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Abstract

Praxis is a platform that allows students to search internship offers submitted by companies,
research labs and higher education institutions. The success of the platform depends on
its adoption by students that use keywords to find internships and organizations that need
candidates to fill their vacancies.

The two problems detected with the platform are the high number of searches without
results and the low percentage of internships with candidates. This work explores text
mining techniques with the objective of creating a tool to analyse the discrepancy between
supply and demand, helping to identify market gaps and possible improvements to the search
engine.

The final solution allows Praxis administrators to intuitively analyse the available data on
a dashboard. Additionally, from the analysis made, limitations were found on the existing
search engine, so an improved one was created. Software engineering best practices were
followed and the defined objectives were achieved.

Keywords: Business Intelligence, Data Visualization, Information Retrieval, Text Mining
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Resumo

O Praxis é uma plataforma que permite a estudantes procurar propostas de estágio sub-
metidas por empresas, centros de investigação e instituições de ensino superior. O sucesso
da plataforma depende da sua adoção por parte dos estudantes, que utilizam palavras-chave
para pesquisar estágios, e das organizações que necessitam de candidatos para preencher as
suas vagas.

Os dois problemas detetados na plataforma são o elevado número de pesquisas sem resulta-
dos e a baixa percentagem de estágios com candidatos. Este trabalho visa explorar técnicas
de processamento automático de texto com o objetivo de criar uma ferramenta para anal-
isar a discrepância entre a oferta e a procura, ajudando a identificar lacunas no mercado e
possíveis melhorias no processo de pesquisa.

A solução final permite aos administradores do Praxis visualizar os dados disponíveis num
painel de controlo, de maneira intuitiva. Além disso, a partir da análise realizada, foram
encontradas limitações no motor de busca existente, motivando assim a criação de um
novo. Foram seguidas boas práticas de engenharia informática e atingiu-se os objetivos
definidos.
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Chapter 1

Introduction

This chapter starts by providing a brief overview of the Praxis internship platform and the
addressed problem. The approach used to test the hypotheses and expected results are also
presented. Finally, the document structure is described with the main topics that will be
covered.

1.1 Context

Praxis1 is a web-based internship platform. It allows companies, higher education institutions
and research labs to publish internship offers. Students can search the available offers and
apply to internships.

The project was funded with support of the European Commission, through the Erasmus
programme, to address the needs of the academic and professional communities. The Praxis
network has over 130 partners in more than 30 different countries [1].

1.2 Problem

Students use the Praxis platform to search for academic internships. One of the issues
detected with the platform is the number of searches without results. About half of the
searches made by students do not return any internship offers. This information is currently
obtained periodically through a manual process consisting of several steps.

Another issue is the number of internship offers without candidates. Praxis administrators
and partners want to promote the match between supply and demand, but they do not have
automated reports about the topics of internships and search keywords.

The high number of empty results and unassigned internships are important problems that
need to be addressed to encourage the use of the platform by students and organizations
alike.

1.3 Hypothesis

Automated reports and dashboards are helpful tools for decision making. A data mining
solution can be built using open source or commercial technologies. This will enable the
visualization of trends and identification of gaps between available proposals and frequent

1http://www.praxisnetwork.eu
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searches done by students. Having this information, actions can be taken to decrease the
market gap.

Modern search engines and algorithms may help improve search results. A common alter-
native to exact keyword matching is fuzzy matching, which can handle spelling mistakes.
Other query expansion methods, such as finding synonyms, semantically related words and
stemming are also to be considered.

In short, it is hypothesized that the use of text mining techniques will allow to identify market
gaps and possible improvements to handle query inputs, like correcting spelling mistakes or
replacing certain words.

1.4 Approach

The software solution will be designed and built incrementally. Through several iterations,
new features or technologies may be considered and evaluated. Software engineering best
practices are to be followed, like the use of version control and reproducible infrastructure
deployment.

The state of the art on information retrieval systems is very rich, as extensive research has
already been made to optimize search results. To analyse the data collected over the years
on the Praxis website, a number of text mining algorithms will be tested.

One of the objectives of this project is to reuse existing technologies and libraries as much
as possible. This enables a faster development speed and eases future maintenance as there
is less code to manage.

1.5 Expected results

With the development of this project, many Praxis users will be positively impacted as
searches will retrieve more results, while keeping a high precision. Praxis administrators and
partners can have access to timely and detailed information about supply and demand to
better understand the dynamic internships market.

The final solution consists of various software modules:

• Data pipeline to extract data from the operational database, transform it and load it
in another database, to be used for analytical processing.

• Search engine responsible for processing search queries and retrieve the most relevant
internships.

• Search Application Programming Interface (API) to provide secure access to the
search engine through the Hypertext Transfer Protocol (HTTP) protocol.

• Web dashboard to visualize the existing data using text mining techniques and extract
valuable information.

Although this project was specifically engineered for Praxis, it could be used in other do-
mains. The same technologies and algorithms are still valid to optimize searches and analyse
unstructured text data.
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1.6 Document structure

This document is organized as follows:

Chapter 1 presents the project, identifying its purpose and stakeholders.

Chapter 2 is initialized by a clear description of the business context. Afterwards, the state
of the art regarding text mining, information retrieval and related technologies is studied.

Chapter 3 presents the solution analysis and design, providing the functional and non-
functional requirements, as well as technical diagrams to describe the system architecture.

Chapter 4 contains an analysis of the historical data collected on Praxis to better understand
the market of academic internships.

Chapter 5 covers the implementation details and technical decisions made to fulfil the
requirements.

Chapter 6 describes the deployment procedures and evaluates the final solution.

Lastly, Chapter 7 provides an overview of the work done and fulfilled objectives, while
showing the solution limitations and future work.
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Chapter 2

Context and state of the art

In this chapter, the proposed problem, its surrounding context and value proposition are
explored. Additionally, a study of the state of the art is made and the technologies for the
envisioned solution are presented.

2.1 Contextualization

Education plays an important role in society, especially as demand for specialized people
increases in the job market. In 2017 there were about 20 million higher education students
in Europe [2]. Internships are often the first professional experience that students have. To
promote innovation in the academic internship market, the European Union funded Praxis.

The Praxis web platform helps to connect students with companies, higher education insti-
tutions and research labs. Organizations are able to disseminate national or international
internship proposals while students can search and apply to them.

Between January 2014 and November 2019, approximately 151 940 searches for internships
were made on Praxis and from those, 61 490 had no results, representing about 40% of
the total queries. In addition, 48% of the 2163 internships did not get any candidates.
These issues needs to be analysed so that actions can be taken to improve search results
and increase the match between supply and demand.

The current process to analyse data is very time consuming. It involves manually connect-
ing to the machine that contains the Praxis database, running a set of Structured Query
Language (SQL) queries, exporting their results to files, transferring them to a local system
and importing them to Excel for analysis.

2.1.1 Value proposition

The development of a tool to automatically analyse searches made by students and internship
proposals made by organizations is extremely valuable. It will help Praxis administrators
identify market gaps and enable them to take actions in order to reduce those gaps, such
as sharing this information with companies and schools.

Analysis of existing data also provides guidance on how the search engine may be optimized.
While some searches correctly do not return any results, it is hypothesized that others could
return similar matches instead of none, by fixing typos or replacing words with synonyms or
related terms.
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The proposed work will enhance the experience of all users in the Praxis platform. Students
will find more internships, and consequently, organizations will have more candidates, thereby
increasing the adoption of Praxis.

The elaborated business model canvas is presented in Figure 2.1 to describe the key business
concepts.

Figure 2.1: Project business model canvas

There are three customer segments that benefit from this project, Praxis administrators
who want to increase the platform adoption and have effective reporting tools, students
that want to find relevant offers and organizations in need of internship candidates.

Important partners include various organizations, such as companies, higher education insti-
tutions and research labs, as they are the ones that publish internships and are interested in
knowing the state of the market.

Key activities involve creating the system using state of the art technology and algorithms,
and then maintaining it. The most important resources are the engineering team to develop
the system, servers to host the project and historical data for analysis.

The main costs come from maintaining the infrastructure since most of the work is now
done by volunteers. In the past, Praxis received funding from the European Commission,
but looking forward, partnerships with other institutions may be the best option to generate
revenue.

2.1.2 Market research

The recruitment market was estimated to be worth $215.68 billion worldwide in 2017 and
given the economic and technological development, this number is expected to grow to
$334.28 billion by 2025 [3].
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Search engines are problematic in recruitment because there are multiple different job titles
for the same job [4]. This might cause delays or even missed opportunities in the recruitment
process.

Although this work is designed for Praxis, it can be adapted for other companies in the
recruitment market, ranging from small organizations to global enterprises like LinkedIn,
Indeed or Glassdoor.

2.2 Text mining

Text mining is a subtopic of data mining. Data mining is the process of extracting information
from data. With each different type of data, such as quantitative, categorical, text, spatial,
temporal or graph-oriented, there are different techniques and algorithms that can be used
to extract insights. Most data mining algorithms work with structured numeric data, so
transformations must be applied to unstructured data before mining information [5]. Natural
Language Processing (NLP) is a branch of artificial intelligence that helps computers to
understand human language for tasks such as Part of Speech (POS) tagging, named entity
recognition, sentiment analysis and others.

A text mining project includes the following phases [6]:

1. Data extraction - Retrieves relevant data from a database or other sources.

2. Text preprocessing - Makes the text more consistent with multiple techniques such
as tokenization, word filtering and stemming.

3. Text representation - Transforms text into a format suitable for algorithms.

4. Knowledge discovery - To visualize data, discover patterns and create models.

2.2.1 Data extraction

Over 80% of business data is stored as text, for example web pages, and emails [7]. It is
often not stored in the same place, but spread across multiple databases and other internal
or external systems. Extract-Transform-Load (ETL) processes are used to move data from
heterogeneous sources to a centralized database, while cleaning and enriching it. This can
be expensive, especially when dealing with Big Data [8].

2.2.2 Text preprocessing

Preprocessing tasks are important as they affect text mining algorithms. The first step is
tokenization, which consists on breaking text into words or phrases, called tokens, removing
punctuation in the process. Lowercase transformations and accent removal are common
normalization methods. Then filtering may also be helpful to remove stop words, which are
words that appear too often, as well as removing words that occur too rarely, as they are
usually not very relevant [9].

Another common preprocessing technique is stemming, which is the process of converting
words to their stem, or root form, for example "argued" could become "argu", depending
on the stemmer aggressiveness. These algorithms can be language dependant and mostly
truncate words based on rules so there are some inaccuracies. Lemmatization is an alterna-
tive, with higher computational costs, that results in valid words. It depends on dictionary
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lookups and POS tagging to correctly identify the meaning of a word in a sentence, as
different lemmas may be returned if a word is a verb or a noun [10].

2.2.3 Text representation

In text mining, a collection of documents is named "corpus". Each single document contains
a set of words, often referred as terms. A document-term matrix is commonly used to
represent a corpus, where each row corresponds to a document and each column, or feature,
is a term. When using such a representation, the order of a sequence of words in a document
is lost [5]. To capture semantic relationship between words, n-grams can be tokenized,
instead of single words. A n-gram is a consecutive sequence of n words.

A document-term matrix is sparse and its values may contain a one-hot encoding, word count
or Term Frequency–Inverse Document Frequency (TF-IDF). Term frequency measures how
often a word appears in a document and inverse document frequency measures how important
a term is in the corpus. Other term-weighting schemes exist, but TF-IDF variants are the
most common [11]. The weight wi ,j of a term i in a document j can be calculated with the
formula

wi ,j = tfi ,j × log
N

dfi
(2.1)

where tfi ,j represents the term frequency, N is the corpus size and dfi is equal to the number
of documents containing the term.

A recent alternative to bag-of-words models, which keep word counts but disregard order,
are word embeddings that can be obtained using unsupervised machine learning algorithms
such as word2vec and GloVe. These algorithms are trained on huge corpus and are able
to capture semantic similarity by representing similar words close to each other in a dense
vector space. Cosine similarity between two word vectors can be used to retrieve nearest
neighbours. Vector arithmetic can be used to explore word analogies, for example "queen"
- "woman" + "man" should produce a close vector representation of "king" [12]. BERT is
a state of the art technique to produce context sensitive word embeddings, so a word may
have a different representation on different sentences [13].

2.2.4 Knowledge discovery

After transforming the text corpus to a numeric representation, visualization techniques may
provide insights, and existing machine learning or data mining methods like classification or
clustering can be used [6]. Results should be evaluated and additional iterations to the text
mining process may be needed.

Two common approaches to visualize text data are word clouds and co-occurrence networks
[14]. In word clouds, words are arranged in varying size, color, and position, based on their
frequency or importance. Co-occurrence networks are used to show the relationship between
words or documents.

Classification is a supervised machine learning problem where labelled data is given to an
algorithm and it learns to label new observations based on training datasets. Creating new
training datasets can be time consuming as it may require expert knowledge and the sample
size should be large enough to achieve good performance [15].
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Clustering is an unsupervised problem that involves grouping similar data points based on
their similarity. Common algorithms include hierarchical clustering [16] or k-means [17].
Determining the ideal number of clusters depends on cohesion metrics or domain knowledge.

Topic modelling is a text mining technique to analyse collections of documents by discovering
topics. A number of algorithms exist, such as Latent Dirichlet Allocation (LDA) and Latent
Semantic Analysis (LSA). These techniques have been applied to massive collections of
documents and even other kinds of data, like genetic data, images and social networks [18].

2.3 Information retrieval

Information Retrieval (IR) is the activity of finding resources that have relevant information,
usually documents, from a large collection, in response to a query [19]. Web search engines
like Google and Bing are examples of large-scale distributed systems for IR.

2.3.1 Indexing

Indexing is an operation to facilitate searches, by avoiding the need to do full scans over the
entire dataset. With indexes, faster retrievals are traded for additional storage and increased
update times because the index has to be maintained.

Inverted indexes are data structures used in search engines to quickly find documents con-
taining the words in a query. As the index stores a list of words and the documents in which
they appear, matches are quickly retrieved. Stemming can be useful to increase matches,
as suffixes like plurals are removed.

2.3.2 Querying

An IR process starts when a user enters a query into the system, which is then evaluated,
and a set of relevant results are shown to the user. Query expansion techniques like finding
synonyms and fixing spelling errors are often used to improve performance. The results are
typically ranked on how well each document matches the given query.

Boolean ranking models are the easiest to implement, as documents are only fetched if they
exactly match the query. Vector space models calculate the distance between the query
weight vector and the document weight vector, so partial matches can be retrieved, and
documents can be ordered based on the similarity score. Probabilistic models use probability
theory to estimate how likely a document is relevant to the information need and started to
show very good results with the Okapi BM25 weighting scheme [10]. Feature based models
can incorporate many features like another model’s score, term frequencies, so that machine
learning algorithms can be trained [20].

2.3.3 Evaluation measures

Metrics must be used to compare the performance of different IR algorithms. Unranked sets
can be evaluated using precision, the fraction of retrieved documents that are relevant, or
recall, the fraction of relevant documents that are retrieved.
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A perfect recall of 1 can be achieved, at the cost of decreasing precision, by always retrieving
all documents. As such, the F1 score (or F-measure) is often used to balance the trade-
off between precision and recall [10], by calculating their harmonic mean, as represented in
formula 2.2, where P is the precision and R is the recall.

F1 = 2×
P× R
P+ R

(2.2)

On huge web search engines, it is not possible to calculate absolute recall as the number
of relevant results for a given query are usually unknown [21]. On these cases, the mean
precision of the top results on a set of queries can be considered.

As the number of matches increases, ordering becomes more important. To evaluate ordered
sets, the mean average precision and the normalized discounted cumulative gain are widely
used metrics [10].

When an IR system has already been deployed, new versions can be tested by serving them
to a small random sample of users. Metrics such as the number of clicks on the first result
or the first page can be evaluated to determine the best version. This kind of process is
known as AB testing [10].

2.4 Technologies

There are a few key technology components that must be compared to develop a data
pipeline, a search engine, a search API and a web dashboard. Due to budget constraints, only
open source software is to be considered. More in-depth details of the selected technologies
are available in Chapter 5.

2.4.1 Data pipeline

A simple data pipeline is needed to synchronize the operational and analytical database.
Syncing the databases should be as frequent as possible to have fresh data while avoiding
high load the operational system. The pipeline should be easy to create, monitor and
maintain. With these objectives in mind, two tools stand out, Jenkins1 and Logstash2.

Jenkins is an open source automation server. Although Jenkins is mostly used for building,
testing and deploying software, it is also a good choice for simple ETL pipelines as the
execution of programs can be scheduled and failures in the pipeline are reported. The actual
program responsible for the ETL operation needs to be developed or generated with an ETL
tool.

Logstash is a data collection engine originally built for log collection. Logstash can ingest
data from multiple sources simultaneously, transform it, and then send it to a variety of des-
tinations [22]. Only a single configuration file is required, per pipeline, to handle scheduling
and the ETL operation, which is a significant advantage for small tasks. Metrics are exposed
through an API for monitoring purposes.

1https://jenkins.io
2https://www.elastic.co/logstash
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With the research made, Logstash appears to be the right tool for this case. The simplicity
of having to create and maintain a few small configuration files is a big advantage over other
alternatives.

2.4.2 Search engine

Elasticsearch3 and Solr4 are the most popular open source search engines [23]. Both of
them expose an HTTP API and are based on Lucene, a high-performance full-featured text
search engine library written in Java. In terms of functionalities, they are very similar, but
Elasticsearch offers more integrations, better analytical queries, easier distributed scaling
[24] and is much more popular according to Google Trends, as represented in Figure 2.2.

Figure 2.2: Search engines popularity [25]

Considering the popularity and additional features of Elasticsearch, especially on the analyt-
ical side for dashboard construction, it is the logical choice as it even removes the need for
a separate analytical database. For security reasons, Elasticsearch should not be exposed to
the public, even if authentication and traffic encryption are activated [26].

The development of a search API to act as a middleman between the website and Elas-
ticsearch is essential, reducing exposure to security risks and enabling the addition of more
features in the future.

2.4.3 Search API

For web development there are many competing programming languages and software li-
braries. It is important to choose a language that provides high performance and increases
developer productivity. The ability to catch errors at compile time and enforcing type con-
straints are also desired, as studies show that static typing improves the maintainability of
software systems [27].

A comparison of popular programming languages is presented in Table 2.1 using relevant
metrics. Some of these evaluations are subjective and based on personal experience and
research.

3https://www.elastic.co/elasticsearch
4https://lucene.apache.org/solr
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Table 2.1: Programming languages comparison

C# Go Java JavaScript Python
Compiled Yes (bytecode) Yes Yes (bytecode) No No
Static typing Yes Yes Yes No Optional
Performance Fast Fast Fast Fast (I/O) Slow
Dev. speed Medium Fast Slow Medium Fast
Ecosystem Medium Medium Big Big Big

The Go programming language seems to be the strongest contender of the group. Being
compiled, performance is better than interpreted alternatives and deployment is easier be-
cause a single binary can be generated and does not depend on a runtime environment being
installed. Although the ecosystem is still growing, the Go standard library already includes
the needed utilities for easy web development.

Go was designed at Google with the purpose of being a fast, efficient and safe statically
typed, compiled language with support for networked and multi-core computing [28]. The
language includes concurrency primitives as well as a garbage collector.

2.4.4 Web dashboard

To create dashboards there are many Business Intelligence (BI) solutions available on the
market. They are useful for structured data analysis but somewhat limited when it comes to
advanced data transformations and text analysis. Computational notebooks allow users to
perform data analysis using programming languages like Python or R. The code is organized
by paragraphs that can be executed individually or in sequence. Notebooks can be easily
shared, as they are files containing all the code, outputs and some metadata. They are
increasingly becoming a viable alternative to BI tools [29].

There are two notable open source alternatives, Zeppelin5 and JupyterHub6, that allow
multiple users to collaborate on the creation of web dashboards using notebooks. They both
support multiple programming languages, however only Zeppelin allows the use of different
languages in the same notebook. Zeppelin has much more features, such as role-based
authorization, a report mode that does not show any code, and a better user interface,
with forms for interactive input. JupyterHub has other advantages like the higher Jupyter
ecosystem popularity, many plugins to add the missing features, and from the tests made,
it feels slightly faster while consuming less resources.

For this project, Zeppelin was selected because it provides better authorization support and
more features without having to install other plugins.

2.5 Summary

A value proposition for this project was presented taking into consideration the problem, its
context and how it can benefit the Praxis platform. An overview of the state of the art
regarding text mining and information retrieval was also presented. Alternative technologies
were compared to help efficiently achieve the desired objectives.

5https://zeppelin.apache.org
6https://jupyter.org/hub
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The envisioned solution consists on using Logstash to build a data pipeline, Elasticsearch
to handle searches, behind a custom search API made in Go, and Zeppelin for the web
dashboards and interactive data analysis. This solution will improve searches and provide
insights about the existing supply and demand on Praxis so that actions can be taken to
reduce the market gap.
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Chapter 3

Technical description

This chapter describes the analysis and design of the software solution, which consists on
the development of various modules. Praxis administrators want a web dashboard to extract
useful information about the market supply and demand, and an improved search engine to
retrieve better results.

3.1 Analysis

To design and implement a software project, functional and non-functional requirements
have to be defined. Metrics to evaluate the final result should also be defined so that
objectives are clear, measurable and work can be prioritized.

The FURPS+ model, created by Robert Grady at Hewlett-Packard, is a classification system
to organize requirements in different categories [30], as described in Table 3.1.

Table 3.1: FURPS+ overview

Category Sub-categories examples
Functionality Features, compatibility, security
Usability Aesthetics, responsiveness, documentation
Reliability Availability, stability, accuracy
Performance Speed, efficiency, scalability
Supportability Maintainability, testability, modularity
Design requirements Restrict technologies, like the type of database
Implementation requirements Use a specific programming language or environment
Interface requirements External interactions and data formats required
Physical requirements Physical hardware characteristics like weight and size

3.1.1 Requirements engineering

Functional requirements define the operations that a system must be able to perform. Most
of these are described as use cases in Figure 3.1. Non-functional requirements specify quality
attributes to judge how well a system is operating.

The actor present in most interactions is the Praxis administrator, as other users do not have
access to the web dashboard. Any user is able to interact with the system when searching
available internships.

The dashboard must show summary statistics and support filtering options like date ranges.
To analyse internships, clusters can be created and compared based on their textual content.
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Figure 3.1: Use case diagram

Regarding visualizations, it should be possible to create bar charts, area charts and line charts
to view numerical data. Word clouds and word co-occurrence networks are good options to
assist interpreting textual data.

Other system-wide functional and non-functional requirements are specified in Table 3.2 for
each of the software modules.

Table 3.2: Non-functional requirements

Module(s) FURPS+ category Description
Dashboard Functionality Secure authentication
Dashboard Functionality Compatibility with modern web browsers
Dashboard Usability Intuitive user interface
Search API Reliability Better F1 score than current search engine
Search API Performance Response times <1 second for 99% of cases
All Supportability Easy to deploy and maintain
All Design req. Favour existing open software over development
All Implementation req. All software must be compatible with Linux
Data pipeline Interface req. Must interact with MariaDB

3.1.2 System evaluation

The evaluation of the developed system must take into account the number of completed
functional and non-functional requirements. Some of them are either implemented or not,
while others require a more careful evaluation as they can be subjective or take more effort
to evaluate correctly.

To evaluate the usability of the dashboard, a survey will be conducted. People will be able
to interact with a dashboard containing test data and then answer some questions about
their experience. Once enough feedback is collected, results are evaluated.

Regarding the search API, response times can be evaluated with a load test to simulate a
high volume of users. This should be done in an environment identical to production to
guarantee similar future metrics. To evaluate the information retrieval performance, the
F1 score is a good metric when dealing with unordered sets. Although the internships are
ordered, it is not very significant in this case as there are not many results for each query,
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so they usually all appear in the first page. Comparing this metric between multiple search
engines requires selecting a representative sample of queries/documents and averaging the
F1 scores obtained for each query.

3.2 Design

The design is an important phase of the software development life cycle. It needs to consider
the requirements and the integration with existing software and infrastructure. A good design
is critical for the long-term maintainability of a system.

3.2.1 Praxis data model

Praxis uses a single relational database, MariaDB1, to store all the website data and the
Lucene library to provide full-text search for internship offers. Table 3.3 describes the data
model for an internship offer.

Table 3.3: Structure of an internship offer in Praxis

Field Description Required
Title Offer title Yes
Description Description of the offer Yes
Skills List of prerequisite skills No
Benefits List of benefits for the student No
Institution Name of the institution Yes
Institution type Type of institution Yes
Location City and country of the offer Yes
Study topics Disciplines part of the internship No
Study areas Subcategories of study topics No
Study degree Required study degree No
Languages List of required languages Yes
Period Start and end date for the internship Yes
Submit date Date of internship submission Yes
Valid until Limit date to apply to the internship Yes
Status Can be available, assigned or cancelled Yes
Applicants Total number of candidate students Yes

Searches can match the offer’s title, description or other fields. The description may contain
Hypertext Markup Language (HTML) tags, which must be ignored. To collect information
about supply and demand, all search queries and additional information such as the date and
number of results are logged in the database. The log data model is presented in Table 3.4.

Table 3.4: Structure of search results logging

Field Description Required
Query Keywords entered in search box Yes
Date Date when the search was made Yes
Results count Total number of results for the query Yes

1https://mariadb.org
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Unfortunately, a user session identifier field does not exist, so it is not possible to extract
information such as how many searches a user makes before getting a match. The search
time is also not available, which could be useful to check hourly activity. Another critical
piece of information missing are the filters. In the Praxis website, users can select filters like
the country or study area, but these are not logged, so many records just have an empty
query.

3.2.2 System architecture

To provide an overview of the required components and how they communicate with each
other, a component diagram is displayed in Figure 3.2. A modular architecture is proposed to
enable the easy replacement of different components if new technologies achieve measurable
improvements.

Figure 3.2: System architecture diagram

The Praxis Website and Praxis Database are already a part of the existing Praxis platform.
To copy data from the operational database to other specialized systems, a batch Data
Pipeline that executes periodically is required. The Search Engine, which also acts as an
analytical database, is used by the Web Dashboard and the Search API. This API is a
middleman between the Praxis Website and the Search Engine, to provide security and
additional features if needed.

3.2.3 Infrastructure overview

Praxis is currently hosted in a single virtual server in a cloud provider. New software modules
are to be installed in a different server so that existing workloads are not impacted. A
deployment diagram in Figure 3.3 shows the hardware and software components of the
entire system.
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Figure 3.3: Deployment diagram

3.3 Summary

The functional and non-functional requirements were enumerated, with metrics being defined
to evaluate the system. Based on existing constraints, a viable solution was designed. To
achieve the desired objectives, a data pipeline, a web dashboard, a search engine and a search
API must be implemented using open source technologies and following good development
practices.
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Chapter 4

Exploratory data analysis

This chapter provides an analysis of the historical data collected on Praxis. Both internship
offers and search requests are studied to get insights on the market gap and find ways to
improve the search results. In addition to finding some market gaps, a few issues with the
current search engine were discovered.

A dump of the operational database was received, with data until November 2019, containing
only the relevant tables to perform the analysis and setup the development environment.
The visualizations were created in R, so any developed code can be reused in the dashboard
implementation.

4.1 Internship offers

The first internship offer was created in October 2013 and since then, 2163 have been
submitted. As observed in Figure 4.1, the number of internships submitted has not grown
significantly in the last years. In total, 48% of internships got no applicants at all.

Figure 4.1: Submitted internships by year
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Because internships may remain open for long periods, the number of available offers has
been growing, as visible in Figure 4.2.

Figure 4.2: Available proposals over time

Multiple languages can be specified as a requirement for an internship. English is by far the
most common, followed by Portuguese, Spanish, German and French, as displayed in Figure
4.3. Most proposals are also written in English.

Figure 4.3: Required languages

Praxis appears to be more popular in Portugal and Spain, as there are many more intern-
ships submitted from those countries when compared to others, as shown in Figure 4.4,
corresponding to 42% of all internships.
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Figure 4.4: Internships by country

From 2014, up to nine topics can be assigned per internship. Figure 4.5 shows the evolution
of those topics, with the most notable changes being the increase of the Business and
Economics topic, accompanied by the decrease of Applied Sciences, Professions and Arts
topic. Environmental Sciences, Law and Medicine topics had very few internships submitted.

Figure 4.5: Study topics relative frequencies by year
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Figure 4.6 shows the top study areas for each topic. Computer related areas dominate
the Engineering and Natural Sciences topics. The areas with most supply are Marketing,
Business Administration, Computer Science and Education.

Figure 4.6: Top study areas per topic

The ability to select multiple areas per internship can be misleading when reporting these
categories. For example, in Figure 4.7 it is possible to observe that Marketing internships
are also often associated with areas like Journalism, Language and Communications, which
belong to three other topics, causing their count to appear higher.

Figure 4.7: Top study areas combinations
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The analysis of the structured data already provides some information about the market, but
more insights can be extracted from the textual data. Figure 4.8 shows the most common
words used in internships, without English or domain stop words like "the" and "internship".

Figure 4.8: Internships word cloud

Word relationships can be visualized with co-occurrence networks, like the one in Figure 4.9,
where words that occur together with a maximum distance of 1 term are connected. In this
case, instead of removing stop words, only nouns, verbs and adjectives were kept, as these
word classes are more relevant for analytical purposes. For this NLP task, the UDPipe1

POS tagger annotated the text, using an English pre-trained model built on the UD English
EWT treebank, whose corpus contains 254 830 words and 16 622 sentences [31].

Figure 4.9: Internships co-occurrence network

1https://cran.r-project.org/web/packages/udpipe
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From the network, we can observe many candidate stop words and some topics start to
emerge like social media, customer service, business development, digital marketing, project
management, graphic design and others.

4.1.1 Cluster analysis

To uncover more patterns from the internships, a few clustering and topic modelling algo-
rithms were compared. Topics are more flexible than hard cluster assignments because one
document may be assigned to multiple topics, as is the case with LDA, a probabilistic model
where each document is represented as a mixture of topics and every topic is represented
by a mixture of words [32].

Hierarchical clustering and k-means variants are often used to cluster documents [33]. Dis-
tance based algorithms require a similarity measure between documents to perform clus-
tering. The cosine similarity is widely used for text analysis, as metrics like the Euclidean
distance are not appropriate for high dimensional, sparse data [34]. Using LSA or other
dimensionality reducing algorithms can improve the performance of clustering and classifi-
cation algorithms [35].

Hierarchical clustering has the advantage of producing a dendrogram, a tree-based repre-
sentation of the clusters, and the number of clusters does not have to be pre-specified. A
limitation of hierarchical algorithms is the time complexity, which is at least quadratic, since
the similarity between all documents has to be calculated. The dendrogram in Figure 4.10,
constructed using Ward’s criterion, shows that reducing the number of dimensions using
LSA provides better results, as the original vector space causes one cluster to be dominant
and the others to be outliers.

Figure 4.10: Dendrograms with a cut of 6 clusters for different dimensions

A particular variant of k-means often used for text data is spherical k-means, which uses
the cosine similarity instead of the Euclidean distance [36]. K-means has the advantage
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of scaling linearly with the number of documents, however it is not deterministic and the
number of clusters must be pre-specified. K-means is sensitive to the initial seed selection,
so different techniques have been used to improve performance on large data sets, such as
using hierarchical clustering on a sample of data to select the initial centroids [36].

Determining the optimal number of clusters is a difficult task. Possible strategies include the
manual inspection of the top keywords in the clusters or calculating metrics like the mean
silhouette. The silhouette of a document measures how similar it is to other documents in
its own cluster, when compared to other clusters, ranging from -1 to +1 [35].

The following steps were taken to cluster the internships:

1. Concatenate the internship title and description.

2. Perform tokenization to split each word.

3. Reduce dimensions by removing stop words.

4. Compute feature vectors:

• Term frequencies for LDA topic modelling.

• TF-IDF and LSA for hierarchical clustering and spherical k-means.

5. Apply clustering algorithms.

6. Evaluate the results.

Figure 4.11 compares the mean silhouette values for different combinations of algorithms,
LSA dimensions and number of clusters. Spherical k-means has slightly better results than
other algorithms. It was also observed that 100 dimensions are enough to obtain good
results.

Figure 4.11: Mean silhouette comparison from 30 iterations



28 Chapter 4. Exploratory data analysis

Other techniques like n-grams, stemming, lemmatization and filtering certain word classes
did not show significant improvements and were more computationally expensive.

To better understand the generated clusters, it is useful to look at the most relevant terms
in each cluster, based on the original TF-IDF matrix. By visually inspecting these, a good
number of clusters appears to be around 6, as higher numbers cause some very small clusters
to be created, since a few companies submit many internships with similar contents, which
get grouped together.

Figure 4.12 presents the most relevant terms for each cluster when using spherical k-means
with 6 clusters and the dimensions reduced to 100 through LSA. The following clusters can
be identified:

• Cluster A - Sales, customer service and hospitality. Many of these are submitted in
Barcelona.

• Cluster B - Erasmus, university research and management.

• Cluster C - Education, mostly related with teaching other languages.

• Cluster D - Marketing.

• Cluster E - Engineering, software development and design.

• Cluster F - Internships written in Portuguese.

Figure 4.12: Most important terms per cluster

Looking at the evolution of these topics over the years in Figure 4.13, we can see a significant
decrease in the education internships when compared to other areas. Engineering internships
also appear to become less dominant, but most internships written in Portuguese are related
with software engineering. There is also an increase on the internships related with sales,
customer service, hospitality and marketing.
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Figure 4.13: Clusters evolution

An effective way to visualize the differences in cluster assignments between different clus-
tering algorithms, is to do a two-dimensional projection of the original TF-IDF matrix. A
state of the art nonlinear dimensionality reduction algorithm for embedding high-dimensional
data in two or three dimensions, for data visualization, is T-distributed Stochastic Neighbor
Embedding (T-SNE) [37]. A comparison of the cluster assignments made by the tested
algorithms, on the original dimensions, is displayed in Figure 4.14.

Figure 4.14: t-SNE projection of clustering algorithms
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As previously observed in the dendrogram, without dimensionality reduction techniques,
hierarchical clustering tends to create small clusters with outliers. Between spherical k-
means and LDA, some clusters share similarities and others do not, as variations in the
topics are identified. For example, with LDA, education and university research were part of
a single topic, at 6 dimensions.

4.2 Search requests

Since searches started being logged in 2014, a total of 151 940 queries were made in Praxis.
About 83% of searches contain a single term, 16% have two terms and only 1% three
or more. As observed in Figure 4.15, the rate of searches has been decreasing, and in the
summer, searches are less frequent. Between 2016 and 2017 the number of searches without
any results increased from 29% to 52%, which warrants further investigation.

Figure 4.15: Total searches made by month

Some anomalies are detected in Figure 4.16, reaching 600 results for some searches, which
should not be possible given that the maximum available internships in a single day was less
than 250. In 2016 and earlier, expired internships were sometimes being returned. After this
year, it appears that some queries are returning all available internships for the respective
day.

The issue lies with the current Praxis search engine. Text queries are being parsed by
Lucene, when they should only be matched. Queries with special keywords and symbols
like "and", "or", "not", "to", "-", among others, which are part of the Lucene query
syntax, are returning all available internships. When queries contain more than 2 consecutive
whitespaces or trailing whitespaces, they return too many results. This behaviour also
happens when the query contains non-alphanumeric characters and any filter is applied. As
the search engine is indexing fields like the organization type and internship duration, terms
like "company" and "month" return nearly everything.
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Figure 4.16: Distribution of search results by year

As such, to clean the data, queries that contain excess whitespace, non-alphanumeric char-
acters, stop words, Lucene keywords, or return roughly the number of available proposals on
the day they were made, are removed. Figure 4.17 still shows a big difference between 2016
and 2017, suggesting data quality issues associated with the collection of these metrics. In
the last 3 years, 55% of searches retrieve no results.

Figure 4.17: Search results over time
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By observing the search terms word cloud in Figure 4.18, it is clear that engineering is the
most frequent term. Students also often look for design, architecture, marketing and some
sciences. Countries and cities are also frequently searched.

Figure 4.18: Search terms word cloud

The co-occurrence network in Figure 4.19 helps identify clusters of related words. Many
fields of engineering are popular, but civil engineering is the most searched by students.
Other topics like machine learning, renewable energy, therapy are now visible.

Figure 4.19: Search terms co-occurrence network
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4.3 Market gap

To help identify market gaps, the distribution of candidates to different internship topics was
plotted in Figure 4.20. Medicine and Law topics do not have many internships submitted,
but they have higher median number of candidates.

Figure 4.20: Distribution of candidates by study topic

For the comparison of word frequencies between internships and searches in Figure 4.21,
countries and cities were added to the stop words. It indicates that engineering, architecture,
law, design and psychology are some terms that are not matching many internships.

Figure 4.21: Internships and searches comparison word cloud
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Among the top 1% most searched queries, some areas stand out in Figure 4.22, with many
matches, like marketing, management, computer science, education and design.

Figure 4.22: Top searched queries with most results

According to Figure 4.23, areas like psychology, chemistry, physics, photography, pharmacy,
medicine, civil engineering, nursing and other sciences do not have many matches.

Figure 4.23: Top searched queries with least results



4.4. Summary 35

Search queries that never retrieved any results in Figure 4.24 indicate some possible im-
provements that can be made to the search engine. Search terms may contain typograph-
ical errors, which can be corrected, and some terms can be replaced with synonyms, or
semantically similar words, to increase the number of matched internships.

Figure 4.24: Top searched queries that never had any result

4.4 Summary

The analysis of the structured and non-structured data in the Praxis historical dataset gave
insights into the internship market. Text mining techniques provided valuable information
that would otherwise remain hidden. Technology, Marketing, Business and Accommodation
related internships are common on Praxis, while areas like Architecture, Law, Medicine,
Design, Engineering and Sciences are not very abundant.

Some improvement suggestions for the search engine were identified. The most critical
update is preventing users from doing arbitrary Lucene queries. Additional tuning must be
done to prevent certain queries from returning too many results. Correcting typographical
errors and using related words can increase the number of relevant results.
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Chapter 5

Solution development

This chapter presents the implementation of the software modules that compose the project.
Before detailing the different components of the solution, the development environment is
described. Then, the configuration of the data pipeline using Logstash is shown, followed
by the setup of Elasticsearch as a search and analytical engine. Finally, Zeppelin is used to
create web dashboards that provide insights into the market gap on Praxis.

5.1 Development environment

The use of version control is a best practice for software development and has become
ubiquitous [38]. Given the advantages it provides, all developed code is pushed to a private
Git repository on GitHub1. Since there is only a single contributor on this project, a simple
branching strategy was used. All code is pushed to the master branch and tags are used to
mark certain commits as release points.

Setting up a repeatable development environment is important to ease collaboration and
guarantee consistent results across different environments or machines. A study on repeata-
bility of computer systems research shows that a out of a sample containing 601 papers
from ACM conferences and journals, 402 papers were backed by code and about 46% of
these are not repeatable because the code could not be built [39].

5.1.1 Docker

As the issue of reproducibility gets more attention from the research community and com-
panies, the emergence of technologies like Docker2 can reduce this issue[40]. Docker allows
packaging software applications and all their dependencies like system libraries into a single
container image. This image can be published and then downloaded on another machine to
be run as a container instance, even with a different operating system, as long as Docker is
installed.

Containers are much more lightweight than VMs because they do not require a separate
Operating System (OS), as they all share the host OS kernel, thus reducing the memory
and disk footprint. Docker uses resource isolation features of the Linux kernel, such as
cgroups and namespaces [41], so Docker currently needs to run inside a VM on Mac and
Windows hosts. Figure 5.1 compares the architecture of a Virtual Machine (VM) and a
container.

1https://github.com/ruial/praxis
2https://www.docker.com
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Figure 5.1: VM vs container architecture [42]

A container image is immutable, but container instances are not. Volumes should be used to
persist data generated or used by containers, such as configuration files and database storage
directories, otherwise data is lost when the container is rebuilt or destroyed. Containers run
isolated from each other but are able to communicate when they join the same Docker
network.

When changes need to be done to an image, a special file called Dockerfile, must be created
and contain all the instructions to build the image. An image may have many gigabytes but
thanks to intermediate image caches, the build process is accelerated as changes can be
incremental.

5.1.2 Docker Compose

Having multiple containers running on the same host requires multiple steps, which may be
error prone if done manually. Volumes have to be mounted to persist data, networks must
be setup to allow communication and various configurations for each container often need
to be made.

Docker Compose is a tool for defining and running multi-container applications through
a single configuration file using YAML Ain’t Markup Language (YAML) format, which by
default already creates a network for the containers. A partial example of the configuration
file is available on Listing 5.1. Each service has a container image, ports that are exposed,
environment variables to be set and volumes to persist data when the container goes down.
Building and starting all the containers is done with a single command.

1 v e r s i o n : ’ 3 . 4 ’
2 s e r v i c e s :
3 mysq l :
4 image : mar i adb : 1 0 . 4 . 1 0
5 conta iner_name : mysq l
6 p o r t s :
7 − 3306:3306
8 env i r onmen t :
9 − MYSQL_ROOT_PASSWORD=example

10 vo lumes :
11 − . / vo lumes /mysq l / i n i t : / docker−e n t r y p o i n t − i n i t d b . d
12 − . / vo lumes /mysql−data : / v a r / l i b /mysq l
13 e l a s t i c s e a r c h :
14 image : e l a s t i c s e a r c h : 7 . 4 . 2
15 conta iner_name : e l a s t i c s e a r c h
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16 p o r t s :
17 − 9200:9200
18 env i r onmen t :
19 − d i s c o v e r y . t y pe= s i n g l e −node
20 − ELASTIC_PASSWORD=some−password
21 − xpack . s e c u r i t y . e n a b l e d= t r u e
22 vo lumes :
23 − . / vo lumes / es−data : / u s r / s h a r e / e l a s t i c s e a r c h / data
24 l o g s t a s h :
25 image : l o g s t a s h : 7 . 4 . 2
26 conta iner_name : l o g s t a s h
27 depends_on :
28 − e l a s t i c s e a r c h
29 p o r t s :
30 − 9600:9600
31 env i r onmen t :
32 − JDBC_URL= j d b c : mar i adb :// mysq l :3306/ db_name
33 − JDBC_USERNAME=roo t
34 − JDBC_PASSWORD=example
35 − ELASTIC_URL= e l a s t i c s e a r c h :9200
36 − ELASTIC_USERNAME= e l a s t i c
37 − ELASTIC_PASSWORD=some−password
38 vo lumes :
39 − . / vo lumes / l o g s t a s h / c o n f i g / p i p e l i n e s . yml : / u s r / s h a r e / l o g s t a s h /

c o n f i g / p i p e l i n e s . yml
40 − . / vo lumes / l o g s t a s h / p i p e l i n e : / u s r / s h a r e / l o g s t a s h / p i p e l i n e
41 − . / vo lumes / l o g s t a s h / c onn e c t o r s /mar iadb−j a v a−c l i e n t −2 . 5 . 2 . j a r : / u s r

/ s h a r e / l o g s t a s h / l o g s t a s h −co r e / l i b / j a r s /mar iadb−j a v a−c l i e n t −2 . 5 . 2 . j a r

Listing 5.1: Partial docker-compose.yml

Docker Hub3 is a public registry that has many container images created by the individuals
and organizations. When an image with the desired software installed is not publicly available,
it must be created, as will be done in section 5.4 for the Zeppelin web dashboard.

The ability to simulate the entire infrastructure on a single machine is excellent for develop-
ment purposes, as the complete environment is reproducible even on different systems. This
was especially helpful in this project to simulate the operational database with a sample of
real data.

For production workloads, Docker Compose is less used because containers typically run on
different machines due to performance reasons. Therefore, alternatives are often used for
deployment and configuration management, as will be discussed in Chapter 6.

5.2 Data pipeline

As analytical queries can be computationally expensive and the performance of the opera-
tional system should not be degraded, it was decided that another database is to be used for
analytical purposes. For this reason, a data pipeline is required to synchronize data from the
operational database to the analytical database, which can also be used to enable full-text
searches.

3https://hub.docker.com
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The first step of building a data pipeline is identifying the data sources and destinations.
In this case there is a single source, the MariaDB Praxis operational database, and a single
destination, Elasticsearch as it can be used for searching and data analysis purposes.

Afterwards, the destination data schema must be defined based on the requirements and
taking into account the existing schema of the data source. Then transformations often
have to be made. Examples of data transformations include filtering records, performing
aggregations, dropping unnecessary record fields and adding new fields derived from existing
fields or external sources.

Lastly, since minimal changes are wanted on the operational system and delays in the order
of minutes are acceptable, a batching approach with a configurable polling mechanism was
chosen. Alternatively, a near real time approach could be achieved by changing existing code
to send data directly to new destinations or by using a change data capture platform such
as Debezium in conjunction with a streaming platform like Kafka, to stream the database
transaction logs as events [43].

5.2.1 Logstash

Logstash is the chosen technology to create the pipeline. Despite its name, it has uses
beyond collecting and processing logs, thanks to a number of supported plugins. Logstash
provides many types of plugins out of the box and additional ones can be developed using
Ruby or Java, as JRuby is the default runtime [44]. There are four types of plugins:

• Input to extract data as events from a source to Logstash

• Codec as part of an input or output to parse the event data format, such as JavaScript
Object Notation (JSON)

• Filter to apply event transformations

• Output to send events from Logstash to a destination

A Logstash pipeline consists of three stages, as presented in Figure 5.2. To start, an input
plugin with the correct connection information is required to generate events. Then filter
plugins can be combined to modify each event. Finally, each event is sent according to the
output plugin configuration. If no codec is defined, the default is used for the specific input
or output plugin. Multiple plugins can be used in parallel.

Figure 5.2: Logstash pipeline

A major strength of Logstash is that no programming is required. Through the combination
of existing plugins, data pipelines can be created just by editing configuration files. Another
advantage is that some plugins do optimizations like bulk insertions for better performance
and handle failures with a retry mechanism. When the amount of data that needs to
go through a single Logstash instance is too big, it is even possible to scale horizontally
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and distribute the load among different Logstash workers, with many possible alternative
architecture patterns [45].

5.2.2 Pipeline configuration

To create the data pipeline, two Logstash pipelines are required, one to extract the internship
proposals and other for the search results, as different SQL queries have to be made. To
create these pipelines, the file /usr/share/logstash/config/pipelines.yml must include the
name of the pipelines and their configuration path.

1 − p i p e l i n e . i d : s e a r c h e s−p i p e l i n e
2 path . c o n f i g : "/ u s r / s h a r e / l o g s t a s h / p i p e l i n e / s e a r c h e s . con f "
3

4 − p i p e l i n e . i d : p r o p o s a l s −p i p e l i n e
5 path . c o n f i g : "/ u s r / s h a r e / l o g s t a s h / p i p e l i n e / p r o p o s a l s . con f "
6 p i p e l i n e . wo r k e r s : 1

Listing 5.2: Pipelines definition

In addition, the number of worker processes can be changed. The default value is equal to
the number of CPU cores. As the proposals pipeline contains many to many joins, multiple
events are generated for the same proposal, so the number of worker threads needs to be
limited to one because of a limitation in the aggregation filter4.

The configuration for the searches pipeline is available in code Listing 5.3. The JDBC input
filter is required to establish the connection to the source database, which is MariaDB. To
send the data to the final destination, the Elasticsearch output plugin is set, including the
index name.

No filter plugins are needed since no transformations are done and environment variables
are used for dynamic configuration that change in development and production, like the
database connection details. As the search request reports have daily granularity, this was
scheduled to run every day at 3AM.

It is necessary to specify a column that is used to keep track of the last queried record,
along with a file to store the latest value. A special variable can then be used in the SQL
statement to resume the pipeline.

1 i n p u t {
2 j d b c {
3 j d b c_d r i v e r_ c l a s s => " org . mar i adb . j d b c . D r i v e r "
4 j d b c_conn e c t i o n_s t r i n g => "${JDBC_URL}"
5 j d bc_use r => "${JDBC_USERNAME}"
6 j dbc_password => "${JDBC_PASSWORD}"
7 s c h e d u l e => "0 3 ∗ ∗ ∗" # Eve ry day a t 3 :00
8 lowercase_column_names => f a l s e
9 s t a t emen t => "SELECT id , ‘ date ‘ , nRe su l t s , ‘ query ‘

10 FROM Sea rchReque s t
11 WHERE ‘ query ‘ <> ’ ’ # Exc l ud e empty q u e r i e s
12 AND i d > : s q l_ l a s t_v a l u e "
13 use_column_value => t r u e
14 t rack ing_co lumn_type => " numer i c "
15 t r ack i ng_co lumn => " i d "
16 l ast_run_metadata_path => "${HOME}/ . l o g s t a s h_ jdbc_ l a s t_ run_sea r c h e s "
17 }

4https://discuss.elastic.co/t/how-to-use-aggregate-filter-with-multiple-workers/157621
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18 }
19 outpu t {
20 e l a s t i c s e a r c h {
21 ho s t s => [ "${ELASTIC_URL}" ]
22 i n d e x => " s e a r c h e s "
23 document_id => "%{i d }"
24 u s e r => "${ELASTIC_USERNAME}"
25 password => "${ELASTIC_PASSWORD}"
26 }
27 }

Listing 5.3: Searches pipeline

The proposals pipeline is similar, but an aggregation filter is needed to combine multiple
rows in lists, caused by many to many joins. Additionally, a mutate filter creates an _all
field by concatenating the text of other fields to improve full-text searches over multiple
fields. The scheduling period was set to every minute, as new internships must be available
without much delay and no performance impact was observed.

5.3 Search engine

To improve search results on Praxis, a search engine was built taking into consideration
the findings in the exploratory data analysis of the Praxis dataset. Elasticsearch is the
selected search engine because of its popularity and features. In addition, it can be used as
an analytical database. As Elasticsearch should not be exposed to the internet for security
reasons, a custom web API with the single purpose of routing search queries to Elasticsearch
was developed in Go.

5.3.1 Elasticsearch

Elasticsearch is a distributed open source search and analytics engine developed in Java
on top of Lucene5. It provides a JSON web API to manage the distributed system, index
documents and execute queries. When a document is stored, it is indexed and searchable in
near real-time. Unlike relational databases, Elasticsearch is a document-oriented database,
so data should be denormalized and there are no relations, constraints and transactions.
Every document has a unique identifier which will be automatically generated if not specified.

Each index has a name and mappings, which defines how documents, and their fields, are
stored and indexed. Additional settings like the number of primary and replica shards can
be set, which by default is one for both. Elasticsearch can automatically update an index
mapping when documents with new fields are added. In some cases, this dynamic mapping
is not able to infer the type of each field correctly. For these situations, the mapping has to
be explicitly defined before a document is indexed with an incorrect field type, as updates
to existing fields are not supported, requiring the creation of a new index and re-indexing all
data [46].

By default, strings are indexed as a text field for full-text search and as a keyword field for
sorting or aggregations. Text analysis is performed by an analyzer when indexing or search-
ing text fields to return not only exact matches, but also relevant results [47]. Therefore,
the configuration of analyzers, which convert unstructured text into a structured format

5https://lucene.apache.org
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optimized for search, is important to tune the search engine. An analyzer contains three
steps: character filters, tokenizers and token filters, as demonstrated in Figure 5.3. Addi-
tional analysis plugins6 with support for lemmatization, phonetic similarity or optimized for
different languages and purposes can be installed.

Figure 5.3: Elasticsearch analyzer steps [48]

When a full-text search query is made with multiple terms, an analyzer splits the string
into multiple tokens. The search query is then converted into a boolean query to retrieve
matching documents and a similarity model ranks them according to relevance. In recent
years, Lucene and Elasticsearch switched their default similarity model from a TF-IDF model,
to a BM25 model, as studies show improvements on the relevance of search results using
the probabilistic technique [49].

Besides searches, an advantage of the powerful Elasticsearch query domain-specific language
is the ability to do various kinds of analytical queries using the aggregations framework7. It
is possible to calculate percentiles, create date histograms, get the most significant terms,
among others. Multiple statistics can be obtained with a single HTTP request. Certain
queries may have a big performance impact, so caching and sampling is supported by Elas-
ticsearch.

To achieve scalability and high availability, Elasticsearch indexes are divided into two types of
shards, primaries and replicas, which are split among the different nodes in the Elasticsearch
cluster. Only primary shards accept document indexing requests, so each document belongs
to a primary shard, being then replicated to replica shards, and unlike the latter, the number
of primary shards is fixed when the index is created [50]. On a cluster with sufficient nodes,
improving search speeds for an index can be done by increasing the number of replicas,
however, for write-heavy environments, more primary shards are needed. Shard balancing
is done automatically by the cluster when nodes are added or removed and every node can

6https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis.html
7https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
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forward client requests to the appropriate node. By default, each index is created with one
replica shard, so at least two nodes are needed to keep the cluster in a healthy state.

A single Elasticsearch node can have many roles assigned: master-eligible, data, ingest or
coordinating, and on large clusters it is recommended to separate each node’s role [51].
The master node is responsible for coordinating the cluster and three or five master nodes
is a common configuration to maintain a quorum and be able to elect a new leader in
case of failure [52]. Data nodes contain the shards, so they handle searches, aggregations,
insertions, updates and deletions. Coordinating nodes act as load balancers, routing requests
to the correct nodes. Lastly, ingest nodes deal with document pre-processing operations.

5.3.2 Index configuration

As there are two different types of documents that need to be indexed, searches and intern-
ships, two indexes need to be created. The searches index is simple, so the default index
settings and implicit mappings created by Elasticsearch do not have to be changed, but an
explicit mapping is required for the internships index.

To optimize search results, the internships index configuration took into account the findings
from the exploratory data analysis and the options available on Elasticsearch. An HTTP
request must be made to create the index correctly, with different analyzer settings for
indexing and searching. The implemented analyzer configuration is defined in Listing 5.4.

1 {
2 " a n a l y s i s " : {
3 " f i l t e r " : {
4 " p rax i s_synonyms " : {
5 " t ype " : " synonym_graph" , " synonyms_path" : " synonyms . t x t "
6 } ,
7 " p r a x i s_s t opwo r d s " : {
8 " t ype " : " s top " , " stopwords_path " : " s topword s . t x t "
9 } ,

10 " p lu r a l_s temmer " : {
11 " t ype " : " stemmer" , "name" : " m i n ima l_eng l i s h "
12 } ,
13 "no_stem" : {
14 " t ype " : " keyword_marker " , " keywords_path " : "no_stem . t x t "
15 }
16 } ,
17 " a n a l y z e r " : {
18 " d e f a u l t " : {
19 " t ype " : " custom" , " t o k e n i z e r " : " s t a n d a r d " ,
20 " c h a r _ f i l t e r " : [ " h tm l_s t r i p " ] ,
21 " f i l t e r " : [ " l ow e r c a s e " , " apo s t r o ph e " , " a s c i i f o l d i n g " ,
22 "no_stem" , " kstem" , " p l u r a l_s temmer " , " p r a x i s_s t opwo r d s " ]
23 } ,
24 " d e f a u l t_ s e a r c h " : {
25 " t ype " : " custom" , " t o k e n i z e r " : " s t a n d a r d " ,
26 " f i l t e r " : [ " l ow e r c a s e " , " apo s t r o ph e " , " a s c i i f o l d i n g " ,
27 "no_stem" , " kstem" , " p l u r a l_s temmer " , " p r a x i s_s t opwo r d s " ,
28 " p rax i s_synonyms " ]
29 }
30 }
31 }
32 }

Listing 5.4: Internships index configuration
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As internships may contain HTML tags, they are stripped in the index analyzer. The standard
tokenizer works well with many languages, so it is applied on both analyzers. In addition, all
terms are converted to lower case, everything after apostrophes, including the apostrophe
itself is removed and diacritics are replaced with ASCII equivalents. Afterwards, stemming is
applied, however some words are excluded as they should not be stemmed. Stop words are
also removed. A list of synonyms is maintained and used at query time to improve results.

A light stemming approach was taken with the Krovetz Stemmer (Kstem) and the minimal
plural stemmer, as not all plurals were being removed with the first. Kstem is a hybrid algo-
rithm that combines morphological rules and dictionary lookups to avoid incorrect stemming
[53]. More aggressive stemmers like the Porter2 stemmer tend to increase recall at the cost
of precision, which may result in a worst F1 score.

5.3.3 Search API

Boolean search queries are typically used on Elasticsearch to retrieve documents that have
to match more than one condition, by combining multiple clauses. The filter and must_not
clauses are used to select matching documents and do not affect the relevance score. To
order the documents by relevance, the must or should clauses are required, with the former
excluding any document that does not match the specified conditions. Each clause can have
multiple conditions.

By default, on full-text searches, the search terms are converted to a boolean query with
the should clause, where each term is separated by an OR condition. To control the
search engine precision, a minimum_should_match condition is used to specify the absolute
number, or percentage, of minimum terms that should be present to retrieve a document.
It is possible to specify different minimum values depending on the size of the query.

Typographical errors cause queries to retrieve no results, which is often undesired. To
deal with this, similar words can be suggested to the user using the Elasticsearch’s term
suggester, or matched automatically using the fuzziness attribute. A metric commonly used
to match similar words is the Damerau–Levenshtein edit distance, which is calculated by the
minimum number of single-character changes, or transpositions of two adjacent characters,
to transform a word into another. Damerau stated that over 80% of spelling errors are
within an edit distance of one [54].

A full-text search can be matched against one or more fields and relevance can be boosted
for each field using multi_match conditions. The creation of an additional field, at index
time, that contains the text of other fields is also a valid and documented approach [55].
It is useful when combined with the minimum_should_match condition, which can only be
used on a single field. A must clause can be used to match a query on the big field, which
contains all the text, and a should clause can then tune relevancy based on the other fields,
so that a term appearing in a title is more relevant than a description.

Taking into consideration the existing data and analysis made, the format of search queries
is specified in Listing 5.5, which contains a boolean query with multiple terms to retrieve
valid internships at a certain date, ordered by relevance. Some fields are more relevant than
others, so boosting is applied. An additional _all field was required, which has the text of
the other fields, in a bigger field. If the query has three terms, all terms should be in the
_all field, otherwise 75% of terms must be present. A maximum edit distance of one is
allowed after the third character of each term, as it fixes most typographical errors and has
good performance.
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1 POST ht t p : // l o c a l h o s t :9200/ p r o p o s a l s /_search
2 Content−Type : a p p l i c a t i o n / j s o n
3 {
4 " que r y " : {
5 " boo l " : {
6 "must" : [ {
7 "match" : {
8 " _a l l " : {
9 " que r y " : "uk s o f tw a r e e n g i n e e r " ,

10 " f u z z i n e s s " : "1" , " p r e f i x_ l e n g t h " : 3 ,
11 "minimum_should_match" : "3<75%"
12 }
13 }
14 } ] ,
15 " s h o u l d " : [ {
16 "mult i_match " : {
17 " que r y " : "uk s o f tw a r e e n g i n e e r " ,
18 " f i e l d s " : [ " t i t l e ^8" , " d e s c r i p t i o n ^2" , " s t u d i e s . ∗" ,
19 " coun t r y ^16" , " c i t y ^16" , " l a n g u ag e s ^16" , "orgName" ] ,
20 " f u z z i n e s s " : "1" , " p r e f i x_ l e n g t h " : 2 ,
21 " t i e_b r e a k e r " : 0 . 3
22 }
23 } ] ,
24 "must_not" : [
25 { " term" : { " d e l e t e d " : t r u e } } ,
26 { " term" : { " v i s i b l e " : f a l s e } } ,
27 { " term" : { " s t a t u s " : " a s s i g n e d " } }
28 ] ,
29 " f i l t e r " : [
30 {" range " : { " submi tDate " : { " l t e " : "2019−01−01" } } } ,
31 {" range " : { " v a l i dTo " : { " gte " : "2019−01−01" } } }
32 ]
33 }
34 }
35 }

Listing 5.5: Search query example

The values defined in the query, to control precision and relevancy, were set based on the
observation of results for common search queries. To properly tune relevance over time,
instrumentation should be in place to monitor metrics such as the number of clicks on the
top result(s), how often users they click a result and go back, how many queries are made
per user, and so on [56]. Recent internships could rank higher by adding a condition to the
should clause using a boost parameter.

There is a lot of flexibility when it comes to relevance tuning as different applications have
different requirements, so even custom plugins with ranking scripts can be developed. As
the number of matches increases, their order becomes more important, especially on the
first ones.

Recent developments in Elasticsearch allow semantic search at scale with the introduction
of the dense_vector field, which can be used to store text embeddings, and the ability to
calculate the cosine similarity between these vectors [57]. Text embeddings for documents
and queries can be generated from pre-trained models like BERT and then compared. This
is still an area of active research, but Google is already implementing such techniques in
Google Search with good results [58].
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A web API was developed to provide a secure interface to the Elasticsearch cluster. Figure
5.4 shows the flow of a search request through the system, which results in one or two
HTTP requests. If the search query does not retrieve any internships, alternative terms are
suggested using Elasticsearch’s term suggester and the significant text aggregation.

Figure 5.4: Search sequence diagram

The selection of Go as a programming language to develop this web API proved to be a good
decision. Out of the box, the standard library included everything required to create HTTP
clients and servers, without too much code and with intuitive abstractions, so no external
libraries were required. Additionally, static typing helped ensure the code correctness during
compile time and lightweight binaries could be generated for multiple operating systems,
without any dependencies. These binaries are small, have fast start-up times and good
runtime performance without consuming a lot of memory or CPU resources.

5.4 Web dashboard

The creation of a web dashboard is valuable for Praxis administrators, as they need a solution
to visualize the structured and non-structured data on Praxis, to extract useful information
about the market and the usage of the website. The main objective of the dashboard is
to automate the analysis made with the R language in the previous chapter, for any given
time frame. R was chosen due to having many available text mining libraries and for being
a productive language to conduct exploratory data analysis.
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5.4.1 Zeppelin

To enable easy data exploration on the web, the selected technology was Zeppelin, an open
source web-based notebook for interactive data analytics. Each dashboard is a notebook,
or note, that contains blocks of code called paragraphs, which can be executed individually.
Text mining techniques can be applied, as multiple programming environments are supported,
and software libraries can be installed. In addition, it allows the collaboration of multiple
users, with configurable environment isolation.

An overview of the Zeppelin architecture is presented in Figure 5.5. The frontend web appli-
cation communicates with the backend through a REST API and WebSockets, allowing the
connection to stay open, so updates from the server are sent in real time to the frontend,
giving users instant feedback on the execution of notes. Interpreters for various environ-
ments, such as R and Python, can be installed on the server. Zeppelin is developed in Java
and is able to interact with other applications associated with the Big Data ecosystem, such
as Spark8, an open source cluster-computing framework, which is often used to scale heavy
computational tasks horizontally [59].

Figure 5.5: Zeppelin architecture

One or more Java Virtual Machine (JVM) processes are responsible for the communication
with interpreters, and different ones may be used in the same notebook. Interpreter initial-
ization is lazy, so they are not started until code execution is requested, and after a specified
amount of idle time, the interpreter is stopped. Variables defined in one notebook can be
accessed in another if using the same session. There are three modes to run interpreter
processes:

• Shared - a single JVM process and session

• Scoped - a single JVM process and one session per notebook

• Isolated - a separate JVM process per notebook

The default shared mode achieves higher performance, but variables are shared across all
notebooks and if one notebook causes the interpreter process to die, all notebooks are
affected. The scoped mode does not share variables between notebooks, as a session is
created for each. Lastly, the isolated mode is more computationally expensive, as it creates
a separate JVM process per notebook, with the corresponding interpreter, but sessions are
not shared, and other notebooks do not affect each other if an interpreter dies [60].

8https://spark.apache.org
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When running Zeppelin in a multi-user environment, interpreter isolation becomes more
important, as users do not want to overwrite each other’s variables, and a bad query can
cause the interpreter to become unresponsive. By default, notebooks are executed by the
same user as the Zeppelin process, which may be a security risk, since users could read
sensitive files owned by Zeppelin. As such, Zeppelin also provides environment isolation per
user with the ability to run the interpreter as the user executing the notebook.

Authentication and authorization is based on the Shiro9 security framework. Supported
mechanisms include the usage of a local file, LDAP, Active Directory or JDBC. It can also
handle role assignment and authorization based on URL rules. There are four types of
notebook permissions assignable to users or roles:

• Owners - can change permissions of the notebook

• Writers - can update code in the notebook

• Runners - can execute the notebook

• Readers - can view the notebook

A Zeppelin notebook is composed of one or more paragraphs. Each paragraph contains a
code section, with the analysis source code, and a result section, with the analysis output.
A JSON file is generated for each notebook, containing the code, last run results and some
metadata. When a paragraph result contains images, they are converted to Base64 format
and the output is converted to HTML. A report mode, which only shows results and dynamic
forms is available to allow less technical users to interact with the system. By printing tables,
Zeppelin is capable of plotting bar charts, line charts, area charts and scatter plots.

Other notable Zeppelin features include a cron scheduler to run notebooks at specific time
intervals, visualization plugins using Helium10 packages, and the ability to use local Git
repositories to version control the notebooks. Other storage options such as GitHub and
MongoDB are available.

Although Zeppelin is a very useful tool, some issues were identified. On high load, the
interpreters can crash, and as a result, the entire notebook needs to run again, since variables
are lost, making it not a very good solution for intensive data pipelines, as also reported by
other researchers [61]. There are also limitations related with authorization, like the inability
to share dashboards or visualizations with unauthenticated users, and it is not possible to
create read-only users, who cannot create notebooks. An alternative to share reports is to
use the scheduler to periodically execute a notebook that generates a static webpage or pdf
and uploads it to a destination.

5.4.2 Libraries and configurations

A Zeppelin Docker image is distributed on DockerHub, however it does not contain all the
required software libraries used in the analysis. These libraries included algorithms for text
vectorization, clustering and visualization. A new image was created with the Dockerfile in
Listing 5.6 and uploaded to the registry, as additional configurations and R packages were
required.

1 FROM apache / z e p p e l i n : 0 . 9 . 0
2

9https://shiro.apache.org
10https://zeppelin.apache.org/helium_packages.html
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3 USER roo t
4

5 # update l i b r a r i e s , l i k e R to 3 . 6 , add sudo to run i s o l a t e d i n t e r p r e t e r s
6 RUN sed − i " s / deb h t t p :\/\/ c r an . r s t u d i o . com\/ b i n \/ l i n u x \/ ubuntu x e n i a l

\// deb h t t p s :\/\/ c l o ud . r−p r o j e c t . o rg \/ b i n \/ l i n u x \/ ubuntu x e n i a l −
c ran35 \//" / e t c / apt / s o u r c e s . l i s t && \

7 apt−ge t update && \
8 apt−ge t upg rade −y −−a l l ow−u n a u t h e n t i c a t e d r−base r−base−dev && \
9 apt−ge t remove −y ’ r−cran−∗ ’ && \

10 apt−ge t i n s t a l l −y −−no− i n s t a l l −recommends l i b g s l −dev sudo && \
11 echo " z e p p e l i n ALL=(ALL) NOPASSWD: ALL" >> / e t c / s u d o e r s && \
12 rm − r f / v a r / l i b / apt / l i s t s /∗
13

14 # a d d i t i o n a l r e q u i r e d R package s
15 RUN R −e " update . package s ( c h e c kB u i l t =TRUE, ask=FALSE) " && \
16 R −e " i n s t a l l . package s ( ’ e l a s t i c ’ ) " && \
17 R −e " i n s t a l l . package s ( ’ t i d y v e r s e ’ ) " && \
18 R −e " i n s t a l l . package s ( ’ udp ipe ’ ) " && \
19 R −e " i n s t a l l . package s ( ’ t e x t 2 v e c ’ ) " && \
20 R −e " i n s t a l l . package s ( ’ t i d y t e x t ’ ) " && \
21 R −e " i n s t a l l . package s ( ’ wordc loud ’ ) " && \
22 R −e " i n s t a l l . package s ( ’ ggraph ’ ) " && \
23 R −e " i n s t a l l . package s ( ’ skmeans ’ ) " && \
24 R −e " i n s t a l l . package s ( ’ Rtsne ’ ) " && \
25 R −e " i n s t a l l . package s ( ’ I R k e r n e l ’ ) ; I R k e r n e l : : i n s t a l l s p e c ( u s e r=FALSE) "
26

27 # c r e a t e a python s ymbo l i c l i n k to a l l o w R to run i s o l a t e d
28 RUN l n − s f / opt / conda / b i n / python / u s r / b i n / python
29

30 # tempora r y f i l e must be w r i t a b l e by a l l u s e r s
31 RUN mkd i r −p / z e p p e l i n / f i g u r e && \
32 touch / z e p p e l i n / f i g u r e /unnamed−chunk−1−1.png && \
33 chmod 666 / z e p p e l i n / f i g u r e /unnamed−chunk−1−1.png
34

35 USER z e p p e l i n

Listing 5.6: Zeppelin Dockerfile

Other configurations were not set in the Docker image, but through the use of environment
variables and file system volumes, which can be dynamically changed as needed. Regarding
authorization, authenticated users can have two roles assigned, admin and analyst. Admins
are able to change system settings through the Zeppelin web administration interface and
analysts have permissions to edit notebooks and run or restart interpreters.

Since only a few people need access to the system, instead of having to rely on an external
authentication service, a local file with hashed passwords was the selected mechanism to
handle user accounts. To prevent other users from reading this file, its read permissions
were restricted to the zeppelin user. Additionally, isolation was setup per user and note so
that interpreter processes are owned by the respective user and a new one is started for
every note. Despite having a performance cost, this increases security, stability and reduces
variable conflicts in different dashboards.

5.4.3 Visualizations

Most visualizations from the exploratory data analysis were replicated in the final dashboard,
with a few additional features. As visible in Figure 5.6, global filters were added to the top
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of the dashboard, to allow users to control the time range. When possible, the native charts
were favoured over images generated in the interpreter as they are interactive and it is easier
to change their chart type.

Figure 5.6: Dashboard global filters and report mode

Additional local filters were added to the dashboard as needed, with sensible defaults, so
that manual input is not required, as demonstrated in Figure 5.7. Unfortunately, Zeppelin
does not recognize dependencies between paragraphs, so they must be executed in order,
otherwise variables may be undefined.

Figures of the full dashboard are available in appendix A.

5.5 Summary

The implementation technical details were described and the decisions made were justified
in this chapter. With the selected technologies, Docker, Logstash, Elasticsearch, Go and
Zeppelin, in a short amount of time, a viable solution was developed to improve search results
on Praxis and another to help administrators analyse the available data on the platform and
extract actionable information.
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Figure 5.7: Topic modelling paragraphs with local filters and code edit mode
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Chapter 6

Deployment and Evaluation

This chapter reports the deployment procedures, which aimed to be reproducible, with as
minimal human interaction as possible, following the current best practices. Additionally,
the system is evaluated to verify if the original goals were achieved.

6.1 Configuration management

In recent years, virtualization and cloud computing led to an increase in the number of servers
managed by system administrators [62]. To help manage this complexity, and ensure the
environment is reproducible, infrastructure and related procedures can be defined as code
and placed into version control. Many alternative technologies are available for configuration
management, such as Ansible1 or SaltStack2.

6.1.1 Ansible

Ansible is an open source agentless automation engine for cloud provisioning, configuration
management and application deployment, which executes code over Secure Shell (SSH) by
default [63]. Most popular competing alternatives require software agents to be installed on
the controlled servers, which leads to better performance, but a more complex architecture,
as a centralized server is required, so that agents can pull configurations [64].

The main reason to choose Ansible was its simplicity. Being agentless, additional software
does not need to be installed on the servers, as long as Python is already present. By
using SSH, no additional ports have to be opened and no infrastructure changes have to be
made, as updates can be pushed as needed, from other machines, if a network connection
is established. The desired state of the system is written in easy and descriptive YAML files
called playbooks.

To understand Ansible, the following concepts are helpful:

• Control node is a machine with Ansible installed to run ad-hoc commands or playbooks
on the target hosts.

• Managed nodes are the servers managed with Ansible, also referred to as hosts.

• Inventory is a list of managed nodes. It contains information such as IP addresses,
groups and optional variables for each host. This list can be dynamic.

1https://www.ansible.com
2https://www.saltstack.com
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• Modules are the code blocks executed by Ansible to perform operations on the hosts.
Custom modules can be developed to add new features.

• Tasks are calls to modules, including the associated arguments. A task can invoke a
single module and an ad-hoc command can execute a single task.

• Handlers are tasks that are executed when notified of changes by other tasks.

• Roles are reusable components consisting of tasks, variables, handlers, or even mod-
ules, which can be included in playbooks. Ansible Galaxy3 is a popular website where
roles are shared by the community.

• Playbooks are ordered lists of tasks, which are assigned to hosts. Variables and Jinja
templates can be used. They should be idempotent, so that running the same playbook
multiple times, leaves the system in the same state as running it just once.

A local Docker container with Ansible was used to deploy the applications. The configuration
files and environment variables were stored in files that were mapped to the container through
volumes.

6.1.2 Deployment playbooks

Four playbooks were created to install the Elasticsearch, Logstash, the Search API and
Zeppelin applications as Docker containers. They all share similarities like the use of the
Docker module to manage the life cycle of the containers, as demonstrated in Listing 6.1.
When the configuration files or environment variables are updated, the container must be
restarted. In some cases, setup scripts are required to guarantee a good initial state. After
a container starts, the application can take some time to process HTTP requests, so a few
retries are needed.

1 −−−
2 − ho s t s : e l a s t i c s e a r c h −ho s t s
3 v a r s :
4 a n a l y s i s _ a n s i b l e : /home/ a n s i b l e / e l a s t i c s e a r c h / a n a l y s i s /
5 a n a l y s i s _ e l a s t i c : / opt / p r a x i s / vo lumes / e l a s t i c s e a r c h / a n a l y s i s /
6

7 t a s k s :
8 − impo r t_ta sk s : t a s k s / d o c k e r_ i n s t a l l . yml
9 become : y e s

10

11 − name : C r ea t e vo lumes d i r e c t o r y s t r u c t u r e
12 f i l e :
13 path : "{{ a n a l y s i s _ e l a s t i c }}"
14 s t a t e : d i r e c t o r y
15 r e c u r s e : y e s
16

17 − name : Copy e l a s t i c s e a r c h a n a l y s i s f i l e s
18 copy :
19 s r c : "{{ a n a l y s i s _ a n s i b l e }}"
20 d e s t : "{{ a n a l y s i s _ e l a s t i c }}"
21 n o t i f y :
22 − Re s t a r t e l a s t i c s e a r c h
23 − Crea t e i n d e x
24

25 − name : Make s e t up s c r i p t e x e c u t a b l e

3https://galaxy.ansible.com
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26 f i l e :
27 path : "{{ a n a l y s i s _ e l a s t i c }}/ i ndex−s e t up . sh "
28 mode : "0700"
29

30 − name : Copy e l a s t i c s e a r c h env f i l e
31 copy :
32 s r c : t emp l a t e s / e l a s t i c s e a r c h . env
33 d e s t : / opt / p r a x i s / e l a s t i c s e a r c h . env
34 mode : "0600"
35

36 − name : S t a r t e l a s t i c s e a r c h c o n t a i n e r
37 doc k e r_con t a i n e r :
38 name : e l a s t i c s e a r c h
39 image : e l a s t i c s e a r c h : 7 . 4 . 2
40 memory : 2048M
41 s t a t e : s t a r t e d
42 r e s t a r t _ p o l i c y : u n l e s s −s topped
43 e n v_ f i l e : / opt / p r a x i s / e l a s t i c s e a r c h . env
44 p o r t s :
45 − " 9200:9200 "
46 vo lumes :
47 − / opt / p r a x i s / vo lumes / e l a s t i c s e a r c h / data : / u s r / s h a r e /

e l a s t i c s e a r c h / data
48 − / opt / p r a x i s / vo lumes / e l a s t i c s e a r c h / a n a l y s i s : / u s r / s h a r e /

e l a s t i c s e a r c h / c o n f i g / a n a l y s i s
49 r e g i s t e r : e l a s t i c s e a r c h_ c o n t a i n e r_ s t a r t e d
50

51 h a n d l e r s :
52 # co n t a i n e r i s a l r e a d y r e s t a r t e d when env f i l e changes
53 − name : R e s t a r t e l a s t i c s e a r c h
54 doc k e r_con t a i n e r :
55 name : e l a s t i c s e a r c h
56 r e s t a r t : t r u e
57 when : e l a s t i c s e a r c h_ c o n t a i n e r_ s t a r t e d . changed == Fa l s e
58

59 − name : C r ea t e i n d e x
60 s h e l l : "{{ a n a l y s i s _ e l a s t i c }}/ i ndex−s e t up . sh "
61 r e g i s t e r : r e s u l t
62 u n t i l : r e s u l t i s not f a i l e d
63 r e t r i e s : 10
64 d e l a y : 3

Listing 6.1: Elasticsearch deployment playbook

The developed playbooks are idempotent. Running them multiple times will always leave the
system in the final desired state, as it detects that no changes are needed. When there is
an update, only the required tasks are executed.

To prevent high resource usage on the host, the maximum RAM was set for each container,
but CPU or I/O usage limitations could also be defined. In the future, if one host is not
enough, the containers can be deployed to different machines. Kubernetes4 is an emerging
technology to deploy, scale and manage containerized applications.

4https://kubernetes.io
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6.2 System evaluation

All the proposed functional requirements were implemented. To evaluate how well the de-
veloped system performs, metrics were obtained to check if the non-functional requirements
were achieved.

6.2.1 Search engine performance

The goals of the new search engine were to improve the search results and keep the response
times under 1 second for most users, in normal load and network conditions. The F1 score is
the chosen metric to be optimized to achieve a good trade-off between precision and recall.

To improve the F1 score, alternative English stemmers were tested, as most internships are
written in English. The existing search engine does not use stemming. It was found that
less aggressive stemmers like Kstem improve this metric more than the Porter2 stemmer or
no stemming, as demonstrated in Table 6.1. Only recall was slightly better with Porter2,
at the cost of precision. A set of 30 representative queries were made on different indexes,
containing the internships available on the date with the highest count.

Table 6.1: Search engine stemming comparison

Stemmer Mean results Mean precision Mean recall Mean F1 score
None 5.87 0.77 0.55 0.61
Kstem 12.10 0.84 0.86 0.80
Porter2 18.93 0.68 0.90 0.70

When no matches were found, the precision was considered to be zero, as the queries always
had possible matches. The mean F1 score, often referred to as macro F1, was calculated
via arithmetic mean of the individual F1 score of each query, instead of calculating the
harmonic mean of the mean precision and recall, as suggested by recent literature for being
more robust [65].

By combining a light stemmer, such as Kstem, with a list of synonyms and a list of words that
should not be stemmed, these metrics can be further improved. In many cases, removing
suffixes like plurals or "ing" improves results, but some words may need to be excluded, such
as "accounting". With lighter stemmers, smaller dictionaries and stemming exclusion lists
have to be maintained.

Regarding fuzzy searches, they never decrease recall but may decrease overall precision.
Words like medic are only 1 transposition away from media, resulting in false positives,
although exact matches are ranked higher than fuzzy matches. Unlike stemming, fuzziness
can be controlled at query time, so Elasticsearch’s term suggester can be used to suggest
corrections when there are no matches.

To check the response times of the Search API, load tests were made using JMeter5,
an open source Java-based load testing desktop application, simulating normal and peak
traffic. During a period of 30 seconds, distinct numbers of concurrent users were simulated
by sending different search queries from a local machine to a virtual server hosted in the
cloud, with an Intel Xeon CPU with 2 virtual cores, 8GB of RAM and 32GB SSD. The
results are presented in Table 6.2, which shows that all requests take less than a second.

5https://jmeter.apache.org
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Under normal conditions there are less than 10 searches per second in Praxis, so in 99% of
the cases, the Search API is expected to take less than 148 milliseconds.

Table 6.2: Load testing results in periods of 30 seconds

Users/s Samples Mean Std. dev. Median P90 P99 Max
1 487 60 ms 15.41 ms 58 ms 67 ms 124 ms 173 ms
10 4289 67 ms 19.24 ms 62 ms 89 ms 148 ms 204 ms
50 6864 214 ms 58.79 ms 207 ms 288 ms 401 ms 666 ms
100 6409 461 ms 94.55 ms 452 ms 583 ms 631 ms 886 ms

Throughput was reduced when going from 50 to 100 concurrent requests, as there is more
load on Elasticsearch, and it takes longer to finish the requests. If the traffic on Praxis
increases significantly, response times can be improved with an in-memory cache as many
searches are repeated or by adding more replicas to the Elasticsearch cluster.

6.2.2 Web dashboard usability survey

Usability is defined in ISO 9241 Part 11 as "the extent to which a product can be used
by specified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use" [66]. The users of the implemented system are expected to
have some experience with data analysis and their main goal is to extract information about
internships and searches made on Praxis to identify market gaps.

To evaluate the dashboard usability, a survey was distributed to 15 colleagues with engineer-
ing and business backgrounds. A guide was also included, with instructions to connect to
the dashboard and an introduction to Zeppelin so they could use the system more effectively.
The survey contained the following statements:

1. The dashboard is aesthetically pleasing.

2. The dashboard is easy to use.

3. The system feels fast and responsive.

4. The available information provides a good overview of the internships market supply
and demand.

5. Changing visualizations and doing different analyses does not require much effort.

Participants could evaluate these statements on a five-point Likert scale, widely used in
surveys [67], to specify their agreement level. Survey results are presented on Table 6.3.

Table 6.3: Survey results

Question
Strongly
disagree Disagree Neutral Agree

Strongly
agree

1 0 2 4 8 1
2 0 0 3 9 3
3 0 0 2 8 5
4 0 0 3 8 4
5 0 3 2 8 2
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Regarding the first and second statements, not many users selected "Strongly agree". They
suggested alternative BI tools, such as Kibana6 and Power BI7, that were easier to use
and provided better looking visualizations than Zeppelin. However, they are mostly used to
analyse structured data, so text mining use cases like document clustering or topic modelling
are not supported.

Most users agreed or strongly agreed that the system was fast. When doing a full run with an
interval of years, it takes a few seconds to load the data and create clusters of internships
based on their text, as it is computationally intensive. Users considered the system was
generally responsive with nearly instant feedback on most tasks.

A large percentage of users confirmed that the information presented allowed them to have
a good overview of the market supply and demand by observing the most searched keywords
and comparing the different internships clusters. The last question shows that some people
need help changing visualizations and the reason given was their unfamiliarity with program-
ming or the R language, so they were not comfortable editing the code to create their own
ad-hoc reports.

Although the sample of users is small, the majority agrees with all the statements. As
such, the usability goals are met. Specific user interface improvements were suggested, like
changes to the home page and keeping the toolbar always visible in the report mode, which
would have to be implemented in the Zeppelin source code

6.3 Summary

By using Ansible as a deployment automation tool, the entire process of deploying the project
to a production environment is faster and less error-prone.

The deployed system was evaluated to assess if the functional and non-functional require-
ments were met. There was an improvement on the F1 score of the new search engine and
responses were always under 1 second even under load. Users demonstrated satisfaction
with the web dashboard through a usability survey.

6https://www.elastic.co/kibana
7https://powerbi.microsoft.com
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Chapter 7

Conclusion

This chapter summarizes the accomplished goals, limitations of the developed solution and
future improvements.

7.1 Accomplished goals and contributions

The developed project achieved the defined goals set initially. The creation of a web dash-
board that is simple to use and easy to extend allows Praxis administrators to quickly have
access to the available data and identify market trends. The studied text mining techniques
achieved good results in extracting useful information from the description of internships.

Through the analysis made, some market gaps and issues with the existing search engine were
identified. A new search API was developed to fix those issues and increase the number of
correct matches between searches and internships. The use of stemming, spelling correction
and synonyms were important to improve results.

Many alternative solutions were compared for each component of the project. By using
existing technologies instead of developing everything from scratch, development and main-
tenance effort is reduced. With the automation of the deployment process and the use
of containers to ensure reproducibility, future changes are easier to make, and problematic
updates can be debugged or reverted faster.

Furthermore, during the development phase, a page with incorrect documentation was iden-
tified in the Elasticsearch documentation. A pull request1 was submitted and merged to the
master branch, thus contributing to the open source ecosystem.

7.2 Limitations and future work

The technology chosen to create dashboards, Zeppelin, has some limitations. The most
notable one is the inability to share a dashboard or a visualization with unauthenticated
users. Usability improvements like additional form input controls and updating the entire
dashboard when a global filter is changed without explicitly having to click another button
would be appreciated. In the future, the dashboard authentication mechanism should use an
external identity provider so that when a user needs to be added or removed, the Zeppelin
process does not need to be restarted.

A task out of scope for this project was the integration of the improved search engine with
the Praxis website. As a simple JSON-based web API is exposed, no significant development

1https://github.com/elastic/elasticsearch/pull/59834
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effort is expected. By continuously monitoring the searches and results, adjustments can be
made to the search engine over time like adding new synonyms and improving the relevance
of results. Logging additional online metrics, like the number of clicks on the first page, or
the number of successive searches without selecting a result, would be helpful for further
research, as they indicate how relevant search results are.

Lastly, it is important to follow the evolution of the state of the art in NLP and text mining
algorithms, as they may improve the quality of the information extracted from the available
textual data.
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