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Abstract. The objective of this paper is to present a SMACK based platform 

for microgrids data storage and management. The platform is being used in a 

real microgrid, with an infrastructure that monitors and controls 3 buildings 

within the GECAD - ISEP/IPP campus, while, at the same time, receives and 

manages data sources coming from different types of buildings from associated 

partners, to whom intelligent services are being provided. Microgrid data comes 

in different formats, different rates and with an increasing volume, as the 

microgrid itself covers more customers and areas. Based on the atual available 

computational resources, a Big Data platform based on the SMACK stack was 

implemented and is presented.  The Cassandra component of the stack has 

evolved. AC version 2 is still supported until the version 4 release, and is often 

still used in production environments. However, a new stable version, version 3, 

introduces major optimizations in the storage that bring disk space savings. The 

main focus of this work is on the Data Storage and the formalization of the data 

mapping in Cassandra version 3, which is contextualized by means of a short 

example with data coming from the monitoring infrastructure of the microgrid. 
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1 Introduction 

Technological developments led to a huge spread of monitoring equipment that now 

provide an enormous quantity of data, based on which intelligent services may 

become available, turning into dynamic the traditionally centralized management of 

certain areas. In power systems, technological developments and the roll out of meters 

turn the Smart Grid (SG) as a new reality. Indeed, digital data sources range from 

sensors, that measure electric parameters (current, voltage, phase shift and frequency), 

to meters that monitor in real time consumption data and distributed generation 

sources, to environmental sensors (temperature, humidity, etc.), all of them being 

relevant to shift from a static structure to a more intelligent and flexible way to 

manage the electrical energy resources. The monitoring of the grid status results in a 

huge amount of collected data to deal and sharing with various parties [1].  

The volume, velocity, and variety of the data make traditional data storage systems 

inappropriate to obtain the relevant value from the data analysis in a very short time. 



 

 

Big Data platforms are now the most promising way for the storing and analysis of 

high volumes of data. Apache technologies are being used in several domains. In this 

paper, we define a SMACK based architecture and implement a platform to support a 

real microgrid infrastructure existent at GECAD research group. Particular insights 

are given to the data storage process and the main focus of our contribution is given to 

the data mapping in relation to the partition size in Cassandra’s most atual version.  

The paper is structured into 4 sections, with section 2 addressing Big Data (BD) in 

SG context. Session 3 presents a platform based on SMACK, having Apache 

Cassandra (AC) as distributed storage for GECAD microgrid, with particular insights 

on the formalization of the data mapping process. Finally, the conclusions are 

presented in section 4. 

2 Big Data and Smart Grids 

To improve decision making, a system must be in place capable of collecting, 

managing, and processing information. In BD, the sheer volume of information 

requires new approaches when designing a solution that extracts knowledge within a 

reasonable period. This phenomenon, referred to as BD, is characterized by 5 Vs (i.e. 

Volume, Velocity, Variety, Veracity, Value) [2]. Each of these Vs represents real 

challenges (e.g. how to collect and transport a large volume of information; how to 

store this information, how to analyze and extract knowledge, how to ensure its 

security and privacy, how to process it in real time, etc.). The management of 

information with these characteristics raised great interest in the scientific and 

business community. Hadoop and Spark, are the most referenced frameworks.  

The Apache Hadoop Framework was the first mainstream BD solution. It is based in 

Batch Processing, distributed file system HDFS (Hadoop Distributed File System), a 

programming model MapReduce and YARN (Yet Another Resource Negotiator) [3]. 

Apache Spark is a set of tools and high level APIs for large scale distributed 

processing of data in-memory [4]. Currently, Spark is considered as the most active 

open source project in BD. Its speed advantages, allied with an out of the box 

integration of data manipulation using SQL like syntax, support for several storage 

systems, and ability to distribute machine-learning computation, have contributed to 

its success. 

In the new ecosystem of SG, all the players (i.e., power generation, transmission, 

distribution, customers, service providers, operations and markets) support their 

operations using a varied range of equipment that generate a large flow data. The last 

report issued by the European Union [5] refers numerous projects focusing the 

implementation of smart metering (SM). According to the same source, around 72 % 

EU customers are expected to be equipped with SM by 2020. The success of these 

projects launches an alert for the extensive amount of data generated in real time, that 

need adequate storage and analysis means to provide the development of dynamic 

services to better manage grid resources. Also, in the literature there are numerous 

references that characterize the type of data circulating on SG, at very high rates, as 

unstructured or, at most, semi-structured. Extrapolating this reality to the universe of 



 

 

the existent equipment and the foreseen roll outs by 2020 is easy to understand the 

challenge is now on the data management. However, all the data being generated can 

only be transformed into value if properly analyzed in order to generate key 

knowledge in decision-making and the development of intelligent services able to 

dynamically manage the grid towards increasing sustainability, efficiency and safety.  

The value will be so much greater as the increasing ability to feed the ecosystem with 

data collected outside their own domain (e.g. atmospheric data, events, consumer 

behavior, etc.), correlate and analyses them, not only to decide and predict, but also to 

discover something even imaginable. 

There are numerous operations in the SG area that require data analysis (e.g., 

operability; cybersecurity and privacy; self-healing fault; demand response; 

competitive energy markets; auto configuration; resource optimization; real-time 

decisions; forecasting; monitoring; etc.). Big data analytics is one of the biggest 

challenges in the BD domain. Traditional methodologies and algorithms are not 

prepared to run with large datasets (i.e. petabytes or more). Over the years, great 

efforts have been made on this issue and there are numerous references in the 

literature, of works and tools, for data analysis (based on batch and / or streaming) [4].  

3 A Big Data Platform  

Microgrids, sometimes referred as SG building blocks, are small areas with 

distributed energy resources that can operate in isolated mode. In this section we 

describe the BD cluster, with a distributed architecture, implemented in a real 

microgrid infrastructure existent in GECAD research centre [6].  

3.1 GECAD microgrid 

GECAD infrastructure includes 3 individual and independent buildings within the 

campus of the Institute of Engineering from the Polytechnic of Porto (ISEP/IPP), with 

photovoltaic (PV) and wind power generation; GECAD microgrid laboratory, which 

provides real-time simulation capabilities, a weather station from ISEP and 

consumption data from different types of buildings, some being monitored in real 

time and some others received through unstructured files. Fig. 1 illustrates the main 

data inputs for the platform. 

 

Fig. 1. Available data sources in GECAD’s microgrid. 



 

 

The 3 buildings are: Building F, with a PV system and a wind power system, 

where production is acquired every 10 seconds; a Building I, with consumption data 

acquisition every 10 to 15 seconds; and Building N, with its own PV system, injected 

directly into the building grid, consumption and generation is being acquired every 10 

seconds. Details about GECAD microgrid can be found at [7]. 

Inside the buildings, three-phase energy analyzers measure data of three load 

groups grouped by rooms: Heating, Ventilation and Air Conditioning group (HVAC); 

Lighting group; and Electrical Sockets Group.  The actual system stores data in time 

intervals ranging from 10 to 40 seconds (depending on the building) in a single SQL 

Server database.  

To better illustrate the consumption data that is being acquired since 2014, with a 

total of 35 measures every 10 seconds, from grid frequency to current and voltage 

total harmonic distortion, power factors, apparent, active and reactive power, 

imported active energy, etc. Table 1 presents an excerpt of the information captured 

from the energy analyzers. The idea is to collect data directly from the energy 

analyzers, abandon the single server setup and store it in a distributed storage system. 

Table. 1. Consumption data measurements. 

 

3.2 Distributed Architecture 

A BD distributed architecture was designed and implemented in GECAd real 

mirogrid. As illustrated in Figure 2, the design is based on the SMACK stack, a 

combination of the Lambda and Kappa architecture models, that uses primarily open-

source technologies (Spark, Mesos, Akka, Cassandra and Kafka) in an orchestrated 

pipeline that tackles both batch and streaming analysis for real-time scenarios under a 

single development language (Scala or Java) [8].  

The cluster’s hardware resources and software are managed by Apache Mesos. 

Apache Kafka serves as a message queue, which also provides APIs for streaming 

data ingestion, from the SQL database and directly from the energy analyzers. AC 

serves as the distributed persistent storage database and enables application 

development, while Apache Spark provides a richer query language over the stored 

data and the creation of forecasting machine learning models and streaming analysis. 

In total, there are two nodes for storing data in AC and for Spark analysis. The master 

nodes’ responsibility includes managing the slave resources, scheduling Spark 

applications and has a Kafka node for data ingestion and message queuing. 

The system makes use of Kafka’s Connect API to pull raw data from the energy 

analyzers through the Modbus communication protocol into Kafka, where it is stored 

temporarily. Finally, another connector moves data from Kafka maps it into 

Cassandra, where it is persisted indefinitely and available for random access reads. 



 

 

 

Fig. 2. Proposed BD architecture for GECAD’s microgrid scenario. 

This architecture is implemented with the computational resources actually 

available at GECAD. This serves as a first insight into the large-scale implementation 

of the architecture, with more advantageous computational resources and able to 

support several microgrids, e.g., a SG.  

3.3 Data Storage in Cassandra 

The actual SQL database presents itself as a serious storage system for massive data 

in the context of SGs. AC has been proposed to store historic data in a cloud-based 

architecture for SG [9] and considered to fulfill a similar role in a distributed data 

analytics platform for Wide-Area Synchrophasor Measurement Systems [10]. The 

system’s success can be mainly attributed to its masterless architecture, linear 

scalability, multiple data center deployments and continuous availability. 

However, due to scalability concerns, AC’s Query Language (CQL) limits the 

possibilities of retrieving the data. When using this database, the queries are not an 

afterthought, but defined before the data model itself. In [11] the authors detail the 

concepts of the Cassandra data model and the preferred modeling methodology, 

including the concepts of: keyspaces, column families, partitions and clustering 

columns. 

3.4 Data Mapping 

Fig. 3 showcases a possible physical data model of a column family, illustrated with a 

small sub set of the registry, related to the active power of the 3 load groups from the 

energy analyzer N3, and its respective CQL statement. In this example, only the fields 

related to the load groups ‘N3_P1’, ‘N3_P2’ and ‘N3_P3’, from in Table. 1, are being 

used. A unique identifier is used as a partition key and the time of measurement is 

stored as a clustering column “datetime” in descending order.  

In CQL, all selection statements must include the   key. Retrieving all data at once 

can result in a timeout. Equality and lesser/greater searches on non-primary key 

columns are not possible, and as such, filtering records for any the load groups below 

or above a value is only possible, for instance, with SparkSQL. 



 

 

 

Fig. 3. Column Family for active power measurements and the respective CQL statement. 

A visual representation of two energy analyzers partitions is seen in Fig. 4. The 

first energy analyzer has two rows separated in time while second only has a single 

record. From the image, we can see that the clustering value for the time of the 

measurement is repeated for each field in a row, and the field names are repeated 

across the whole partition. Both issues are addressed in AC version 3. 

 

Fig. 4. Visual representation of how AC version 2 stores data on disk. 

Since a single partition is stored in one cluster node, as the records grow, the 

likelihood of creating hot nodes in the cluster increases. Therefore, it is important to 

split partitions to improve cluster health and performance. 

3.5 Partition Size 

Cassandra has limitations on how wide a partition can grow in terms of the number of 

cells and its size, before suffering from performance concerns. The maximum number 

of cells is 2 billion and the recommended partition size is approximately hundreds of 

megabytes [12]. Because the data sources are infinite streams, the previously 

suggested partition key must be changed. In this case, the time bucketing method of 

splitting partitions is preferred. Time bucketing involves adding a new date or time 

field to the partition key, effectively splitting the partition into smaller groups in time. 

For instance, monthly partitions can be achieved using a concatenated string of the 

month and year. However, a single partition per query will, at most, return the data for 

a specific month and year. Retrieving more data is accomplished by issuing parallel 

statements. 

Datastax’s Academy Course DS220 presents two formulas for roughly estimating 

the partition size for a column family for AC version 2 [13]. Equation 1 states that the 

number of values (cells) Nv is equal to the product of the estimated number of rows  



 

 

Nr with the number of regular columns (in parenthesis), plus the number of static 

columns Ns. Regular columns are a result of the subtraction of the number of primary 

key columns Npk and static columns Ns to the total Nc. 

 𝑁𝑣 = 𝑁𝑟  × (𝑁𝑐 − 𝑁𝑝𝑘 − 𝑁𝑠) + 𝑁𝑠   . (1) 

Given Nv , equation 2 is used to calculate the partition size Ps  in bytes. The 

equation can be broken into parts: first, we add the summations of the sizes of 

primary key columns  Ck and static columnsCs; second, multiply Nr with the addition 

of the size of each regular column Cr and the total size of all clustering columns Cc 

(Cassandra repeats the clustering values for each cell); third, we multiply the value of 

8 (size of a hidden timestamp hidden in each cell)) to previously obtained Nv.  

𝑃𝑠 =  ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶𝑘𝑖
)

𝑖

+  ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶𝑘𝑗
)

𝑗

+ 𝑁𝑟 × ∑ ( 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶𝑟𝑘
) +  ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶𝑐𝑙

)

𝑙

) + 8 × 𝑁𝑣 .

𝑘

 (2) 

If the data collection occurs at every second, at the end of a week, the value for Nr 

is 604 800 and Nv = 604 800 ×  (5 − 2) totaling 1 814 400. For the partition size, 

we first assume the size in bytes of each of the fields: ‘analyzer_id’ 10 bytes; 

‘datetime’ 8 bytes; ‘hvac’ ‘lights’ and ‘socket’s all 8 bytes each. Thus, Ps = 10 + 0 +

604 800 × ((8 + 8) + (8 + 8) + (8 + 8)) + 8 × 1 814 400 , totaling 

approximately 42 MB. 

Table 2 displays the results for various time resolutions and partition sizes at the 

end of the day, week and month. With the time resolution of one second, a monthly 

partition can be used cautiously, while weekly partitions keep the size below 100 

MBs. With the time resolution of one second, a monthly partition can be used 

cautiously, while weekly partitions keep the size below 100 MB. 

Table 2. Partition Size for one energy analyzer with different time resolutions for AC v2. 

Time 

Resolution 
End of 𝑁𝑟 𝑁𝑣 

𝑃𝑠 (MB) 

Approximately 

Each second 

Day 86400 259 200 6 

Week 604 800 1 814 400 42 

Month 2 592 000 7 776 000 178 

10 seconds 

Day 288 864 0,6 

Week 2016 6048 4,1 

Month 8640 25 920 18 

 

The storage engine for version 3.0 changes radically, providing storage savings 

[14]. The major differences include: the timestamps for conflict resolution are delta-

encoded and can be written only once per row when all the cells have the same 

timestamp; the field names are stored at a row level; and the clustering column values 

are no longer repeated for each cell. Other important changes include better 

serialization that is discussed in detail in [15]. 



 

 

As of the latest version of AC (i.e. version 3.0), there are no widely accepted 

formulas for estimating partition size. We propose to change equation 2 to: 

𝑃𝑠 =  ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶𝑘𝑖
)

𝑖

+ ∑ 𝑠𝑖𝑧𝑒𝑂𝑓

𝑗

(𝐶𝑠𝑗
) + 𝑁𝑟 ×  (∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶𝑟𝑘

) + ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶𝑐𝑙
)

𝑙

+ 8 

𝑘

) . (3) 

Equation 3 moves the clustering columns and the hidden timestamp to a row level. 

It is important to note that both equations do not consider the field names serialization 

of the different storage engines. This is important when using columns with dozens of 

regular columns, as the effects in size will be more significant. The updated results 

can be seen in Table 3. There is a substantial decrease in partition size using the new 

storage engine, and the monthly partition can be recommended. 

Table 3. Partition size for one energy analyser using the adapted formula. 

Time  

Resolution 
End of  𝑁𝑟 𝑁𝑣 

𝑃𝑠 (MB) 

Approximately 

Each second 

Day 86400 259 200 3,2 

Week 604 800 1 814 400 23 

Month 2 592 000 7 776 000 98 

It is important to remember that partition bucketing will have consequences on the 

querying strategy. The best approach is to consider the widest partition strategy 

relative to the application requirements while trying to maintain the size to 100 MB or 

below. 

4 Conclusions 

In this paper a BD platform for SG has been proposed. It is based on Smart Stack 

architecture, implemented in a distributed way and already being fed by several data 

sources from GECAD microgrid infrastructure and external sources from partners. 

The implementation was done with the available computational resources at GECAD, 

but this cluster provides a first insight about the scale up of the platform for SG 

management. An important contribution is the data mapping in AC version 3.0 and 

how the partition size should be done to take the best profit of the data for real time 

data analysis. It’s critical to have the ability to compare multiple data stores 

intelligently and objectively so that sound architectural decisions can be made. So, in 

the next step we will validate the platform proposed with YCSB (i.e. an open standard 

for comparative performance evaluation of NoSQL data stores). Further expanding 

the cluster with additional computational resources is something previewed in the 

short run. 
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