can achieve up to 68% performance and 71% energy benefit as com-

pared to a traditional system with DDR4. We also demonstrated that up to 47%

energy savings can be achieved using many simple in-order cores, instead of fewer

complex OoO cores at the same frequency. By scaling frequency, the number and

type of cores, we achieved more than 8x energy savings. Lastly, we proposed

a variety of architectures based on ARMv8 cores with HBM2 and demonstrated

that 16 ARMv8 OoO cores with HBM2 outperforms 32-core Intel KNL processor.



6 Conclusions

In this thesis we have tackled the problem of the memory-processor bottleneck,

also called memory wall, in memory bound applications. We have tried to reduce

this bottleneck impact with different approaches.

Chapter 3 has focused on the application side, analyzing a well-known memory-

bound application, as it is the FM-index based backward search application in

the context of genome sequence alignment. We have performed an in-depth anal-

ysis of the throughput and behaviour of this algorithm on different computing

systems, from conventional Intel Skylake Xeon processors (with DDR-type main

memory technology) to the Intel Xeon Phi KNL processor, that integrates high-

bandwidth memory technology (MCDRAM). Some solutions, previously pro-

posed in literature, improve memory footprint and data locality exploitation.

However, their impact on the throughput (queries per second) is relatively small.

Some of them, as the k-step strategy, increase the date cache block size necessary

to perform a single query operation but reduce the number of operations. This is

granted almost at no cost in some GPU systems, where the block size is greater

than in a typical CPU system.

In contrast to these results, the optimization that we have proposed to the

FM-index data structure (called, split bit-vector sampled FM-index) reduces the

data block size accessed in a single query, making it able to fit in a single cache

block, and thus reducing the amount of blocks needed to load from main memory

(memory bandwidth) but at the cost of increasing slightly the memory footprint

of the whole index.

We have also developed a new benchmark, called RANDOM, able to perform

a specific number of random memory accesses, mimicking the FM-index back-

89
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ward search algorithm behaviour and other similar memory-bound applications.

The goal of this benchmark is to understand better the performance of appli-

cations with different arithmetic intensity and memory bandwidth requirements

for each system, making us able to understand which architecture achieves better

throughput for this type of memory access patterns.

In chapter 3 we have also experimentally evaluated an exact search algo-

rithm based on the proposed FM-index data structure using three multi-core

processors. Our proposal outperforms by about 60%, 90% and 135% the best

of previous implementations, optimized and executed in Broadwell, Skylake and

KNL processors, respectively.

The best performance was obtained in the Intel Xeon Phi (KNL) architec-

ture, mainly because of the high peak random access memory bandwidth. Our

implementation is able to obtain a throughput of 12G LFM/s, being about 3x

faster than previous GPU implementations and about 4.4x faster than the GPU

version implemented in the NVIDIA NVBIO bioinformatics library executed on

a Tesla Pascal P100.

Once we understood how this kind of applications works and where the main

bottlenecks are exactly located (and therefore limiting the applications perfor-

mance and throughput), we moved to the development of new computer archi-

tectures, using Near-Data-Processing (NDP) configurations in order to push the

performance limits even further and minimize the energy consumption.

Following this path, in chapter 4 we described some new processing-in-memory

computer architectures optimized for this kind of workloads. We observed that

modern architectures including deep cache hierarchies are not very efficient for

this type of random access patterns. Our architectures are based on including

general purpose, energy efficient ARM-like cores into the logical layer of a 3D-

stacked memory cube. These architectures have been implemented and evaluated

using the ZSim architectural simulator together with the Ramulator DRAM sim-

ulator, in order to accurately simulate a 3D-stacked cube with in-order cores

integrated in the logic layer. We also use McPAT in order to estimate the power

consumption of each architecture.

We have compared and analyzed both conventional DDR-type and PIM con-

figurations for both the FM-index search algorithm and different parameters of

the RANDOM benchmark. Our results show a significant improvement in per-

formance and specially in energy efficiency when using small in-order cores versus

typical x86 out of order cores. In brief, our setups improve more than 3× the

throughput of the RANDOM benchmark and the FM-index application and, in

some cases, with an energy efficiency of up to 40× better when compared with
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systems using typical DDR-type memory technologies and deep cache hierarchies.

Lastly, in chapter 5 we try to get a more realistic knowledge of the performance

of this type of memory-bound applications. In order to achieve this goal, we

analyze the behaviour of the Bowtie2 [64] application, a sequence aligner widely

used, which includes FM-index backward search algorithm on PIM architectures

based on High Bandwidth Memory (HBM) devices. For that purpose, we used

the gem5-X full-system architectural simulator, able to simulate full computer

systems including the operating system. We simulate different configurations on

different values of both in-order and OoO cores, both with typical DDR4 memory

and new HBM memory.

Using HBM, we can achieve up to 68% performance and 71% energy benefits

as compared to a traditional system with DDR4 memory. We also demonstrated

that up to 47% energy savings can be achieved using many simple in-order cores,

instead of fewer complex OoO cores at the same frequency. By scaling frequency,

the number of cores and type of cores, we achieved more than 8x energy savings.

In summary, we started analyzing a memory-bound application with low per-

formance due to the memory-processor bottleneck. After that, we have worked

on improving that performance and the energy efficiency of this kind of appli-

cations (specifically those with random memory accesses) from several points of

view:

a) in chapter 3 we tackle it from the software point of view, reducing the

amount of memory we move,

b) in chapter 4 we move to the hardware part, proposing new architectures for

random accesses,

c) finally, chapter 5 keeps on the hardware track, carrying out many exper-

iments by using a complete, widely used sequence alignment application

(Bowtie2) and running the experiments on a well-known full-system archi-

tectural simulator.
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Results of this thesis derived in the following publications:
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Landing Processor

Jose M. Herruzo, Sonia Gonzalez-Navarro, Pablo Ibañez, Victor Viñals, Je-

sus Alastruey and Oscar Plata

Workshop on Accelerator Architecture in Computational Biology and Bioin-

formatics (AACBB’18) (co-located with HPCA 2018), Vienna (Austria),

February 2018.

Optimizing Large Data Structures with Unpredictable Access

Patterns in the Intel KNL Processor

Jose M. Herruzo, Sonia Gonzalez-Navarro and Oscar Plata

20th Workshop on Compilers for Parallel Computing (CPC’18), Dublin (Ire-

land), April 2018.

Accelerating Sequence Alignments Based on FM-index Using

the Intel KNL Processor.

Jose M. Herruzo, Sonia González, Pablo Ibáñez, Vı́ctor Viñals, Jesús

Alastruey-Benedé, and Óscar Plata

IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB), December 2018.

Boosting Backward Search Throughput for FM-index Using a

Compressed Encoding.

Jose M. Herruzo, Sonia González, Pablo Ibáñez, Vı́ctor Viñals, Jesús

Alastruey-Benedé, and Óscar Plata

Proceedings of the 2019 Data Compression Conference (DCC 2019), 26–29

March 2019, Snowbird, Utah, USA, pp. 577.

Aceleración de una Aplicación con Acceso Intensivo e Impre-

decible a los Datos en el Procesador Intel Xeon Phi KNL

Jose M. Herruzo, Sonia Gonzalez-Navarro, Pablo Ibañez, Victor Viñals, Je-

sus Alastruey and Oscar Plata



6.1. Future work 93

XXIX Jornadas de Paralelismo (part of Jornadas Sarteco), Teruel (Spain),

September 2018.

Results from chapters 4 and 5 are currently in evaluation in an international

journal and an international conference, respectively.

6.1 Future work

Regarding FM-index data structure and algorithms, some future developments

could be to integrate the techniques implemented in some higher level alignment

software, like Bowtie [65] or Bowtie2 [64]. Other improvements could be the

modification of the data structure in order to support more than 4 different

symbols. The modifications already made to the data structure would make this

step quite easy, with the only cost of an increase in the index memory footprint.

Other approaches for future work could be analyzing the performance of ran-

dom access applications like FM-index in new 3D memory architectures, such

as the new Micron boards with HMC and FPGA included in the same silicon

board. This board is supposed to be able to run efficient and high performance

computing workloads seizing the high memory bandwidth provided by the Hybrid

Memory Cube.

On the other hand, regarding the development of new NDP computer ar-

chitectures in order to improve the performance and efficiency of this kind of

applications, there are several lines of work which deserve to be researched in

near future. One of the most promising is the development of new heterogeneous

PIM architectures including small energy-efficient general purpose cores under

the memory modules, able to work together with typical host processors. This

type of architectures presents lots of new challenges which would need to be over-

come, like the communication models between main and ’accelerators’ cores and

the model and strategies of parallel programming necessary to efficiently take

advantage of the architecture. In this field, one of our future ideas is developing

a big.LITTLE-like system where the LITTLE cores are just under the memory

modules, resulting in a system with big high performance cores and small energy

efficient and memory oriented cores.

Lastly, other possible future proposals could be the exploration of specific

purpose PIM architectures. There are several works already published in litera-

ture in this field, but new architectures and applications could be analyzed and
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optimized, using FPGAs or specific logic hardware.



Apéndice A
Random Memory Access

Benchmark

We have developed a benchmark, called RANDOM, able to perform memory

load operations following a random pattern similar that exhibited by the FM-

index based backward search algorithm. It is a very useful tool in order to have

a more accurate value of memory bandwidth when issuing this kind of memory

accesses, usually much less efficient than sequential accesses.

Figure A.1 and A.2 show the RANDOM benchmark algorithm, in block di-

agrams and in pseudocode, respectively. RANDOM uses C randomly generated

linked lists with no access locality. An array of head pointers is update a num-

ber of times following the linked lists. After each pointer update, the next list

element is prefetched. This way, if C is large enough, the latency of all memory

accesses is hidden, as shown in Figure A.5.

This way, this benchmark mimics the memory pattern of the accesses to the

different versions of the SFM structure (see chapter 3).

We have performed several bandwidth tests in different systems, using the

maximum number of hardware threads supported by system processors and with

different number of linked lists (C).

For C values beyond 6, the bandwidth reaches a peak and remains stable

(see Fig. A.3). For lower values, bandwidth is under the peak value because the

memory latency cannot be completely hidden by the prefetching operations.

The maximum bandwidth corresponds to KNL MCDRAM, able to provide

about 219 GB/s. However, this value is much lower than the peak 400 GB/s
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Input:
N: Number of memory accesses

C: Number of linked-lists
(dependency chains)

X: Number of operations per
memory load

Initialization:
Create linked list and

prefetch first data.

Perform  computing
operations

Random memory
load

Prefetch next data

Calculate effective
random access

memory bandwidth

For each
linked list

(C)

Repeat
X times 

Repeat N/C 
times 

Figure A.1: RANDOM benchmark blocks diagram

reported for the STREAM benchmark [80]. On the other hand, the peak band-

width provided by the DDR4 DRAM memory is about 68 GB/s (Skylake) and

44 GB/s (Broadwell).

The memory access latencies were also evaluated using the RANDOM bench-

mark. Three load tests were used: low load, medium load and high load:

• In the low load test, only one hardware thread in the complete processor



Apéndice A. Random memory benchmark 97

Benchmark: RANDOM

Input: N: Number of random memory accesses

           C: Number of linked lists (dependency-chains)

           p: Array of head pointers to the linked lists

     begin

1:  for i from N-1 to 1 step C

2:     for k from 0 to C step 1

3:        p[k] = p[k]→next

4:        prefetch(p[k])

5:     end for

6:  end for

     end

Figure A.2: RANDOM benchmark
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Figure A.3: Memory bandwidth for Broadwell, Skylake and KNL obtained with

the RANDOM benchmark for various values of C

executes the benchmark that runs over a single linked list (C=1). All the

others threads remain idle.
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• In the medium load test, the maximum number of hardware threads in each

processor runs over a single linked list.

• In the high load test, the maximum number of hardware threads (same as

medium load) execute the benchmark.

In the three load configurations, every thread, except one, runs over several

linked list in order to have a high load in the system. The remaining thread

runs just over one linked list in order to accurately measure the memory access

latency. The number of linked lists was selected to be the one that achieves the

best memory bandwidth (see Figure A.3).

Figure A.4 shows the RANDOM latency results for the three processor archi-

tectures. It can be noted that the latency increases significantly with the load in

the system.

This behaviour is expected as, when the amount of simultaneous queries in-

creases, accesses to hardware shared resources are much more likely to conflict.

Some of these shared resources could be the memory channels, memory banks or

the core interconnection network.

Additionally, this benchmark has been expanded in order to perform a num-

ber of arithmetic operations per memory access, as shown on green highlighted

block in Figure A.1. This allows us to easily change the arithmetic intensity of

the software, which is very useful, specially, for creating and evaluating roofline

models for each system in different conditions and for evaluating the different ap-

plications and computing/memory operations ratio that fits better for a specific
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System load
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200
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te

nc
y 

(n
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Figure A.4: Comparison of RANDOM memory latencies
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Figure A.5: RANDOM benchmark timing model

system. This utility has been extensively used in chapter 4.

RANDOM benchmark can be configured for all the relevant parameters which

can characterize a specific memory access pattern:

• Data structure size.

• Number of threads.

• Number of parallel linked list.

• Arithmetic intensity.

• Datatype for arithmetic operations.

• Size of cache block.

• Number of cache blocks to be loaded simultaneously.





Apéndice B
Resumen en español

La aparición de aplicaciones con un uso intensivo de datos ha despertado

un gran interés en el diseño de técnicas para procesamiento eficiente y escal-

able. Desde el punto de vista del almacenamiento, el rendimiento aumenta si los

datos están organizados en la memoria principal de forma que los patrones de

acceso puedan explotar la localidad de los datos. Sin embargo, cuando aparecen

patrones de acceso impredecibles, las jerarqúıas de caché que se encuentran en

los procesadores modernos funcionan ineficientemente y con frecuencia causan

una gran demanda de ancho de banda de memoria. Un ejemplo de aplicaciones

que presentan este comportamiento son algunas usadas en bioinformática para

el alineamiento de secuencias de ADN, como por ejemplo aquellas basadas en el

algoritmo y estructura FM-index.

Además, el reducido ritmo de mejora del rendimiento del sistema de memoria,

con respecto a los sistemas de cómputo de los últimos años, ha llevado a la

aparición de un cuello de botella en el transporte de los datos desde donde se

almacenan hasta donde van a ser procesados. Esto se ha llamado en la literatura

’memory-wall’ [113].

En los últimos años, se han comenzado a fabricar memorias DRAM con varias

capas apiladas en 3D. Por ejemplo, Hybrid Memory Cube (HMC) [81] (Micron

Technology) y High Bandwidth Memory (HBM) [4] (AMD y Hynix) proporcionan

anchos de banda de varios cientos de GB/s. Estas tecnoloǵıas se están incluyendo

en diferentes procesadores de alto rendimiento, como GPUs de AMD (Radeon R9

Fury) y NVIDIA (Pascal), y CMPs de Intel (Xeon Phi Knights Landing).
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B.1 Motivación y Temas de Investigación

La combinación de la aparición del mencionado cuello de botella y la creciente im-

portancia de las aplicaciones de procesamiento intensivo de datos, muy limitadas

por el sistema de memoria, crea un importante problema que debe ser abordado.

Por ello, en esta tesis nos proponemos afrontar este problema e intentar reducir

su efecto en la medida de lo posible.

El principal objetivo de esta tesis es el diseño de nuevas soluciones arquitec-

turales y algoŕıtmicas para superar el problema del cuello de botella conocido

como memory-wall y mejorar el rendimiento de aplicaciones con gran uso de

memoria que no son capaces de beneficiarse lo suficiente de las jerarqúıas de

memoria actuales. Además, creemos que actualmente y especialmente en el fu-

turo, es esencial centrarse en la eficiencia energética, un factor cuya importancia

crece cada d́ıa y uno de los factores más limitantes en la computación de alto

rendimiento.

Las principales contribuciones de esta tesis son:

• Analizamos el comportamiento de aplicaciones con accesos de memoria

aleatorios, que no aprovechan correctamente las nuevas arquitecturas de

memoria con jerarqúıas cache profundas. Espećıficamente, analizamos la

estructura de datos FM-index y un algoritmo de búsqueda de secuencias

basado en esa estructura, ampliamente usado en el alineamiento de secuen-

cias en el genoma.

• Después de este análisis y de obtener un conocimiento más detallado del

cuello de botella de la memoria, proponemos una nueva versión de FM-

index que permite reducir el consumo de ancho de banda de memoria, de

forma que mejora significativamente el rendimiento computacional.

• Proponemos una nueva arquitectura energéticamente eficiente, basada en

un cubo de memoria en 3D (3D-Stacked) al que añadimos unos núcleos

sencillos de bajo consumo en su capa lógica. Esta arquitectura permite la

ejecución cerca de los datos (near-data-processing)

• También realizamos un estudio experimental de varias arquitecturas con

diferentes tecnoloǵıas de memoria (DDR y HBM) y núcleos de procesamiento

de distintos tipos, explotando, en algunos casos, procesamiento en la memo-

ria (PIM). La aplicación de referencia es Bowtie2, una aplicación completa

para el alineamiento de secuencias en el genoma. La implementación y

evaluación de estas arquitecturas se realiza utilizando un simulador arqui-

tectural basado en gem5.
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Esta tesis se organiza de la siguiente forma: en el caṕıtulo 1 inclúımos nuestras

motivaciones para llevar a cabo esta tesis y una breve descripción de arquitecturas

centradas en los datos y aplicaciones intensivas en memoria. El caṕıtulo 2 in-

cluye una descripción de conceptos y trabajos relacionados a partir de los cuales se

desarrolla esta tesis. En el caṕıtulo 3 analizamos la búsqueda exacta y las estruc-

turas de datos de FM-index, asi como sus variaciones presentes en la literatura,

y proponemos una nueva versión de estos algoritmos. Los caṕıtulos 4 y 5 presen-

tan nuevas arquitecturas orientadas a aumentar el rendimiento de la memoria.

Finalmente, el caṕıtulo 6 presenta las concluiones de esta tesis. En este apéndice

hemos hecho un resumen a partir del caṕıtulo 3 (es decir, hemos resumido los

caṕıtulos más importantes de la tesis), pero intengrando los conceptos que se

introducen en el caṕıtulo 2 a lo largo de todo el resumen.

B.2 Alineamiento de Secuencias con FM-index

FM-index es un ı́ndice de texto basado en la transformada de Burrows-Wheeler [21]

que permite búsquedas rápidas de cadenas en textos de referencia que ocupan un

espacio de memoria reducido. La transformada de Burrows-Wheeler (BWT) es

una permutación de una cadena de caracteres.

FM-index combina compresión e indexación de tal forma que al realizar una

consulta no se pierde rendimiento comparado con una consulta realizada sobre

un ı́ndice de texto completo. FM-index está compuesto por dos estructuras de

datos derivadas de la transformada de Burrows Wheeler (BWT): el vector C y

la matriz Occ.

El vector C almacena en C[c] el número de ocurrencias en la transformada

BWT de los śımbolos lexicográficos menores que c. Por otro lado, Occ[c, i] con-

tiene el número de ocurrencias del śımbolo c en el prefijo {1..i} de la transformada

BWT, siendo 1 ≤ i ≤ n+ 1.

B.2.1 Análisis de FM-index

El algoritmo de búsqueda exacta desarrollado en [33], también llamado backward

search (BS), puede realizar la búsqueda con una complejidad de Θ(p). Este

algoritmo se muestra en la Figura B.1.

La operación principal en el algoritmo de búsqueda se denota Last-To-First

Mapping (LFM), y se realiza llamando a la función LF (), definida de la siguiente
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Algorithm BS: Backward Search Based on FM-index

Input: FM-index of T text (C & Occ), Q query, n:|T|, p:|Q|

Ouput: (sp,ep): Interval pointers of Q in T

     begin

1:  sp = C[Q{p}];  ep = C[Q{p}+1]

2:  for i from p-1 to 1 step -1

3:     sp = LF(Q{i},sp);  ep = LF(Q{i},ep)

4:  end for

5:  return (sp+1,ep)

     end

2  LFM-chains

Figure B.1: Algoritmo básico de búsqueda BS basado en FM-index.

manera:

LF (Q{i}, u) = C[Q{i}] +Occ[Q{i}, u], (B.1)

donde i es el ı́ndice del bucle y u es sp o ep.

Cada iteración del bucle 2−4 en el algoritmo BS accede a la cadena Q y hace

dos llamadas a la función LF (), una con sp y la otra con ep. Cada puntero (sp o

ep) se actualiza utilizando su valor calculado en la iteración previa. Por tanto, se

tienen dos cadenas de dependencias, una para sp y la otra para ep. Denotamos

estas cadenas como LFM-chains.

B.2.1.1 Patrón de Accesos a Memoria

Una de las principales limitaciones de rendimiento del algoritmo BS está rela-

cionada con la comunicación entre el procesador y la memoria. Al ejecutar este

algoritmo en un procesador fuera de orden, se emiten dos cadenas LFM para

cada consulta de búsqueda, superponiendo su ejecución. Cada LFM accede a un

elemento de la matriz C y a otro de la matriz Occ. Sin embargo, estos dos accesos

interactúan con la jerarqúıa de memoria de forma muy diferente. Probablemente,

la matriz C completa estará almacenada en la caché L1, dado su pequeño tamaño

(ya que el número de śımbolos X del alfabeto es pequeño en muchos dominios

de aplicación). La matriz Occ, por el contrario, es una estructura mucho más

grande y con un patrón de acceso a memoria no predecible: sus accesos están

distribuidos por toda la estructura, y no muestran ninguna localidad espacial ni

temporal. Por lo tanto, este tipo de accesos causan una alta tasa de fallos en la

jerarqúıa cache.
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Sea α el promedio de bloques cache léıdos desde la memoria principal por

cada par de LFMs en la misma iteración del bucle en el algoritmo BS. Se puede

escribir, α = 1 + (1 − r), siendo r la probabilidad de que sp y ep apunten a dos

valores almacenados en el mismo bloque cache.

El concepto de intensidad operacional o intensidad aritmética se usa para

correlacionar las operaciones (cálculos) con el acceso a la memoria [110]. Esta

métrica es la relación entre el número de operaciones (trabajo) y la cantidad de

tráfico de datos (en bytes) que provoca. En el caso del algoritmo BS basado en

FM-index, utilizamos el número de LFMs ejecutados por byte transferido. En

consecuencia, llamamos a esta métrica intensidad de búsqueda o Search Intensity

(SI ). En promedio, un par de LFMs necesita leer α bloques cache de la memoria

principal. Por lo tanto, la SI del algoritmo BS para un bloque cache de tamaño

B en bytes es SI = 2/(α×B) LFMs/byte.

B.2.1.2 Rendimiento

La ejecución de un par de cadenas LFM emitidas en una consulta de búsqueda

se puede modelar con dos fases lógicas (ver Figura B.2 (izquierda)). La primera

fase, MEM, corresponde a las operaciones de memoria asociadas a una LFM. La

latencia de esta fase está determinada principalmente por el acceso a Occ. La

segunda fase, OP, corresponde a las operaciones de computación en una LFM.

Básicamente, esta fase comprende la ejecución de tres instrucciones de acceso a

memoria y una suma (ver expresión (B.1)).

Lmem Lop

LLFM

MEMLF(Q[1]{p-1},sp) OP

MEM OP

MEM OP

MEM OP

idle 

time

LF(Q[1]{p-1},ep)

LF(Q[1]{p-2},sp)

LF(Q[1]{p-2},ep)

OPLF(Q[Nq]{p-1},ep)

Liter

L’op

LF(Q[2]{p-1},sp)

Lmem Lop

LLFM

MEMLF(Q{p-1},sp) OP

MEM OPLF(Q{p-1},ep)

MEM OP

MEM OP

LF(Q{p-2},sp)

LF(Q{p-2},ep)

idle time

Liter

Figure B.2: Modelos temporales para algoritmos BS (izquierda) y OBS (derecha),

donde Lx representa latencias.
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SFM
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2
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Figure B.3: Las estructuras de datos de Sampled FM-index (izquierda) y k-step

Sampled FM-index (derecha), considerando d = 4, k = 2 y el genoma humano

(X = 4).

B.2.1.3 K-Step Sampled FM-index

El tamaño de Occ es enorme para textos grandes (T ). Para reducir el tamaño de

la estructura de datos en memoria, Occ puede reemplazarse con otra matriz más

pequeña, rOcc, que almacena una de cada d columnas de Occ [33]. Cuando el

algoritmo de búsqueda requiere algunos datos de Occ que no están almacenados

en rOcc, estos son recalculados usando rOcc y el trozo (bucket) de BWT de T

asociado y que denotamos como bBWT . Combinando estas últimas estructuras

obtemos una nueva que denotamos como SFM. Estas estructuras de datos se

pueden ver en la Figura B.3 (izquierda).

El algoritmo de búsqueda exacta basado en SFM es similar al algoritmo BS,

pero tiene un coste computacional mayor para cada operación LFM debido a las

reconstrucciones de Occ.

La localidad de los datos puede mejorarse aún más si se consultan varios

śımbolos de Q en el cálculo de una LFM, como se propone en [23]. Para consul-

tar k śımbolos, se reemplaza el alfabeto original Σ por el conjunto de k-tuplas

cuyas entradas se obtienen de Σ (permutaciones con repetición). Este cambio en

el alfabeto requiere modificar la estructura de datos de FM-index, que denota-

mos como k-step sampled FM-index (k-SFM). Esto se muestra en la Figura B.3

(derecha).

La versión del algoritmo de búsqueda para una estructura FM-index k-step

se adapta bien en algunas arquitecturas, como GPUs, pero resulta en un gran

incremento del tamaño de las estructuras de datos en memoria haciéndolo inviable

para valores de k mayores de 2.



B.2. Alineamiento de Secuencias con FM-index 107

1 Q{i} X 1 d

SFM row

m%d

A C T A A T T T    T C A A G G T G A

1 1 d

bvSFM rows

m%d

1 0 0 1 1 0 0 0  0 0 1 1 0 0 0 0 1

(m-1)/d +1

A C G T

A

Q{i} 1 dm%d

0 1 0 0 0 0 0 0  0 1 0 0 0 0 0 0 0

C

X 1 dm%d

0 0 1 0 0 1 1 1  1 0 0 0 0 0 1 0 0

T

rOcc bBWT

Figure B.4: Estructura de datos SFM original (arriba) y nueva estructura de

datos bvSFM (abajo). Los datos a los que se accede durante el cálculo de una

LFM están marcados en rojo.

B.2.2 Split Bit-Vector k-Step Sampled FM-index

La búsqueda utilizando k-step sampled FM-index tiene un impacto limitado en

la intensidad de búsqueda (SI ). El aumento en el número de LFMs por consulta

es compensado por un aumento en α, la cantidad promedio de bloques cache

accedidos, ya que las filas de k-SFM son más grandes que las filas de SFM,

sobrepasando el tamaño t́ıpico de un bloque cache. Con el fin de aumentar la

intensidad de búsqueda para mejorar el rendimiento, se debe reducir el valor de

α. La Figura B.4 (arriba) muestra una fila de la estructura de datos SFM. Todas

las entradas a las que se accede en el cálculo de una LFM están marcadas en rojo.

Se puede apreciar que se accede a una única entrada en rOcc, sin embargo, si X

es lo suficientemente grande, la subcadena accedida en bBWT estará almacenada

en un bloque cache diferente.

Para reducir los fallos cache, proponemos reorganizar el diseño k-SFM y cam-

biar la codificación de datos de tal forma que todos los datos necesarios para

calcular una LFM se almacenan en un número mı́nimo de bloques cache. La

nueva estructura de datos, denotada por k-bvSFM, se llama split bit-vector k-step

sampled-FM-index. Nuestra solución proviene de la observación de que solo se lee

una de las entradas de Xk k-rOcc para cada cálculo de LFM (ver Figura B.4 (ar-

riba) para k = 1).
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La estructura k-bvSFM se obtiene de k-SFM mediante dos transformaciones.

En primer lugar, cada fila k-SFM se divide en Xk filas, donde cada una de ellas

incluye una sola entrada k-rOcc con el bucket completo. En segundo lugar, cada

bucket se codifica como un mapa de bits donde cada śımbolo se representa con

un bit. Esto se lleva a cabo de la siguiente forma: dada una fila en k-bvSFM

que corresponde a la entrada t en la fila k-rOcc original, su bucket asociado se

codifica como un mapa de bits de longitud d, donde un śımbolo en el bucket está

representado por 1 si es igual al asociado a dicha entrada t, o por 0 en caso de

que sea diferente.

Gracias a esta transformación, la nueva función de recuento de śımbolos nece-

saria para reconstruir Occ a partir de k-rOcc se reduce a una operación population

count, es decir, a contar la cantidad de bits con valor 1 en el bucket asociado a un

śımbolo dado Q{i}. Esta nueva estructura de datos almacena de forma compacta

todos los datos necesarios para calcular una LFM, lo que minimiza la cantidad

de bloques cache a los que se accede en cada operación. La Figura B.4 (abajo)

muestra, por ejemplo, las Xk filas de k-bvSFM para k = 1.

Sin embargo, estos beneficios tienen el coste de una mayor ocupación de memo-

ria, ya que cada entrada de k-SFM (de tamaño log2(Xk)×d bits) es reemplazada

por Xk bitmaps (de tamaño Xk × d bits) .

El diseño k-bvSFM reduce el número de bloques cache necesarios para el

cálculo de una LFM. Por lo tanto, el valor de α se reduce, lo que resulta en un

aumento de la intensidad de búsqueda en comparación con versiones anteriores

del algoritmo.

La Tabla B.1 muestra las propiedades computacionales de los algoritmos de

búsqueda basados en diferentes versiones de FM-index. Todas las versiones in-

cluyen el solapamiento de búsquedas para ocultar la latencia. Los cálculos se han

realizado suponiendo un alfabeto de cuatro caracteres, debido a que la aplicación

Table B.1: Propiedades del algoritmo de búsqueda para diferentes versiones de

FM-index (p.ej. k1-32SFM corresponde a k-SFM con k = 1 y d = 32).

Versión Tamaño fila α SI Instrucciones
(bloq cache) (bl. cache) (LFMs/B) por LFM

k1-32SFM 1 1.08 0.0288 33
k1-192SFM 1 1.07 0.0293 77.5
k2-16SFM 2 2.28 0.0274 37.5
k2-128SFM 2 2.15 0.0290 98.5

k2-64bvSFM 1 1.088 0.0574 23.5
k2-96bvSFM 1 1.081 0.0578 38
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Figure B.5: Ĺımites teóricos y rendimiento para diferentes versiones de FM-index.

seleccionada para evaluar nuestras propuestas busca cadenas en una secuencia de

ADN, formado por cuatro caracteres diferentes.

B.2.3 Evaluación Experimental

La Figura B.5 muestra los ĺımites teóricos y los resultados experimentales para

diferentes versiones de FM-index evaluadas en tres procesadores distintos (Broad-

well, Skylake y KNL). En general, los valores experimentales se aproximan de

forma razonable a los valores teóricos esperados. El rendimiento real es el 95%

del ĺımite teórico para las versiones del algoritmo con buckets de menos de 64

bits y en torno al 80% para las versiones con buckets más grandes. Esto se debe

a que el conteo de coincidencias en buckets de más de 64 bits provoca más fallos

del predictor de saltos (branch predictor).

Podemos observar como las versiones del algoritmo basados en nuestra prop-

uesta consiguen una mejora de rendimiento del 60 y el 90% en Broadwell y Skylake

respectivamente. En KNL, nuestra propuesta mejora el rendimiento de las solu-

ciones previas por un 135%. Además, el rendimiento en KNL de la mejor versión

(k2d64-bvSFM) es 6 y 3 veces mejor que el conseguido en Broadwell y Skylake,

respectivamente.

Finalmente, las Figuras B.6 y B.7 muestran el modelo roofline [110] para

los algoritmos de búsqueda basados en diferentes versiones de FM-index. Este
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modelo considera dos ĺımites diferentes de ancho de banda:

• Ancho de banda máximo de la memoria principal.
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• Ancho de banda para accesos aleatorios.

Como puede observarse en las figuras, este segundo ĺımite es el factor limitante

de la mejor versión (k2d64-bvSFM) para todas las arquitecturas estudiadas.

B.3 FM-index y Procesado en Memoria

Las aplicaciones con patrones de acceso a memoria aleatorios e impredecibles,

como el algoritmo de alineamiento de secuencias basado en FM-index descrito en

la sección anterior, no alcanzan beun rendimiento en las arquitecturas de proce-

samiento tradicionales, con una jerarqúıa de varios niveles de memoria cache.

La mayoŕıa de estas aplicaciones no obtienen ninguna ventaja de las caches o

de la precarga de datos hardware, siendo en ocasiones incluso penalizadas por el

aumento de latencia en los accesos de memoria.

Un ejemplo de este tipo de aplicaciones es el FM-index, ya explicado en aparta-

dos anteriores. Los accesos de memoria impredecibles y aleatorios, junto con el

poco cómputo requerido, hacen de esta aplicación una buena candidata para ser

implementada en arquitecturas de Procesamiento Cercano a los Datos y de Proce-

samiento en Memoria (NPD y PIM respectivamente por sus siglas en inglés).

B.3.1 Diseño de Arquitecturas y Simulación

Se han establecido tres arquitecturas de sistemas diferentes, con el objetivo de

evaluar el rendimiento de los accesos a memoria aleatorios en una arquitectura

de procesamiento en memoria (PIM).

Tal y como se muestra en la Tabla B.2, comparamos dos arquitecturas con

tecnoloǵıas de memoria DDR y con 64 y 36 núcleos fuera de orden a diferentes

frecuencias, con una configuración PIM basada en tecnoloǵıa de memoria 3D

(tipo HMC o HBM) y con 64 núcleos en orden, muy energéticamente eficientes a

una baja frecuencia. Esta configuración PIM se muestra en la Figura B.8.

B.3.2 Estimación de Area y Consumo Energético

Para obtener una estimación del consumo energético y área utilizada por las

diferentes configuraciones hemos usado tanto la herramienta McPAT como una

estimación basada en procesadores reales.
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Table B.2: Arquitecuras hardware simuladas

DDR Setup 1 DDR Setup 2 PIM Intel i7-8700

Núcleos 64 @ 2.4 GHz 36 @ 3.6 GHz 64 @ 1.5 GHz 6 @ 3.2-4.6GHz

T. Núcleo OoO OoO in-Order OoO

Hilos HW 1 1 1 2

Arquitectura x86 x86 ARM-Like* x86

Can. Memoria 4 4 - 2

Freq. Memoria 1600/2400 1600/2400 2500 2400
DDR3/DDR4 DDR3/DDR4 3D-stacked DDR4

Bloq. Cache 64B 64B 32/64B 64B

Tecnoloǵıa 22 nm 22 nm 28 nm 14 nm

32K/32K 32K/32K 8K/8K 32K/32K
L1 Cache 3 cycles Latency 3 cycles Latency 3 cycles latency 8-way set
(L1D/L1I) associative

256K 256K 256K
L2 Cache 10 cycles Latency 10 cycles Latency - 4-way set

8-way set assoc. 8-way set assoc. associative.

16M Shared 16M Shared
30 cycles Latency 30 cycles Latency - 2M

L3 Cache 16-way set assoc. 16-way set assoc. - 16-way set
6 banks 6 banks associative
H3 Hash H3 Hash

*We simulate In-order cores with a similar performance to ARM cores.

Según McPAT, cada núcleo PIM a 1500MHz usa un área de en torno a 2 mm2

y consume en torno a 0.5 W por núcleo usando una tecnoloǵıas de 28 nm y

0.61 mm2 de área y 0.20 W por núcleo usando tecnoloǵıa de 22 nm.

Además, estos núcleos son similares a los núcleos A35 más pequeños presen-

tados por ARM, pero a frecuencias más altas. Basándonos en esto, estimamos un

área de 0.4 mm2 por cada núcleo pequeño y un consumo de aproximadamente

DRAM LayersBank

V
a
u
lt

Logic Layer TSVs

CPU

L1I L1D

CPU

L1I L1D

Figure B.8: Diagrama de arquitectura PIM
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Figure B.9: Consumo de enerǵıa por procesador

180 mW.

Por otro lado, nuestras estimaciones de consumo para los procesadores de alto

rendimiento vaŕıan en torno a 370 W y 450 W, datos mucho más altos que las

configuraciones de bajo consumo.

Los datos de consumo se muestran en la Figura B.9.

B.3.3 Evaluación Experimental

Hemos realizado pruebas en una máquina real y en 4 arquitecturas simuladas

diferentes, incluyendo variaciones en el tipo de memoria, el número de núcleos y

el tipo de estos. Todas las arquitecturas se muestran en la Tabla B.2.

Estas pruebas han sido llevadas a cabo usando el simulador ZSim [97] en com-

binación con Ramulator-PIM [61]. La versión pública de ZSim ha sido modificada

para que soporte la comunicación directa entre ZSim y Ramulator, simplificando

la ejecución de los experimentos.

Hemos realizado varios experimentos usando los benchmarks STREAM [80] y

RANDOM (Apéndice A). La Figura B.10 muestra los resultados de la ejecución
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Figure B.10: Benchmark STREAM y RANDOM para distintas arquitecturas

de estos benchmarks en las distintas arquitecturas. Podemos observar claramente

como el rendimiento para las arquitecturas PIM es mucho mayor, consiguiendo

un incremento en el ancho de banda entre 1.4 y 3.4 veces al compararlo con

arquitecturas tradicionales. Con respecto a RANDOM, podemos observar que

se acerca mucho más a los resultados de STREAM para las arquitecturas PIM.

Esto es debido a la reducida latencia y jerarqúıa cache presentes en este tipo de

arquitecturas.

Además, para comprobar el funcionamiento de una aplicación real, con un

patrón de accesos a memoria aleatorio hemos utilizado la aplicación FM-index,

comparando tres diferentes versiones del algorithmo. Esto se puede observar en la

Figura B.11. En este caso, las arquitecturas PIM consiguen hasta 3.7 veces mejor

rendimiento que las arquitecturas tradicionales, siendo la versión k2d64bv la que

obtiene mejores resultados. También podemos observar como las arquitecturas

PIM con un bloque cache de 32 bytes obtiene resultados muy parecidos a la que

usa bloques cache de 64 bytes. Esto se debe a que la aplicación analizada no

utiliza más de 32 bytes de cada bloque cache.

En la Figura B.12 mostramos también el modelo roofline para la configuración

PIM. En esta figura podemos ver como los resultados obtenidos con el benchmark

RANDOM se adaptan muy bien al modelo roofline, acercándose mucho al ancho

de banda ĺımite para valores pequeños de la intensidad aritmética.
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Figure B.11: Rendimiento de FM-index para varias arquitecturas

Finalmente, la Figura B.13 muestra tanto el ancho de banda aleatorio como

el número de operaciones LF realizadas por cada Julio de enerǵıa utilizado. Se

puede observar que la eficiencia energética es muy superior para las configura-

ciones que utilizan arquitecturas PIM con núcleos de alta eficiencia energética y

bajo consumo. En concreto, las arquitecturas PIM son capaces de realizar hasta

8 veces más operaciones LF por julio y hasta 10 veces más accesos aleatorios que

el sistema con un i7-7800. Además, estas arquitecturas consiguen una mejora

aún mayor al compararlos con los sistemas con 32 y 64 núcleos, alcanzando una

eficiencia energética entre 21 y 40 veces superior.

B.4 Bowtie2 y Procesado en Memoria

En este caṕıtulo presentamos una exploración arquitectural para aplicaciones con

accesos de memoria aleatorios, utilizando espećıficamente Bowtie2, una aplicación

popular de alineamiento de secuencias en genómica, como caso de estudio para

el análisis de la eficiencia energética de distintos sistemas.

Como estas aplicaciones están principalmente limitadas por memoria, pro-

ponemos usar núcleos energéticamente eficientes ARMv8 de 64 bits. En el caso
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del sistema de memoria, proponemos el uso de memoria 3D (HBM2), en lugar de

la tradicional memoria DDR, como DDR4. También comparamos el rendimiento

de sistemas basados en ARM con un procesador Intel Xeon Phi 7210 KNL, que

incluye una memoria 3D MCDRAM en el mismo chip. La exploración arquitec-

tural se lleva a cabo utilizando el simulador gem5-X [90], una versión extendida

y validada del simulador ampliamente usado gem5 [15].

B.4.1 Bowtie2: Aplicación Completa de Alineamiento de
Secuencias

Bowtie2 [64] es una aplicación de alineamiento de secuencias de código abierto,

rápida y eficiente, utilizada para alinear cadenas de ADN con grandes genomas.

También soporta alineamientos con huecos.

Bowtie2 está basado en la transformada de Burrows-Wheeler y el algoritmo

FM-index para eficientemente encontrar alineamientos no exactos que satisfagan

una poĺıtica de alineamiento concreta. El algoritmo de Bowtie2 se divide en 4

pasos (ver Figura B.14).

Los ı́ndices de esta aplicación están optimizados con el objetivo de utilizar

la mı́nima memoria posible. De esta forma, los ı́ndices de Bowtie2 del genoma

humano usa en torno a 3.25GB en disco, y en memoria principal usa en torno a

1.3GB.

Al compararlo con otras herramientas de alineamiento, Bowtie2 es en torno

a 2.5-3 veces más rápido que BWA (Burrows Wheeler Aligner) cuando ambas

aplicaciones buscan alineamientos permitiendo huecos.

B.4.2 Entorno de Simulación Arquitectural

Nuestro entorno de simulación, basado en gem5-X nos permite realizar una ex-

ploración arquitectural relativamente rápida para arquitecturas optimizadas en

enerǵıa y rendimiento, a nivel de sistema para cualquier aplicación. Algunos

de los parámetros o variables con los que hemos trabajado para el estudio de

rendimiento han sido:

Sistema de memoria: Proponemos el uso de memoria de alto rendimiento como

HBM2. Hemos comparado este tipo de memoria novedosa con memorias

más tradicionales como DDR.
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Figure B.14: Fases de los algoritmos de (a) FM-index y (b) Bowtie2

Tipo de núcleos: Comparamos la eficiencia tanto en rendimiento como en-

ergéticamente de núcleos fuera de orden con núcleos en orden, normalmente

de menos rendimiento pero más eficientes en términos de enerǵıa.

Número de núcleos: Hemos explorado cómo escala el rendimiento y el uso de

enerǵıa con distinto número de núcleos, desde 8 hasta 28, comparando pocos

núcleos fuera de orden con muchos en orden.

Frecuencia de procesadores: Analizamos distintas frecuencias para los proce-
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Figure B.15: Mejora de rendimiento de HBM2 vs DDR4

sadores, entre 1GHz y 2GHz.

Cache de último nivel: Por último, hemos probado diferentes configuraciones

de la cache de último nivel (L2) con distintos tamaños entre 1MB y 8MB.

B.4.3 Resultados y Discusión

Hemos llevado a cabo numerosos experimentos ejecutando Bowtie2 en gem5-X.

Las Figuras B.15 y B.16 muestran comparativas de rendimiento entre arquitec-

turas HBM2 y DDR4 con diferentes configuraciones cache. En estas figuras se

puede ver que HBM2 proporciona una mejora en términos de eficiencia energética

y rendimiento de aproximadamente un 70% cuando comparamos estas dos arqui-

tecturas sin usar L2. En un sistema con cache L2, esta mejora se reduce hasta

un 50% en rendimiento y un 56% en eficiencia energética.

Por otro lado, las Figuras B.17 y B.18 muestra el escalado de rendimiento

y enerǵıa a 1GHz con diferentes configuraciones y diferente número de núcleos.

Podemos observar como muchos núcleos en orden sencillos son capaces de superar

a una cantidad inferior de cores fuera de orden, en términos tanto de rendimiento

como de enerǵıa, usando un área igual o menor.
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Figure B.16: Mejora de rendimiento de HBM2 sin L2 vs DDR4 con L2

B.5 Conclusiones

En esta tesis hemos tratado la optimización de aplicaciones intensivas en memoria

con distintas arquitecturas, tanto reales como simuladas.

El caṕıtulo 3 analiza varias versiones de FM-index y propone una variación

sobre ellas, con una mejora importante de rendimiento. Nuestra versión supera a

la mejor de las versiones previas adaptadas a estos sistemas, en un 130% y 90%

para KNL y SKL, respectivamente.

En el caṕıtulo 4, analizamos el rendimiento de aplicaciones con accesos aleato-

rios en arquitecturas convencionales y arquitecturas PIM, consiguiendo un rendimiento

de entre 2.7 y 3.7 veces comparando una configuración PIM con la configuración

de 12 cores y entre 1.26 y 1.87 veces comparado con las configuraciones de 36 y

64 cores con memorias DDR3 y DDR4.

En último lugar, en el caṕıtulo 5 usamos gem5-X para comparar el rendimiento

de Bowtie2 en distintas arquitecturas. Usando memorias HBM2 rápidas con

núcleos de cómputo muy eficientes conseguimos una mejorada de hasta un 68%

en rendimiento y hasta un 71% en enerǵıa cuando se compara con un sistema

tradicional con DDR4. También se demuestra que se puede conseguir hasta un
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Figure B.17: Escalado de rendimiento a 1GHz

47% de ahorro de enerǵıa al utilizar muchos núcleos pequeños en orden, en lugar

de menos núcleos fuera de orden.



122 Apéndice A. Resumen en español
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Figure B.18: Escalado de enerǵıa a 1GHz

Los resultados de esta tesis han derivado en las siguientes publicaciones:
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February 2018.
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Alastruey-Benedé, and Óscar Plata
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Los resultados de las dos últimas secciones están actualmente en evaluación
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[42] Simon Gog, Juha Kärkkäinen, Dominik Kempa, Matthias Petry, and Si-

mon J. Puglisi. Faster, minuter. In Data Compression Conf. (DCC 2016),

2016.

[43] Simon Gog and Matthias Petri. Optimized succinct data structures for

massive data. Software – Practice & Experience, 44(11), 2014.

[44] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select

operations on large alphabets: A tool for text indexing. In 17th Ann.

ACM-SIAM Symp. on Discrete Algorithm (SODA 2006), pages 368–373,

2006.

[45] Jorge Gonzalez-Dominguez, Yongchao Liu, and Bertil Schmidt. Parallel

and scalable short-read alignment on multi-core clusters using UPC++.

PLoS One, 11(1), 2016.

[46] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order

entropy-compressed text indexes. In 14th Ann. ACM-SIAM Symp. on Dis-

crete Algorithms (SODA 2003), pages 841–850, 2003.

[47] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian,

Vijayalakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li.

NDC: Analyzing the impact of 3d-stacked memory+logic devices on mapre-

duce workloads. In Int’l. Symp. on Performance Analysis of Systems and

Software (ISPASS’14), pages 190–200, 2014.



130 BIBLIOGRAPHY

[48] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,

J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, Jaewook

Shin, and Joonseok Park. Mapping irregular applications to DIVA, a PIM-

based data-intensive architecture. In Conf. on Supercomputing (SC’99),

pages 57–57, 1999.

[49] M Holtgrewe. Mason - a read simulator for second generation sequencing

data. Technical Report 962, Freie Universitaet Berlin, 2010.

[50] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vijayku-

mar, O. Mutlu, and S. W. Keckler. Transparent offloading and mapping

(TOM): Enabling programmer-transparent near-data processing in GPU

systems. In Int’l. Symp. on Computer Architecture (ISCA’16), pages 204–

216, 2016.

[51] K. Hsieh et al. Accelerating pointer chasing in 3D-stacked memory: Chal-

lenges, mechanisms, evaluation. In ICCD, pages 25–32, 2016.

[52] Intel R© coreTM i7-8700 processor (12m cache, up

to 4.60 ghz) product specifications. https://ark.

intel.com/content/www/us/en/ark/products/126686/

intel-core-i7-8700-processor-12m-cache-up-to-4-60-ghz.html.

Retrieved: September 2019.

[53] Intel architecture code analyzer, intel software. https://software.intel.

com/en-us/articles/intel-architecture-code-analyzer. Retrieved:

September 2019.

[54] Guy Jacobson. Space-efficient static trees and graphs. In 30th Ann. Symp.

on Foundations of Computer Science, 1989.

[55] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new DRAM archi-

tecture increases density and performance. In Symp. on VLSI technology

(VLSIT’12), pages 87–88, 2012.

[56] Joe Jeddeloh and Brent Keeth. Hybrid Memory Cube new DRAM archi-

tecture increases density and performance. In Symp. on VSLI Technology,

pages 87–88, 2012.
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