
 

 

Smart City: a GECAD-BISITE Energy Management 

Case Study 

Bruno Canizes1, Tiago Pinto1, 2, João Soares1, Zita Vale1, Pablo Chamoso2, Daniel Santos21 
1GECAD – Research Group on Intelligent Engineering and Computing for Advanced 

Innovation and Development, Institute of Engineering, Polytechnic of Porto, Portugal  

{brmrc, tmcfp, joaps, zav}@isep.ipp.pt 
2BISITE Research Centre, University of Salamanca, Salamanca, Spain  

{tpinto, chamoso, daniel_santos}@usal.es 

Abstract. This paper presents the demonstration of an energy resources 

management approach using a physical smart city model environment. Several 

factors from the industry, governments and society are creating the demand for 

smart cities. In this scope, smart grids focus on the intelligent management of 

energy resources in a way that the use of energy from renewable sources can be 

maximized, and that the final consumers can feel the positive effects of less 

expensive (and pollutant) energy sources, namely in their energy bills. A large 

amount of work is being developed in the energy resources management domain, 

but an effective and realistic experimentation are still missing. This work thus 

presents an innovative means to enable a realistic, physical, experimentation of 

the impacts of novel energy resource management models, without affecting 

consumers. This is done by using a physical smart city model, which includes 

several consumers, generation units, and electric vehicles. 
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1 Introduction 

Smart cities are one of the trending topics in the global research agenda. A smart city 

concept is the combination of ICT solutions, government policies and society 

involvement. As defined by the IEEE Smart Cities group a smart city has the following 

characteristics [1]: a smart economy, smart mobility, a smart environment, smart 

people, smart living and smart governance. With the increasing population and 

urbanization, the availability of natural resources will be significant problem. Based on 

[2], today cities are occupied by 51% of population, but consume 80% of the resources. 

The accelerating growth of cities and their disproportionate consumption of physical 

and social resources is addressed by the United Nations to be the greatest challenge. 
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The European Union (EU) is mostly concerned about the eventual fuel based 

primary source shortage, and hence the impact of electricity use in the environment is 

presently taken as very serious at scientific, economic and politic levels [3]. These 

concerns have led to intensive research and to new energy policies envisaging the 

increased use of renewable energy sources for electricity production and increased 

energy use efficiency. The EU has, in fact, assumed a pioneer and leading role in energy 

matters, namely in what concerns the increase of renewable energy sources. EU as a 

whole has committed to reach its 20% renewable energy target for 2020 [4]. Moreover, 

in 23 October 2014, EU leaders agreed on setting a revised target for increasing the 

share of renewable based energy to at least 27% of the EU's energy consumption by 

2030 [5]. The EU presents even more ambitious targets for 2050, with the commitment 

to reduce emissions to 80-95% below 1990 levels [6]. 

Such ambitions targets demand that energy resources are managed in a completely 

different way from what was usual so far. In this scope, the Smart Grid (SG) paradigm 

arises, as the most commonly accepted solution for this problem [3]. The distributed 

management approach supported by SG boosts the emergence of several innovative 

energy resource management approaches. The penetration of a large number of electric 

vehicles is one of the most important topics in this domain, due to the large 

dimensionality that it brings to the optimization problem. This problem is usually 

solved using meta-heuristics, namely with simulated annealing in [7] and with a novel 

multi-dimensional signaling method, in [8], just to name a few. A solid survey on this 

theme can be consulted in [9]. The impact of different sources of uncertainty is also 

broadly explored, such as the work presented in [10]. Although a significant amount of 

work is being done in this domain, the large majority of the performed studies are 

conducted solely under simulated environmental settings. This is mostly because SG 

are still an emerging reality, and thus, practical implementations are still not sufficiently 

widely spread. Even when considering the real implementations that are available, the 

execution of innovative experimental studies is difficult, because of the implications on 

the several users that are present in the real environment. 

In order to surpass these hurdles, this paper presents an experimental study of an 

innovative energy resources management approach, in a smart city environment, using 

a laboratorial physical model of the city. The considered model is located in a BISITE 

laboratory, and departs from a previous implementation, done in collaboration with 

IBM as a product for Vodafone. This model has been developed to show how their real 

services work. So, different requirements about the communication protocol have been 

set (MQTT messages with a specific frequency and format) in order to be integrated 

with their IOC software [11]. These models have already allowed the demonstration of 

different studies, namely: waste trucks routing optimization, home care, public lighting 

services, and citizens’ active participation. The model has been updated to include 

energy generation systems like solar panels and wind energy generators, so as to allow 

being used for the demonstration of energy management resources on the scope of the 

DREAM-GO project [12], specifically, the work presented in this paper. 

After this introductory section, section II presents the proposed energy resources 

management optimization model. Section III presents the case study using a real model 

of a Smart City and the results are presented in Section IV. Finally, in Section V, the 

most relevant conclusions are presented. 



 

 

2 Proposed method 

The prosed method deals with the optimal scheduling of the available resources in a 

Smart City (SC) context. The optimization model considers the energy sell or buy from 

the external suppliers or market. The Smart City Operator (SCO) that acts in behalf of 

its consumers, will sell or buy electrical energy taking into account the available 

resources. 24 periods of the day-ahead scheduling are used in the proposed method.  
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(1) 

Below it is presented de constraints of the proposed method. Equations (3), (6) and 

(7) present the EV technical limits for each period t. The generation units’ limits are 

described by equations (4) and (5). 

2.1 Equality constraints 

• Power balance in each period t and in each bus b. 
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(2) 

• EV battery balance determined by the energy remaining from the previous 

period, the trip demand and charge/discharge in the current period. 
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(3) 

2.2 Inequality constraints 

• Generation units limits in each period t. 
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(4) 

• Main network supplier maximum limit in each period t. 
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(5) 

• Vehicle charge and discharge are not simultaneous. 
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 (6) 

• Charge and discharge limit for each storage unit considering the battery charge 

rate and battery balance. 

 

 

 

EV_ _

(v, , ) (v, , ) ( , , )

EV_ _

(v, , ) (v, , ) (v, , )

EV_

(v, , ) (v, , 1)

EV_

(v, , ) (v, ) (v, , 1)

1,..., ;

1,..., ;

1,...,V

Ch MaxEV Ch EV

b t b t v b t

Dsc MaxEV Dsc EV

b t b t b t

Dsc EV

b t b t

Ch EV EV

b t b b t

P P Y

P P X t T

P t E b B

P t E E s





 

   

   

    

 (7) 

3 Case study 

The following case study will demonstrate the use of the proposed methodology. 

The SC have 14 buses as can be seen in the one-line diagram presented in Fig. 1a. Fig. 

1b shows the real model of the Smart City. The SC distribution power network has 



 

 

15kV with one feeder. As can be seen the network is completely meshed but radiality 

operated. The SC has:1 shopping mall – installed power: 1,500kW; 1 hospital – 

installed power: 800kW; 1 fire station – installed power: 600kW; 15 individual houses 

– installed power: 190kW; 7 office buildings: installed power: 555kW; 3 EVs – 2 cars 

(25kW each) and 1 waste truck (250kW); 1 wind farm (2 wind generators with 

1,000kW each); 1 PV power station (2 PV units with 250kW each); 1 waste to energy 

power station (500kW); 1 power plant (external supplier – 5,000kW); 5 PV panels for 

individual houses (3.68kW each); 7 PV panels for office buildings (11.04kW each). 

For the period 1 the two EV cars are located in bus 4 and the waste truck in the bus 

3. Table 1 shows the location of each building type in the Smart City. 
 

  
                                   1a)                                                                       1b) 

Fig. 1a). Smart City one-line diagram. Fig. 1b. Smart City real model 

Table 1.  Smart City Building Type Location 

Bus Building Type 

1 External supplier 

3 Wind farm 

3 PV power station 

4 Individual Houses 

5 Waste to energy power station 

6-12 Offices 

13 Shopping mall 

14 Hospital 

14 Fire station 
 

The considered prices are 0.02 m.u./kW for PV, 0.09 m.u./kW for wind power, 0.04 

m.u./kW for waste-to-energy power, 0.10 m.u./kW for the external supplier and 0.15 

m.u./kW for V2G discharge. Charge of V2G is considered 0.13 m.u./kW. The initial 

state for vehicles was considered randomly in the beginning of the day. 

All loads with exception of the hospital and fire station are allowed to use incentive-

based demand response programs, considering a remuneration for customers to reduce 

their load at maximum until 20% of the initial load. The incite value is 0.09 m.u./kW. 

Fig. 2a presents the forecasted power demand for each type of building as well as 

the solar and wind generation profile in the SC, not considering the EVs load. It can be 

seen that the peak load is expected at afternoon periods due to the great contribution of 

shopping mall, hospital and office buildings. Fig. 2b shows the forecasted EVs’ trip 

demand in kWh. The tool presented in [13] was used to generate the scenarios. Most 

trips occur at due to a great contribution of the waste truck. 



 

 

 

a) 

 
b) 

 

 

Fig. 2a. Forecasted load consumption (by type), PV and wind power profile. Fig. 2b. Forecast 

for EVs trip demand 

4 Results  

The optimization method and simulations were performed in MATLAB 2014a 64-

bit using the TOMLAB software [14]. A computer with one processor Intel Xeon E5-

2620v2 2.10 GHz with twelve cores, 16 GB of random access memory, and Windows 

10 Professional 64-bit operating system was used. 

In order to compute the proposed method, the algorithm took around 0.65 seconds. 

The result of the objective function, i.e., the final cost is 30.12 m.u.. 

Fig. 3a presents the power supplied by the external supplier and the all distributed 

generators considered in the case study. It can also be seen the results for the energy 

sold to the market and the values for the total consumption. It is important to note that 

the total consumption considers also the EVs charge. These results are for the 24 

periods under study. One can see that the external supplier is required at the begging of 

the afternoon until the night. In these periods the DG power generation decrease and 

the demand remains higher. Also, it is possible to see that in early morning exists an 



 

 

excess of generation. Due to this, the model considered that exist an advantage to sell 

the remaining power to the market. 

As can be seen in Fig.3b the generation by wind power has the higher contribution 

to supply all the demand. The wind power and waste-to-energy power are supplying in 

all periods. The main reason is related to their cost when compared with external 

supplier. Additionally, for the wind power, it is considered having dispatchable power. 
 

a) 

 
b) 

 
Fig. 3a. Power supplied scheduling. Fig. 3b. Power supplied scheduling by generator type 

 

 

Fig. 4. Demand response and EV scheduling  

Fig. 4 depicts the scheduling for demand response (in this case study is was 

considered only the reduction program) and for EVs. The demand response program is 



 

 

verified in periods 20, 21, 22. The power reduced by the demand response program in 

each of those periods are: 220kW, 240.19kW and 13.41kW respectively. Regarding to 

EVs scheduling it is only verified the charging and no discharging. It is possible to see 

in Fig. 4 that the EVs charging occur in periods 5, 6, 10, 12, 19, 21 and 23. 
 

 

5 Conclusions  

This paper has presented a resource scheduling management approach applied to a 

physical smart city model environment. The Smart City Operator can use their 

resources at their optimal operating point while minimizing operation costs and 

obtaining more profit taking into account the several constraints associated with their 

resources and energy suppliers. This can be achieved with adequate resource scheduling 

algorithms as the method proposed in this paper.  

The proposed method proved to be adequate to support the Smart City Operator in 

the operation field which can lead to operation costs reduction. 
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