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A B S T R A C T

Purpose: To compare two beam angle optimization (BAO) algorithms for coplanar and non-coplanar geometries
in a multicriterial optimization framework.
Methods: 40 nasopharynx patients were selected for this retrospective planning study. IMRT optimized plans
were produced by Erasmus-iCycle multicriterial optimization platform. Two different algorithms, based on a
discrete and on a continuous exploration of the space search, algorithm i and B respectively, were used to address
BAO. Plan quality evaluation and comparison were performed with SPIDERplan. Statistically significant dif-
ferences between the plans were also assessed.
Results: For plans using only coplanar incidences, the optimized beam distribution with algorithm i is more
asymmetric than with algorithm B. For non-coplanar beam optimization, larger deviations from coplanarity
were obtained with algorithm i than with algorithm B. Globally, both algorithms presented near equivalent plan
quality scores, with algorithm B presenting a marginally better performance than algorithm i.
Conclusion: Almost all plans presented high quality, profiting from multicriterial and beam angular optimiza-
tion. Although there were not significant differences when average results over the entire sample were con-
sidered, a case-by-case analysis revealed important differences for some patients.

1. Introduction

Intensity-modulated radiation therapy (either static/dynamic IMRT
or volumetric modulated arc therapy, VMAT) is becoming the standard
technique in radiation therapy. Non-uniform intensity fields from
multiple directions are used to generate high conformal dose distribu-
tions to the tumour. For the standard approach of IMRT/VMAT treat-
ment planning, the plan objectives are usually described by physical or
biological descriptors that are typically incorporated in an objective
function that will guide the fluence map optimization (FMO) procedure
by scoring the goodness of the plan [1]. Searching methods such as
linear least squares [2], gradient descent [3] or simulated annealing [4]
are used to compute the intensity pattern that provides the best possible
trade-off between conflicting planning goals. A trial-and-error iterative

manual tuning of plan parameters (like weights, objectives or beam
angles) may be necessary to achieve an acceptable plan. One important
difficulty in this iterative process is the fact that it is not possible to
know the impact that changing one given parameter will have in the
treatment plan, or what are the interdependencies that exist between
the different parameters. This iterative process is thus mainly guided by
the empirical knowledge of the planner. Furthermore, it is also not
possible to link the parameters’ values with the desired clinical plan-
ning goals. As a result, it is not possible to guarantee that the trial-and-
error optimization process will lead to an optimal plan. This process is
also more or less time-consuming depending on the case complexity
and mostly on the planner skills [5].

Multi-criteria optimization (MCO) methods come up as a natural
option to support the IMRT treatment planning decision making
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process. Despite presenting less manual interaction, these methods still
require some triggering from the planner to obtain good dose dis-
tributions. Multiple objectives, resulting from the goals assigned to
targets and normal tissues, are simultaneously maximized (or mini-
mized), instead of a single objective function usually applied for the
standard approach of inverse planning. As most of the times it is not
possible to find a single feasible solution that is simultaneously the best
one for every objective [6,7], a set of optimal plan solutions containing
the best possible trade-offs between objectives are presented to the
decision maker.

Beam angle selection plays also an important role in IMRT optimi-
zation. An appropriate beam angle assembly choice, based on a math-
ematical criterion rather than on the planner experience or on equidi-
stant coplanar arrangement solutions, may lead to important
enhancements in the final plan dose distribution solution [8]. Plan
quality improvements can be even more significant if non-coplanar
directions are included in the optimization process [9]. The use of non-
coplanar beam angles in VMAT was also proposed to combine the
benefits of arc therapy, such as short treatment times, with the benefits
of noncoplanar IMRT plans, such as improved organ sparing. Selected
non-coplanar beam angle directions can be used as anchor points of the
arc therapy trajectory [10] which further validate the interest of
studying the selection of optimal non-coplanar beam angle incidences.
Mathematically, the beam angular optimization (BAO) problem can be
described as a highly non-convex multi-modal optimization problem
with many local minima [11–13], which ideally requires methods with
few computing iterations and able to avoid getting trapped in local
minimum. BAO solutions are often non-intuitive, so it is important to
use optimization approaches that are reliable considering their capacity
of delivering optimal solutions [14].

The BAO problem can be addressed in two different ways. One
possibility is to decouple the beam angle selection from the FMO and
solve the two problems sequentially. In this case, BAO is driven by
geometrical measures (e.g., beam’s-eye view metrics) or by methods
that require prior knowledge of the problem [8,15]. Although compu-
tationally efficient, these methods do not fully account for the interplay
of beam angles and beamlet weights and plan solution optimality
cannot be fully guaranteed. Another possibility is to simultaneously
address BAO and FMO problems. FMO optimal solutions are used to
assess the beams set plan quality during the BAO [13]. Two completely
different mathematical formulations of the BAO problem can be found
in the literature: a combinatorial formulation, where the interval of
possible gantry angles, [0°, 360°[, is discretized into evenly spaced
angles (e.g. {0°,10°,…,350°} for an angle increment of 10°) and a con-
tinuous BAO formulation where all possible gantry angles in the in-
terval [0°, 360°[ are considered. For the first approach, a combinatorial
search for the best ensemble of beams over a discretized space search
defined with all possible beam incidences can be done using heuristic
methods [12,13,16–20]. However, as this formulation is considered a
nondeterministic polynomial time hard problem [21], alternative
combinatorial approaches have also been developed. The iterative BAO
methods wherein the beams are iteratively subtracted [22] or added
[23,24] to a beam ensemble, decreasing significantly the possible
number of combinations, are one the most well-known examples. BAO
methods based on the continuous exploration of the solutions search
space have been explored as an alternative to the combinatorial BAO,
namely using pattern search methods [9,25], or considering a parallel
multistart derivative-free optimization framework [9,26].

In the present work, the BAO problem is addressed using two al-
gorithms, one belonging to the discrete combinatorial type [23] and the
other to the continuous space search approach optimization class [25].
Both algorithms use the FMO objective function to guide the BAO
process and the two problems are simultaneously addressed. The BAO
algorithms were compared over a set of 40 nasopharyngeal cancer
(NPC) clinical cases. The correspondent IMRT plans were optimized by
an automated MCO calculation engine developed by Breedveld et al.

[27]. Coplanar and non-coplanar geometry scenarios and different
number of beam incidences in treatment delivery were considered in
this retrospective planning study. The plans were assessed and com-
pared using SPIDERplan [28], that evaluates the quality of the dose
distribution through an intuitive graphic representation and an asso-
ciated score function that are based on dose prescription aims.

2. Materials and methods

2.1. Patient data

Forty NPC cases, stages T1 – T4; N1 – N3a/N3b, treated with IMRT
were selected for this study. Planning target volumes (PTV) delineation
and dose prescriptions were based on the Radiation Therapy Oncology
Group and the National Comprehensive Cancer Network guidelines. All
cases had simultaneous integrated boost prescription delivered in 33
fractions, 70.0 Gy to the tumour PTV and a dose ranging between
54.0 Gy and 59.4 Gy according to the associated risk disease level to the
lymph nodes PTVs. Some patients had one or more adenopathies that
were also prescribed with 70.0 Gy. Spinal cord, brainstem, retinas, lens,
optical nerves, chiasm, pituitary gland, ears, parotids, oral cavity,
temporomandibular joints, mandible, oesophagus, larynx, brain,
thyroid and lungs were also contoured by the radiation oncologist, as
shown in Figs. S1 and S2 in the Supplementary material. The organs-at-
risk (OAR) tolerance doses were established in agreement with the in-
stitutional protocol for the nasopharyngeal pathology (the reader is
referred to the last column of Table S1 in the Supplementary material).

2.2. Plan generation and optimization

FMO for all plans was handled by Erasmus-iCycle IMRT multi-
criterial optimization engine [27]. Guided by a wish-list, containing
clinical constraints and prioritized objectives, a constraint-based
method, 2pεc method, is used to automatically generate a single Pareto
optimal IMRT solution for a given set of beams [27]. Beamlets size are
set to 10× 10mm2 with 30mm of scatter radius for IMRT optimization
and 15mm for the BAO algorithm implemented within Erasmus iCycle.
Dose calculation is performed using a pencil-beam dose algorithm with
equivalent path length inhomogeneity corrections and no fluence seg-
mentation is performed during or after multicriterial optimization. The
wish-list template built for NPC cases, was previously customized ac-
cording to the established institutional clinical tolerance criteria using
five test cases (Table S2 in the Supplementary material). It contained
clinical constraints and prioritized objectives that were divided in two
optimization levels, according to the clinical tolerance doses, the
proximity between PTVs and OARs and its impact on the dose dis-
tribution. This configuration, with a progressive dose optimization
structure, is appropriate for complex sites, like the NPC cases. It intends
to avoid possible limitations that may arise when a dose value achieved
in an OAR with a high priority restricts the optimization of another one
with a lower priority. The objectives associated with the PTVs were
assigned with the Logarithmic Tumour Control Probability (LTCP)
function, which is regulated by a cell sensitivity parameter (α). For this
study, an α value of 0.75 was applied to guarantee that at least 98% of
the PTV volume receives 95% of the prescription dose (Dp). To allow
the minimization of lower prioritized objectives, a LTCP sufficient value
of 0.5 was defined. The remaining objectives were defined according to
the OAR type. For organs with a serial architecture a maximum dose
objective was defined. For parallel architectures a mean dose objective
was applied. Also, the dose of non-vital OARs, such as lens, optics, re-
tinas, brain or pituitary gland, was minimized using the generalized
Equivalent Uniform Dose (gEUD) function with a value of the tissue-
specific parameter that describes the volume effect (a) equal to 12.
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2.3. Beam angular optimization

For BAO of coplanar and non-coplanar beam geometries two dif-
ferent methods were tested. Both methods used the optimal FMO value
to guide the BAO process and the two problems were jointly solved. The
number of beams was defined a priori.

In the first method, developed by Breedveld et al. [23,29] and im-
plemented within Erasmus-iCycle, BAO is integrated in the plan opti-
mization framework, considering a discretization of the search space,
i.e. the gantry angle [0°,360°[ and the couch angle [−90°,90°] intervals
are discretized into equally spaced angles with an angle increment of 5°.
Plan generation is done by iteratively adding into the plan beams with
an optimal orientation. For a given beam arrangement, all possible
candidates will be combined with the beams already selected for the
plan and the candidate beam that achieves the lowest score of the
fluence optimization problem is added. New beams will be sequentially
added until the maximum number of beams initially defined is reached.
The way the iterative BAO algorithm works is described in Algorithm i:

Algorithm i
Initialization

• Define n the number of beams;

• Define = = … = …θΘ {( ,) i 1, ,N, j 1, ,M}i as the discrete set of possible
beam directions;

• Set =x : { }0 as the set of best beam directions;

• Set k:=1;

Iteration

1. Add each direction of Θ(that does not belong to xk - 1), one at a time,
to xk - 1 and compute the optimal FMO value of the corresponding
beam direction ensemble;

2. =x x θ ϕ: { , ( , )}k k kk - 1 where θ ϕ( , )k k is the beam direction of Θ that
added to the directions of xk - 1 leads to the best optimal FMO value;

3. = +k k: 1;
4. If ≤k n return to step 1 for a new iteration.

The second approach, developed by Rocha et al. [25], explores the
continuous BAO search space using a pattern search method, meaning
that there is no need to do any kind of discretization. These class of
methods are directional direct search methods and thus do not require
the use of derivatives to minimize the objective function. To assure a
more effective search for the best objective function local minimum, a
set of points spanning as much as possible the entire search space is
defined in a preliminary step of the pattern search optimization. Thus,
the objective function values of a set of plans with equally spaced or-
ientations that span the entire beam angle search space are determined.
The pattern search optimization is organized around two steps: the
search step and the poll step. It starts with the search step where any
(global) strategy can be used to improve the best objective function
value. In this implementation, minimum Frobenius norm quadratic
models were used to perform a search over the whole search space [30].
These quadratic models are based on the beam angle sets already
considered. If the corresponding objective value is lower than the best
objective function minimum value, the search step was successful, and
it is repeated. Otherwise the optimization method proceeds to the poll
step, where the current best solution is locally improved using the
concept of positive basis. If this step fails to obtain a decrease in the
objective function value, the step-size parameter is reduced. If the step-
size becomes smaller than the defined limit the process stops, otherwise
a new loop of the algorithm is performed starting a new search step.
When the maximum number of iterations is reached, the pattern search
optimization will stop. BAO using pattern search is described in Algo-
rithm B:

Algorithm B
Initialization

• Define n, the number of beams;

• Choose ∊x [0, 360]i n, = …i 1, ,N, the starting beam direction en-
sembles;

• Compute f x( )i , = …i 1, ,N, the optimal FMO value for each of the
initial points;

• Set =∗x x:i i, = …i 1, ,N, as the best points and =∗ ∗f x: f( )i i , = …i 1, ,N as
the corresponding best optimal FMO values;

• Choose >α 0i , = …i 1, ,N, the initial step size and αmin the minimum
step size;

Iteration (for each of the active searches)

1. Search step. Use a minimum Frobenius norm quadratic model con-
sidering the beam angle sets already tested to search the entire BAO
space. If the objective function value is improved, repeat the search
step, otherwise proceed to the poll step.

2. Poll step. Compute f x( ), ∀ ∈ = ± = …∗ ∗N x x α ex ( ) { ,j 1, ,n}i i i j , where
ej is the j column of identity matrix = …e eI [ ]n1 ;

3. If poll is successful, i.e. < ∗∗ f x xmin ( ) f( )
N x i( )i

then

=∗ ∗x f x: argmin ( )i
N x( )i

;=∗ ∗f f x: ( )i i ;
Else=α :i α

2
i ;

4. If ≥α αi min return to step 1 for a new iteration, otherwise search
started by initial point xi becomes inactive;

Output

- =∗ ∗f f: argmin i is the best FMO found and ∗x is the corresponding
beam direction ensemble.

2.4. Study design

IMRT plans were automatically generated in iCycle for all NPC
cases. Based on the defined wish-list, plan optimization was performed
using 7 coplanar equidistant beams (d7) corresponding to the standard
clinical option. In a second phase, plan optimization was done by ap-
plying beam angular optimization. Breedveld et al. [23] (algorithm i)
and Rocha et al. [25] (algorithm B) beam angular optimization algo-
rithms were used to generate IMRT plans with 5, 7 and 9 beams (i5, i7,
i9 and B5, B7, B9, respectively). For both algorithms, coplanar and non-
coplanar beam geometries were considered. For the non-coplanar case
it is important to guarantee that there are no collisions between the
gantry and the treatment couch (Fig. S3 in the Supplementary mate-
rial). For algorithm B, this is usually achieved by strongly penalizing
these solutions (assigning a very large value for the FMO). This means
that these solutions can be found in the algorithms’ search procedures
but will be discarded since better solutions will be found. For algor-
ithm i, a space search is defined before the beginning of the optimiza-
tion that should avoid collisions. However, due to the discretization of
the space search, it is not possible to completely prevent beam in-
cidences located in regions defined as avoidable.

2.5. Plan assessment and comparison

Plan assessment and comparison were performed using an in-
dependent graphical method developed by Ventura et al. [28]. SPI-
DERplan, is based on a scoring approach that considers both target
coverage and individual OAR sparing. In SPIDERplan framework, tar-
gets and OARs are divided into groups depending on their clinical
priorities. A score is determined for each structure based on pre-defined
planning objectives and relative weights. A global plan score is de-
termined as a weighted sum of the structures’ individual scores over all
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groups. This score is just a quality plan indicator without any direct
correlation with the treatment outcome. All dosimetric plan informa-
tion is graphically represented in customized radar plots. Evaluation of
plan quality can be done globally by displaying all structures (Struc-
tures Plan Diagram – SPD) and groups of structures (Group Plan Dia-
gram – GPD). Global plan score is determined as a weighted sum of the
structures individual scores over all groups as:∑ ∑=Global plan score w w Score

i
group(i)

j
struct(j) struct(j)

(1)

where wstruct(j) and Scorestruct(j) are the relative weight and the score of
structure j, respectively, and wgroup(i) the relative weight of group i. For
the PTVs, the score was calculated according to the following expres-
sion:

=Score D
DPTV

TC,PTV

P,PTV (2)

where DTC,PTV corresponds to the tolerance criteria for the PTV (in this
case the dose in 98% of the PTV that should be at least 95% of the
prescribed dose, Table S1) and DP,PTV is the planned dose in the PTV.
This is a target coverage criterion. For the OARs, the score was set as:

=Score D
DOAR

P,OAR

TC,OAR (3)

where DP,OAR is the OAR planned dose and DTC,OAR is the tolerance dose
for each OAR.

A more detailed group evaluation can also be done with the partial
group plots (Structures Group Diagrams – SGD), where only the struc-
tures of that group are represented. As for the SPD and GPD, a partial
group score complementing the graphical assessment is determined for
each SGD.

For this study, all delineated structures were grouped according to
their location and clinical importance into: PTV group (PTVs), Critical
group (spinal cord and brainstem), Optics group (chiasm, optical
nerves, retinas and lens), DigestOral group (parotids, oral cavity, oe-
sophagus and larynx), Bone group (temporal mandibular joint, mand-
ible and ear canals) and other group (brain, pituitary gland, thyroid and
lungs). To each group a relative weight of 50%, 30%, 10%, 5%, 3.5%
and 1.5%, respectively, was pre-assigned by the radiation oncologist.
Within each group, the same weight was attributed each structure of
that group. For detailed information, the reader is referred to Table S1
in the Supplementary material.

The score of each structure is determined considering the ratio be-
tween the clinical tolerance criteria and the planned dose. Thus, a value
of one is expected if the dose for that structure is equal to the respective
tolerance value. When a better organ sparing or target coverage is ob-
tained, a score less than one will be obtained. Optimal scores will
converge to the centre of the radar plot.

2.6. Statistical analysis

Statistical comparisons of the mean scores associated with each BAO
algorithm and geometry sets were performed using IBM SPSS software,
version 25. As the same set of patients is used to perform IMRT opti-
mization applying the two BAO algorithms and different geometric
settings, it was assumed that the samples were dependent. As the
number of patients selected for this retrospective study is greater than
30, it was also considered that the samples follow a normal distribution.
Statistically significant differences between the families of test were
assessed with a randomized block design ANOVA test and, if applicable,
a post-hoc multiple comparison test using the Tukey method. Single
pair comparisons were statistically evaluated with the t-test. A level of
significance of 5% was considered for all statistical tests.

2.7. Methodology used for the presentation of results

The results from the two BAO algorithms were structured in two
subsections. In the first (Section 3.1), a beam angle distribution analysis
was performed using circular diagrams for the coplanar geometries and
2D-maps for the non-coplanar situation. The mean angle incidences
(calculated by sorting the beam angles calculated for each patient) and
the associated standard deviation angles of each algorithm and the
angles from the equidistant beam angle solution (d7) were also re-
presented. For the coplanar geometries, the circular diagrams were
composed by three concentric rings with an angle section resolution of
10° that were used to represent the relative frequencies of the beam
angle distribution obtained for the two algorithms. The inner ring of the
circular diagrams showed the beam angle distribution of the BAO with
5 beams, the middle ring corresponds to the optimization with 7 beams
and in the external ring the 9 beams results were shown. Each ring was
divided into eight regions, described in Table 1, commonly used in the
clinical routine to label beam/patient orientations. For the non-co-
planar plans, 2D-maps were used to perform the beam angle distribu-
tion analysis. A grid resolution of 10° was considered. The gantry angles
axis (vertical) was divided in the same groups defined as for the co-
planar case. The couch angles axis (horizontal) was grouped into five
regions also included in Table 1.

The dosimetric performance of BAO optimizations is presented in
Section 3.2 using SPIDERplan analysis. A mean global analysis of the
plans dose distribution quality was performed using the global plan
score and the partial group scores described above. Furthermore, an
individual analysis for some patients with relevant global results was
performed by presenting the GPD and SGDs of interest.

3. Results

3.1. Beam angle distribution

The frequency analysis of the beam angle distribution of algorithms
i and B for 5, 7 and 9 beams is shown in Fig. 1 (coplanar setting) and

Table 1
Gantry and couch regions defined for the beam angular distribution analysis. The gantry regions were applied for the coplanar and non-coplanar analysis (circular
diagrams and 2D-maps, respectively) and the couch regions to the non-coplanar analysis.

Gantry Couch

Region label Angle region Region label Angle region

Anterior [340°, 20°[ Left coronal (LCOR) [−90°, −70°[
Left oblique anterior (LOA) [20°, 70°[ Oblique left non-coplanar (OLNC) [−70°, −20°[
Left lateral (LL) [70°, 110°[ Central non-coplanar (CNC) [−20°, 20°[
Left oblique posterior (LOP) [110°, 160°[ Oblique right non-coplanar (ORNC) [20, 70°[
Posterior [160°, 200°[ Right coronal (RCOR) [70, 90°]
Right oblique posterior (ROP) [200°, 250°[
Right lateral (RL) [250°, 290°[
Right oblique anterior (ROA) [290°, 340°[
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Fig. 2 (non-coplanar setting).
In Fig. 1, the beam angles for the equidistant beam angle solution

(red dash lines) and the mean angle incidences (black solid pointers)
with the associated standard deviation (grey solid arcs) are also re-
presented in each circular beam diagram. The two coplanar BAO ap-
proaches presented distinct beam angular distribution patterns. In al-
gorithm i (i5, i7 and i9), based on an iterative BAO framework, the
beam angular distribution across the regions was asymmetric with
preferred regions very well defined as the LOP, the anterior or the ROP
regions. The relative frequency values were comprehended between 4%
and 22%. The higher relative frequency values, corresponding to the
preferred irradiation directions, were the LOP region and the anterior
region in i5 set and also the ROP region in i7 and i9 sets. For algorithm
B (B5, B7 and B9), a more evenly angular distribution was obtained,
with relative frequency values ranging between 8% and 18%. For all
sets, the anterior, the posterior and the LOP regions presented the
higher relative frequency values. For both algorithms, anterior-oblique
and lateral orientations were not often selected as good irradiation
directions regardless the number of beams used. The difference be-
tween the optimal mean angle and the correspondent equidistant beam
was 0.8°± 34° for algorithm i and 1.5°± 19.9° for algorithm B.

In Fig. 2, for the non-coplanar BAO modality, the gantry angle
distribution and the couch angle distributions are presented by a re-
lative frequency 2D-map. The gantry angles axis and the couch angles
axis were divided into regions of interest, referred in Table 1. For
simplification each region, composed of a set of gantry and couch an-
gles, will first be named with the gantry region followed by the couch
region (for instance, posterior_CNC). In Fig. 2, the beams position for
the equidistant coplanar beam plans are shown by the red dots, the
individual beam incidences obtained by angular incidences by small
black dots, the correspondent mean angle incidences by the large black
dots and the associated standard deviation by the grey ellipses.
Avoidance incidences, corresponding to potential collisions between
gantry and couch, were represented by yellow grid squares. The two
non-coplanar BAO algorithms presented again distinct beam distribu-
tion patterns. In algorithm i, most of the beams were uniformly dis-
tributed over the space, with relative frequencies ranging between 0%
(white squares in Fig. 2) and 7% (cyan). Interestingly, the preferred
irradiation directions selected by algorithm i where almost neglected by
algorithm B where relative frequency values of less than 1% were ob-
tained. In algorithm B, with relative frequency values ranging between
0% and 13%, it is possible to define a pattern for the beam’s angular
distribution. In fact, the non-coplanarity is almost confined to couch

angulation between −20° and 20°, corresponding to the CNC region.
The remaining regions presented relative frequency values inferior to
2%.

The average beam incidences, and especially the standard deviation
values, for both algorithms are quite different. Graphically, this can be
perceived in Fig. 2 by the clear separation between the ellipses for al-
gorithm B while for algorithm i the standard deviations ellipses overlap
each other. Furthermore, the distance between the mean incident an-
gles (large black dots) and the correspondent equidistant solution (red
dots) are closer in algorithm B than in algorithm i.

3.2. SPIDERplan scores analysis

3.2.1. Global plan analysis
The values of the global plan score, implemented in SPIDERplan, for

the d7 plans (equidistant beams) and coplanar and non-coplanar BAO
of algorithms B and i for 5, 7 and 9 beams are shown in Fig. 3a. The
mean SPIDERplan global plan scores ranged between 0.901 and 0.947.
The lowest mean plan scores, i.e. the plans with better overall score
performance, were obtained by B9 non-coplanar (B9nc) and B9 co-
planar (B9c) sets. i9c plans attained the third best score, while i9nc set
only achieved the eighth best score immediately below all plans using 7
beams. B5c and B5nc plans, respectively, obtained a better performance
than i7nc. The highest mean global plan scores, and therefore the worst
overall plan performances, were obtained with the i5nc and i5c sets.

The statistical analysis that was carried out allowed the identifica-
tion of pairs of algorithms and beam angle configurations such that the
generated treatment plans cannot be considered as being different from
a statistical point of view. The results of the statistical analysis and the
resulting p-value of each comparison led to seven subsets, grouping the
algorithms that did not present statistically significant differences. It
was thus possible to build sets, as presented by the horizontal axis of
Fig. 3b, such that each set includes similar treatment planning results.
As an example, subset 1 shown in Fig. 3b, with the lowest global plan
scores, includes B9nc, B9c, i9c, B7nc and B7c meaning that the quality
of these plans is statistically equivalent. Statistically significant differ-
ences were found between plans B9nc (positioned in subset 1) and plans
i9nc (belonging to subsets 4 and 5). These results also show that BAO
may bring no benefit to plan quality when compared to the equidistant
beam angle solution – all those solutions that overlap the red solid line
belonging to subsets 3, 4 and 5, like i9c, i7nc, i9nc, B7nc or B7c, do not
significantly differ from it. However, better plan scores were obtained
when the number of beams increased to 9 beams, as in B9c and B9nc

Fig. 1. Angular representation of the relative frequencies of the coplanar BAO of algorithms i and B for 5, 7 and 9 beams. The colour represents the relative
frequencies obtained for each angle section: a hot colour is associated to a high relative frequency and a cold colour to a low relative frequency value. The mean angle
incidences and the associated standard deviation angle values of each algorithm were represented with black solid pointers and grey solid arcs respectively. The red
dash lines represent the beam angles of the equidistant beam angle solution (d7).
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(subset 1), compared to 7 beams (i7nc or d7). Also, while a statistically
significant difference in plan quality was found between non-coplanar
and coplanar plans using 9 beams whose positions were determined by
algorithm i, for algorithm B, non-coplanarity brought no improvement
in terms of plan quality. It is interesting to observe that, for algorithm i
and 9 beams, the 9 beam coplanar plans were better than the non-co-
planar ones.

The mean scores of coplanar and non-coplanar sets of algorithms i
and B are compared in Fig. 4a and d, respectively. For algorithm i, the
coplanar set had a lower mean score than the non-coplanar set

(p= 0.002) whereas for algorithm B, non-coplanar plans were statis-
tically equivalent to coplanar ones (p= 0.960). Statistically significant
differences were also found between non-coplanar plans optimized by
algorithm i and B (p= 0.000), in favour of non-coplanar B plans,
(Fig. 4e). The overall superior performance of algorithm B over algo-
rithm i was statistically significant (p= 0.000), as demonstrated in
Fig. 4f.

3.2.2. Group plan analysis
The quality of the plans based on BAO algorithms B and i was

Fig. 2. 2D map representation of the relative frequencies of the non-coplanar BAO of algorithm i and B for 5, 7 and 9 beams. The gantry angles values are represented
on the vertical axis and the couch angles on the horizontal axis. The colour represents the relative frequencies obtained for each angle section: a hot colour is
associated to a high relative frequency. The mean angle incidences and the associated standard deviation angle values of each algorithm were represented with big
black solid pointers and grey solid ellipses respectively. The small black solid pointers represent the angles incidence obtained with the BAO for all patients. The red
solid points represent the beam angles values of the equidistant beam angle solution (d7).
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assessed also using the information generated by SPIDERplan diagrams
(Figs. S4–S8 in the Supplementary Material). Generally, the group score
agreed with the analysis performed for the global plan score section.
Almost all structure groups included in the optimization got mean
scores below 1, meaning that the clinical criteria were on average ac-
complished. The exception was the DigestOral group, where for the
parotids and for the oral cavity planned doses surpassed tolerance
doses. Differences in the mean group scores between non-coplanar
plans of algorithm i and the remaining plans and between 9 beams and
5 beams plans of algorithms i and B were also obtained for the Optics
and the DigestOral groups, respectively.

The plans with higher number of beams and a non-coplanar geo-
metry tend to lead to dose distributions with better quality, i.e. higher
PTV coverage and higher OAR sparing. Some exceptions were found for
the Optics and Bone groups. In the Optics group, the best scores were
found for the coplanar beam geometries of algorithm B and the worst
for the non-coplanar sets of algorithm i. For the Bone group, either the
non-coplanar or the coplanar plans of algorithm B achieved the best
performances, while the coplanar and the non-coplanar sets of algo-
rithm i got the worst scores. Globally, algorithm i presented better
scores for the two most important groups (PTV and Critical group),
while algorithm B got the best scores for the remaining groups.
However, the differences in plan quality for each structure group be-
tween the two algorithms were statistically significant just for the
Optics and Bone groups, which included the OARs with the lowest
clinical weight.

3.2.3. Individual patient analysis
The decision of which beam set-up should be used in a given patient

must be well pondered and clinically assessed case by case. In Fig. 3a,
two patients (patient #8 and #14) were identified with notorious high
scores (worst plan quality). For patient #8 (red triangles in Fig. 3a), all
plans obtained a global score superior to 1 and presented mean percent
differences between the coplanar and the non-coplanar sets for algo-
rithms i and B of −8% and −5%, respectively. For patient #14 (blue
triangles in Fig. 3a), two plans exceeding the score threshold defined for
SPIDERplan, presented an apparent contradictory score difference,
wherein plan i5nc was better (lower score) than plan i7nc. The assess-
ment of plan quality for patients #8 and #14 is presented in Figs. 5 and
6, using the GPD and the SGDs of SPIDERplan. Plans using equidistant
beam angles (d7) and the plans with the best and worst global plan
scores were selected for this individual analysis. One or more additional

sets were also considered to emphasize some results of interest observed
in each patient.

For patient #8 (corresponding to Fig. S1 in the Supplementary
material) the best global plan score was achieved by plan i9nc (global
plan score of 1.026) and the worst global plan score, of 1.172, was
obtained with plan i5c. An increase of 15% percent in plan quality of
i9nc plan, when compared with i5c, was achieved when SPIDERplan
global score is adopted as plan quality scoring metric. A percent dif-
ference of +11% was obtained between the global plan scores of i9nc
and i9c. These differences highlight the potential benefits that can arise
from angular optimization including non-coplanar beam angle in-
cidences. The largest difference between the tolerance and the planned
dose was obtained for the Optics group and the DigestOral group
(Fig. 5). For the PTV group and in the Critical group some score values
slightly higher than 1 were also obtained for some plans due to the
proximity between the primary tumour mass, prescribed to 70 Gy, and
the retinas, the optical nerves, the chiasm, the brainstem, the ears and
the oral cavity. The increase in the number of beams with non-coplanar
geometries led to important improvements in the OAR sparing, espe-
cially in the lens and the parotids but also in PTV coverage. Never-
theless, these improvements were not extensible to all structures where
even worst results were obtained for the oral cavity when 9 non-co-
planar beams were used.

For patient #14 (corresponding to Fig. S2 in the Supplementary
material), B9c presented the best global plan score and i7nc the worst
performance. A mean percent difference in the global score of −10%
was achieved when coplanar and non-coplanar sets of algorithm i were
compared (Fig. 6). For algorithm B, this mean percent difference was
close to 0%, meaning that for this patient the non-coplanarity did not
bring any advantage for algorithm B. Significant differences between
the considered plans can be identified for the lens (Optics group), the
left ear (Bone group) and for the left parotid (Digest Oral group). All
structures but the right lens presented better scores for plans with
higher number of beams and/or non-coplanar geometry. For the right
lens, however, i5nc presented a better score than i7nc. This configures a
situation where a larger number of beams did not bring improvements
to the overall plan quality. Analysing the specific anatomy of patient
#14, it is possible to observe that the primary mass PTV was well below
the optical structures (chiasm, optical nerves, retinas and lens). This
influenced the non-coplanar BAO process and probably the SPIDERplan
analysis results, since some of the considered clinical criteria could
probably have been relaxed.

Fig. 3. a) SPIDERplan Global Plan scores, corresponding to all 40 clinical cases (triangles), for d7 and for coplanar and non-coplanar BAO of algorithms i (coplanar
plans: i5c, i7c, i9c, non-coplanar plans: i5nc, i7nc and i9nc) and B (B5c, B7c, B9c, B5nc, B7nc and B9nc). b) Homogenous subsets resulting from post-hoc multiple
comparisons test using the Tukey method with a level of significance of 5% of the SPIDERplan global plan scores of each algorithm for coplanar and non-coplanar
BAO.
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4. Discussion

In this work, the plans produced by two BAO algorithms, i and B,
were evaluated and compared for NPC tumour cases. Forty clinical
cases were retrospectively used to automatically determine the best
incidences of 5, 7 and 9 beams plan sets with coplanar and non-co-
planar geometries. The BAO and the FMO problems were addressed
together by using a multicriterial IMRT optimization framework to
guide the process. Algorithm i is based on a combinatorial iterative
discrete search approach and is embedded in the multicriterial opti-
mization framework. Algorithm B is based on a continuous space search
using a pattern search method. It is also possible to consider the opti-
mization of the number of beams. This can be done in a trivial way, by
running different optimization procedures, each one for a different
number of angles. The choice of the number of angles could also be
incorporated in the optimization algorithm but given the complexity of
the BAO the inclusion of one more degree of freedom could actually
lead to worse results (since the size of the possible solutions space

would be enlarged). In the final optimization phase 240 plans with 27
associated structures were generated for each algorithm. Starting from
the equidistant solution, BAO plans were considered, covering an ex-
pressive universe of 3640 beam incidences, 520 plans and 14,040 do-
simetric structures statistics available to be analysed. The analysis of
this large amount of data was done from two perspectives: the char-
acterization of the beam angle distribution over the space search and
the assessment of the quality of the dose distribution of the generated
plans. To our knowledge, this is the first work that compares these two
types of class methods for head and neck cancer taking into con-
sideration all the clinical structures using subjacent clinical criteria.
Furthermore, the graphical options ad-hoc constructed for this purpose,
the circular diagrams for the coplanar case and the 2D-map for the non-
coplanar one, enable an efficient global analysis that otherwise would
be difficult to be performed.

The relative frequency patterns of the beam angle distribution for
coplanar and non-coplanar beams geometries seemed to be conditioned
by the optimization strategy followed by each algorithm. In algorithm i,

Fig. 4. Comparison between different plans optimized with algorithms i or B using coplanar or non-coplanar beams.
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beams with optimal orientation were iteratively added into the plan
after being combined with the beams already selected in a discretized
space search. For plans using coplanar beams, this cumulative beam
adding methodology generated a non-uniform angle distribution pat-
tern where it is possible to clearly identify favourite irradiation direc-
tions and regions of low preference. For non-coplanar beam plans this
asymmetric beam distribution pattern with well-defined preferred in-
cidences blurred into an almost uniform beam distribution pattern. This
pattern change is a natural consequence of the selection of beam in-
cidences over almost all the available space search. In algorithm B, the
search for the best ensemble is initially done by considering a fixed
number of incidences defined from the best equidistant coplanar angle
set solution. This preliminary optimization is followed by the applica-
tion of the pattern search method considering a continuous space
search. Although the equidistant beam ensemble seems to be the most
reasonable BAO starting point for this approach, the beam angle dis-
tribution maps presented patterns that may be strongly influenced by
the initial solution. For coplanar geometries an almost uniform pattern,
with low relative frequency values was patent in the circular diagram of
frequencies. For the non-coplanar situation, the results follow the
starting point option, being the non-coplanarity confined to modest
deviations from zero couch position (± 20°). Comparing the mean in-
cidences and the associated standard deviations obtained by the two

optimization algorithms, once again the optimization strategy of each
of the algorithms is patent, leading algorithm i to more distributed in-
cidence solutions and algorithm B proposing solutions closer to the
initial equidistant case.

The quality assessment and comparison of the plans generated with
BAO was performed using three types of approaches: a global plan
analysis, a group plan analysis and an individual analysis of selected
patients. This methodology was accomplished by the determination of
SPIDERplan scores and an appropriate statistical analysis that conferred
to the process the possibility to evaluate the dosimetric quality of the
BAO with different levels of specificity. Increasing the number of beams
brought improvements to the plan dose distribution. Nevertheless, for
most cases only the comparison between 9 beam plans and 5 beam
plans was significant statistical.

Algorithm B showed a more consistent behaviour and presented, by
a moderate difference in score, a better performance than algorithm i.
For the studied NPC tumour cases, on average, non-coplanarity brought
no improvements to plan quality. For algorithm B, a better score was
obtained when non-coplanar beams were compared with the corre-
sponding coplanar solution but this difference was not statistically
significant. These results confirmed some empirical impressions shared
by many planners. In face of highly complex planning cases, beyond the
manual tuning of the objectives and the associated weights, planners

Fig. 5. SPIDERplan of patient number 8 and structures group diagram for PTV group, Optics group and DigestOral group.
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usually try to play with the initial beam angle incidences or to increase
the number of beams in order to improve the plans. The general as-
sumption that plan quality improves when the number of beams in-
creases is also supported by the results usually achieved with VMAT
(“infinite” number of beam directions). Nevertheless, for the studied
pathology, BAO seemed to bring only marginal improvements to the
plan quality. A first explanation may be related with the anatomy of the
NPC cases, where the PTVs with large extensions (up to 25 cm of
height), the high number of critical structures along the field of irra-
diation and minimum exposure requirement for the remaining normal
tissues may limit the optimization of the beam incidences. Another
justification can be found in the use of the same wish-list for all patients
and for both BAO approaches. The improvement that can be obtained
by BAO is intrinsically linked to the FMO approach. Since the resources
and time needed to find an optimal beam set are costly, if manual
tuning is needed then the clinical utility of BAO must be seriously ap-
praised. If BAO can be done in an automated way, then it will represent
an added-value, since it can bring interesting improvements for some
patients. In Erasmus-iCycle, the treatment planning procedure is almost
automatic. The only think that is asked to the planner before the
planning is to build and validate a wish-list that will guide the multi-
criterial optimization process. For the NPC pathology, five test cases
were used in the validation process. This initial configuration does not
take long, and it has a reduced impact on the overall time spent with the

optimization. More expressive score differences between the treatment
planning sets could be achieved if the SPIDERplan score could be em-
bedded in the BAO process as suggested by Rocha et al. [26]. As SPI-
DERplan methodology incorporates the radiation oncologist pre-
ferences, it could confer to the BAO process some proximity to the
clinical aims and thus improve overall plan quality.

The overall weaker performance of algorithm i, when compared
with algorithm B, is related with the results of the non-coplanar opti-
mization in the Optics and in the Bone groups, since for the remaining
groups these sets presented the best SPIDERplan scores. For the Bone
group, although the non-coplanar optimization of algorithm i presented
a better performance than the coplanar set of algorithm i, it was inferior
to the coplanar optimization of algorithm B. For the Optics group, the
results of the non-coplanar sets of algorithm i were by far the worst
when compared with the remaining sets. Due to the anatomic locali-
sation of the structures of these two groups and also to the optimization
methodology subjacent to algorithm i, it was not expected that the non-
coplanar optimization presented such results that were on average
below the score tolerance but were worse than the remaining sets.

The weaker performance of non-coplanar solutions for algorithm i
compared to coplanar plans is unexpected as the coplanar problem is a
sub-solution of the non-coplanar problem. This might be a result of the
complexity of BAO, a highly nonconvex problem with many local
minima, particularly for complex tumour sites as NPC with a large

Fig. 6. SPIDERplan of patient number 14 and structures group diagram for Optics group, DigestOral group and Other group.
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number of OARs. Obtaining the optimal solution is quite difficult,
particularly for the non-coplanar case that explores a vaster search
space. As it is not possible to guarantee that the optimal solution is
found, and the algorithms do not perform an exhaustive search (which
would be prohibitive both in terms of time and computational re-
sources), it is possible that the best coplanar solution is not found when
looking for a non-coplanar solution. A simple strategy to improve the
performance of algorithm B would be to include the optimal solution of
the coplanar BAO in the set of initial starting solutions. However, that
strategy cannot be used for algorithm i, since it fixes one direction at
each iteration. Whenever one direction is fixed, the search space is
restricted in one dimension, meaning that there are solutions in the
search space that cannot be visited in the subsequent iterations. The
algorithm may be prevented from exploring better regions and the
probability of getting trapped in local minima increases.

An important application of non-coplanar BAO is its importance in
the calculation of non-coplanar intensity-modulated arc trajectories in
VMAT. In fact, some of the arc trajectory algorithms are two-step ap-
proaches where, in the first step, non-coplanar BAO is performed using
previously tested BAO algorithms and, in a second step, an arc trajec-
tory optimization is performed using the beam directions found in the
first step as anchor points [10]. The fact that algorithm B obtain solu-
tions for a more limited range of couch angles, with a superior quality
to the solutions of algorithm i, might represent a competitive advantage
for its use in the calculation of non-coplanar trajectories in VMAT
planning.

5. Conclusions

In this work the beam angle optimization IMRT was addressed using
forty head-and-neck cancer clinical cases. Two algorithms, based on a
combinatorial iterative (algorithm i) and on a continuous exploration of
the space search (algorithm B) approaches, were assessed and com-
pared for coplanar and non-coplanar beam geometries. A graphical
method for plan quality assessment and comparison, named
SPIDERplan, was used. The two algorithms were assessed through the
analysis of the beam angle distribution and of the plan quality. The
great amount of generated data was managed through graphical plots
that enabled efficient global analysis and comparisons. Algorithm i for
coplanar optimization presented a less uniform angle distribution pat-
tern whereas for non-coplanar optimization the beam distribution
pattern was almost uniform. For algorithm B, both beam angles geo-
metries options were strongly influenced by the starting equidistant
solution. Concerning assessment and comparison of plan quality for
BAO algorithms, slightly better score performance was achieved by
algorithm B, when compared to algorithm i. For algorithm B, coplanar
and non-coplanar beam angle geometries were statistically equivalent,
while for algorithm i, non-coplanar solutions were statistically worse
than the correspondent coplanar due to the optimization strategy fol-
lowed by this algorithm. Nevertheless, for specific patients strong
benefits were obtained, and angle optimization proved to be valuable.

The results of the present study can potentially be applied in VMAT
planning through the calculation of non-coplanar modulated arc tra-
jectories.
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