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Abstract—Massive changes in electricity markets have occurred 

during the last years, as a consequence of the massive 

introduction of renewable energies. These changes have led to a 

restructuring process that had an impact throughout the 

electrical industry. The case of the electricity markets is a relevant 

example, where new forms of trading emerged and new market 

entities were created. With these changes, the complexity of 

electricity markets increased as well, which brought out the need 

from the involved players for adequate support to their decision 

making process. Artificial intelligence plays an important role in 

the development of these tools. Multi-agent systems, in particular, 

have been largely explored by stakeholders in the sector. 

Artificial intelligence also provides intelligent solutions for 

optimization, which enable troubleshooting in a short time and 

with very similar results to those achieved by deterministic 

techniques, which usually result from very high execution times. 

The work presented in this paper aims at solving a portfolio 

optimization problem for electricity markets participation, using 

an approach based on NPSO-LRS (New Particle Swarm 

Optimization with Local Random Search). The proposed method 

is used to assist decisions of electricity market players. 

Index Terms— Artificial Intelligence, Decision Support, 

Electricity Markets, Portfolio Optimization, and Swarm 

Optimization  

I. INTRODUCTION  

The power from renewable sources has increased 
worldwide. However, in the case of renewable energy sources, 
the installed capacity does not directly represent generated 
energy, as there are several restrictions that limit the production 
and use of energy from these sources [1]. The incorporation of 
this energy in the electrical system is a challenge that has been 
investigated and successfully applied today. Several changes 
have occurred and are occurring in electrical systems due to the 
incorporation of energy produced from renewable sources. 

Privatization, liberalization and integration of international 
systems that previously had a national character are examples 
of relevant changes that have occurred and potentiated the great 
development of the electricity sector [2]. The electricity 
markets have been a target of research and investigation around 
the world because they are still restricted to the participation of 
large producers [3], which makes it difficult to incorporate 
renewable energy sources into the system, as it is essentially 
produced by small producers with a distributed nature. 

With these developments and changes in electricity 
markets, such as the inclusion of new entities in the market, the 
operation of markets has become different, more competitive, 
where power buyers and power sellers play a game of offers 
where the final result is gain or loss. Thus it is essential for the 
professionals in this area to understand the principles of the 
market and how to evaluate investments in this competitive 
economic environment [4]. In order to try to overcome these 
problems, simulation tools are used to understand market 
behavior and how the integration of new market entities can 
affect market results. 

Market simulators are especially relevant tools in this 
domain. Artificial Intelligence (AI) methodologies play an 
important role in this scope. Simulation combined with Multi-
Agent based tools allows analyzing dynamic and adaptive 
systems with complex interactions between the involved 
entities and components, such as energy markets [5]. Energy 
market simulators provide markets players the ability to test 
novel solutions, validate them and try different and new 
alternatives for the functioning of markets. Another possibility 
is the inclusion of new types of players in simulations, thus 
allowing to see how the market reacts. 

MASCEM (Multi-Agent Simulator of Competitive 
Electricity Markets) is a simulation software developed with the 
aim of studying the complex restructuring of electricity markets 
[5]. MASCEM is connected with a tool called AiD-EM 
(Adaptive Decision Support for Electricity Market 
Negoitations) [6], which provides decision support to the 
decision-making process of electricity market players, during 
their negotiations.  

This paper focuses on one of the most important decision 
support features of AiD-EM, namely the capability to optimize 
the portfolio of participation in multiple alternative / 
complementary electricity markets. An approach based on 
NPSO-LRS (New Particle Swarm Optimization with Local 
Random Search) [7] is proposed to solve the optimization 
model previously presented in [6]. The proposed methodology 
aims at reaching a high quality of results in a fast execution 
time, by adding a local search feature to the traditional PSO 
(Particle Swarm Optimization) procedure. 
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II. PROPOSED METHODOLOGY 

This paper proposes a methodology based on NPSO-LRS to 
solve the problem of participation portfolio optimization in 
electricity markets. For this, different values for frequency of 
oscillation of the inertia strategy are studied and compared. The 
portfolio optimization problem aims at finding the best way to 
invest a certain amount of money in a given set of securities or 
assets [8]. The Modern Portfolio Theory was published in 1952 
by Harry Markowitz in an article in the Journal of Finance [9] 
and was later developed in the book Portfolio Selection: 
Efficient Diversification of investments in 1959. The problem 
approached in this paper uses an adaptation of the main 
portfolio optimization concept, in order to be used as decision 
support for electricity market players’ actions when deciding in 
which markets to participate, as presented in [6]. 

Some input variables are required to feed this methodology 
and bring realism into the decision support. One of the most 
important aspects is that problem requires the expected prices 
in every market, continuously. The forecast of market prices is 
provided by an artificial neural network (NN), which is 
provided by AiD-EM, as presented in [10]. In some market 
types the price of Electricity is unique for each negotiation 
period. However, in others it is not, e.g. bilateral contracts. In 
order to deal with these price estimations, a methodology that 
allows calculating the price of electricity depending on the 
amount of negotiated power has been developed [11]. 

A. PSO Methodology 

PSO is a search algorithm that is used to solve optimization 
problems. This algorithm was introduced by Kennedy and 
Eberhart in 1995 [12] and is inspired by the collective 
movement of flocks of birds and schools of fish. In the standard 
PSO algorithm is started with a starting solution for each 
particle that represent different solution to the problem. During 
the optimization process the particles seek a new solution in 
accordance with a rule that directs their movement in space, 
equation (1) and (2). 

𝑣𝑖
𝑘+1 = 𝑤. 𝑣𝑖

𝑘 + 𝑐1. 𝑟1
𝑘 . (𝑃𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘)

+ 𝑐2. 𝑟2
𝑘 . (𝐺𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘) 

(1) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (2) 

Where: 

• 𝑘- iteration; 

• 𝑖- particle;  

• 𝑣𝑖
𝑘- represent the velocity of particle i in iteration k; 

• 𝑣𝑖
𝑘+1- represent the velocity of particle i in iteration  

k+1; 

• 𝑥𝑖
𝑘- represent the position of particle i in iteration k;  

• 𝑥𝑖
𝑘+1- represent the position of particle i in iteration k+1;  

• 𝑃𝑏𝑒𝑠𝑡- best personal solution; 

• 𝐺𝑏𝑒𝑠𝑡- best global solution; 

• 𝑤 – inertia;   

• 𝑐1 – term of local attraction; 

• 𝑐2 – term of global attraction;  

• 𝑟1, 𝑟2 – random numbers, ∈ [0,1]. 

One of the important parameters in PSO is the inertia, which 
defines how the algorithm will search. A good parameterization 
of this term influences the optimization result. In [13] the 
authors suggest the Oscillating Inertia Weight methodology for 
inertia strategy calculation, which can be obtained through (3). 

𝑤𝑘 =
𝑤𝑚𝑖𝑛 + 𝑤𝑚𝑎𝑥

2
+

𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

2
𝑐𝑜𝑠 (

2𝜋𝑘

𝑇𝑘

) (3) 

𝑇𝑘 =
2𝑆1

3 + 2𝑘∗
 

 

(4) 

𝑆1 =
3𝑆

4
 (5) 

Where: 

• 𝑤𝑚𝑖𝑛- is the minimum value of inertia weight; 

• 𝑤𝑚𝑎𝑥- is the maximum value of inertia weight; 

• 𝜋- is the number pi, approximately 3,1415; 

• 𝑘- is the current iteration; 

• 𝑆1- is the number of iterations for which the inertia 
weight is allowed to oscillate; 

• 𝑘∗- ∈ 𝑁 and is a parameter that controls the frequency 
of oscillation. 

The NPSO-LRS [7] is an improvement of the standard PSO. 
The main development is that it includes a local search. The 
criterion that defines the local search is user defined and can be 
e.g. a generation of a random number. In this case a component 
that stores the worst solutions is included, and it considers the 
particle in the worst position visited during the search process 
to calculate the speed. The bad experience of the particle is also 
taken into account in the search equation. The equation (1) of 
PSO is replaced for equation (6). 

𝑣𝑖
𝑘+1 = 𝑤. 𝑣𝑖

𝑘 + 𝑐1𝑏 . 𝑟1𝑏
𝑘 . (𝑃𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘)

+ 𝑐1𝑤 . 𝑟1𝑤
𝑘 . (𝑃𝑤𝑜𝑟𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘)

+ 𝑐2. 𝑟2
𝑘 . (𝐺𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘) 

(6) 

Where: 

• 𝑐1𝑏- acceleration coefficient, which accelerates the 
particle toward its best position; 

• 𝑐1𝑤- acceleration coefficient, which accelerates the 
particle away from its worst position; 

• 𝑟1𝑏
𝑘 , 𝑟1𝑤

𝑘 - three separately generated uniformly 
distributed random numbers in the range [0, 1] ; 

• 𝑃𝑤𝑜𝑟𝑠𝑡𝑖
𝑘- bad position visited by particle i. 

LRS (Local Random Search) [7] is a local search method, 
which is executed according to equations (7), (8), (9) and (10): 



 

 

𝑥𝑖
𝑚𝑖𝑛 = 𝑙𝑖𝑚𝑖

𝑚𝑖𝑛 + (𝑥𝑖
𝑘 − 𝑙𝑖𝑚𝑖

𝑚𝑖𝑛) × 𝛽 (7) 

𝑥𝑖
𝑚𝑎𝑥 = 𝑙𝑖𝑚𝑖

𝑚𝑎𝑥 + (𝑙𝑖𝑚𝑖
𝑚𝑎𝑥 + 𝑥𝑖

𝑘) × 𝛽 (8) 

𝑅𝑖
𝑘 = 𝑥𝑖

𝑚𝑖𝑛 + 𝑥𝑖
𝑚𝑎𝑥 (9) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑅𝑖
𝑘 × 𝑟𝑙  (10) 

In (7) and (8), 𝑙𝑖𝑚 corresponds to the minimum and 
maximum limits of the problem variables, respectively. The 
parameter 𝛽 is called local parameter area. 𝑟𝑙 in equation (10) 
corresponds to a random number with minimum -1 and 
maximum of 1. After performing the local search, each solution 
found to be better than the previous will be in memory and will 
be used at the beginning of the following search. 

B. Mathematical Formulation  

The formulation presented in (11) is used to represent the 
optimization problem, as proposed in [14] . In (11) 𝑑 represents 
the weekday, 𝑁𝑑𝑎𝑦 represent the number of days, 𝑝 represents 
the negotiation period, 𝑁𝑝𝑒𝑟 represent the number of 
negotiation periods, 𝐴𝑠𝑒𝑙𝑙𝑀 and 𝐴𝑏𝑢𝑦𝑆 are boolean variables, 
indicating if this player can enter in negotiation in each market 
type, 𝑀 represents the referred market, 𝑁𝑢𝑚𝑀 represents the 
number of markets, 𝑆 represents a session of the balancing 
market, and 𝑁𝑢𝑚𝑆 represents the number of sessions.  
Variables 𝑝𝑠𝑀,𝑑,𝑝 and 𝑝𝑠𝑆,𝑑,𝑝 represent the expected 

(forecasted) prices of selling and buying electricity in each 
session of each market type, in each period of each day. The 
outputs are 𝑆𝑝𝑜𝑤𝑀 representing the amount of power to sell in 
market 𝑀 and 𝐵𝑝𝑜𝑤𝑆 representing the amount of power to buy 
in session 𝑆.   

𝑓(𝑆𝑝𝑜𝑤𝑀…𝑁𝑢𝑚𝑆 , 𝐵𝑝𝑜𝑤𝑆1…𝑁𝑢𝑚𝑆)

= 𝑀𝑎𝑥

[
 
 
 
 
 

∑ (𝑆𝑝𝑜𝑤𝑀,𝑑,𝑝 × 𝑝𝑠𝑀,𝑑,𝑝 × 𝐴𝑠𝑒𝑙𝑙𝑀)

𝑁𝑢𝑚𝑀

𝑀=𝑀1

−

∑ (𝐵𝑝𝑜𝑤𝑆 × 𝑝𝑠𝑆,𝑑,𝑝 × 𝐴𝑏𝑢𝑦𝑆

𝑁𝑢𝑚𝑆

𝑆=𝑆1 ]
 
 
 
 
 

 

∀𝑑 ∈ 𝑁𝑑𝑎𝑦, ∀𝑝 ∈ 𝑁𝑝𝑒𝑟, 𝐴𝑠𝑒𝑙𝑙𝑀 ∈ {0,1}, 𝐴𝑏𝑢𝑦
∈ {0,1} 

𝑝𝑠𝑀,𝑑,𝑝 = 𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑝, 𝑆𝑝𝑜𝑤𝑀 , 𝑀) 

𝑝𝑠𝑆,𝑑,𝑝 = 𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑝, 𝐵𝑝𝑜𝑤𝑆, 𝑆) 

(11) 

The formulation considers the expected production of a 
market player for each period of each day. The price value of 
electricity in some markets depends on the power amount to 
trade. With the application of a clustering mechanism it is 
possible to apply a fuzzy approach to estimate the expected 
prices depending on the negotiated amount. Equation (12) 
defines this condition. 

𝑉𝑎𝑙𝑢𝑒(𝑑𝑎𝑦, 𝑝𝑒𝑟, 𝑃𝑜𝑤,𝑀𝑎𝑟𝑘𝑒𝑡)
= 𝐷𝑎𝑡𝑎(𝑓𝑢𝑧𝑧𝑦(𝑝𝑜𝑤), 𝑑𝑎𝑦, 𝑝𝑒𝑟,𝑀𝑎𝑟𝑘𝑒𝑡) 

(12) 

Equation (13) represents the main constraint to be applied 
in this type of problems, and imposes that the total power that 
can be sold in the set of all markets is never higher than the total 
expect production (TEP) of the player, plus the total of 
purchased power [14] . Further constrains depend on the nature 
of the problem itself, e.g. type of each market, negotiation 
amount, type of supported player (renewable based generation, 
cogeneration, etc.).  

∑ 𝑆𝑝𝑜𝑤𝑀

𝑁𝑢𝑚𝑀

𝑀=𝑀1

≤ 𝑇𝐸𝑃 + ∑ 𝐵𝑝𝑜𝑤𝑆

𝑁𝑢𝑚𝑆

𝑆=𝑆1

 (13) 

 

III. CASE STUDY 

This section presents a case study, which is used to test and 
validate the proposed methodology, by comparing the achieved 
optimization results with those obtained using the standard PSO 
approach [12]. Market prices forecasting is performed using an 
artificial network neural (ANN) [10], which is trained with data 
from the Iberian market - MIBEL [15]. In this case study the 
model considers five markets, with specific rules for proving 
adaptability of the proposed model. Acting as a seller, the 
supported market player can sell energy in all five markets, but 
is not allowed (due to market specifications) to purchase in the 
day-ahead spot market. In the case of balancing markets, only 
one operation (selling or buying) is allowed in each session. For 
Bilateral contracts negotiations, and local markets, a 
methodology for estimating Electricity prices based on a 
dynamic fuzzy methodology published in [11] has been used. 

A study to evaluate the best parameter of frequency control 
oscillation of inertia is performed, departing from the study 
performed in [13]. Five different 𝑘∗ values are experimented, 
resulting in different oscillations. Through the analysis of the 
Fig. 1 it is possible to understand the operating mechanism of 
the chosen inertia strategy. 

 

Fig. 1 - Oscillating frequencies 

As can be seen by Fig. 1, when the value of 𝑘∗ increases, 
the wave period becomes shorter. Fig. 1,shows only the value 
of inertia up to 300 iterations, repeating until 1000 runs. 
When 𝑘∗ = 1, the wave length is 300 iterations. The wave 
length decreases until 𝑘∗ = 9, where the wave length is 60 
iterations. Different 𝑘∗ values, defining the wave length, are 
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experimented. Afterwards, the results achieved using each of 
these values are compared, and the best 𝑘∗ value is chosen. 

Fig. 2 shows some box plots, referring to all considered 
frequencies of oscillation. The presentation of this figure is used 
to choose the best frequency of oscillation to be applied to 
solving the problem. 

 
Fig. 2 - Box Plots for oscillating frequencies 

It is possible to see that all oscillation frequencies reach very 
identical maximum values. From Fig. 2 it is impossible to point 
out that the frequency of oscillation that reaches the highest 
value. However, from the analysis of results it is visible that 
with 𝑘∗ = 1 we obtain 2000.645575 € which is higher value. 
For 𝑘∗ = 5 the worst maximum value is found, and records a 
difference of 1,2231E-11 with respect to 𝑘∗ = 1. It is worth 
noting a curious feature in the graphs, which is the fact that the 
median is at the bottom of the diagram (very close to the value 
of the 1st Quartile), which means that the data is skew in the 
lower of the diagram. Between the values of the 1st and 3rd 
Quartile 50% of the data are represented, which means that the 
diagram that has the smaller space between them represents a 
good alternative. The value with the smaller difference between 
the quartiles is 𝑘∗ = 5. However, the other 𝑘∗′𝑠 have minimal 
differences, in the order of 0.1%.  

Through the analysis of Fig. 2 it is not possible to conclude 
which of the oscillation frequencies is the best, but the 
oscillation 𝑘∗ = 1, 3 and 5 showed promising aspects that 
overlap to the others. The graph of Fig. 3 represents the 
confidence of intervals for all oscillations frequencies. 

 
Fig. 3 - Confidence intervals for the different values of 𝒌∗ 

Confidence intervals shown in Fig. 3 have a degree of 95% 
confidence reliability. In this case the theory presupposes that 
the average value can be obtained with 95% confidence with a 
particular error. In this case it is important to choose the 
frequency of oscillation that presents a higher average and a 
minor error. For this, an analysis to the graph of Fig. 3 is 
performed. At a first glance the oscillation 𝑘∗ = 5  and 7 will 
be excluded since they have the lowest average. Good options 
will be the 𝑘∗ = 1 or 𝑘∗ = 3. Observing the recorded values we 
can conclude that with 𝑘∗ = 3 we get an average of € 
1759.637095 following up 𝑘∗ = 1 with a relative difference of 
0.1%. The oscillation 𝑘∗ = 7 has a relative difference of 0.5%.  

As already referenced, every confidence interval is 
associated with an error or tolerance. In this case 𝑘∗ = 7 had 
the lowest error for the calculated confidence interval, but it is 
worth noting that the other registered errors do not differ much 
from this, because the biggest error is in 𝑘∗ = 1, which has a 
difference of 3.5% compared to the smallest. The frequency 
oscillation of 𝑘∗ = 3  is thereby chosen, because it is the one 
with a higher average, it is also the one with the best difference 
between quartiles (as seen in  Fig. 2), and it has also recorded 
one of the best minimum values of error (the confidence 
interval is very close the best achieved value, with a difference 
of 2%). 

TABLE I shows the objective function results obtained over 
1000 runs using the NPSO-LRS with the frequency of 
oscillation 𝑘∗ = 3 for the inertia strategy. The results for a 
previous implementation of the standard PSO [6] with a 
constant inertia value of 0.7 are also showed and compared. 

TABLE I - Objective function results using the standard PSO 

and the proposed NPSO-LRS approach 

Algorithms 
Objective function results (€) 

Minimum Mean Maximum STD 

Standard PSO 571,482 1483,835 1998,601 270,317 

NPSO - LRS 1520,266 1759,637 2000,646 138,351 

 
As shown by TABLE I, differences are noticeable between 

the two approaches. The NPSO-LRS approach presents better 
results in all parameters. The maximum value presents a 
difference of 0.1% between the two approaches. However, it 
should be noted that STD was reduced by 95.4% compared to 
the best (minimum), which leads to the conclusion that there is 
less dispersal in the found solutions. In the case of minimum 
and average values, the improvement is well visible. 

TABLE II shows the comparison between the average 
execution time and the number of iterations that both methods 
take to achieve results, over 1000 simulations. 

TABLE II - Execution time and no. iterations results 

Algorithms 
Time (s) No. Iterations 

Mean STD Mean STD 

Standard PSO 0,184 0,035 64,253 10,914 

NPSO - LRS 3,015 0,704 271,321 63,723 
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From TABLE II it is visible that the NPSO-LRS approach 
clearly has a higher run time and higher mean number of 
iterations, which is normal because it is a more elaborate and 
more accurate method. In terms of execution time, the 
implemented NPSO-LRS approach takes about 3 seconds 
(average) to achieve a solution, which can be considered a very 
good time for the targeted problem. The number of iterations 
has increased considerably comparing to PSO, which is due to 
the fact that the NPSO-LRS has a condition to search at least 
250 iterations. TABLE III shows the portfolio optimization 
results (i.e. amount of purchase and sale of energy in each 
market, which resulted from NPSO-LRS when it registered the 
maximum value of objective function). 

TABLE III - Scheduling of electricity transactions (MW) 

Markets Spot Bilat. Balan.1 Balan.2 S. G. 

Sales 14,65 11,50 0,00 0,00 8,58 

Buying 0,00 4,73 10,00 10,00 0,00 

As seen by TABLE III, the NPSO-LRS approach suggests 
market sales in the day-ahead spot, bilateral contracts and SG 
negotiations. Purchases are allocated to bilateral contracts and 
two sessions of the balancing market. When analyzing the 
results it is possible to conclude that the optimization model 
respects the imposed rules, such as not being possible to sell 
and buy at the same time in the same session of auction based 
markets; the impossibility for the supported seller to buy in the 
spot market, and making the sum of the amount of energy sold 
34.73 MW equal to the amount purchased 24.73 MW, plus the 
amount available production: 10 MW. 

The model also suggests both buying and selling energy in 
bilateral contracts, which occurs because in these markets the 
price of energy is not constant and varies with the traded 
amount. In these cases it may be profitable to buy amounts that 
can be achieved a lower prices, and sell in the same market 
amounts that can provide higher incomes. 

IV. CONCLUSIONS 

This paper presented the application of a methodology 
based on NPSO-LRS for solving the problem of portfolio 
optimization for electricity markets participation. Results show 
that the use of 𝑘∗ = 3 for the oscillation frequency presents 
advantages in relation to the use of other 𝑘∗′𝑠. Another 
important aspect of this paper is to have demonstrated that the 
use of NPSO-LRS brings clear advantages when compared to 
the standard PSO. Although it is more complex and takes a 
longer execution time and iteration number to reach results, the 
results of the objective function fully justify its applicability. 
The proposed methodology has also demonstrated to be able to 
solve the targeted problem, by respecting the rules that have 
been imposed. 

For future work other methods will be applied, such as 
genetic algorithms, to compare the performance of already 
applied algorithms. Additionally, it will be experimented to 

include in the model a component permitting to strike a balance 
between risk and profit and weighing in optimization. It is also 
proposed to develop a heuristic with the purpose of providing a 
valid starting solution for the algorithms to start the search. 
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