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Understanding the relationship between a species and its habitats is important for both conservation of
imperiled species and control of invasive species. For migratory species, we hypothesize that maintaining
connectivity between segregated habitats is more important than improving the quality of each habitat.
In the case of anadromous lampreys of conservation concern, we posit that restoring passage routes
between spawning, rearing and feeding habitats will result in higher larval abundance upstream from
barriers than efforts to improve quality of these freshwater habitats. To explore this hypothesis, we
reviewed conservation actions for native anadromous lampreys in freshwater and found that: i) improv-
ing passage between habitats results in immediate and quantifiable increases in larval abundance, ii)
anadromous lampreys are capable of existing in suboptimal habitats, and iii) small reservoirs of produc-
tion drive rapid expansion when anadromous lampreys are released from passage constraints. Hence,
maintaining habitat connectivity is clearly crucial for conservation of anadromous lampreys. There are
fewer examples of improvements to freshwater habitat that increased larval lamprey abundance, perhaps
because lampreys are rarely the focus of these efforts. However, habitat limitations such as stream de-
watering, chemical pollution, and scour occur and will likely be exacerbated by climate change.
Documenting habitat actions that reverse these problems may provide evidence for the merits of
lamprey-specific habitat improvement. Our observations are relevant to sea lamprey control in the
Great Lakes because barriers and chemical treatment are key instruments of population regulation,
and can be strategically deployed to limit production.

Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.
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Introduction

Species persistence requires maintenance of connectivity
between habitats of sufficient quality for every stage of the life
cycle. Erosion of habitat connectivity can lead to declines in species
of conservation concern (Hodgson et al., 2011), but can also be
exploited for pest control purposes (Rusch et al., 2010). Similarly,
reducing habitat quality can limit recovery of imperiled species,
while targeted reductions in habitat quality are often used in inte-
grated pest management (Chaplin-Kramer et al., 2011).

The relative importance of these two elements, habitat connec-
tivity and habitat quality, depends on the life history of the species
in question (Fig. 1). Because migratory animals must pass between
multiple segregated habitats (e.g., caribou Rangifer tarandus L. or
Chinook salmon Oncorhynchus tshawyscha Walbaum 1792), they
are likely to be most sensitive to loss of habitat connectivity (e.g.,
from pipelines or dams). In contrast, non-migratory animals spend
their entire lives in a single habitat (e.g., desert pupfish, Cyprinodon
macularius Baird and Girard 1853 or gopher tortoise Gopherus
polyphemus Daudin 1802) and may be more sensitive to habitat
degradation.

In pristine areas with complete connectivity between high-
quality habitats, all species are likely to flourish, and where habitat
quality is uniformly low and fragmented, all but the most resilient
species are at risk (Fig. 1). However, when key habitats are discon-
nected, regardless of their quality, we propose that migratory spe-
cies abundance will be most affected (Fig. 1). When habitat quality
is low but continuous, we predict that non-migratory species
would be most impacted (Fig. 1).

Anadromous lampreys appear to fall into the first category, as
they must pass between different habitats at key transition points
in their life history. Upon hatching in freshwater streams, prolar-
vae transition to silty areas for burrowing (Dawson et al., 2015).
Upon metamorphosis, larvae transition from silty freshwater rear-
ing areas and migrate downstream to lakes or the ocean where
they begin the parasitic stage (Moser et al., 2015b; Silva et al.,
2013). As they near sexual maturity, anadromous lampreys transi-
tion to a free-swimming migratory phase that takes them back to
freshwater streams for spawning (Baker et al., 2017; Clemens
et al., 2010; Johnson et al., 2015). These migrations often occur
over great distances (>700 km, Moser et al., 2015a,b).

Anadromous lampreys also have stage-specific habitat
requirements. Adults need clean gravel/cobble/boulder substrate
for spawning (Baker et al., 2017; Johnson et al., 2015), while
larvae develop in sand and silt (Dawson et al., 2015). Adults are
Fig. 1. Schematic of proposed vulnerability (low = shaded, high = white) to habitat qualit
non-migratory animals (right panel).
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parasitic and require relatively large-bodied marine or estuarine
prey (Quintella et al., this issue), whereas larvae feed on low-
quality micro-algae and detritus in freshwater (Dawson et al.,
2015).

Both disruption of lamprey movement and degradation of habi-
tat are well-recognized obstacles to recovery of imperiled lamprey
species (Clemens et al., this issue), and important tools for control
of invasive sea lamprey (Petromyzon marinus L.) in the Laurentian
Great Lakes (Lavis et al., 2003). For example, the European river
lamprey (Lampetra fluviatilis L.) in Finland was severely impacted
by a combination of impassable dams and logging operations that
reduced spawning and rearing substrate (Tuunainen et al., 1980;
Ojutkangas et al., 1995). In the Iberian Peninsula, Mateus et al.
(2012) estimated that 80% of sea lamprey habitat has been lost
due to dam construction. Native sea lamprey historically ascended
over 650 km from the sea to freshwater streams in Switzerland,
but are now rare in the heavily impounded Rhine River (Baer
et al., 2018). In the western U.S., Pacific lamprey (Entosphenus tri-
dentatus Richardson 1836) has been extirpated from some Califor-
nia drainages due to a combination of water withdrawals and
stream impoundment (Reid and Goodman, 2016) and pouched
lamprey (Geotria australis Gray 1851) are threatened by habitat
loss and/or barriers to passage (Clemens et al., this issue; Lucas
et al., this issue). These four anadromous lampreys (sea, river, Paci-
fic, and pouched) are relatively well-studied and are the main focus
of our review.

If passage is crucial to the fitness of anadromous lampreys, how
important is freshwater habitat quality? Lamprey are capable of
adapting to habitat limitations and are able to take advantage of
sub-optimal habitats for both rearing (e.g., large particle size, bank
overhangs; Nazarov et al., 2016) and reproduction (e.g., under
cover, in woody debris, deep water; Johnson et al., 2015). Channel-
ization and dam construction in the 1980s restricted spawning of
sea lamprey in the Mondego River, Portugal, to a 15-km artificial
reach of sub-optimal habitat influenced by hydropeaking
(Quintella et al., 2003). This was the only available freshwater
reach for this species in the entire river basin. Yet this poor-
quality area allowed for maintenance of sea lamprey production,
which rapidly expanded upstream when a fishway was con-
structed in 2011 (Pereira et al., 2017). Spawning in suboptimal
habitat immediately downstream from low-elevation dams that
block passage has also been observed for sea lamprey in the north-
eastern U.S. and other anadromous species (Gardner et al., 2012;
Lucas et al., 2009; A. Jackson, Confederated Tribes of the Umatilla
Indian Reservation, personal communication, 2019).
y (vertical axis) or connectivity (horizontal axis) for migratory animals (left panel) vs
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Table 1
Brief overview of evidence for responses of anadromous lampreys to landscape-scale restoration activities that improve habitat quality vs those that improve habitat connectivity.

Summary of evidence Source

Habitat quality Increased Pacific lamprey (Entosphenus tridentatus) abundance following
woody debris restoration

Roni, 2003; Nagayama et al., 2012; Gonzalez
et al., 2017

Increased river lamprey (Lampetra fluviatilis) abundance following riffle
restoration and reduced hydropeaking

Aronsuu et al., 2019

Immediate pouched lamprey (Geotria australis) spawning activity following
large boulder placement in a wood-lined box drain

C. Baker, NIWA, pers. comm.

Habitat connectivity Increased upstream abundance of sea lamprey (Petromyzon marinus)
following dam removal or fishway improvements

Hogg et al., 2013; Lasne et al., 2015; Magilligan
et al., 2016; Livermore et al., 2017; Pereira
et al., 2017; Kynard and Horgan, 2019

Increased river lamprey abundance following fishway improvements Bracken et al., 2018
Increased upstream abundance of Pacific lamprey following dam removal
or fishway improvements

Hess et al., 2015; Moser and Paradis, 2017;
Jolley et al., 2018; Reid and Goodman, 2020

Increased upstream abundance of Pacific lamprey following translocation
over dams

Close et al., 2009; Ward et al., 2012

Increased upstream abundance of pouched lamprey adults following
fishway improvements

Bice et al., 2019
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A key prediction of our conceptual model in aquatic systems is
that there will be more examples of increased abundance of migra-
tory species upstream from a barrier when connectivity is restored
than when habitat quality is improved. We used studies that mea-
sured larval abundance of native anadromous lampreys to explore
this idea, conducting a systematic search and review of the lam-
prey literature (Grant and Booth, 2009). After summarizing the
connectivity and habitat requirements of anadromous lampreys
in freshwater, we tallied examples of passage improvement and
freshwater habitat restoration actions that increased larval abun-
dance in each study area (Habitat Connectivity vs Habitat Quality
section, Table 1), while recognizing that it is often difficult to sep-
arate the effects of these actions).

Improvements in habitat connectivity and quality for lampreys
can impact other aquatic species in myriad ways (Maine, 2020).
Thus, in the course of our reivew, we also summarized examples
of how conservation actions for lampreys have affected other
freshwater species.
Habitat connectivity

For anadromous lampreys, high connectivity requires persis-
tence of corridors between freshwater spawning and rearing habi-
tats and estuarine/ocean feeding areas. For native sea lamprey,
there are few examples of continuous freshwater habitats in either
North American or European drainages to the Atlantic Ocean. In
almost every watershed, lamprey habitats are fragmented by pas-
sage barriers. For example, the British river network is reportedly
97% fragmented (Jones et al., 2019). Consequently, robust popula-
tions of anadromous lampreys are rare in these areas. Both river
and sea lampreys are listed in the European Union Habitats Direc-
tive as species whose conservation requires the designation of spe-
cial areas of conservation (CEC, 1992). Similarly, the imperiled
status of Pacific lamprey in the U.S. is recognized by tribal, federal,
and state governments (Clemens et al., 2017; Clemens et al., this
issue).

The literature abounds with examples of barriers to pre-
spawning migrations of lampreys; from obstruction at tidal bar-
rages in Britain (e.g., Silva et al., 2017) to barriers at culverts, dams,
irrigation diversions, and weirs in North America and Europe (e.g.,
Almeida et al., 2002; Castro-Santos et al., 2017; Gargan et al., 2011;
Jackson and Moser, 2012; Keefer et al., 2013; Moser et al., 2015a;
Nunn et al., 2017; Silva et al., 2019). In some cases, dams have
resulted in complete loss of habitat connectivity and extirpation
of lamprey upstream (e.g., Beamish and Northcote, 1989; Larson
et al., 2020; Wallace and Ball, 1978). However, there are also many
Please cite this article as: M. L. Moser, P. R. Almeida, J. J. King et al., Passage and
for conservation and control, Journal of Great Lakes Research, https://doi.org/1
examples of barriers that are semi-permeable to adult lamprey,
allowing a percentage to pass based on lamprey size (Keefer
et al., 2013), sexual maturation (Moser et al., 2019c), or migration
timing (Keefer et al., 2009; Lucas et al., 2009).

Some low-head barriers block lamprey passage only during cer-
tain flow conditions. For example, the European river lamprey has
an extended migration period, with adults moving into freshwater
during late summer to overwinter and spawn the following spring.
In Ireland, Kurz and Costello (1999) reported river lamprey spawn-
ing in the River Slaney upstream from a 2.5 m weir. High flow con-
ditions in autumn presumably allow river lamprey to surmount
such barriers; but migrations that occur immediately prior to
spawning in spring can be blocked due to low flow. Successful pas-
sage at low-head barriers in the Yorkshire Ouse also requires high
flows (Foulds and Lucas, 2013; Lucas et al., 2009).

There are also examples of barriers to pouched lamprey that
become passable during high flow conditions. In New Zealand,
adult pouched lamprey can climb past natural weirs and water-
falls, but poorly designed culverts are only passable during high
flows (C. Baker, National Institute of Water and Atmospheric
Research (NIWA), personal communication, 2019). Similarly, in
the Donguil River, Chile, the 6 m high El Salto waterfall disrupts
the upstream migration of adult pouched lamprey until rainfall
raises the water level by about 15 cm, creating a fluvial terrace that
enables passage around the waterfall (Reyes et al., 2014).

Even when there is a substantial area of suitable spawning habi-
tat downstream from a barrier, pre-spawning anadromous lam-
preys continually endeavor to travel further upstream. These
adults are likely attracted by larval pheromones (reviewed in
Moser et al., 2015a). If no passage is available, this migratory
imperative leads to spawning in graveled areas at the base of weirs
(Gargan et al., 2011). Float-over surveys upstream from obstacles
on the Munster Blackwater River in Ireland (3300 km2, 189 km
main stem) identified spawning gravels suitable for sea lamprey;
but, an eDNA ‘‘snap shot” noted under-use of these habitats
(Bracken et al., 2018). Bracken et al. (2018) also observed focused
spawning activity in areas immediately downstream from the first
two major weirs of 2.5 m head height. Barry et al. (2018) used the
SNIFFER III (Scotland and Northern Ireland Forum for Environmen-
tal Research) coarse resolution barrier passability tool, which rated
these weirs as either impassable or presenting high-impact risk to
migration of adult sea lamprey. While barriers are required by Irish
law to have a fish passage facility, Barry et al. (2018) opined that a
majority of fishways at low-head weirs were failing to pass sea
lamprey. For European river lamprey, strategies to mitigate the
adverse impacts of such low-head barriers with technical solutions
have also met with limited success (Tummers et al., 2018).
freshwater habitat requirements of anadromous lampreys: Considerations
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Monitoring of larval abundance and distribution of anadromous
lamprey upstream from barriers provides information on both
adult passage success and larval production attributed to restored
connectivity. Habitat available for spawning and rearing of sea
lamprey doubled in the Connecticut River (northeastern U.S.) fol-
lowing fish passage improvements at Holyoke Dam (RKM 225)
and three other main stem dams located upstream (Kynard and
Horgan, 2019). While annual counts of adult sea lamprey passing
Holyoke Dam after the improvements ranged from 15,000 to
95,000 during the period 1978–2014, there was no significant
trend in adult counts with time (Kynard and Horgan, 2019). Unfor-
tunately, the lack of larval sampling upstream from the dams made
it difficult to determine whether increased adult abundance trans-
lated to improved recruitment. Ideally, larval sampling should
assess age and stage structure to evaluate population growth, in
addition to abundance and distribution.
Fig. 2. Catch per unit effort (CPUE; larvae/h) of sea lamprey (Petromyzon marinus)
electrofished between 2011 and 2018 in areas downstream (black bars) and
upstream (gray bars) from the Coimbra Dam (RKM 45), Mondego River, Portugal.
Occurrences of fishway openings and a severe forest fire are also noted.
Freshwater habitat quality

For lamprey, high-quality freshwater habitats are exemplified
by uncontaminated streams, rivers, lakes, or tributary deltas where
optimal adult spawning habitats are located upstream from opti-
mal larval burrowing habitat. High-quality habitats are free of
invasive predators and do not experience rapid de-watering or
scour associated with hydropeaking or channelization. In the fol-
lowing paragraphs we summarize the substrate, depth, flow, and
water quality conditions needed for spawning and rearing of
anadromous lampreys.

Adult anadromous lampreys typically seek large substrate for
spawning, such as gravel-cobble (Johnson et al., 2015; Silva et al.,
2015) and boulder (Baker et al., 2015). Sea lamprey nests are
clearly defined excavations of up to 1 m, with a depression on
the upstream side of a gravel mound (Hogg et al., 2014; Pinder
et al., 2016; Sousa et al., 2012; Inland Fisheries Ireland, unpub-
lished data), while pouched lampreys spawn under boulders
(Baker et al., 2015). Spawning is usually in areas where the bed
slope changes and spawning is not typically observed in uniform
hydraulic habitat (Pinder et al., 2016). In open water adjacent to
spawning sea lamprey, depths range 0.3–1.0 m and velocity is typ-
ically 0.5–2.3 m/s (Johnson et al., 2015; Pinder et al., 2016; Sousa
et al., 2012; Inland Fisheries Ireland, unpublished data).

In contrast, optimal larval rearing habitat is over fine substrate
in low-velocity depositional areas that occur at pool tailouts, at the
ends of bars, at overhangs, tributary deltas, in-line lakes, and/or in
side channels (reviewed in Dawson et al., 2015). Granulometric
composition must allow burrow construction and maintain a vital
unidirectional water flux, essential to branchial aeration, food
intake, and elimination of metabolic waste (Hardisty and Potter,
1971). The ideal particle size combination is dominated by fine/
medium (0.05–0.6 mm diameter) and medium/coarse sand (0.2–
2 mm diameter), with low quantities of gravel and silt (Taverny
et al., 2012). Organic matter present in sediment provides food
for the detritivorous larvae, but an excess of fines (e.g., clay, silt)
can clog the gill lamellae (Dawson et al., 2015) and potentially
increase predation risk (Smith et al., 2012). Such habitat must ful-
fill a number of conditions that maximize survival during the
entire larval phase; however, larval lamprey are able to occupy
marginal patches of habitat (Nazarov et al., 2016), and some are
even found in the lower reaches of rivers exposed to tidal influence
(e.g., Silver, 2015).

Lampreys have an anti-tropical distribution, generally found
north and south of the 20 �C isotherm. Average lethal temperatures
are around 28 �C (Potter, 1980), but temperature during the warm-
est month could be the true limiting factor (Ferreira et al., 2013).
Larval lamprey generally require surface water year round;
Please cite this article as: M. L. Moser, P. R. Almeida, J. J. King et al., Passage and
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however, larvae of Pacific lamprey can survive for several weeks
in the hyporheic zone of an intermittent stream in the absence of
surface water (Rodríguez-Lozano et al., 2019). At the southern lim-
its of the Petromyzontidae distribution, the increasing frequency of
dry years with prolonged droughts followed by waterway siltation
and fires, are expected to severely impact lamprey production. This
is particularly of concern in the southern part of the Iberian Penin-
sula, where sea lamprey populations are already in decline due to
river fragmentation (Mateus et al., 2012).

In addition to dewatering, unnaturally high scour can limit lam-
prey rearing habitat. Impervious surfaces surrounding urban
streams can produce flashy hydrographs characterized by flows
of greater magnitude and shorter duration than normal (Walsh
et al., 2005). Such flows can scour fine-grain substrate used by lar-
val lampreys for rearing. In New Zealand, pouched lamprey larval
density dropped from 54 larvae per m2 to 6 larvae per m2 after sed-
iment loss in a channelized box drain where sediment was not nat-
urally replenished (unpublished data, C. Baker, NIWA).

Larval lamprey are also sensitive to chemical contaminants. Ash
runoff from forest fires increases ammonium concentrations, trace
metals, and ferrocyanides that lead to hypoxia (Bixby et al., 2015;
Earl and Blinn, 2003; Gonino et al., 2019; Moyle et al., 2010). Sev-
ere droughts are increasingly frequent, as are the severity of forest
fires. In the Mondego River, Portugal, larval abundance of sea lam-
prey decreased 46% in 2018 after a severe drought and forest fire
upstream from the Coimbra Dam in summer 2017, followed by
heavy rain (Fig. 2). Larval sensitivity to chemical contamination
has also been reported for other native lamprey species and is a
key component of the sea lamprey control program in the Great
Lakes (Dawson et al., 2015; Moser et al., 2019b; Moyle et al., 2010).
Habitat connectivity vs freshwater habitat quality

For anadromous lampreys of conservation concern, does larval
abundance recover faster with habitat connection or habitat
improvement (Silva et al., 2015)? In the following sections, we
review changes in larval abundance of native lampreys upstream
from a barrier following actions that improved connectivity (e.g.,
dam removals) vs. those that improved freshwater habitat quality
(as in Hodgson et al., 2011). Review keywords used were ‘‘lam-
prey” in combination with ‘‘passage”, ‘‘barrier”, ‘‘migration”, ‘‘habi-
tat improvement”, ‘‘habitat quality”, or ‘‘habitat restoration”. The
lamprey literature is relatively small and tractable; we were
freshwater habitat requirements of anadromous lampreys: Considerations
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already familiar with almost all of the studies returned by our
search. A secondary outcome of this review was a summary of
how conservation actions for lampreys have impacted other aqua-
tic species.

Improving connectivity

Actions to re-connect high-quality habitats by removing dams
or otherwise providing passage for anadromous lampreys have
resulted in immediate upstream colonization (likely facilitated by
larval pheromone cues) and increased larval production. This is
predicted in systems where anadromous lampreys already occur
downstream from an obstacle or are established in neighboring
basins (Pess et al., 2014); but, Pacific lamprey were also able to
recolonize an isolated stream after barrier removal (Reid and
Goodman, 2020). Hogg et al. (2013) demonstrated immediate use
of upstream habitat by spawning sea lamprey in an eastern coastal
U.S. river following barrier removal. Further upstream penetration
was reported in subsequent years, likely due to successful spawn-
ing, more widespread larval colonization, and consequent phero-
mone attractant release (Neeson et al., 2011). Similar responses
of sea lamprey to barrier removal were reported in another U.S.
river draining to the Atlantic Ocean (Magilligan et al., 2016) and
in France (Lasne et al., 2015).

Downstream pockets of production help to attract lamprey into
impounded systems, allowing for rapid recolonization when some
passage is restored. In Ireland, mitigation measures were under-
taken at two weirs to facilitate upstream migration of sea lamprey
into the Mulkear catchment (650 km2, 65 km main stem). Teleme-
try studies indicated that these weirs were obstacles to pre-
spawning sea lamprey, with many lamprey interrupting migration
and returning downstream to the River Shannon where they were
found spawning in suitable habitat (Rooney et al., 2015). During
2010–2014, the upper weir (Ballyclogh) was breached, and the
lower weir (Annacotty) was modified with rigid plastic tiles that
featured molded knob-like structures. Direct nocturnal observation
indicated that migrating sea lamprey used the molded surfaces to
pass upstream and did not use other areas of the weir face (Inland
Fisheries Ireland, unpublished data). Environmental DNA studies
further indicated that prior to mitigation this weir impeded sea
lamprey (Gustavson et al., 2015); and that when the tiles were in
proper repair, sea lamprey were able to pass upstream and spawn
(Bracken et al., 2018).

Even fishways with low passage efficiency can allow enough
lamprey passage for recolonization upstream. In central Portugal,
upstream colonization by sea lamprey has been extensively cata-
logued in the Mondego River, a channelized and highly impounded
river (Pereira et al., 2017) where several actions to restore river
connectivity were implemented. Obstacles to migration identified
through radiotelemetry (Almeida et al., 2000, 2002) were targeted
for improvement. A vertical-slot fishway was built in 2011 at
Coimbra Dam (the first impassable obstacle, RKM 45, Fig. 3) and
adult passage was monitored using visual counts at the fishway
and biotelemetry (i.e., passive integrated transponders, radio
transmitters, transmitters equipped with physiological sensors
that record muscle activity-EMG). Electrofishing surveys docu-
mented larval population responses and recolonization patterns.
During peak migration, fishway passage efficiency was 31% and
most upstream movements were observed when discharge from
the dam was <100 m3/s and temperature was 15–19 �C (Pereira
et al., 2019). When dam discharge exceeded 100 m3/s, tagged lam-
prey were attracted to the dam gates and away from the fishway
entrance (flow controlled at 1.5 m3/s). Pereira et al. (2017) found
that sea lamprey could experience considerable passage delay
(1.5–34 days), particularly if they remained immediately down-
stream from the dam gates. At this location, lamprey experienced
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high levels of muscle activity and energy costs associated with
attempts to pass through the gates (Quintella et al., 2004). Once
inside the Coimbra fishway, four of five EMG-tagged lamprey took
3–8 h to pass (Almeida et al., 2016; Pereira et al., 2017) and exhib-
ited the characteristic burst and attach behavior described for this
species during obstacle negotiation (Quintella et al., 2004). Within
four spawning seasons, the vertical-slot fishway contributed to a
29-fold increase in larval abundance.

Lampreys can also respond positively to nature-like fishways.
The Coimbra fishway construction was followed in 2016 by instal-
lation of five nature-like fishways at problematic low-head weirs
(Fig. 3; Almeida et al., 2002). Passage at the first weir upstream
from Coimbra Dam increased from 15% to 40% following the
nature-like fishway installation (Almeida et al., 2016; Pereira
et al., 2017). Most tagged sea lamprey (63%) passed this obstacle
within 7 d and data from EMG tags suggested lower muscle activ-
ity than at Coimbra Dam (Oliveira, 2017). Two years after the con-
struction of nature-like fishways, a 99-fold increase in larval
abundance was observed compared to pre-fishway abundance in
2011 (Fig. 2). For European river lamprey, Aronsuu et al. (2015)
opined that nature-like fishways are a preferred alternative, as all
ten of ten observed lamprey were able to pass a nature-like fish
ramp at a low-head barrier. At both nature-like and technical fish-
ways, entrance designs with sufficient attraction flow that do not
create a velocity barrier are critical (Castro-Santos et al., 2017;
Moser et al., 2019a; Pereira et al., 2017).

When habitat connectivity is restored, anadromous lampreys
are typically observed spawning upstream from former dam sites
in the first spring after barrier removal (e.g., Hogg et al., 2013;
Jolley et al., 2018; Moser and Paradis, 2017). Colonization by sea
lamprey of the upstream reaches of the Mondego River occurred
immediately after the Coimbra Dam fishway began to operate
(Pereira et al., 2017). While the rate of colonization is usually rapid,
it varies with stream size, downstream population abundance, and
passage efficiency at barriers, both in the U.S. (Hogg et al., 2013;
Jolley et al., 2018; Livermore et al., 2017; Moser and Paradis,
2017), and in Europe (Lasne et al., 2015; Pereira et al., 2017).

After lamprey passage is restored, proliferation of anadromous
larvae occurs at upstream reaches, promoting a rapid colonization
of tributaries and an expansion of main stem abundance. In the
Mondego River, sea lamprey colonization followed this pattern of
upstream adult dispersion, with initial expansion of larval abun-
dance in the main stem upstream from the Coimbra Dam, followed
by increased larval abundance in the lower Ceira River (the first
tributary upstream from the dam, Fig. 2). Pacific lamprey in the
Elwha River exhibited a similar pattern, with initial colonization
of tributaries immediately upstream from former dam sites, fol-
lowed by spawning in tributaries further upstream (R. Paradis,
Lower Elwha/Klallam Tribe, personal communication).

These examples indicate that re-connecting habitats is particu-
larly effective for anadromous lampreys for a number of reasons:

i) Pheromone cues produced by larvae can attract anadromous
adults to areas downstream from an obstacle (reviewed in
Moser et al., 2015a).

ii) Lamprey larvae can survive and adults can spawn in sub-
optimal substrate (Almeida and Quintella, 2002; Dawson
et al., 2015; Silva et al., 2015), thereby maintaining adult
attraction and small pockets of production in dammed sys-
tems (Almeida et al., 2000; Lasne et al., 2015).

iii) Even a fishway with low passage efficiency (~30%) can allow
for rapid lamprey colonization (Pereira et al., 2017).

iv) When an opportunity for escapement is provided, pioneer-
ing individuals rapidly disperse upstream (Almeida et al.,
2002; Hogg et al., 2013; Moser and Paradis, 2017), establish-
ing new core areas or larval production.
freshwater habitat requirements of anadromous lampreys: Considerations
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Fig. 3. Spatial distribution of sea lamprey (CPUE; larvae/h) in the Mondego River, Portugal between 2011 and 2018 for areas downstream and upstream of the Coimbra Dam
(RKM 45). Larval abundance was classified as: absent (�); < 30/h (small s); 30–60/h (medium s); 60/h (large s). Dams ([]) and low-head weirs (▬) are also represented.
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v) Increased abundance of lamprey larvae at upstream reaches
promotes rapid colonization of adjacent sites (Hogg et al.,
2013; Pereira et al., 2017).

In some systems, translocation (transporting adults upstream
from passage obstacles) can also improve recruitment of
Please cite this article as: M. L. Moser, P. R. Almeida, J. J. King et al., Passage and
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anadromous lampreys (Close et al., 2009; Salojkrvi et al., 1978;
Ward et al., 2012). However, Aronsuu et al. (2015) observed that
translocating adult river lamprey upstream from migration barri-
ers requires attention to local environmental conditions. They cau-
tioned that instream cover is critical for resting and that low levels
of movement occur at water temperatures below 2 �C. Aronsuu
freshwater habitat requirements of anadromous lampreys: Considerations
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et al. (2019) reported that 30 years (1981–2010) of intensive stock-
ing (247 million sub-yearlings) and adult translocations (571 000)
of river lamprey have not resulted in population recovery in River
Perhonjoki (Finland). Moreover, Reid and Goodman (2020) advo-
cate for low-cost removal of barriers to Pacific lamprey, rather than
relatively costly and labor-intensive translocation schemes. In New
Zealand, pouched lamprey have not become established above
hydropower dams, despite intermittent trap and transfer opera-
tions for adults. Catches below the dams are highly variable, with
fish absent in most years (Ryder, 2018). An assessment of lamprey
bile acids from water samples at 15 sites above and 11 sites below
Roxburgh Dam detected high concentrations of lamprey phero-
mone (petromyzonol sulfate) at all sites below the dam, but failed
to detect the compound upstream from the dam (C. Baker, NIWA,
unpublished data).

Improving habitat connectivity for anadromous lampreys is
ongoing or planned in numerous river systems worldwide. Sea
lamprey migration into the River Shannon, Ireland’s largest catch-
ment (16,800 km2, 360 km), is impeded by twomajor hydroelectric
dams immediately upstream from the tidal limit. Anadromous sea
lamprey can utilise fish lifts at both barriers, enabling access to
Lough Derg at the bottom of the Shannon catchment. A total of
49 upstream movements by anadromous sea lamprey were
recorded in the fish lifts during May-July 2013. In addition, non-
feeding sea lamprey outmigrants and lake-feeding juveniles in
Lough Derg have been recorded (King and O’Gorman, 2018). These
data suggest that sea lamprey persist, even though very low num-
bers of adults penetrate the catchment. Improved passage effi-
ciency via the creation of a nature-like fishway is currently being
investigated. That numerous lamprey would use such enhanced
passage facilities is evidenced by studies of this species in the adja-
cent River Mulkear, the last major Shannon tributary un-impacted
by hydroelectric weirs (Bracken et al., 2018; Gustavson et al., 2015;
Rooney et al., 2015).

In the Rhine River basin, a substantial investment to improve
ecological connectivity has been made during the past 20 years,
with several fishways built in the Rhine main stem, delta, and
tributaries (Griffioen and Winter, 2017; ICPR, 2009; Raat, 2001).
However, sea lamprey colonization responses have been equivocal
(Baer et al., 2018). At two vertical-slot fishways located in the
southern, upper Rhine River (Iffezheim in 2000 and Gambsheim
in 2006), approximately 1900 (Iffezheim) and 500 (Gambsheim)
adult sea lamprey have used the fishways since their construction.
Despite some annual variation, numbers at these fishways are con-
sistently low. Reproduction occurs as far upstream as the Stras-
bourg Dam, and an increase in nests, lamprey larvae, and
downstream movement has been observed (ICPR, 2013). Baer
et al. (2018) also reported a high quantity of metamorphosing
juveniles at this location (650 km from the river mouth), but only
three adult sea lamprey and 40 river lamprey. The explanation for
these results is unknown, but lamprey losses at downstream obsta-
cles and/or during the early part of the spawning migration are
suspected. For example, sea lamprey passage efficiency at the tidal
barrier (Afsluitdijk) in the Netherlands is 16–33%. Improving this
structure for lampreys could contribute to a faster recovery
(Griffioen and Winter, 2017).

In the Garonne-Dordogne River in France, adult lamprey counts
at fishways installed at hydropower dams have unfortunately
shown a dramatic decrease, from tens of thousands during the
2000s to nearly zero recently (Lobry et al., 2016). Sea lamprey sup-
port an important commercial fishery in the Gironde estuary, and
catch per unit effort did not decrease during this period
(Beaulaton et al., 2008). This hampers identification of the reason
for the decline in lamprey abundance recorded at the fishways
and highlights the need to consider an integrated management
approach for commercial species. For example, during lamprey
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restoration in the Mondego River, Portugal, the number of fishing
licenses was adjusted and an intermediate fishing closure was
established during the peak of spawning migration (Stratoudakis
et al., 2020). These measures allowed an increase in lamprey num-
bers reaching the upstream river stretch (Almeida et al., this issue).

Within the Iberian Peninsula, several additional rivers are prime
candidates for sea lamprey restoration work. In the Tagus and
Douro Rivers of Portugal, two of the largest river basins, the exist-
ing Borland fish locks do not pass sea lampreys efficiently, most
likely due to poor entrance attraction (Bochechas, 1998, 1995;
Santo, 2005). Similarly, in the Ulla River of northwestern Spain,
there is an urgent need to remove or improve low-head obstacles
and curtail lamprey fisheries (Silva et al., 2019). Currently, several
on-going projects to improve ecological connectivity and spawning
habitat availability will hopefully benefit sea lamprey populations,
along with other diadromous and potamodromous fishes.

Across the native distribution of European lampreys, there are
few other rivers where rehabilitation projects include monitoring
of lamprey fishway use, population demography, and/or patterns
of recolonization. However, some studies have already provided
insight into the main recovery obstacles, and this has led to prior-
itization of rehabilitation measures in European rivers (Van
Puijenbroek et al., 2018). Such efforts will hopefully continue to
develop, and in the near future, will provide more information on
recovery of anadromous lampreys in their native range.

Improving habitat

There are few examples of habitat improvements in freshwater
that have specifically targeted anadromous lamprey restoration.
Even fewer invest in lamprey-specific monitoring. More common
are habitat restoration actions directed at other species that either
improve or, in some cases, diminish freshwater habitats for
anadromous lampreys.

Habitat improvements designed specifically for anadromous
lampreys are showcased by long-term research and monitoring
in the Perhonjoki and Kalajoki rivers, Finland (Aronsuu et al.,
2019). European river lamprey in these rivers are heavily impacted
by dams in the lower reaches, channelization, acidification,
upstream impoundment, and hydropeaking. Habitat improve-
ments to restore river lamprey in the River Kalajoki contributed
to increases in abundance of both subyearling and older larvae
(Aronsuu et al., 2019). Most effective were restoration of substrate
in riffles to provide winter holding areas for adults and reduction of
hydropeaking to reduce larval mortality (Aronsuu et al., 2019).

Habitat improvements for salmonids and other species can
result in collateral improvements for lamprey. For example, woody
debris addition for salmonid restoration has resulted in increased
depositional zones and concomitant increases in larval lamprey
habitat and abundance (Gonzalez et al., 2017; Nagayama et al.,
2012; Roni, 2003). However, addition of spawning substrates for
salmonids in the River Perhonjoki, Finland, did not improve spawn-
ing habitat for river lamprey, as grain sizes added were too large
(8–40 mm) for the lamprey to use (Aronsuu et al., 2019). Addition
of these grain sizes would benefit sea lamprey, as spawning gravel
used by Atlantic salmon in Irish rivers (Fluskey, 1989), closely
matches that used by sea lamprey (Andrade et al., 2007; Sousa
et al., 2012; Inland Fisheries Ireland unpublished data).

Increasing stream flows for salmon can also improve conditions
for lamprey and other stream residents. In the Umatilla River
(northwestern U.S.), increased minimum flow requirements have
resulted in lower summer temperatures and expanded rearing
and spawning habitat for Pacific lamprey (A. Jackson, Confederated
Tribes of the Umatilla Indian Reservation, personal communica-
tion, 2019). As a result of population increases, 2019 was the first
year that a tribal fishery for lamprey was permitted in the Umatilla
freshwater habitat requirements of anadromous lampreys: Considerations
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River. Increased flow requirements in many small coastal Califor-
nian, Australian, and Portuguese streams would undoubtedly
increase lamprey habitat, as these areas now are partially to com-
pletely de-watered in most summers (Oliveira et al., 2004; S. Reid,
Western Fishes, personal communication, 2019; C. Baker, NIWA,
personal communication, 2019).

In some cases, well-meaning efforts to improve salmon habitat
have resulted in direct mortality and potential habitat degradation
for anadromous lampreys (Maine, 2020). De-watering and sub-
strate ‘‘improvement” can result in loss of lamprey larvae and their
rearing habitats (Strief, 2009; R. Lampman, Confederated Tribes
and Bands of the Yakama Nation, personal communication, 2019;
S. Reid, Western Fishes, personal communication, 2019). Dredging
and channel widening reduce larval habitat, but re-colonization of
impacted habitat and colonisation of newly created habitat have
been recorded within just three years (King et al., 2015). Lamprey
exhibit wider thermal tolerance limits than salmonids and a flexi-
ble life history that allows for movement to new areas in the face of
habitat degradation (e.g., Silva et al., 2015). Hence habitat quality
may not be as key to their recovery as it is for other species.

If lamprey are not killed outright by dewatering or chemical
pollution, they appear to tolerate small patches of suboptimal
habitat—and persist. This characteristic, and their panmictic popu-
lation structure, allows native anadromous lampreys to perpetuate
in the face of habitat degradation; but it has also made invasive sea
lamprey in the Laurentian Great Lakes very difficult to extermi-
nate. It should be noted that native brook lampreys worldwide
do not have the advantage of broad adult dispersal and are there-
fore far more vulnerable to local habitat degradation than anadro-
mous or adfluvial forms (Maitland et al., 2015).

Effects of anadromous lamprey conservation on other species

In North America, most barrier removals are made to increase
production of alosids and salmonids, with collateral benefits to
lampreys (e.g., Hogg et al., 2013; Moser and Paradis, 2017). How-
ever, some efforts have been made to specifically provide lamprey
passage. These have included installation of separate fishways
designed to accommodate Pacific lamprey climbing abilities, and
retrofits to traditional fishways (Goodman and Reid, 2017; Moser
et al., 2019a,c, 2011). Studies were conducted to ensure no nega-
tive outcomes of these actions for salmonids; in most cases,
improvements for lamprey were either neutral or improved salmo-
nid passage (e.g., Johnson et al., 2012; Moser et al., 2019a).

In Europe, conservation measures targeting sea lamprey recov-
ery, either by dam removal or implementation of fishways, have
had mutual benefits for other diadromous fishes and the entire
freshwater ecosystem. After providing a fishway targeting allis
shad (Alosa alosa L.) and sea lamprey in central Portugal, increases
in brown trout (Salmo trutta L.) abundance at upstream stretches
was observed (Almeida et al., 2016). Anglers also started to report
a reappearance of the anadromous form of this species (i.e., sea
trout). The catadromous thin-lipped grey mullet (Chelon ramada
Risso, 1827) is now able to use feeding habitats in upstream areas
of the Mondego River (Almeida et al., 2016). As a result of the
increased abundance of sea lamprey larvae, the number of mullet
parasitized by juveniles has increased, being particularly conspicu-
ous during the downstream mullet spawning migration (Septem-
ber–November).

In many European rivers, proliferation of non-native European
catfish (Silurus glanis L.) has resulted in predation on sea lamprey
larvae and adults, as well as other native fishes (M. Ferreira, per-
sonal communication, 2019; Boulêtreau et al., 2020). In the River
Garonne in France, where European catfish have established self-
sustaining populations, anadromous fish contributions to the cat-
fish diet ranged between 53% and 65% (Poulet et al., 2011;
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Syväranta et al., 2009). Boulêtreau et al. (2020) reported that 50%
of tagged lamprey were consumed within a week and at least
80% of themwere preyed upon within one month. This emphasizes
the potential importance of anadromous species in food webs
where migration is currently prevented, but also the impact of
non-indigenous species (i.e., European catfish) on native sea lam-
prey in European rivers.

At an ecosystem level, marine-derived nutrient subsidies from
sea lamprey contribute to stream food webs either by direct con-
sumption of lamprey eggs/carcasses or via indirect pathways
(e.g., Dunkle, 2017; Nislow and Kynard, 2009; Samways et al.,
2018; Weaver et al., 2015). This boosts the productivity of entire
freshwater communities (Weaver et al., 2018a). Additionally,
nest-building behaviors increase habitat heterogeneity and favor
pollution-sensitive benthic invertebrates (Hogg et al., 2014;
Sousa et al., 2012; Weaver et al., 2018b). Finally, by serving as a
flagship species in their native range, lampreys provide indirect
public support for restoration of other under-valued or cryptic
species.
Conclusions

The importance of connectivity for conservation of anadromous
lampreys is highlighted in our review of passage and freshwater
habitat requirements. In recent years, numerous studies have doc-
umented the rapid recolonization of upstream areas following dam
removal or modification (Table 1). These studies lend support to
our hypothesis that improving habitat connectivity, as opposed
to a focus on habitat quality, will increase larval abundance of
anadromous lampreys. While re-establishing habitat connectivity
may be scientifically defensible, we did not consider the attendant
societal and economic costs, key elements in structured decision
making (Gregory et al., 2012). Moreover, stream connectivity and
habitat quality are not mutually exclusive, as restoring connectiv-
ity often results in improvements to riparian function (Pess et al.,
2014). Indeed, the European Union’s Water Framework Directive
of 2000 identifies ‘water quality’ in terms of ‘ecological quality’,
with benthic invertebrates and fish counted as indicators of ‘qual-
ity’. The Directive also identifies the relevance of hydromorphology
in waterbodies of ‘high’ quality, with longitudinal connectivity
included as a criterion.

Our conclusion should not be extended to non-parasitic brook
lampreys, which are not migratory and likely more susceptible to
local habitat degradation (Maitland et al., 2015). It also may not
apply to lampreys at the edge of their distribution, where effects
of extreme climate change on habitat quality could accelerate
extinctions (Maitland et al., 2015). Pouched lampreys in the South-
ern Hemisphere, lampreys of the Iberian Peninsula, southern Cali-
fornia and Central America all face increased risks of de-watering,
reduced attraction flows, scour, dredging, hypoxia, and chemical
pollution (Wang et al., this issue). Freshwater habitat restoration
efforts that target these effects and take into consideration the
specific spawning and rearing requirements of lamprey are rare,
but would likely contribute to recovery of both native brook and
anadromous lampreys (Maitland et al., 2015; Clemens et al., this
issue). Restoration that works to ‘‘restore natural river processes”
(Addy et al., 2016) will, by definition, contribute to recovery of
habitat types suitable for all life stages of anadromous lampreys.

The outcome of assessing our model prediction has clear man-
agement implications for recovery of native anadromous lam-
preys: every effort should be made to protect small reservoirs of
production until habitat connectivity can be re-established (as in
the Mondego River). Because fecundity of anadromous lampreys
is about 10� higher than that of salmonids and because lampreys
are able to survive suboptimal rearing and spawning substrates,
freshwater habitat requirements of anadromous lampreys: Considerations
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even small levels of adult escapement at passage barriers can keep
a population from going extinct. Indeed, these same characteristics
thwart sea lamprey control efforts in the Great Lakes, where near-
zero passage barriers can still result in some upstream production
(Johnson et al., 2016).

Barriers to migration (decreased connectivity) and chemical
application (decreased habitat quality) are already used to control
sea lamprey in the Great Lakes (Vélez-Espino et al., 2008). Popula-
tion matrix modeling predicted that use of lampricide to kill
young-of-year, larvae and transforming juveniles would be more
effective than methods targeting adult fecundity (via reductions
in stream connectivity; Vélez-Espino et al., 2008). This goes against
the predictions of our conceptual model. We suggest that this dif-
ference may arise because lampricides target lamprey directly,
whereas typical habitat restoration actions (e.g., increasing stream
sinuosity, reducing point and non-point source pollutants, restor-
ing riparian function) do not.

Nevertheless, there is some evidence to suggest that popula-
tions of sea lamprey in the Great Lakes can rebound when highly
contaminated sites are cleaned up (e.g., Mineral River, a tributary
to Lake Superior; M. Steeves, Fisheries and Oceans, Canada, per-
sonal communication). While Pacific lamprey exist in highly con-
taminated sites (Nilsen et al., 2015), actions to alleviate chemical
contamination could allow these populations to expand. For
anadromous lampreys in Europe, efforts to improve water quality
and reduce severe hypoxic zones have undoubtedly improved lam-
prey habitats, but these effects are often masked by the fact that
these rivers are also heavily impounded (e.g., Baer et al., 2018).

The propensity for lamprey to exploit very small patches of low-
quality habitat and still maintain residual populations is a recog-
nized problem when targeting streams for sea lamprey control
(Jubar et al., this issue). However, the attraction of adults to larval
pheromones and larval sensitivity to chemical controls and/or de-
watering events could be further exploited in control efforts.
Morman et al. (1980) first noted that adult sea lamprey were
attracted to and able to spawn in areas upstream from unaccept-
ably polluted larval habitats, resulting in no larval production.
For native lampreys, production can occur in unexpected areas (ir-
rigation diversion canals, hatchery abatement reservoirs, dam fore-
bays; see Lampman et al., this issue) with lethal consequences for
larval production. Attracting and encouraging spawning of sea
lamprey upstream from regularly de-watered, dredged, or
degraded larval habitats in tributaries to the Great Lakes could
have similar effects (e.g., Humber River, Pratt et al., this issue).
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