

ESCOLA

SUPERIOR

DE TECNOLOGIA

E GESTÃO

POLITÉCNICO

DO PORTO

MEI

MESTRADO

ENGENHARIA INFORMÁTICA

LU
ÍS

, P
ED

R
O

.
M

IC
R

O
SE

R
V

IC
E-

B
A

SE
D

 IN
TE

G
R

A
TI

O
N

 F
R

A
M

EW
O

R
K

 F
O

R
 A

 B
A

C
K

-O
FF

IC
E

SO
LU

TI
O

N

 MICROSERVICE-BASED

INTEGRATION FRAMEWORK FOR A

BACK-OFFICE SOLUTION
LUÍS, PEDRO

10/2020

E
SC

O
L

A

SU
P

E
R

IO
R

D
E

 T
E

C
N

O
L

O
G

IA

E
 G

E
ST

Ã
O

P
O

LI
TÉ

C
N

IC
O

D
O

 P
O

R
TO

M
IC

R
O

SE
R

V
IC

E-
B

A
SE

D
 IN

TE
G

R
A

TI
O

N

FR
A

M
EW

O
R

K
 F

O
R

 A
 B

A
C

K
-O

FF
IC

E
SO

LU
TI

O
N

LU
ÍS

, P
ED

R
O

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/389477088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ESCOLA

SUPERIOR

DE TECNOLOGIA

E GESTÃO

POLITÉCNICO

DO PORTO

MEI

MESTRADO

ENGENHARIA INFORMÁTICA

 MICROSERVICE-BASED INTEGRATION

FRAMEWORK FOR A BACK-OFFICE SOLUTION
PEDRO FILIPE MARCOS LUÍS
RICARDO JORGE DA SILVA SANTOS

IV

Acknowledgements

I would like to start this document by thanking the School of Management and Technology

for allowing me to pursue my passion for software and providing me the tools that I need to

face the challenges in my future in the field. I would also like to thank all the professors that

helped me throughout my academic path. And a particularly special “thank you” to Professor

Ricardo Santos for the help and guidance, not only in the conclusion of this document, but for

the assistance and availability since day one. A special “thank you” is also due to Hugo

Conceição, Jumia’s CEO for proposing the current project as well as to all Jumia’s team and

colleagues that helped me in this crazy journey. I also want to thank all my family and friends

for your support and patience in the hardest of times. And last, but not least, a very warm and

special thank you to Monika Merk, for all the unconditional support and love through good and

though times.

To all the mentioned and unmentioned, a deep and warm Thank You.

V

VI

Abstract

Not long ago, monolithic applications ruled among production servers – these applications

had massive scopes which made them difficult to maintain, with constraints of libraries shared

between modules and where every change or update is attached with big downtimes.

To stray from this approach, enterprises chose to divide their big applications into smaller

ones with fewer responsibilities, a clearer notion of boundaries and for the better part of it,

more maintainable and scalable. The microservice approach allows enterprises to better

divide themselves among teams that follow the full stack and spectrum of development in each

application, from the persistence layer through the API and to the client, and from planning,

through development to later support. The project exposed in this paper enlightens the

scenario of an e-commerce platform’s back-office - where the implementation of a strangler

pattern divided a large monolithic application into smaller microservices – leaving the door

open for the integration of the multiple client applications to interconnect.

The proposed solution intends to integrate the various systems of Jumia and take on this

exposed opportunity, resorting to a microservice architecture and integration patterns with the

objective of easing the flow of operations for processes that involve several management

tools.

Keywords: Microservices, Microservice Integration Patterns, Back-Office Integration

VII

VIII

Resumo

Recentemente, o desenvolvimento de aplicações mudou à escala mundial, os sistemas

distribuídos permitiram a introdução de um novo paradigma. Este paradigma baseia-se na

redução de uma grande aplicação (monólito) em pequenos sub-módulos (micro-serviços) que

comunicam perfeitamente entre si como se de uma única aplicação se tratasse. Este

paradigma veio também refrescar as estruturas internas das empresas, ao distribuir os

diversos serviços entre equipas, de forma a que cada uma delas esteja presente em todo o

ciclo de vida das aplicações, desde o conceito até ao lançamento, passando pelo

desenvolvimento e posterior manutenção e suporte da mesma. As mesmas equipas são

também responsáveis por toda a stack que cada micro-serviço contém partindo da user

interface (UI), passando por toda a API que contém a lógica de negócio até à camada de

acesso de dados.

Esta nova abordagem oferece algumas vantagens quando comparada com outras

soluções disponíveis no mercado, tais como a liberdade de cada um dos serviços em ser

desenvolvido nas tecnologias e linguagens que melhor se adequam ao seu propósito, sem

que estejam presas a uma decisão tomada numa ocasião anterior para um propósito diferente

ou a restrições de dependências incompatíveis entre si.

Sendo que um dos principais problemas da computação distribuída é a possível

indisponibilidade de cada um dos seus intervenientes, a arquitetura orientada a micro-

serviços (microservice architecture, MSA) prevê que cada um dos seus serviços esteja

contido no seu contexto (bounded context) e que disponha de todos os dados que lhe

correspondem, desta forma a indisponibilidade de qualquer serviço não deve impactar o

desempenho de nenhum dos seus pares.

A reduzida dimensão de cada um destes serviços permite a existência de processos de

deploy mais rápidos o que acaba por se refletir em downtimes mais reduzidos. Outra das

vantagens da redução das dimensões e dos contextos de cada um dos serviços é a sua fácil

manutenção, uma vez que o código se torna mais conciso e específico ao propósito que prevê

cumprir. A modularidade dos micro-serviços permite-lhes também ajustar o número de

réplicas de cada um deles de forma independente de acordo com as necessidades e

previsões de volume de tráfego a cada momento. Apesar de todas as vantagens acima

expostas, uma MSA traz consigo também alguns desafios tais como os testes de integração,

debugging, deploying, retrocompatibilidade com outros serviços, entre outras abordadas em

maior detalhe neste documento.

IX

O projeto exposto neste documento é um projeto proposto pela Jumia, uma empresa que

disponibiliza uma plataforma de comércio online no continente africano. Esta plataforma está

disponível em onze países africanos com mais de cem armazéns espalhados por todo o

continente e que conta com mais de cinco mil colaboradores espalhados pelo mundo. Tal

como muitas outras empresas no mercado a Jumia idealizou os seus processos de operações

numa aplicação única que controlava todos os fluxos de negócio e continha em si toda a

informação de armazenamento, produtos, entregas, pagamentos, encomendas entre outras.

Rapidamente a aplicação de back-office da Jumia tornou-se insustentável e, tal como tinha

sido executado noutras empresas do mesmo ramo, foi implementado um strangler pattern.

Desta forma tornou-se possível fazer uma separação de dependências gradualmente,

isolando cada um dos processos de negócio num serviço independente que persiste todos

os dados necessários para a execução de cada uma das operações. No entanto, a

implementação deste padrão deu origem a uma lacuna nos processos da empresa, uma vez

que cada um dos serviços possui o seu user interface, algumas das operações requerem que

os agentes de operações transitem entre aplicações, e necessitem de se autenticar

novamente. Este processo acaba por ter impacto no fluxo de operações, refletindo-se no

número de encomendas processadas e por consequência nas receitas da empresa. O

presente documento pretende explorar a oportunidade de negócio proposta, assim como os

mais essenciais padrões de integração de micro-serviços, de forma a apresentar uma solução

que consiga colmatar a lacuna apresentada sem pôr em causa a segurança das aplicações

e as normas de conformidade exigidas. Esta proposta foi elaborada através da conceção de

uma arquitetura orientada a micro-serviços de forma coreografada tendo como objetivo ser

integrada nas diversas aplicações de Back-Office com recurso a uma biblioteca importada

através do gestor do Node Package Manager.

 Palavras-chave: Micro-serviços, Padrões de Integração de Micro-serviço, Integração

de Back-offices

X

Table of Contents

Abstract.. VI

Resumo ... VIII

Acronyms .. XV

1. Introduction ... 1

1.1. Reference Scenario .. 2

1.2. Objectives and Expected Results .. 3

1.3. Document Structure .. 3

2. Theoretical Framework .. 4

2.1. Monoliths .. 4

2.2. Microservices .. 5

2.3. Microservice Architecture .. 7

2.4. Monoliths to Microservices .. 9

2.5. Microservice Integration Patterns .. 11

2.5.1. Challenges ... 12

2.5.2. The CAP Theorem ... 13

2.5.3. ACID Transactions ... 14

2.5.4. BASE Transactions .. 16

2.5.5. Orchestration and Choreography ... 17

2.5.6. Communication Strategies ... 18

2.5.7. Error Handling .. 22

2.5.8. Tackling Evolving Contracts ... 24

2.6. Scale Cube on Microservices .. 25

2.7. Testing .. 26

2.7.1. Challenges of Distributed Testing .. 28

3. State of the Art .. 30

3.1. Microservices .. 30

XI

3.1.1. Netflix .. 30

3.1.2. Spotify.. 31

3.1.3. Uber ... 32

3.1.4. Jumia ... 32

4. Requirement Analyses and Solution Proposition ... 34

4.1. Problem Analysis .. 34

4.2. Requirement Analysis ... 36

4.3. Solution Proposition.. 38

4.3.1. Proposed Interaction Sequence .. 38

4.3.2. Proposed Model .. 40

4.3.3. Data Management ... 41

5. High-Level Implementation .. 45

5.1. Development Environment .. 45

5.1.1. Application Registry ... 45

5.1.2. Access Control List (ACL) .. 45

5.2. Server API .. 46

5.2.1. Implementation .. 46

5.2.2. Middlewares .. 50

5.2.3. Fault Tolerance .. 51

5.3. Messaging Queues ... 53

5.4. Client .. 54

6. Conclusion and Future Work ... 57

6.1. Conclusion .. 57

6.2. Future Work .. 58

7. References ... 59

XII

Table of Figures

Figure 1- BOIA's architectural integration in Jumia's environment ... 2

Figure 2 – Diagram of a monolithic architecture ... 5

Figure 3 - Diagram of a Microservice Architecture recurring to an API Gateway 8

Figure 4 - Visualization of the CAP Theorem.. 13

Figure 5 - Diagram of a two-phase protocol .. 15

Figure 6 - Message broker .. 21

Figure 7 - Diagram of a circuit breaker as a middleware between two microservices.......................... 23

Figure 8 - The Scale Cube .. 25

Figure 9 - Test Automation Pyramid by Mike Cohn .. 27

Figure 10 - Depiction of Spotify's team composition ... 31

Figure 11 - Current Sequence Diagram for Application Switch .. 35

Figure 12 - Proposed Sequence Diagram for Application Traversal .. 39

Figure 13 - Proposed Model ... 41

Figure 14 - Data flow according to previous data ownership .. 42

Figure 15 - Data flow with the implementation of BOIA .. 43

Figure 16 - Class Diagram of BOIA .. 49

Figure 17 – RabbitMQ’s Topic Exchange [80] .. 53

Figure 18 - Example of Application Exchange's Routing Configuration ... 54

Figure 19 - Example of an application modal with no applications to display 55

Figure 20 - Modal with applications .. 55

XIII

Table of Tables

Table 1- Microservice interaction strategies based on synchronicity and amount of services 19

XIV

Table of Listings

Listing 1 - Role model interface... 46

Listing 2 - Application model interface .. 47

Listing 3 - ORM Model example of a Role .. 48

Listing 4 - Example of the Role controller (GET application by role endpoint) 48

Listing 5 - Example of Role Service, with the method to fetch applications by Role 49

Listing 6 - Token Validation Middleware ... 51

Listing 7 - Token Authentication Middleware with a Circuit Breaker ... 52

Listing 8 - Circuit breaker configurations ... 52

Listing 9 - Redirect to the chosen application ... 56

Listing 10 - Configurations of BOIA's client ... 56

XV

Acronyms

ACID – Atomicity, Consistency, Isolation, Durability

ACL – Access Control List

API – Application Programming Interface

AWS – Amazon Web Services

BASE – Basically Available, Soft state, Eventually Consistent

BOIA – Back-Office Integration Application

CAP – Consistency, Availability and Partition Tolerance

CDC – Consumer-Driven Contract

CLTV – Customer Lifetime Value

CRUD – Create/Read/Update/Delete

DAO – Data Access Object(s)

DDD – Domain Driven Design

DEVOPS – Development of Operations

HTTP – Hypertext Transfer Protocol

IDE – Integrated Development Environment

IPC – Inter-Process Communication

MS – Microservice

MSA – Microservice Architecture

NPM – Node Package Manager

OMS – Order Management System

XVI

ORM – Object Relational Mapper

REST – Representational State Transfer

RSA – Rivest–Shamir–Adleman (Encryption Algorithm)

SOA – Service Oriented Architecture

SOAP – Simple Object Access Protocol

SRP – Single Responsibility Principle

TDD – Test Driven Design

UI – User Interface

URL – Uniform Resource Locator

WMT – Warehouse Management Tool

XVII

1

1. Introduction

E-commerce fights a constant battle against time, enterprises strive when they can

consistently deliver their products fast, safely, and reliably. A delivery that fills these

requirements, is more likely to help a new customer overcoming the lack of trust that is inherent

to online shopping, converting that customer into a potential repeat costumer, and help the

repeat costumers cement the relationship they have with the company – thus enlarge the

costumer’s lifetime value (CLTV) [1]. To attain speed and reliability when working in a

microservice environment, enterprises need to possess robust and decoupled processes that

ensure a non-blocking flow of packages from the vendor to the end-user, those processes can

only be achieved through a seamlessly integration between the different tools used by the

back-office that perform them.

The presented project dwells on a solution for integration between back-offices, from Jumia

– an enterprise that operates in the African market, through an e-commerce platform, that is

available in eleven countries, with more than one hundred warehouses across the continent

and more than five thousand workers. Currently, after the implementation of a strangler pattern

[2] that split a single management tool into several, the enterprise was left with an integration

problem that require agents to switch between applications to complete the flows necessary

to process an order. The permute between applications is always followed by a new

authentication, which ends up slowing the process ever so slightly, impacting operations and

creating entropy that reflects upon the speed at which orders are processed.

The proposed implementation described in this document follows a microservice

architecture (MSA), in order to integrate seamlessly the system currently in production at

Jumia, the project also referred to as Back-Office Integration Application (BOIA)

communicates asynchronously with the application programming interface (API) that manages

the users and applications, listening for upserts to update its own storage layer with the

relationships between users and applications.

2

The project also possesses a frontend layer, that is meant to be imported by other back-

office applications, this frontend library will only be responsible for the application switch

component, which means it will have a very limited scope and it will be highly reusable. This

requirement suits the system favourably, given the high number of sharded applications in

Jumia’s Back-Office.

1.1. Reference Scenario

Figure 1- BOIA's architectural integration in Jumia's environment

The chosen Reference Scenario depicted in Figure 1, displays a microservice architecture

that integrates BOIA, with other Jumia Service’s microservices. In this scenario, BOIA

consumes messages asynchronously from the application’s and user’s message brokers to

which the microservices responsible for the applications and users, respectively, publish

updates about their data. BOIA also publishes its updates to a message broker, in order to be

3

used by other applications. It can also be observed that BOIA communicates synchronously

with the Authentication Microservice to validate the sessions of all its requests and to generate

tokens whenever needed. The client communicates with the API via simple HTTP requests.

1.2. Objectives and Expected Results

The main objective of this document is to propose an integration application that allows

agents of operations to switch between applications without the need for them to authenticate,

while respecting the current processes at place, as well as the compliance requirements of

the systems involved. Additionally, this document intends to provide a body of knowledge that

will aid the better understanding of microservices, as well as their communication and

integration patterns between them.

The study of this document together with the proposition of the consequent project expect

to achieve:

• A proposal of a system able to achieve a reduced number of logins performed by users

when transitioning between applications.

• A proposal that assists users visualizing the applications they have access to, and as

such reducing the time looking for applications.

• A proposal of an overall faster workflow performed by the users when executing

actions across multiple applications.

• A better understanding of microservices and how they can integrate with each other.

1.3. Document Structure

This document is structured in seven main chapter, the first and current is comprised of a

brief introduction to the document and the project. The second chapter will consist of a deep

analysis over the subject of microservices and their integration and interaction in a real-world

scenario. The third chapter overviews the state of the art of microservices in today’s era. On

the fourth chapter the real-world necessity of Jumia will be showcased and analysed with

some detail and a proposal of solution will be formulated. The fifth chapter will focus in a high-

level implementation that follows the proposed solution. Finally, the sixth chapter will be

4

reserved for the conclusion, where assertions will be made about the developed work and the

future work will be discussed.

2. Theoretical Framework

This chapter aims to overview the overall concepts used in this document, it intends to lay

ground for the knowledge and assertions of the following sections. It also aims to display the

most recurring, common, and modern approaches in each of the topics that will be discussed

further ahead.

2.1. Monoliths

Over time, enterprises have accumulated applications that follow a monolithic architecture

[3], these accumulation is mainly linked with the combination of the fast change in technologies

together with the rapid and widespread evolution of applications to large scales. These

changes tend to make architectures brittle and error prone [4], rapidly scaling an application

out of the proportions where it is viable.

But what really is a monolith? – A monolithic application is an application that provides all

of its services within a single code base shared among multiple modules and developers [5].

This usually inherently means that once a developer or a team, want to implement a new

service, they have to do so employing the same technologies in which the stack is built, and

forcefully disregarding what would be the ideal technology to accomplish the task. In monoliths

after each development, a thorough battery of tests must be ran through to make sure that the

whole product is running smoothly and as intended, this happens given the complex

juxtaposition of the different components of the application in which a single change in a

module can inadvertently affect its peers. Despite this, monoliths are rather painless to test

and to develop for, as the manner in which Integrated Development Environments (IDE) have

evolved, makes it so that they are ideal for this sort of architecture [6]. A monolithic application

usually follow a three layer pattern (Figure 2), which is composed by a user interface layer, a

business logic layer and a data access layer [3]. This makes the architecture of these

applications furtherly fragile, in the sense that whenever the application is unavailable then all

of its components are also unreachable.

5

Figure 2 – Diagram of a monolithic architecture

Monolithic applications are effortless to scale, yet they limit scalability. The most common

strategy to balance the load of these applications, on occasions where the traffic increases, is

to create new instances of the same applications and split the load among them. Although this

increase in traffic might only apply to a subset of the modules, this process makes the

resources it spends excessive and costly to enterprises. An additional characteristic of

monoliths regarding DevOps is the fact that upon deployment of the application, developers

must choose the correct deployment environment and provider, since some of the

dependencies of such a large application can be performance-intensive, usually requiring

teams to compromise in a one-size-fits-all solution [7]. Although, as a study from 2016 from

the University of Bogotá [8] came to conclude, applications with this type of architecture tend

to be more expensive to keep in cloud-based solution than its counterparts.

Despite the long reign of monoliths, the largest and most influent enterprises in the market,

like Amazon, Netflix, LinkedIn, Google and others, seem to be setting tone to stray away from

these implementations [5], making room for better-scaling technologies that allow non-

blocking development among teams and reducing the costs of enterprises for load balancing

processes in traffic intense moments.

2.2. Microservices

The popularity of microservices has been increasing in software-oriented companies in the

last few years, the sub-chapter ahead will focus on explaining what is a microservice, how

they came to be, and also overview their advantages and disadvantages. Although already

being found in similar implementations, gravitating around a Service Oriented Architecture

(SOA), the term “microservice” was introduced in May 2011 in a workshop near Venice, by a

group of software enthusiast, among them were Martin Fowler and James Lewis. The same

group would end up agreeing on the term “microservices” (plural), as the definitive terminology

6

for the newly uncovered architectural approach, about a year later in May 2012 according to

Fowler [9].

In order to get a better grasp on microservices, it is perhaps better to firstly define them –

A microservice is a mini-application that has its own architecture consisting of business logic

along with its various adapters, at runtime, each instance is often a cloud VM or a Docker

container [10]. In this sense a microservice provides a business or platform capability through

a well-defined API, and by doing so it provides this purpose and only this purpose – It does

one thing and it does it well [11]. The APIs build for microservices tend to follow an approach

of “smart endpoints and dumb pipes”, that can be broken down to microservices aiming to be

as decoupled and cohesive as possible – being the owners of their domain and business logic

– as such, upon receiving a request, microservices simply process the received data by

applying their subset of rules and producing a response. This can be achieved using a

combination of REST and lightweight messaging protocols [12].

When compared with the previously referred monolithic architecture, a microservice

architecture tends to come on top with regards to scalability. Given that monolithic applications

scale by creating new instances of themselves in order to properly respond to an increase of

traffic, disregarding which module is getting an increased number of requests. In a

microservice architecture each service is provided by a single small application, as such the

scaling can be performed individually according to which services require more notice. Allied

with the current technologies of cloud-based solutions, provided by big players such as

Amazon Web Service (AWS), Google Cloud Platform, Microsoft Azure, alongside others, that

provide integrated automation solutions that make scaling automatic, effortless and cost-

efficient [13].

Keeping in mind that microservices are small services that are sorted by their bounded

contexts, that follow Robert C. Martin’s classification of Single Responsibility Principle (SRP)

defining itself by “Gather together those things that change for the same reason, and separate

those things that change for different reasons” [14]. With this thought it is understood that

microservices aim to have very limited contexts, therefore microservices should focus on doing

only one thing and doing it well. Thus, granting an advantage regarding the development

process, when compared to the prior monolithic architecture, where applications had the

tendency to grow in the advent of new business requirements, making code development and

bug fixing a lot easier, since the general scope of each implementation is always the same

[15]. Also, regarding the implementation process, microservices are advantageous because

their decoupled nature allows each team to pick the best dependencies and technologies to

better suit the purpose of their service.

7

In short, a microservice, can be reduced to a small application that can be deployed

independently, scaled independently, and tested independently and that has a single

responsibility [16].

With all of the above mentions, it might appear that microservices are a one-size-fit-all

solution, that came to solve all the problems of the software development industry, when in

reality it happens not to be a silver-bullet. As such they can be seen as an implementation that

despite solving some scalability problems they bring with them a whole new complexity level

to it, despite mending some problems concerning the big size of previous implementations

they bring with them a complex set of integration tests. Microservices require teams to adapt

and change the way they tackle development and to review some of their strategies in order

to better approach this distributed system solution.

2.3. Microservice Architecture

Whilst having covered the definition of a microservice as a unit it is also important to define

them as a group and to get a better grasp of how they position themselves on an architectural

level. Given that a microservice application works under the sway of a load balancer, to define

how many instances a certain service possesses at a certain time and moment, it is not

realistic to expect any client to know the addresses of these dynamic endpoints. As such, a

microservice architecture needs a mechanism that allow clients to freely request the

application, and that can be achieved by exposing an API Gateway. In this matter the API

Gateway serves the purpose of encapsulating the application and serving as a single-entry

point to which each client then makes requests [17]. As displayed in Figure 3, an example

taken from Chris Richardson’s article [17], there can be seen an architecture where the clients

communicate with the application via an API Gateway, that queries each of the service

according to their necessity in order to retrieve the data to display to the final user. In Netflix’s

example, the team initially chose to develop a one-size-fit-all solution for their API Gateway,

but soon realized the limitations of it, given the different specifications and requirements of

each end-device. As such Netflix chose to enrich their astonishing microservice architecture

by implementing a device-based API, that provides different options and strategies of access

varying on what device the user is employing [18].

8

Figure 3 - Diagram of a Microservice Architecture recurring to an API Gateway

As previously mentioned in this document, microservices are the owners of their domain

and business logic. Therefore, the data owned by each microservice should be private and

only accessible via that microservice’s API [19]. Looking at an example of an e-commerce

microservice-based solution, whenever the price of a product is updated in the Catalogue’s

Microservice then the Catalogue’s Microservice cannot, in any circumstance, update any of

its peers’ databases, as that constitutes a violations of their data’s integrity. Since each

microservice’s data is strictly owned by the microservices holding them. To properly confront

this issue, the communication between microservices is made via RESTful requests or

lightweight messaging protocols [9], in a manner exposed more in depth in the sub-chapter

“Microservice Integration Patterns” from this document.

When emerging in the market, microservices not only revolutionized the way application’s

architectures were designed and implemented, but they also brought revolution to the way

organizations coordinated their teams. Whilst when employing a conventional three layer

monolithic architecture had enterprises dividing their development teams in three different

sectors, one team would develop and maintain the user interface, the second team would

develop and maintain the business layer’s API and the third team would tackle the database

layer. Given that microservices are developed around business capabilities, in which each

service is composed by a broad-stack, including user-interface, persistence storage, and any

external collaborations [20]. Now enterprises find themselves adopting a strategy where they

choose to employ cross-functional teams, to cover the whole stack of each service, these

teams need to be able not only to develop emerging features for each service, but also to

maintain it. As such these teams end up covering a wide variety of development roles, from

9

UI developers, to backend, testers, database analysts, product owners and sometimes others.

This distribution of elements among teams was predicted by Melvin Conway, in its famous

Conway’s law [21]. The Conway’s law states that systems are designed to mirror the teams

that develop them.

2.4. Monoliths to Microservices

After discussing what is the meaning of monoliths and microservices, and how they position

themselves in their own architectures, it is important to notice that none of them lasts forever.

If an application started out its life cycle with a monolith, then it should not be fated that it will

end as one. The reverse might also be true in some scenarios. Some applications start out as

microservices and need to be converted to a monolithic application, given the complexity and

entropy that seizes them, or they are simply not big enough to justify the additional effort

required by such an approach. Although this subchapter will emphasise the former, the

migration from monoliths to microservice architectures. It will explain some of the most

common strategies used in enterprise-level applications, as well as their dangers, in order to

create good cleaving between the different bounded contexts and business necessities.

When looming the subject of a migration from a monolithic architecture to a microservice

architecture, there seems to be no unanimity. In some cases, one of the biggest mistakes a

company can make is starting to build their architecture using microservices [22]. In an early

phase of development, enterprises thrive by implementing speedy processes [23], that allow

them to deliver a first product fast, in order to maximize the value returned by the development

as early as possible. In this sense, a microservice architecture might not be the ideal solution

for the early stages of an application. Since the size of the application in its genesis does not

justify the overhead effort, that is inherited by microservices. Being so by the extra effort that

needs to be dedicated to the infrastructure, to the testing of to simply define the bounded

contexts that will make for a good and stable application. Another concern to have in mind,

regarding the early phase of any application and the necessity of the implementation of

microservices, is the proper definition of the bounded contexts. As studies suggest, “Wrong

Cut” – defined by when microservices are split in the basis of technical layers instead of

business capabilities – is one of the leading causes for a failing microservice architecture [24].

A refactor in a microservice integration is much harder than a refactor in a monolith, it requires

the developers to interact with more moving parts which also can affect the integrity of the

system. In this sense, the migration of a monolithic architecture to a microservice-based

architecture is very much feasible, given that the monolithic application is well modularized

from the start [25].

10

One of the approaches for a monolithic break down is called the strangler pattern [2]. It gets

its name from the strangler fig, a vine that grows its roots in a host tree and grows upwards to

reach the light above the host’s canopy, whilst wrapped around the host’s trunk. Often the

host tree ends up dying [26]. In this metaphor, the monolith is represented by the host tree,

whilst the microservice application is the fig vine. In very much the same way, strategically

positioned business functions are carved out into their own microservice [22], and in the end

the monolith either disappears completely or becomes a microservice. The strangler pattern

represents an incremental refactoring pattern. This means that the application (as a whole),

keeps being maintained and tested, as well as getting new features, while it transitions to the

new architecture. Although the strangler pattern predicts new features being developed, in

order to stop the core monolith from growing any further, the newly implemented features

should not be developed within that monolith’s scope, but within its own bounded scope.

Ultimately, the strangler pattern approach is considered to be the most common migration

strategy [27]. This happens because, often, enterprises seeking a microservice

implementation, already possess a fully functioning and running application in production

servers. As such, these enterprises cannot afford the shut down their systems indefinitely until

they reemerge with an optimally functioning microservice architecture.

One other approach that can be used to migrate from a monolith to a microservice, in a far

less gradual manner is the complete replacement of the monolith for a newly implemented

microservice architecture. This approach, forces the initial monolith to be built in a sacrificial

architecture fashion [28], meaning that an architecture is built with the projection that it will be

replaced in the future. The total replacement of the monolith might be the ideal solution for

small applications that do not change much with time and find themselves in a stable lifecycle.

These types of applications give developers the time they need to fully focus their resources

in creating a new architecture behind the scenes, while the original monolith keeps working

undisturbed. In the case of an implementation from scratch, the monolith-first with a

subsequent replacement, can benefit from the initial monolith to be used as a probe that is

deployed to production in an early stage of development [23], allowing the product to enter the

market before all the microservices are implemented. Still, the formerly mentioned approach

has some caveats to it, one of them being that a rapid and sudden transition might not give

the opportunity for developers to take notice of certain flaws in the application, therefore these

shortcomings will only be revealed in the production environment. Another possible problem

faced by this replacement is due to the complexity of microservices and their integration [22].

Such complexity should be tacked with the knowledge of which are the modules that should

be migrated to a microservice and what should be incorporated with an existing microservice.

The balance to find the appropriate implementation is much easier when done incrementally

together with meticulous tuning, rather than all at once in a Big Bang-like fashion [29].

11

Yet another approach worth mentioning is one considered to be the middle ground between

the two priors. This strategy allows developers to start off with just two major services, rather

larger than those intended for a microservice architecture. With the two distributed monoliths,

the teams have the space to understand and improve the integration between a multiservice

system, as well as consolidating the boundaries of the application. This knowledge and overall

better understanding of the applications boundaries will enhance the decision making when

the time comes of starting to carve out the different functionalities into their own services.

The conversion of a monolith to microservices is not a consensual topic, despite the

previous mentions some software thinkers believe that the best solution is to start from a

microservice architecture right off the bat. Claiming that the creation of a monolith, intended

to separate business requirements into perfectly moduled containers, will most likely fail at

doing so, creating tight coupling between the different components. This tight coupling reflects

itself in high entropy once it is time to migrate the architecture [30]. Another claim supporting

the microservice-first approach is the fact that it allows teams to get used to a distributed

system right from the start of development, and even if the boundaries of the microservices

are not correctly matched right away then the cost of repairing is lower than the implementation

of an intermediary monolith.

As it is common in the world of software, there are no silver bullets [31], regarding the way

a task should be performed. Even though the market offers a vast array of solutions regarding

the transition to a microservice approach, it is important for companies to deeply analyze the

task at hand and how they can better benefit from the upsides of each solution against their

drawbacks. A deeper analysis will allow for a more successful migration or start of an

application.

2.5. Microservice Integration Patterns

When analysing a microservice architecture it is natural to wonder - “How do isolated

applications that can be deployed independently, scaled independently, and tested

independently [16], communicate and integrate seamlessly?”. To properly answer this

question, it is perhaps better to analyse some of the microservice architecture’s limitations and

try to comprehend why a conventional flow of data is not a suitable solution for the architecture

at hand, and subsequently discuss some of the essential integration patterns commonly used

in the field.

12

2.5.1. Challenges

To start analysing and comprehending the underlying problem in the integration of

microservices and their respective solutions, let us start by properly evaluating and exposing

the posed challenges and how they defy and limit the current architecture.

On a monolithic architecture, the different services invoke one another via language-level

method or function calls [32]. Being that by calling each other through a coupled instantiated

object or a looser way like dependency injection, in either case the caller ends up summoning

the callee to which it has access to, because they are running within the same process.

Although, when moving to a microservice architecture these procedures become impossible,

given that services are now running in different processes, different clusters, and ultimately

different addresses. In order to properly communicate microservices need to resort to interact

using an inter-process communication (IPC) mechanisms [33]. An IPC is characterized by an

application interaction that categorize as clients and/or servers. A client being an application

or a process that requests a service from some other application or process. A server being

an application or a process that responds to a client request. Commonly applications act as

both a client and a server, depending on the situation [34]. Still, this does not fully satisfy the

question of how microservices intercommunicate, since there are numerous IPC mechanisms

that fulfil different necessities, microservices should be able to communicate on a one-on-one

basis or a one-to-many basis, as well as establishing synchronous and asynchronous

connections, taking in consideration the task at hand. Another challenge posed by a

microservice architecture, regarding integration, is data independence in a loosely coupled

environment. As previously mentioned, the data owned by a microservice is restricted to that

microservice, and can only be accessed through its API, this means that microservices with

poor bounded context definition will suffer from lacking data and furtherly require chatty [32]

interactions with other microservices.

When discussing data management, it is also important to address the challenge of how

the Consistency, Availability and Partition Tolerance (CAP) Theorem applies to a microservice

architecture and what were the choices made in order to achieve higher performance and

faster response times.

Overviewing the main and most common challenges that a microservice architecture

faces, allows developers to design and implement better solutions that fit each problem, in

order to mitigate the headaches of an otherwise convoluted approach.

13

2.5.2. The CAP Theorem

The CAP theorem states that it is impossible to design a distributed data management

platform that provides always consistent (C), data accessed through always available (A) and

operations with the possibility of a subset of nodes being partitioned (P). In this sense, a node

partition is comprehended by a segregation, in which there may be modules which are unable

to communicate with each other [35]. The CAP theorem describes a trilemma or an impossible

trinity, firstly introduced by Armando Fox and Eric Brewer in 1999 [36], which it asserts that a

distributed data management platform can only provide at most two of the three variables of

the equation.

Figure 4 - Visualization of the CAP Theorem

• Consistency and Partition Tolerance without Availability (CP) – A system that requires

relentless consistency and allows the different nodes of data to be partitioned along different

networks cannot provide availability, given the fact that a transaction that is made across

networks needs a downtime to reconcile all its data in order to be consistent.

• Consistency and Availability without Partition Tolerance (CA) – A system that obliges

continuous consistency and availability can only do so in the absence of network partitioning

and separation of server peers [36].

• Availability and Partition Tolerance without Consistency (AP) – In order for a data

management system to provide constant availability and allow its nodes to be distributed

among different network services is through the trading of consistency. If a system requests a

data update across a network it is likely that a request for the data arises before the data

14

update is applied, and in a situation of maximum availability the client shouldn’t await for the

data to be consistent, the data will be provided before the consistency is achieved.

Extrapolating the CAP theorem to microservices and their architectures it perfectly fits the

definition of this trilemma by falling under the category of a distributed architecture that

manages data, in which each service is responsible for a subset of data and transactions are

preformed when microservices interact. In microservices, just like any other distributed system

approach, architectural trade-offs must be made when designing microservices, to address

the limitations imposed by the CAP Theorem [37]. Since microservices are units of software

independently scalable and deployable, that follow a loose coupling approach. It is hard – if

not impossible – to imagine a microservice architecture that is not segmented across multiple

networks. As such it unfeasible to sacrifice Partition Tolerance (P), a process without P can’t

run across multiple networks, and so it becomes a process running locally in a single host.

Constantly consistent and available (CA) systems do not exist in distributed systems [15]. This

leads to question which one is the right approach between CP and AP, and in truth there is no

answer for that question, it all comes down to what the situation at hand benefits the most

from. In some cases, it might be more beneficial to provide data in an eventually-consistent

form than no data at all, although in other scenarios where the information is more sensitive it

might only be beneficial to display the data if it is accurate. In each case, a peculiar

characteristic of microservice is the ability to allow the slider to be moved in one direction or

the other on a service-by-service or even request-by-request basis [38], assuring that in no

service or the architecture itself is constrained by a decision that better fits the bulkier part of

its providers or clients.

2.5.3. ACID Transactions

As previously discussed, the decoupled nature of a microservice architecture allows each

service to choose its values consistency over availability or otherwise. While in reality, the

granularity of this decision can be scaled to a business functionality level, in which each

service is able to choose availability over consistency based on the business necessities or

the criticality of the data being handled [39]. To further understand how to better benefit from

availability or consistency it is important to analyse how both strategies prefer to handle their

transactions. A transaction is a group of operations that intend to carry data from one point to

another, for a long time transactions were seen as operations that needed to have the

properties of atomicity, consistency, isolation and durability (ACID) [40].

15

In an ACID transaction, either all operations are completed successfully, or none is, this

property is known as atomicity (A) [41]. Traditional transaction systems use a two-phase

protocol to achieve atomicity between participants [42]. With two-phase commitment

protocols, services preform a temporary transaction operation to each of the participants and

wait for a successful return, if this success occurs then the transaction is considered

successful and the changes are committed, as depicted in Figure 5. Otherwise, if in any of the

nodes where the transaction was preformed does not allow that transaction (abortion) then all

the operations in the other nodes are reverted to their previous state (rollback), leaving the

nodes in the state that they found themselves in, before the operation was started [42]. This

process requires the transaction to be blocked while waiting for the response from all of its

components. Falling perfectly in the category CP from the CAP Theorem, as all nodes in the

transaction – partitioned as they are – end up consistent at the end of each transaction at the

expense of complete availability.

Figure 5 - Diagram of a two-phase protocol

Consistency (C) is another of the properties presented in ACID Transactions, and it states

that at the end of every transaction, all of the participant nodes should hold consistent

information and the integrity of the data should be assured, in short the nodes should keep

semantic invariance [35]. For instance, in a scenario of an ecommerce platform, very much

like the example displayed in this document, if the service that holds the stock has one single

item of the product A, and two costumers are trying to acquire that item at sensibly the same

time, the item should only be available to one of them. This process can only be completed

through a temporary unavailability of the service, in order to recalculate the number of items

currently obtainable. In this sense, it also provides basic consistency at the cost of availability,

when analysed against the limitations offered by the CAP Theorem.

16

Transactions between microservices in an ACID environment, should be isolated (I) and

which means that at any point the data passed along in a transaction should be only known

within its scope, this increased the consistency of the operations by preventing data to be

shared in an unsafe way. A violation of the isolation property is a consequence of semantic

atomicity, since the partial effects of sub-transactions that unilaterally commit are then

exposed to other transactions [43]. This means that transactions that are concurrent are not

executed concurrently. In order to keep segregation, each node of a transaction must time its

operation using a blocker protocol to inhibit overrides of an intermediate process, thus

promoting consistency.

Durability (D) is the last property of ACID, and it states that any change performed by a

transaction should be persistent, even in the event of a system collapse. This process is

usually assured during the atomic two-phase commit in which if a transaction node is not able

to durably persist the incoming data, then all of the transaction is rolled-back.

When comparing the properties of ACID transactions, described above, against the

limitations provided and proven by the CAP Theorem it is evident that ACID transactions

promote consistency over availability. Either by implementing the two-phase commitment

protocol or by timing concurrent requests in order to block changes before each transaction

process is totally finished. All the implementations aimed at reinforcing the ACIDity of a

system, also result in the reduction of the availability of resources, since they promote an

environment where the services are blocked in processes to ensure consistency and cannot

provide their held requested data. The implementation of ACIDity in microservices, despite

being critical in some cases, fosters the high coupling of components turning the architecture

of the application more brittle, in the sense that if at any point one service is unavailable during

a transaction then the whole process might fall apart.

2.5.4. BASE Transactions

Despite the popularity of ACID for many years in a world of data management, with the

emergence of distributed systems the paradigm shifted giving place to an alternative of

eventual consistency. While ACID is based on pessimistic assumptions and forces

consistency at the end of every operation, BASE is based on optimistic assumptions and

accepts that the database consistency will be in a state of flux to a level acceptable to each

business transaction [41]. The base strategy stands for Basically Available, Soft state,

Eventually consistent, and it fits an event-based approach to distributed data management

systems. The BASE protocol does not guarantee that any of the data draws will be updated

17

with the latest information, and it represents a form of weak consistency, in which it states that

if no updates are made to the accessed object then all the accesses to it will eventually be

consistent [44]. The timeframe from when the data becomes inconsistent until it eventually

updates and becomes consistent again is known as the inconsistency window. And for

situations without failures, the maximum size of the inconsistency window can be bounded

based on factors such as communication delays, the load on the system, and the number of

replicas involved in the replication scheme [45]. BASE-like transactions provide an alternative

to ACID by endorsing high availability at all times, disregarding the state in which the data is

at the time of the request. A soft state (S) of data is common in this approach since it is never

clear when the data is at a state in which it is considered updated. When contrasted with

Brewer’s CAP Theorem, BASE-like approaches tend to relax consistency in order to achieve

high availability, placing it in the classification of AP. In a microservice architecture, fostering

availability over consistency tends to be the best option [46], given the architectures scalability

potential as the number of instances of each microservice increases, so does the amount of

transactions they perform and so would the unavailability of data in an ACID-like environment.

Another advantage of using BASE-like approaches for microservice architectures is the fact

that eventual consistency promotes the decoupling of components by resorting to event-like

communication protocols (tackled further ahead in this document).

2.5.5. Orchestration and Choreography

A microservice, as an independent unit of software, can decide how it integrates with other

services based on the business requirements and the sensitivity of the data being passed

along. After understanding the ACID – BASE relationships between transactions it is important

to analyse how microservices interchange data with respect to each of these principles. A

microservice cluster can intercommunicate either through an orchestration strategy or a

choreographed strategy.

Orchestration - Orchestration refers to a centralized business process that coordinates a

series of service invocations [47]. Very much like an actual orchestra is reliant on its maestro

to dictate the rhythm of the composition, a microservice architecture based on an orchestration

approach is dependent on a microservice controller that directs each service to perform the

intended function [48]. This tactic is reliant on a synchronicity principle in which every operation

only happens after the success of the previous one, and it promotes a centralized service that

enforces tight coupling of components, because the orchestrator needs to know the entire

“orchestra” in order to command them to execute. Although this interaction is not

18

recommended in most scenarios, regarding microservices, just like in ACID Transactions,

sometimes the consistency required in some operations force integrations to be synchronous

in order to get the most updated information possible from each service.

Choreography – On a choreographed approach each microservice has a grasp on the

business logic and is expected to know what to do at each step of the microservice interaction.

“In a choreographed dance team, everyone knows what they’re supposed to be doing, and is

able and required to take the right step as each beat hits” [48]. The choreography between

microservices happens in an asynchronous manner, resorting to lightweight messaging

protocols and/or an event broker. Every microservice involved preforms an operation and fires

an event for the other microservices to take over, at that moment the publisher becomes

unaware of the following steps, trusting its peers to carry on with the operation. This integration

approach encourages the loose coupling between the services, because at each moment the

service publishing the event does not need to know the physical address of its consumers.

The publisher simply needs to know the address of the broker to which it publishes the event

unto, and then each of its consumers will then resort to that broker to hydrate their data.

Another property enhanced by the loose coupling of choreography is the fact that

microservices still work fine in case of a failure from any of its peers.

An architecture that is choreography-based lays on BASE-like transactional principles, by

relying on eventual consistency to manage their databases and benefiting from the high

availability inherent to the loose coupling of the different parts.

Although some cases require the transactions of data to be pin-point accurate, and cannot

risk inconsistencies in the system, for this scenarios orchestration might be a better option.

Despite this, when taking a look at a microservice architecture and comparing their

requirements and necessities with the overtures provided by choreography and/or

orchestration, it is rather easy to realize that in most scenarios the choreography strategy

seems more beneficial. As microservices tend to favour a style of smart endpoints and dumb

pipes. Applications built from microservices aim to be as decoupled and as cohesive as

possible – they own their own domain logic – receiving a request, applying logic as appropriate

and producing a response [12].

2.5.6. Communication Strategies

According to Chris Richardson’s “Building Microservices: Inter-Process Communication

in a Microservices Architecture“ [49], microservice interaction protocols categorize themselves

along two dimensions, displayed on Table 1. The first dimension is whether the interaction

19

happens on a one-to-one or on a one-to-many basis. The second dimension is whether the

interaction happens synchronously or asynchronously. Further along in this sub-chapter, the

different communications based on their synchronicity type and how they adapt to the

principles previously referenced.

Table 1- Microservice interaction strategies based on synchronicity and amount of services

2.4.6.1. Synchronous Communication

As previously mentioned, in some cases microservices require a communication that is

synchronous in order to achieve higher consistency in the data being passed along. Utilizing

synchronous communication is an easy and effective way to get two microservices interacting

on a one-to-one fashion. An asynchronous call refers to a process in which the client – being

that the microservice querying – invokes the server – the application being queried – and

awaits the response from the server to arrive or to eventually time out. This means that the

process of the client is blocked, while the request is traveling to the server, while the server

processes the request and turns it into a response and while the response is making its way

to the client. Any time there is a number of synchronous calls between services, the

multiplicative effect of downtime will be present. Simply put, this is when the downtime of a

system becomes the product of the downtimes of the individual components [9].

The most common protocol for synchronous interactions of microservices is the Hypertext

Transfer Protocol (HTTP), this happens due to the simplicity and familiarity of HTTP, combined

with its comfort to test and the fact that it does not require and intermediary broker that turns

the architecture ever more complex [49]. Despite the benefits presented by a simple HTTP

integration, there are also some downsizes to this approach, some being linked to the

requirement that both services need to be running at the same time, in order for an interaction

to be considered successful. Another bump in the road is linked to the requirement that for

any interaction an HTTP request needs to be performed while knowing the address of the

interface it is trying to query. This poses a problem since, as discussed in the previous sub-

chapter Microservice Architecture, the addresses are dynamic due to load balance strategies

applied over cloud-base infrastructures. This obliges the client application to resort to a service

One-to-One One-to-Many

Synchronous Request/response —

Asynchronous Notification Publish/subscribe

Request/async response Publish/async response

20

discovery strategy in order to submit its request, obscuring the simplicity of the microservice

architecture ever so slightly.

In reality, synchronous microservice integrations can resort to other strategies such as

Simple Object Access Protocol (SOAP) or Thrift, in the end both approaches pose very similar

pros and cons to those of HTTP, and the final decision comes down to preference of the

development team or a clear benefit on a case to case basis.

2.4.6.2. Asynchronous Communication

For the integration of microservices using asynchronous strategies, it is possible to find a

vaster variety of solutions. An asynchronous flow of data is a flow where the process is not

blocked while waiting for the response to return, in most scenarios it is not even relevant that

a response should arrive. The most common form of asynchronous communications are

lightweight message-based protocols, these protocols allow for application resilience, failure

tolerance and better scalability. Since, if not for the use of messaging, applications would need

to be available one hundred percent of the time without room for downtime or failure [50].

Analysing the Table 1, published by Chris Richardson [49], it is easy to realize that

microservices communicate asynchronously using three main strategies. Either by a simple

notification process, where the client sends a message to the server and awaits no response.

Either by request/asynchronous response which is a process where the client sends a

message to the server, and in a non-blocking way follows its process knowing that a response

will eventually arrive in the form of a message. Or, by the most popular type of asynchronous

integration approach the publish/subscribe – displayed in Figure 6, in this scenario a message

is sent by the producer/publisher to a queue/message broker, that acts as an intermediary

between services by storing messages, this messages can then be consumed by zero or more

services (subscribers/consumers). Typically, message brokers divide themselves among

channels, making the separation of responsibilities easier to handle and allowing

microservices to use the same broker to share different kinds of data. Message brokers can

be found in all the strategies mentioned above. A publisher does not need to know about the

existence of subscribers, it just needs to know the repository to which it is publishing the

messages to, as such there is no need to refer to service discovering mechanisms. Just

requiring the address of the message broker allows services to scale freely as they can create

more instances of themselves to publish or consume messages from a broker according to

the traffic necessities at any given point.

21

Figure 6 - Message broker

Despite the previous there are still some considerations that need to be considered when

implementing a messaging-based solution. Even though the system impact is lower in case of

availability, the queue/message broker is another moving part in the architecture and as such

it needs to be maintained and configured in a way to assure the highest rate of availability

possible. Another concern to have in mind, is the complexity of developing

publish/asynchronous response strategies, since the client needs to know which request it

should link the response to. In these scenarios it is frequent to implement unique identifiers

for requests to which then a response should be generated using a matching unique identifier.

Although this strategy does not pose a big threat to the system it simply represents a higher

level of complexity that can lead to a breaking point in the application when left untamed.

Transactions based on asynchronous communications, are typically BASE-like

transactions. They benefit from basic availability, given that the downtime of any microservice

does not affect the performance of any of its peers because they benefit from non-blocking

processes. Not having transactions across services is not bad per se. The big risk here is that

it requires a change in the way function requirements are designed [51] and a rethinking of

what the interruption of a sub-process at a certain step represents to the process as a whole.

Another property of transactions that are based on asynchronous communications is the soft

state of the data involved, the data is always at a state in which is potentially up-to-date or

potentially outdated. The final property that makes the connection between BASE and the

microservice asynchronous strategies is the fact that at any point, if there are no more updates

to a certain node of data, after a certain amount of time it will eventually be updated. These

updates happen when consumers process the messages from the queue and renew the data

in their databases.

22

2.5.7. Error Handling

Just like about everything else in the world, software breaks and microservices are no

exception to the rule. Although there are some things that can be done to prevent that from

happening, developers have accepted this scenario as another expected variable in the

equation of software development. By doing so, developers recognized the inevitable risks of

errors and implemented strategies that enhance the application’s resilience and failure

tolerance as a whole. By nature, the architecture of a microservice application is – for the most

part – failure tolerant. Microservice architectures excel by performing communication through

a mainly BASE-like pattern, that in turn revolve around a message-based type of

communication. In this architecture, if a message falls in a broker and the consumer is down

or unavailable to read it, the message will simply be persisted in the broker until it is read and

processed, not stopping the application as a whole. On the other side, if a producer is

unavailable and cannot produce a message for its consumers then they will keep working in

the same manner, unaffected. In this regard – also considering the broker as another moving

piece in the architecture – if the message broker is unavailable or unreachable, the producer

should have mechanisms that allow it to retry the publishing of the message until there is a

successful publish, keeping the message persisted while it is still unpublished [41]. Although

there is a caveat to the last presented scenario, in the moment when the message broker fails

all the messages that is carried are lost, as such microservices need to develop mechanisms

that allow them to republish messages in case of a communication rupture.

In the examples mentioned previously, the architecture itself and the way services are

distributed shield the different microservices from a cascading failure, that ultimately would

result in an overall unavailability of the entire system. But unfortunately, not every microservice

communication benefit from this protection. Some microservices that communicate via

synchronous strategies need to implement some further approaches that allow them to keep

functioning properly in case of failure. Currently, developers use design patterns like circuit

breaker and retry with exponential back off to minimize the negative impact of failures on their

application [52].

• Circuit Breaker – When a service tries to reach for another service, sometimes the

latter might be unavailable, and recurring requests might reach a point where it overwhelms

the system to a point of further failure. To prevent this event from occurring developers should

implement systems called circuit breakers. These circuit breakers, displayed in Figure 7, act

as a wrapper around the error response received from the unavailable system. When a

threshold of number of failed requests has been reached, between per se microservice A and

microservice B, service A stops calling the service B and instead immediately responds with

the error wrapped by the circuit breaker, without resorting to another request [53]. After a

23

particular amount of time, the microservice A requests a reset of the circuit breaker, that in

turn will try to request the microservice B in its next request, if it fails again and the threshold

is reached yet again, then the circuit breaker gets a reset and the process repeats itself until

the service B is available. This strategy allows the application to fail fast and restrict an

exceeding number of connections, which sequentially allows the application to save its

resources.

Figure 7 - Diagram of a circuit breaker as a middleware between two microservices

• Retry with exponential back off – In some scenarios, services simply fail due to a

temporary unavailability created by a higher traffic period, specially under the lack of load

balance solutions [54]. In cases like these, the availability of the service should be resumed

when the traffic volume of the service diminishes, and a simple retrial of the request will solve

the problem. Despite this being true in some cases, it is not absolute and for those scenarios

the “exponential back off” component needs to be applied. A service cannot expect to request

another service in a persistent manner and expect different results, at the risk of crashing the

system. As such, the requests will be spaced in time in an exponential increase between

requests until a request is successful.

• Time Out Pattern – During times of increased traffic volume services might take longer

to process their requests, in which clients must await their responses. Although when that

happens, your services cannot just wait forever for a response that might never come – sooner

or later, it needs to give up. “Hope” is not a design method. [55] In this regard a very common

(and recommended) solution is the implementation of time outs, as they allow the connection

to be disrupted, once a set amount of time has expired. This mechanism allows applications

to save resources by closing ongoing connections that might have a high chance of having an

unwanted result.

24

• Bulkheads – In a ship, bulkheads are metal partitions that can be sealed to divide the

ship into separate, watertight compartments. Once hatches are closed, the bulkhead prevents

water from moving from one section to another. In this way, a single penetration of the hull

does not irrevocably sink the ship [55]. In the same manner, in a microservice architecture,

bulkheads are patterns that require a reevaluation or a preemptive evaluation of the failure

scenarios in the application in order to restructure the applications to contain damage in a non-

spreading way. A common way to implement bulkhead solutions is the usage of dedicated

resources to handle different partitions of a service that might be business-critical [53].

• Cache Fallback Mechanisms – Following the BASE concept of eventual consistency,

some interactions do not suffer from resulting in eventually consistent transactions. As such,

some frequent request/response interactions can be cached, in order to be used as templates

in moments where the requested service is unresponsive. Although the result of the request

might not correspond to the result of an eventual response from the server, in some cases of

unavailability it might be better than an error.

The above mentions are only some of the main solutions utilized by developers to enhance

the resilience of their microservice architecture, and although they do not solve every problem

of such an approach they certainly help to contain the spread of errors through the entire

application. Each solution is not unique and can be implemented in cooperation with the

others.

2.5.8. Tackling Evolving Contracts

In the world of business-level software development, requirements arise with relatively high

frequency, which means that inevitably APIs are bound to change with the same frequency.

Whilst in a monolith these API upgrades are usually straight forward to implement and impose,

when talking about microservices these changes can pose a challenge that threatens the

stability and reliability of the entire application. On a microservice architecture, client

integrations need to work regardless of any upgrades to the API, and clients cannot be

expected to change their implementations over-night to incorporate the ever-evolving changes

of the servers [49]. To do this, services should implement a robustness principle – which states

that an API should be conservative in what it implements, and liberal in what it accepts from

others [56]. By this metric, an API needs to evolve in a versioned and partitioned way. Some

changes might be retro compatible, like the addition of a new field in which case it can simply

be ignored.

25

Nevertheless, some changes are labelled as major and cannot provide retro compatibility,

in such cases new network connection points need to be provided. In the case of message-

based communications a new channel might have to be created, in order to exchange events

that are compliant with the new contract. When referring to http-based communications the

most common solution is to embed the version of the endpoint in its Uniform Resource Locator

(URL), allowing old clients to maintain the previous contract, while allowing – at any point –

the migration to the newer and upgraded contract.

2.6. Scale Cube on Microservices

The scale cube was introduced by Martin Abbott and Michael Fisher, in the book “The Art

of Scalability” [57]. It describes a model of a cube represented along three axes, these being

X, Y and Z – depicted in Figure 8.

Figure 8 - The Scale Cube

The X-axis represents scaling by redundancy [58], this happens when an application is

scaled by creating multiple identic instances of itself, and positioning them behind a load

balancer in order to distribute the traffic load among them. Scaling with resort to the X-axis is

the most common approach for monolithic applications, and it does not solve the deployment

problems attached to monoliths that were mentioned before.

The Y-axis depicts scaling by functional decomposition. In this sense, functional

decomposition means the separation of concerns within an application into new services. Each

service is responsible for one or more closely correlated tasks.

26

The Z-axis describes the scaling through data partitioning [59]. In its essence the Z-axis

scaling does not diverge much from the X-axis scaling, as it also consists of deploying multiple

instances of the same codebase behind a load balancer. However, it distinguishes itself by

the manner in which it balances the traffic arriving to each node. In this strategy each service

is purely responsible by a subset of all the data that the application contains.

After a closer look to the scale cube, an argument can be made that microservices can fully

take advantage of all the dimensions of the scale cube. Contrary to monolithic applications,

that failed to do so, due to the lack of the verticality provided in functional decomposition.

Microservices, can take advantage of the width of the scale cube (X-axis) by creating multiple

instances of each service, depending on the actual or predicted traffic at each point in time.

Microservices also seem to take advantage of the height of the cube (Y-axis), as when a

service simply gets too large, it can be broken down into a smaller level of granularity and so

reducing the overall load of the service. The last aspect of the cube – depth (Z-axis) – also

appears to be advantageous to a microservice architecture, as services that are deemed

indivisible can benefit from data partitioning in order to better regulate its request load

management, instead of an identical replication in which data accesses would still be

congested.

2.7. Testing

Testing software is one of the single best ways to reduce the likelihood of undesired errors

in a business-critical scenario. This being said, functional testing of distributed systems

presents one of the greatest challenges to any test automation tool [60]. To achieve high levels

of confidence, enterprises’ Test-Driven Design (TDD) needs to be refined and broken down

into the different test strategies, so that teams can test their applications individually as well

as its integration with the surrounding environment. In the sense of breaking down the different

test phases and scenarios, this dissertation will invoke the Mike Cohn’s approach to agile

testing (depicted Figure 9) [61].

In the Test Automation Pyramid there are three main layers:

• Unit Tests – They are positioned in the bottom of the pyramid, and they represent the

smallest units of tests. Unit tests have the purpose to test each unit of code, in an isolated

manner. Despite being around for a long time, it is still not clear what qualifies as a unit, some

might consider a class to be a unit whereas others might reach for individual methods as their

units. In either of these cases the scope of the unit tests does not have a strong impact in the

test automation process as a whole. Due to their reduced scope, these tests embody a rather

27

low cost to implement and if correctly executed they can be performed rapidly. The strong

isolation property of unit tests allows them to provide meticulous feedback, as when any test

or suit of tests fail it is rather apparent where the error is.

• Service Tests – Service tests are designed to bypass the user interface and test

services directly [15]. These tests intend to test the application’s API by the functions it is

designed to provide. In this type of tests, it is common to query the API expecting certain

results and comparing the response of the API with the expected outcomes. The granularity

and isolation of service tests are lesser than those of the unit tests and as such these usually

take more time, time that can be dependent on the response time of database connections

and other remote dependencies. With the decrease in granularity also comes the decrease in

feedback capacity, as a service test can cover a larger scope than unit tests, it becomes harder

to determine the breaking point of the application.

• UI Tests – User Interface (UI) Tests, also known as End-to-End Tests, cover the

largest scope of all tests. These tests tend to be performed as a simulating of the actions

executed by the user in a real case scenario. UI Tests have a very small granularity level

which reflects itself in very low feedback upon failure. It is easy to see that the integration fails,

but it is hard to pinpoint the location of the error.

Figure 9 - Test Automation Pyramid by Mike Cohn

The diagram of the Test Automation Pyramid allows for a good analysis of the test suit of

regular applications. The fast and rather cheap nature of unit tests allow them to compose the

bigger majority of the test suite. Followed by the Service Tests that are a slightly slower and

more costly than the former, these should represent the second bulkiest set of tests. And

lastly, the UI Tests that represent the heaviest overheads should represent the smallest

28

fraction. When looking at the Test Automation Pyramid it is also important to realize that the

confidence level has an inverse proportion to the isolation of the test [61]. The bigger the

isolation, the smaller is the confidence and contrariwise. As such, when a unit test is

successfully completed that does not provide any confidence that the system as a whole

works, in the other hand, when an UI Test fails it is pretty much clear that the integration

between components is broken.

2.7.1. Challenges of Distributed Testing

Despite providing a reliable diagram for single applications, the Test Automation Pyramid

comes short when contrasted with a distribution system approach. For instance, significant

execution problems exist, such as: system latency for individual test cases, global state reset,

non-determinism leading to unrepeatable errors, and the existence of faults in communication

infrastructure, to name but a few [60]. The integration between the different microservices

needs to be tested in order to have a reliable system, and yet the expensive UI Tests seem to

be the only available mean to perform the task. Not quite, as it will be clarified further.

In a microservice architecture, the individual microservices need have to the ability to be

independently deployed, and as such also independently tested. If a company is expected to

release a new version for all of its services, due to a modification in a single one of them, then

one of the most basic principles of a microservice architecture is violated, which results in

tangled operations. Consumer-Driven Contract (CDC) tests are a form of service-level testing

that allow to test the integration between application with the mean of a contract [62]. In this

sense a contract represents an agreement between a consumer (the receiving application)

and the provider (the delivering application), on what is going to be the payload shared

between their interactions. In short, the contract contains information about how the consumer

calls the provider and what is being used from the responses [63]. If the contract is respected,

then the integration between both ends can be assured. These tests are rather cheap to

develop and execute, as they simply consist of querying a provider’s API - in this particular

scenario from a consumer’s perspective - and comparing the response with the actual

necessities of the application. Typically, the team working on the consumer application is

responsible for developing these tests and exposing them to the provider. In this manner the

team working on the provider application can execute the tests for all its consumers, upon

changing an implementation in their application to make sure that the integration between

services is still working properly [64].

In a way, the implementation of Consumer-Driven Contract Testing tools can allow

applications to enhance their service-level test suites in other regards. The consumer can use

29

it to mock the provider in its tests. The provider, on the other hand, can use it to replay the

consumer requests against its API [63]. They might also serve as user stories guidelines for

the provider, in order to enhance their contracts in accordance with the demands of its

consumers. Moreover, CDC Testing can be used to anticipate scheduled changes in the

course of service evolution against current expectations and obligations [65].

So, given their smaller scoped nature and apparently cheaper implementation, should

Consumer-Driven Contract Tests replace UI Tests? Some experts say that with time

companies lose the need for End-to-End Testing due to the reliability of CDC Testing together

with strong monitoring [15]. While others insist that the simple restriction of these tests to the

barely essential flows provide a good enough coverage to assure the confidence levels of the

application [64].

30

3. State of the Art

The ensuing chapter presents and examines some of the solutions and strategies

implemented by the state-of-the-art enterprises in the world of technology, regarding

microservices. By doing so, it will be possible to see the evolution of microservices and how

they can be used in high-demanding scenarios where millions of transactions are exchanged

in the production servers. This chapter will cover the implementations of Netflix, Spotify, Uber

and – for the purpose of the proposed solution – Jumia. The chapter intends to make a deeper

analysis of some of the most beneficial outcomes of microservice in high-end companies.

3.1. Microservices

3.1.1. Netflix

In the current world of technology, it seems impossible to talk about microservices without

mentioning the immense success of Netflix. Not only because Netflix is one of the pioneers in

the development and improvement of MSA, but also because they are kind enough to leave

the door open so that developers around the world can take a peek and learn more from what

they are doing.

Netflix entered the market as a DVD rental business API [66], with an initial team of around

100 engineers working around a microservice architecture [67]. As of today, Netflix is

comprised of many small teams working on the full stack of hundreds of small independently

deployable microservices as it transitioned to the online streaming of digital content business.

In order to proceed to this migration Netflix chose to implement a strangler pattern by migrating

many of its individual services into Amazons Web Service (AWS) in 2009 [68] [16]. In doing

so, Netflix started segregating its monolith into a distributed system, composed of small

independent services, using cloud solutions before the term microservices was even in the

table. In terms of microservice integration, Netflix is one of the pioneers in some of the

strategies mentioned in the previous section, such as failure tolerance strategies. To handle

failure, Netflix developed Hystrix [69] a mechanism that allows services to provide static

content from other services in case of eventual unavailability. Another advantage of Hystrix is

in the providence of a circuit break strategy that prevents call to recurrently failing API’s until

a retry time has passed. In Netflix’s microservice architecture, the most important services

were identified in order to create strong bulkhead strategies to allow the most basic features

to be available at any times, even in case of an unpredictable error. Regarding testing Netflix

31

has decided in some bold choices, such as Fault Injection Testing [70] and the Chaos Monkey

[71]. These strategies try to create flaws in the system in the live environment, to assess how

the system reacts. In doing so, together with fine tuning of their processes, Netflix improved

the robustness of their application, in the sense that a node being destroyed represents almost

a non-event.

3.1.2. Spotify

Contrary to other mentions in this chapter, Spotify did not start its applications with a

monolithic architecture. Rather, the company chose to implement a set of small independently

deployable services from the start. The choice of this strategy allowed the company to better

understand the benefits and limitations of the microservice architecture since their genesis.

This understanding inherited by the experience of seeing microservice growing in a highly

demanding environment, allowed the company to focus their efforts in creating strong teams.

The team structure of Spotify represents a complex adaptation of the Conway’s law [72].

In Spotify, developers distribute themselves among Squads, each squad is composed of a

cross-functional that manages one or more services. When coordinating feature areas in

between squads, they form tribes. To better fulfill their roles, the different layers of squads

cooperate with each other forming chapters. Individual member of the company can share

common interests by creating a guild, which despite being voluntary they allow different

members of the enterprise to share experiences and knowledge about the different scopes of

the application [73].

Figure 10 - Depiction of Spotify's team composition

The way Spotify organizes their teams allows them to have a better grip on the context

boundary of each service. And by providing each squad and tribe with the exact definition of

their scope they can guarantee that there are no overlapping services being built in the full

span of the company.

32

3.1.3. Uber

Around the years of 2012-2013, Uber was composed of two large monolithic applications

[74]. After careful analysis, Uber realized that some of the main problems they were routinely

facing could be mitigated with the implementation of a service-oriented architecture, namely a

microservice architecture. Resorting to microservices, Uber managed to reduce the rollout

time of new feature by 25-50%, by substantially reducing the scope of each service and the

overhead calls it would need to perform in the older version of the application [74]. Contrary

to Netflix and Spotify, that chose to have different API Gateways for different devices, Uber

chose to implement a single Gateway that serve as a single entry-point to its systems. With

the implementation of an API Gateway Uber managed to benefit from discoverability and load

balancing with the assistance of service registry mechanisms.

3.1.4. Jumia

Jumia started its life with the development of four distributed monoliths, they comprised of

Bob – the application that managed the catalogue. The Delivery Manager – the application

that managed driver and deliveries from sellers all the way until the costumer. There was also

the Order Management System – arguably the biggest monolith of all, which managed all the

operations inside hubs and warehouses. And finally, there was the Shop - the application

responsible for the front-office that the user sees when accessing Jumia.

With time, and with the business of Jumia growing to an unpredictable scale, soon each of

these applications needed to deploy new versions multiple times a week. This happened due

to the fact that everyday different teams were developing around different modules of the

mentioned monoliths. To solve the troubles of Jumia, many solutions were proposed, when

the performance of the application was not good enough more instances of it were deployed

(X axis in the scale cube). When the database performance was lacking, the solution was to

shard it in different countries (Z axis in the scale cube). Still, these solutions were not ideal, as

they were starting to represent a very high cost of infrastructure. Therefore, Jumia decided to

start scaling in the Y axis of the scale cube, by chipping away functionalities into their own

separate domains. And thus, microservices became the norm in the company. Since the

beginning of its life, Jumia has managed to migrate all its architecture to microservices and

definitively has seen some success. Internal numbers point to a speed up in average

development time per story point, as teams moved from averaging 30 story points per week

33

to averaging 50 story points per week. Even Though, the analysis of these result can be

extrapolated to different reasons, like better understanding of the system as a whole or a story

point being an imprecise value, it clearly shows some improving.

In the matter of microservice integration, Jumia tries to handle their processes in the most

BASE-like ways possible, implementing messaging wherever feasible in between inter-

process communications, to prevent blocking APIs and create chained dependencies. The

most common technologies used by Jumia to achieve this feat are Kafka and RabbitMQ.

34

4. Requirement Analyses and Solution
Proposition

The task at hand focuses on Jumia’s Back-Office environment, and it represents a

necessity that emerged in the recent years after Jumia migrated its systems to a microservice

architecture.

4.1. Problem Analysis

After implementing a Strangler Pattern [2] over its former application, Jumia ended up with

a sharded set of applications for its back-office environment. This transformation allowed for

a more structured and organized flow of operations. With each new service specializing in a

different process. However, it is frequent that an agent is required to switch in between

applications to access different information about either the order, the package or even the

transport that is designated to take. The systematic switch between application can represent

a slowdown in every process, especially given the fact that each access token has an

expiration date of thirty minutes.

To better understand the problem at hand, this chapter will take a deeper look at an

example of an agent accessing the Order Management System (OMS) in order to process a

return of an item to the warehouse. For the item to be successfully inbounded in the warehouse

it needs to go through a quality check inquiry that is process overt at the Warehouse

Management Tool (WMT).

 Figure 11, below, depicts the sequence diagram of the whole authentication process that

occurs since the user starts accessing the application, until the login in considered successful

and the user can continue with the workflow. Firstly, the user tries to access the application

via the browser (1.1), after the client is started in the user’s browser it immediately validates if

it has a token and if so validates that the token is not expired (1.1.1). After checking that the

session is not valid, OMS redirects the user to the Authentication Control List’s (ACL) login

page (1.2), with a query parameter that allows the ACL to know which application the user is

trying to access. ACL then presents a login form (1.3) that a user needs to fill in order to gain

access to OMS (2.1). After filling the form ACL validates the provided credentials as well as if

the user has access to OMS (2.1.1), if so, ACL then generates an exchangeable code and

encrypts it through an Rivest–Shamir–Adleman (RSA) encryption strategy, resorting to a

public key previously generated by OMS (2.1.2). The web client of ACL proceeds to redirect

the user again to OMS with the encrypted code in the URL under the query parameter “code”.

The exchangeable code has an expiration time of 30 seconds and can only be exchanged

35

once. The OMS client decrypts the provided code (2.3) and requests the API of ACL (3.1) to

exchange the code for an authentication token (3.2). Before responding with the authentication

token, the ACL API validates the exchangeable token (3.1.1) to infer if it has been redeemed

or if it corresponds to the one that was generated. After having the authentication on its side,

OMS stores it in order to inject the token in every request. By doing so, the API can identify

the user in every request and confirm the access of the user to the resources it is trying to

access.

After the authentication process the user is able to enter the OMS application and push the

package to be subject to a quality check in WMT.

To access the WMT application the user has to go through all the authentication process

again. Open the application (4.1), fill the form (5.1), wait for the exchangeable code generation,

encryption and subsequent decryption (5.1.2, 5.2 and 5.3), wait for the exchange of the code

for a token (6.1 through 6.2) so that the user can finally get a successful login in WMT (6.3)

and access the application.

Figure 11 - Current Sequence Diagram for Application Switch

36

The process exposed above portrays the process a user needs to go through in order to

switch between application A and application B. After taking a closer look at this procedure

Jumia’s engineers decided to act and take a step forward towards optimization. Although

many of these sub-processes cannot and should not be averted, there is space for

improvement. This improvement can speed up the user’s navigation between applications

maintaining the safety mechanisms previously implemented.

In The following chapter will focus on the proposal of a solution, with a practical example,

that fits the architecture of the organization and has into consideration all the knowledge

gathered in this document.

4.2. Requirement Analysis

Software engineering is done at its best when the requirements of the system are properly

categorized and well-known to all the parties involved. Subsequent to the showcasing of the

problem, done previously, it seems of great importance to understand what a possible new

solution can bring to the table. The current sub-chapter will emphasize the requirements

necessary to implement a solution that best fits the company’s interest.

1) Seamless Service Integration – The proposed development must be able to integrate

with the existing ecosystem of Jumia, and its development should cause as minimum

impact as possible in the systems it integrates with.

2) Eventual Consistency – As there exists a way of accessing all applications currently,

there is no need for blocking protocols that create entropy throughout the current

architecture. As such, an eventually consistent environment should be promoted, where

if unchanged data will sooner or later be coherent.

3) Request Identification – All the requests carried throughout the proposed model must

be identifiable through an authentication token generated by Jumia’s ACL. By doing so,

the API becomes more resilient and compliant with the current protocols in place.

4) Critical Data Protection – All the critical data passed around in a HTTP-like

environment should be encrypted. This information can consist of authentication

tokens, exchangeable codes, or user emails.

37

5) Available to all Projects – The solution proposed to transition between environments

should be available in every back-office application.

6) Minimal Client Integration Effort – The proposed solution must not pose a substantial

overhead, either of costs or time, for the different teams to implement in their

applications’ clients. The integration with the different systems should be as simple as

running a command and make small UI adjustments.

7) Independently deployable – The application should be capable of deploying

independently of all the other systems at Jumia. Likewise, it should also not be impacted

by any other project’s deploy.

8) Continuously Integratable and Continuously Deployable – Any adjustments or new

requirements should be able to be planned, developed, tested, and subsequently

deployed effortlessly.

The first requirement (Seamless Service Integration) can be achieved by implementing an

independent small service. The existing nature of Jumia’s service architecture allows for the

generation of a small service in an enclosed environment that can subscribe to the messages

already being published by the different services. This property is advantageous to the second

requirement (Eventual Consistency) since it provides an eventually consistent approach that

does not hinder the data transaction between systems.

The third requirement (Request Identification) can easily be tackled with the injection of a

bearer authentication token in the head of each request. This mechanism is already in place

for every other Jumia’s Services, so its integration would be rather effortless.

For the fourth requirement (Critical Data Protection), one of the most straight forward

solutions here would be the generation of two RSA key-pairs. One of the key-pairs would be

generated by the ACL and the other by the proposed solution. Subsequently the public keys

would be exchanged and thus both applications can encrypt the outgoing data using an RSA

protocol with the homologous’ public key. This process is ideal because it is compliant with

the low overhead and minimum impact requirement. Since the current system already

supports RSA encryption.

The fifth (Available to all Projects) and the sixth requirement (Minimal Client Integration

Effort) can be achieved through the implantation of a JavaScript library that can be imported

by all projects though tools like Node Package Manager (NPM) or YARN.

Just like the first requirement suggests the implementation of an independent service can

compel it to be independently deployable (Independently deployable), and by nature such a

service can make use of tools like Jenkins and Docker to allow the creation of a pipeline that

38

allows for continuous integration and deployability (Continuously Integratable and

Continuously Deployable).

4.3. Solution Proposition

This sub-chapter intends to lay the foundation in which the proposed solution is based on.

In here the decision-making process will be broken down, in order to better analyze why this

approach was chosen over others. The expertise and techniques applied and suggested in

this chapter are supported by the body of knowledge referred in the previous chapters.

The current chapter introduced by an analysis over the requirements and the problem at

hand, followed by a proposed architecture. The assessment of the proposed working model

will be supplemented with a deeper glance at the technologies and tools utilized, as well as

an explanation as wherefore they were chosen over their respective alternatives.

It is also important to mention that the approach hereby mentioned and exposed never got

to be implemented in live servers, and as such the results inferred from it might be considered

inconclusive.

4.3.1. Proposed Interaction Sequence

Upon assessing the problem at hand and evaluating the requirements, a proposal was

drawn over a potential flow of authentication. The new flow had as a main goal the reduction

of times the users were required to dial their credentials in order to gain access to the back-

office applications. Consequently, speeding the flow of operations in the hubs and warehouses

ever so slightly.

In Figure 12, the proposed model is illustrated in a sequence diagram that aids the

visualization of the chain of events that lead to the authentication between applications. In this

model, the first steps of the authentication remain untouched (1.1 – 3.3). The reason being

that to be allowed access into the application, the users still need to introduce their credentials

into the system. This first step of the authentication allows the web-client, to have in its

possession the authentication token that will enable the future interactions between systems.

However, the second phase of the application traversal is where the suggested solution

innovates.

The following overview, assumes that the back-office application at hand, has imported and

applied a library component for the Back-Office Integration Application (BOIA) into their

frontend client.

39

Figure 12 - Proposed Sequence Diagram for Application Traversal

The process is started when the users open the modal provided by BOIA, displaying the

applications to which they have access to. The users can then select what is the application

they want to navigate to and clicks the icon of said application. After that, a request is sent to

the API of ACL for an exchangeable code. Although this time, as the request is being made

directly to the API and without the insertion of user credentials, the previously generated token

is used as a form of authentication. The ACL validates the given token and if it is legitimate, it

40

then generates a code and encrypts it, responding to the application with said encrypted

exchangeable code. BOIA’s frontend component then reroutes the browser to the URL of the

selected application with the query parameter “code” holding the encrypted exchangeable

code provided by ACL. From here, the processes already at place take over as each

application already possess the mechanisms that allow them to decrypt and exchange the

code that arrives from the query parameter “code” into a valid token that they can use to

request their respective APIs.

4.3.2. Proposed Model

Taking into account the knowledge gathered earlier in the present document, together with

the analyses of the system requirements, acquired in the previous chapter. The solution that

seemed to be able to meet most, if not all, the requirements was the implementation of a

microservice. The implementation of a microservice would allow for the seamless integration

with other services through an eventually consistent system. As visually supported by Figure

13, this microservice exposes an API that is consumed by a small node package module that

provides a component that Jumia’s back-office applications can import and integrate into their

clients.

As Jumia’s back-office application clients are developed in Angular, the library provided by

BOIA through a repository in Node Package Module (NPM) will consist of an Angular Module

that can be included in the root module of any application. This module exports a component

that allows the display of a modal where the user can visualize and choose between the

applications to which they have access.

On the server side of BOIA, the goal is to achieve eventual consistency, through BASE-like

transactions, over the data managed by the application. Since the relationship between users

and applications does not represent critical information, it can be stored in a soft state.

Meaning that it can be inaccurate at each point in time. By doing so, non-blocking processes

can be implemented with the certainty that sooner or later, if the data is not modified, it will

become up to date. The approach to populate and update the data of users and applications

will consist of the consumption of messages that are published to a RabbitMQ’s queue. The

messages will be published by the User and Application Management Systems. By resorting

to a message broker like RabbitMQ, it is possible to achieve loose coupling between the

publisher and the consumer. This happens because at no point of the interaction they require

to know about the existence or availability of one another. Each management system can

simply populate its queue with messages, and on the other side the consumers will eventually

process them according to their availability.

41

On the other hand, however, the interactions between the authentication service and BOIA

need to follow an ACID-like transaction protocol. Since all of their interaction require the

exchange of critical information, for instance the exchange of authentication codes and

validation of tokens. At all points of interaction, the information carried between this to services

needs to be accurate and consistent.

Figure 13 - Proposed Model

4.3.3. Data Management

After a quick analysis of the requirements and the proposed solution, it is easy to speculate

that the systems of Jumia’s back-office already possess all the data required for the

implementation of BOIA. This is evident, given that there are APIs that populates the

information about the applications and about the users with their own, via asynchronous

messaging. If this is the case, why is there the need for a new system to aggregate the

information between users and applications?

ACL, the application that owns the information of all users as well as their roles, in the back-

office environment, is ultimately the service where the accesses of a certain role to each

application is managed. As such, it needs to have a basic representation of the data of an

application. In the case of Jumia’s systems, this data corresponds to the unique key of the

application, this key (usually comprised of an acronym for the application’s name) is populated

by the application registry each time a new application is created.

42

On the other side, the Application Registry Service owns the data of all the applications of

the environment of Jumia (such as URLs, names, logos, etc.). The Application’s Registry

Service does not contain any information about users or their roles. In fact, this service has

no idea about what a user is, it only knows applications, because that is its context boundary.

This being said, and with the aid of Figure 14, it is possible to assess what would need to

be the data flow without the implementation of BOIA. To be able to visualize which applications

they could transition to, given the role they possessed, a web client would need to query the

API of ACL to see what are the applications that the authenticated user’s role has access to.

After having this information, the application would need to query the Application Registry’s

API to match each application key to their own application object and only then return to the

client all the information that the user has access to. This process proves itself inefficient

because it follows a synchronous interaction pattern that is prone to fail, gambling on the

availability of all systems involved to return data in useful time.

Figure 14 - Data flow according to previous data ownership

Instead of the model displayed and exposed above, BOIA proposes the synchronization of

data as it arrives to the system. As such it is never dependent on the availability of others. For

43

instance, if both ACL and the Application Registry happen to be down, then the updates just

stop being published and BOIA keeps serving its clients with the data it holds at the moment.

It is not crucial that the data is perfectly accurate, since at the time of authentication, there are

still bulkheads in place that protect the system from faulty scenarios. These bulkheads are

often situated in the Authentication Service. For example, if a user tries to access an

application that he does not have access to because the information of BOIA is not up to date,

then the access will simply be denied, and a message will be shown. This way BOIA can

simply concern itself in showing the data it owns, even if in a soft state, with the assurance

that no inconsistencies will have a negative impact in the big picture of the system.

Figure 15 - Data flow with the implementation of BOIA

44

Figure 15 displays the way that the implementation of BOIA changes the data flow

showcased previously. By subscribing and storing the essential information published by both

the ACL and the Application Registry system, BOIA can relate the roles with the applications

they have access to. In doing so, the back-office client can use BOIA’s web component to

query its API to fetch the data to be displayed to the end-user. This approach differs from the

previous because it does not rely on a chain of events in order to provide the information to

the user. It simply needs to query the service’s database to produce a valuable result.

45

5. High-Level Implementation

5.1. Development Environment

After carefully clarifying the task at hand and subsequently evaluating and analyzing the

requirements of the system, a high-level implementation was made. This implementation has

the vision to serve as a solution to the current mismanagement of Jumia’s back-office

applications’ transitions.

The development environment of this project was isolated from Jumia’s, this posed a

limitation for the project. As such, a decision was made to mock the services of Jumia, that

would be required to create a fully functioning environment that would bring the

implementation of BOIA to life.

5.1.1. Application Registry

To simulate the application registry service, a simple CRUD application was developed.

The application consists of a simple Node.js API, with a non-relational database using

MongoDB. The application registry mock was designed to receive an object containing the

data of a newly created service/application that is introduced in Jumia’s environment and

subsequently store it in the database. Upon getting a request to create said

service/application, the API constructs a message with the data relevant to BOIA and

publishes it onto a queue. This queue will then be subscribed by BOIA.

5.1.2. Access Control List (ACL)

To this day, ACL is still one of the biggest and most complex services in Jumia’s

environment. It stores information about users, roles, role permissions, application accesses,

authentication, and so on. Being so, it also becomes complex to integrate with, given that

systems that manage such critical data require a high standard of security and compliance.

For the high-level implementation presented in this chapter, ACL was mocked and only the

role management and authentication capabilities were replicated to an extent where the

integration between systems was possible.

46

5.2. Server API

5.2.1. Implementation

The business logic of BOIA is abstracted away within a RESTful API. This server was

developed with the resort of NodeJS with Express. The choice of NodeJS as the main tool of

development is due to its non-blocking properties provided by NodeJS’ Event Loop [75]. These

properties are then enhanced using Express, a framework that applies a thin layer, providing

all the tools required to create a REST API, without obscuring away the simplicity and

versatility of NodeJS’ features [76]. Another implementation choice worth noticing was the

adoption of Typescript [77]. By offering statically typed options and OOP tools Typescript

allowed for a more solid object-oriented paradigm, which is optimal for large enterprises where

code consistency is a must for a seamless integration between systems.

In an initial phase of the API development the models of a role and of an application were

designed. In the current implementation a Role consists of an id (generated by the database,

as a primary key of the object), a name, a description (brief depiction of what the role consists

of), a key (serving as a unique identifier of the role object, within other objects’ scopes), an

expiration date (representing a timestamp at which the role becomes deprecated/invalid), a

date of creation, a date of last update and a date of deletion if applied. The Role model

contract is displayed in Listing 1, and it represents the baseline structure that each role

implementation should follow.

export interface IRole {

 id: number;
 name: string;
 description: string;
 key: string;
 expirationDate: Date;
 createdAt: Date;
 updatedAt: Date;
 deletedAt: Date | null;
}

Listing 1 - Role model interface

Depicted in Listing 2, is the data schema of what represents an Application in BOIA is

embodied by an id (generated by the database, serving as a primary key for the object), a

name, a description of what the application does in the environment of Jumia, a code that

represents a unique value of how the application is called (typically an acronym for the

47

application, e.g. Order Management System becomes OMS), the URL in which the application

is provided (this is crucial to allow the redirect of the user), the URL of the application’s logo,

as well as a creation date, last update date and a deletion date (if applied).

export interface IApplication {

 id: number;
 name: string;
 description: string;
 code: string;
 url: string;
 logoUrl: string;
 createdAt: Date;
 updatedAt: Date;
 deletedAt: Date | null;
}

Listing 2 - Application model interface

The creation of these interfaces allows for the further implementation of models, these

serve as a data access object (DAO) layer, provided under an object relational mapper (ORM)

available through the library Sequelize [78]. This model can be then exported and injected into

the services in order to be used to query the database either to fetch, create or update data.

Listing 3 displays the example of the implementation of a Sequelize ORM model.

export class RoleModel extends Model<Role> implements Role {

 @PrimaryKey
 @AutoIncrement
 @Column
 id: number;

 @Column
 name: string;

 @Column
 description: string;

 @Column
 @Unique
 key: string;

 @Column(DataType.DATE)
 expirationDate: Date;

 @BelongsToMany(() => ApplicationModel, () => ApplicationRoleModel)

48

 applications: Array<ApplicationModel & ApplicationRoleModel>;

 @CreatedAt
 createdAt: Date;

 @UpdatedAt
 updatedAt: Date;

 @DeletedAt

@AllowNull
 deletedAt: Date | null;
}

Listing 3 - ORM Model example of a Role

The business logic of the application resides in the service-layer. Services were

implemented in the shape of classes that have methods (behaviors) that mirror the

requirements of the system. Services allow for a better granularity of the code by segregating

the logic from the controllers and by doing so, preserving the sanity of the code. For instance,

as exposed in Listings 4-5, when a request arrives in the endpoint ‘roles/{id of

role}/applications’, the role service is invoked with the method to get the applications

by role and the role id - retrieved from the request’s query parameters - is provided. The

service then proceeds to call the DAO to fetch all the relationships between applications and

roles, where the role id matches the provided id. The result is then returned, or an error is

thrown to the http client.

 App.get(

'/roles/:id/applications',
async (request: Request, response: Response) => {

 try {
 const id: number = +request.params.id;

 response

 .status(200)
 .json(await roleService.getApplicationsByRole(id));
 } catch (error) {
 handleHttpError(error, response);
 }
 });

Listing 4 - Example of the Role controller (GET application by role endpoint)

export class RoleService {

49

 …
public async getApplicationsByRole(

roleKey: string):
Promise<Application[]> {

 const applications: Application[] | null =

 await this.roleDAO.getApplicationsByRole(roleKey);

 if (applications === null) throw new NotFoundException();

 return applications;
 }
…
}

Listing 5 - Example of Role Service, with the method to fetch applications by Role

Figure 16 - Class Diagram of BOIA

As previously explained above and as depicted in the class diagram found in Figure 16, the

API application follows a pattern in which interfaces define the data structure and serve as a

guideline to implement the ORM’s models. These models are then used by DAO to access

the database and execute queries with the purpose of modifying or retrieving content. The

50

business logic is then implemented by the services that uses the DAO to mold and modify the

requests’ bodies and convert them into valuable and usable responses. While using a RESTful

protocol through express, the controllers (ApplicationController and

RoleController) are used to serve the data fetched and processed by the services. Whilst

in the AMQP controller, the services are used to validate the received messages and handle

them accordingly.

5.2.2. Middlewares

To ensure the API works correctly, there was a need to ensure that all the requests had

the adequate form to be able to be consumed. A middleware can also be used to enrich or

hydrate the response before it is sent out to the client. In the development of BOIA the

middleware that seems more interesting to discuss is the one responsible for the

authentication, the token validation middleware.

In the token validation middleware, demonstrated below in Listing 6, the request is

intercepted, and the ‘Authorization’ property of the request’s header is scrutinized. This

property should correspond to a valid authentication token. The token is then sent to the

authentication service, where some validations are going to be asserted and a response is

going to be produced, if the authentication is correct a boolean value of true is received, false

otherwise. In the case of the validation succeeding the process is continued and the request

is then forwarded in the direction it was intended to. However, if the authentication fails, an

immediate response is generated with the http status of 401 (meaning unauthorized),

preventing the unauthenticated users to query the API.

Inevitably, the authentication validation is made in a synchronous manner, due to the high

consistency that such a process requires. If for instance the authentication token is not valid,

then the client cannot access the data owned by the API and as such is not able to proceed.

Therefore, it needs to follow an ACID-like transaction enlightened in chapter 2.5.3 of this

document.

async function validateUserToken(

request: Request,
response: Response,
next: NextFunction): Promise<any> {

try {

const authorized: boolean = await authenticationService
.validateUserToken(request.headers.authorization);

if (authorized) return next();

response.status(401).send('Unauthorized');

51

 } catch (error) {
 if (error instanceof HttpException) {
 response.status(error.getStatus()).json(error.toJson());

 return;
 }

 response.status(401).send('Unauthorized');
 }
}

Listing 6 - Token Validation Middleware

5.2.3. Fault Tolerance

As assessed before, in a distributed environment, nodes break easily. This means that

developers need to take measures that assure that each service keeps functioning in the best

way possible without being affected by said failure. In some cases, the unaffected functioning

of the application is not possible, as such developers should move to the next best solution

possible – failure tolerance.

In the case of BOIA, the main point of failure that requires attention is the authentication

process, in here another service (ACL) is invoked. And its recurring unavailability might mean

a constraint for the application. As such some measurements were taken, for instance, every

request fired has configured a timeout of 15 seconds. This means that, provided ACL does

not return a response within 15 seconds, then the request is aborted, and a failure response

is returned.

Yet another fault tolerance measure approached in this document and implemented by

BOIA are the circuit breakers (chapter 2.5.7). In order to implement a circuit breaker in BOIA

the library “Opossum” was used. As the developers’ description cites: “Opossum is a Node.js

circuit breaker that executes asynchronous functions and monitors their execution status.

When things start failing, opossum plays dead and fails fast” [79]. This required some

changes to the code displayed in Listing 6, originating the code displayed in Listing 7 and 8.

With the new implementation, the API call is now wrapped by a circuit breaker, this means

that the circuit braker will accumulate failures to a total of 3 (as indicated in the configurations

under the property ‘maxFailures’) and stop calling the service for 5 minutes

(‘resetTimeout’ property in listing 8), providing a fast failing environment where a

response is immediately generated. After the timeout expires the process repeats itself until

availability is asserted.

52

const circuit = new CircuitBreaker(

() => authenticationService

.validateUserToken(request.headers.authorization);

, circuitBreakerOptions);

async function validateUserToken(

request: Request,
response: Response,
next: NextFunction): Promise<any> {

try {

const authorized = await circuit.fire();

const authorized: boolean = await authenticationService
.validateUserToken(request.headers.authorization);

if (authorized) return next();

response.status(401).send('Unauthorized');

 } catch (error) {
 if (error instanceof HttpException) {
 response.status(error.getStatus()).json(error.toJson());

 return;
 }

 response.status(401).send('Unauthorized');
 }
}

Listing 7 - Token Authentication Middleware with a Circuit Breaker

export const circuitBreakerOptions = {
 timeout: 15000,
 maxFailures: 3,
 resetTimeout: 300000,
};

Listing 8 - Circuit breaker configurations

53

5.3. Messaging Queues

In order to achieve loose coupling between services, asynchronous communication was

implemented wherever possible. By doing so, BOIA’s API could attain resilience regardless of

the availability of the applications it intended to integrate with. To achieve true decoupling

messaging queues were used, resorting to RabbitMQ, this would allow the producers to only

know the address of the exchange.

Figure 17 – RabbitMQ’s Topic Exchange [80]

The configuration of the RabbitMQ’s ecosystem started with the creation of two exchanges,

one for applications and another one for roles. These exchanges were both configured with a

type ‘Topic’ allowing each message to be routed to a specific queue based on a routing key.

Like so, messages can fall into distinct queues and be treated differently. For instance, both

roles and applications, have three queues each that are then subscribed to by three different

handlers that treat each message as a creation, edition or deletions.

54

Figure 18 - Example of Application Exchange's Routing Configuration

5.4. Client

To develop the client application to of BOIA, the ideal choice was Angular. This choice

became obvious, given that all the back-office applications of Jumia are developed in Angular,

and this means that the integration between systems would become easier and would not

require further framework adjustments. The main goal of the development of the client

application is to develop a component, that can be imported through NPM into any of the back-

office applications. This component allows the users of the application it was implemented at

to open a modal and see all the back-office applications they have access to, with the role that

they are currently authenticated with.

Upon being initialized, the component checks the health of the API, and if the latter is up

and running, then the component is displayed. However, if otherwise the API is unavailable,

then the component is hidden. This health check allows each client to better manage its

resources, preventing them from generate HTTP requests that are expected to fail even before

they are fired. If the users do not have access to any other application or the application fetch

55

failed, then an error message is displayed, and the user can retry the request at any time

(depicted in Figure 19).

Figure 19 - Example of an application modal with no applications to display

On the other hand, however, when the request for applications is successful the modal is filled

in a grid-like pattern with all the applications that the user’s role gives access to (depicted in

Figure 20).

Figure 20 - Modal with applications

56

Upon selecting one of the applications in the modal, a request is sent to the API in order to

retrieve an authentication code for the selected application. When the authentication code

arrives in the frontend application, it mounts the URL by joining the base URL from the chosen

application with the query parameter code holding the received value. The back-office

application will then exchange the code for a valid token, in very much the way it did and

regardless of having BOIA integrated already.

public redirectTo(application: Application): void {

 const codeBearerParam: string = this._config.redirectCodeBearer || 'code';
 this.getAuthorizationCode(application: Application).subscribe(res => {
 const authenticationCode: string = res;
 const redirectUrl: string =

`${application.url}?${codeBearerParam}=${authenticationCode}`;

 if (this._config.openApplicationInNewTab) {
 window.open(redirectUrl, "_blank")
 } else {
 window.location.href = redirectUrl;
 }
 })
 }

Listing 9 - Redirect to the chosen application

As the library is intended to be imported by different applications, it needs to possess

appropriate configurations that allow each team to mold it around their business requirements.

At its current state the client allows for the configuration of the number of applications per row,

the width of the dialog, the URL to where the code can be retrieved and the query parameter

in which the authentication token will be carried upon redirect, as well as some Material

Library’s configurations for the modal and the opening button component.

export class Config {
 closeDropDownMessage?: string;
 columns?: number;
 customDialogOptions?: MatDialogConfig;
 dialogWidth?: string;
 getApplicationsUrl?: string;
 getApplicationsHeaders?: Params;
 materialButtonIcon?: string;
 openApplicationInNewTab?: boolean;
 redirectCodeBearer?: string;
 retrieveCodeUrl: string;
 retrieveCodeHeaders?: Params;
}

Listing 10 - Configurations of BOIA's client

57

6. Conclusion and Future Work

6.1. Conclusion

Microservices are getting more and more popular by the day. They do not provide a silver

bullet for the problems of every project, instead they provide an architecture that allows

applications to scale their services in a more granular manner. When applied correctly,

microservices can prolong and promote code quality, given that each scope is encircled within

its boundaries, therefore relying on fewer dependencies.

In the case of study demonstrated and explored in this document, the implementation of a

microservice that associates roles to applications, whilst holding the detailed information of

each application seemed like the best option. This is due to the very nature of Jumia’s

architecture where microservices were already at work. Furthermore, the conceptualization of

the proposed service means that the code necessary to associate roles to applications is

encapsulated away in a single service, and as such does not need to be replicated through

innumerous services, which would greatly increase the scope of the feature as well as the

likelihood of bugs.

Regarding the expected results for the current dissertation:

• An application was conceptualized that prevents users from having to login every

time they want to switch between applications. Provided they have a valid session

ongoing;

• A modal was developed that displays to the user what are the applications it has

access to, mitigating the necessity to actively look between applications to assess

which ones are accessible to him;

• The overall flow pace increase was inconclusive since it was not possible to

effectively integrate the proposed solution with Jumia’s systems. Despite this, an

argument can be made that for most of the cases, when the system works as

intended, the proposed solution has the potential to be swifter given that an

exchange between systems tends to be faster than a user authentication

interaction;

• A deep analysis was conducted, with the discern of creating stronger bases of what

microservices represented and how they interconnect, as well as their benefits and

58

drawbacks. This combined with the research of several documented and

distinguished articles, papers and books allowed for a deepening and strengthening

of the knowledge about the subject.

6.2. Future Work

The work showcased in this document serves as a departure point of what can be a real-

world implementation that intends to mitigate a real requirement of Jumia. As of today, it might

not be entirely possible to implement such a solution, due to the constraints and roadmaps of

the teams, but perhaps this work will serve as a study case that leads to the implementation

of a similar solution.

Following to that, being implemented into a real case scenario a solution needs to be

crafted to allow for the encryption of the authentication data that is carried around in http

requests. The same goes for the request themselves, in a real-world application maybe the

HTTP protocol should be replaced by a protocol with stronger security, such as HTTPS.

In the client, the future work would pass through the possibility for developers to style the

components so that the style guide of the modals would follow the patterns of each application.

As with this implementation, that styling can only be achieved resorting to the Angular Material

Lib.

Regarding microservices and their integration, the future work would lie in the better

exploration of deployment strategies following patterns of continuous delivery/continuous

integration. In a way that would assure that the integration between services would be

unbroken upon deployment resorting to a reliable test battery.

59

7. References

[1] R. Venkatesan and V. Kumar, A Customer Lifetime Value Framework for Customer

Selection and Resource Allocation Strategy, 1 October 2004.

[2] M. Fowler, "StranglerFigApplication," 29 June 2004.

[3] V. Velpucha, P. Flores and J. Torres, "Migration of Monolithic Applications Towards

Microservices Under the Vision of the Information Hiding Principle: A Systematic

Mapping Study," Advances in Emerging Trends and Technologies, 2020.

[4] D. Escobar, D. Cádenas, R. Amarillo, E. Castro, K. Garcés, C. Parra and R. Casallas,

"Towards the Understanding and Evolution of Monolithic Applications as Microservices,"

2016.

[5] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca and C. R. , "Evaluating

the Monolithic and the Microservice Architecture Pattern to Deploy Web Applications in

the Cloud," 2015.

[6] C. Richardson, "Pattern: Monolithic Architecture," [Online]. Available:

https://microservices.io/patterns/monolithic.html. [Accessed 2020 June 24].

[7] N. Dragoni, S. Giallorenzo, A. L. Lafuente and M. Mazzara, "Microservices: yesterday,

today, and tomorrow," 20 April 2017.

[8] M. Villamizar, O. Gárces, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas,

S. Gil, C. Valencia, A. Zabrano and M. Lang, "Infrastructure Cost Comparison of Running

Web Applications in the Cloud using AWS Lambda and Monolithic and Microservice

Architectures," 2016.

[9] M. Fowler and J. Lewis, "Microservices," 25 March 2014.

[10] C. Richardson, "Introduction to Microservices," 19 May 2015.

[11] B. Familia, "What Is A Microservice," Microservices, IoT, and Azure, 2016.

[12] J. Lewis and M. Fowler, "Smart endpoints and dumb pipes," Characteristics of a

Microservice Architecture, 24 March 2014.

[13] M. Kalske, N. Mäkitalo and T. Mikkonen, "Challenges When Moving from Monolith," 22

February 2018.

[14] R. C. Martin, Clean Code, Prentice Hall, 2009.

[15] S. Newman, Building Microservices - Designing Fine-Grained Systems, 1005

Gravenstein Highway North, Sebastopol, CA 95472.: O’Reilly Media, Inc, 2015.

60

[16] J. Thönes, "Microservices," January 2015.

[17] C. Richardson, "Building Microservices: Using an API Gateway," 25 June 2015.

[18] N. T. Blog, "Embracing the Differences : Inside the Netflix API Redesign," 9 July 2012.

[19] M. Wenzel, Y. Victor, J. Parente and D. Pine, Challenges and solutions for distributed

data management, 20 September 2018.

[20] J. Lewis and M. Fowler, "Characteristics of a Microservice Architecture," 25 March 2014.

[21] M. Conway, "Conway's Law," 1967.

[22] A. Hochrein, Designing Microservices with Django, 2019.

[23] M. Fowler, "MonolithFirst," 3 July 2015.

[24] T. Bures and L. Duchien, Software Architecture, Paris: Springer, 2019.

[25] S. Sarkar, G. Vashi and A. PP, "Towards Transforming an Industrial Automation System

from Monolithic to Microservices," in IEEE 23rd International Conference on Emerging

Technologies and Factory Automation (ETFA), 2018.

[26] "Wikipedia on Strangler fig," 22 July 2020. [Online].

[27] C. Richardson, "Refactoring a Monolith into Microservices," 8 March 2016.

[28] F. Martin, "SacrificialArchitecture," 3 June 2015.

[29] R. Shoup, "Evolutionary Architecture," 16 October 2014.

[30] S. Tilkov, "Don’t start with a monolith," 09 June 2015.

[31] F. P. B. Jr., "No Silver Bullet - Essence and Accident in Software Engineering," 1987.

[32] S. Shariq, M. Wenzel, J. Parente, N. Anil and M. Veloso, "Communication in a

microservice architecture," 2020 30 January.

[33] B. M. I.-P. C. i. a. M. Architecture, "Richardson, Chris;," 24 July 2015.

[34] M. Satran and M. Jacobs, "Interprocess Communications," 31 May 2018.

[35] L. Liu and M. Tamer Özsu, Encyclopedia of Database Systems, New York: Springer,

2009.

[36] A. Fox and E. Brewer, "Harvest, Yield, and Scalable Tolerant Systems," 1999.

[37] B. Christudas, Practical Microservices Architectural Patterns, Springer, 2019.

[38] M. José Escalona, F. Domínguez Mayo, T. A. Majchrzak and V. Monfort, Web

Information Systems and Technologies, Cham, 2019.

[39] A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago, M. Mazzara, V. Rivera and A.

Sadovykh, Microservices - Science and Engineering, Cham, 2020.

[40] M. Satran and M. Jacobs, "What is a Transaction?," 31 May 2018.

61

[41] B. Christudas, Practical Microservice Architecural Patterns -, Trivandrum, 2019.

[42] J. McGovern, O. Sims, A. Jain and M. Little, Enterprise Service Oriented Architecture -

Concepts, Challenges, Recommendations, Netherlands: Springer, 2006.

[43] M. Younas, B. Eagelstone and R. Holton, A Review of Multidatabase Transactions on

the Web: From the ACID to the SACReD., 2000.

[44] W. Vogels, "Building reliable distributed systemsat a worldwide scale demands trade-

offs between consistency and availability.," Communications of the ACM, vol. 52, no. 1,

p. 42, 2009.

[45] D. Bermbach, L. Zhao and S. Sakr, "Towards Comprehensive Measurement of

Consistency Guarantees for Cloud-Hosted Data Storage Services," August 2013.

[46] J. D. Cook, "ACID versus BASE for database transactions," 6 July 2009.

[47] D. Monteiro, R. Gadelha, P. H. Maia, L. Rocha and N. Mendonça, "Beethoven: An Event-

Driven Lightweight Platform for Microservice Orchestration," 2018.

[48] J. Schabowsky, "Microservices Choreography vs Orchestration: The Benefits of

Choreography," 26 November 2019.

[49] C. Ricardson, "Building Microservices: Inter-Process Communication in a Microservices

Architecture," 24 July 2015.

[50] B. Christudas, "Distributed Messaging," in Practical Microservices Architectural Patterns,

c, 2019, pp. 105-145.

[51] M. (. .. d.-1.-4.-3.-4. Macero, "Starting with Microservices," in Learn Microservices with

Spring Boot, 2017, p. 99–177.

[52] A. R. Sampaio Jr., J. Rubin, I. Beschastnikh and N. S. Rosa, "Improving microservice-

based applications with runtime placement adaptation," 2019.

[53] K. Indrasiri and P. Siriwardena, "Integrating Microservices," in Integrating Microservices.

Microservices for the Enterprise, 2018, pp. 167-217.

[54] R. Sharma and A. Singh, "Getting Started with Istio Service Mesh.," in Retry Requests,

2020, p. 205.

[55] M. Nygard, Release It! Design and Deploy Production-Ready Software, 2nd edn., 2018.

[56] J. Postel, "Transmission Control Protocol," January 1980.

[57] M. L. A. &. M. T. Fisher, The Art of Scalability, 2009.

[58] K. Apte, "SCALING APPLICATIONS : THE SCALE CUBE," 6 March 2018. [Online].

Available: https://geeknarrator.com/2018/03/06/scaling-applications-the-scale-cube/.

[Accessed 1 August 2020].

62

[59] C. Richardson, "The Scale Cube," [Online]. Available:

https://microservices.io/articles/scalecube.html. [Accessed 1 August 2020].

[60] K. Meinke and P. Nycander, "Learning-Based Testing of Distributed Microservice

Architectures: Correctness and Fault Injection," Lecture Notes in Computer Science, pp.

3-10, 2015.

[61] L. Crispin and J. Gregory, Agile Testing - A Pratical Guide for Testers and Agile Teams,

United States of America: Pearson Education, Inc., 2009.

[62] I. Robinson, "Consumer-Driven Contracts: A Service Evolution Pattern," 12 June 2006.

[63] J. Lehvä, N. Mäkitalo and T. Mikkonen, "Consumer-Driven Contract Tests for

Microservices: A Case Study," Product-Focused Software Process Improvement.

Lecture Notes in Computer Science., 2019.

[64] H. Vocke, "The Practical Test Pyramid," 26 February 2018.

[65] J. Stählin, S. Lang, F. Kajzar and C. Zirpins, "Consumer-Driven API Testing with

Performance Contracts," Advances in Service-Oriented and Cloud Computing, p. 135–

143, 2018.

[66] P. Siriwardena, "APIs Rule!," in Advanced API Security, 2020, pp. 24-25.

[67] T. Mauro, "Adopting Microservices at Netflix: Lessons for Architectural Design," 19

February 2015.

[68] C. &. S. T. Carneiro, "Microservices From Day One," in Microservices: The What and the

Why, 2016, pp. 3-18.

[69] B. Christensen, "Netflix Technology Blog - Introducing Hystrix for Resilience

Engineering," 26 November 2012. [Online]. [Accessed 28 July 2020].

[70] K. Andrus, N. Gopalani and B. Schmaus, "Netflix Technology Blog - FIT: Failure Injection

Testing," 23 October 2014. [Online]. Available: https://netflixtechblog.com/fit-failure-

injection-testing-35d8e2a9bb2. [Accessed 30 July 2020].

[71] C. Bennett and A. Tseitlin, "Netflix: Chaos monkey," 2012.

[72] M. E. Conway, "How Do Committees Invent?," April 1968.

[73] M. Cruth, "Discover the Spotify model at Atlassian," [Online]. Available:

https://www.atlassian.com/agile/agile-at-scale/spotify.

[74] A. Gluck, "Introducing Domain-Oriented Microservice Architecture," Uber Engineering,

23 July 2020. [Online]. Available: https://eng.uber.com/microservice-architecture/.

[Accessed 30 July 2020].

63

[75] "The Node.js Event Loop, Timers, and process.nextTick()," OpenJS Foundation,

[Online]. Available: https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/.

[Accessed 31 August 2020].

[76] "Express," [Online]. Available: https://expressjs.com/. [Accessed 31 August 2020].

[77] "Typescript," [Online]. Available: https://www.typescriptlang.org/. [Accessed 31 August

2020].

[78] "Sequelize," [Online]. Available: https://sequelize.org/. [Accessed 31 August 2020].

[79] "NPM - Opossum," [Online]. Available: https://www.npmjs.com/package/opossum.

[Accessed 2020 September 1].

[80] L. JOHANSSON, "CloudAMQP - Part 4: RabbitMQ Exchanges, routing keys and

bindings," [Online]. Available: https://www.cloudamqp.com/blog/2015-09-03-part4-

rabbitmq-for-beginners-exchanges-routing-keys-bindings.html. [Accessed 2 September

2020].

[81] A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano and A. Urso, "The Database-is-the-

Service Pattern for Microservice Architectures," 2016.

[82] Y. Aradhye, "Principles for Microservices Integration," 24 August 2018.

[83] A. Rotem-Gal-Oz, SOA Patterns, New York: Manning Publications Co., 2012.

[84] S. Tilkov, "Don’t start with a monolith," 9 June 2015.

[85] J. Fritzsch, J. Bogner, A. Zimmermann and S. Wagner, From Monolith to Microservices:

A Classification of Refactoring Approaches, 2019.

[86] S. Brown, "Distributed big balls of mud," 6 July 2014. [Online].

