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ABSTRACT 

This paper proposes a novel Case Based Reasoning (CBR) application for intelligent management of energy 

resources in residential buildings. The proposed CBR approach enables analyzing the history of previous cases 

of energy reduction in buildings, and using them to provide a suggestion on the ideal level of energy reduction 

that should be applied in the consumption of houses. The innovations of the proposed CBR model are the 

application of the k-Nearest Neighbors algorithm (k-NN) clustering algorithm to identify similar past cases, the 

adaptation of Particle Swarm Optimization (PSO) meta-heuristic optimization method to optimize the choice 

of the variables that characterize each case, and the development of expert systems to adapt and refine the final 

solution. A case study is presented, which considers a knowledge base containing a set of scenarios obtained 

from the consumption of a residential building. In order to provide a response for a new case, the proposed CBR 

application selects the most similar cases and elaborates a response, which is provided to the SCADA House 

Intelligent Management (SHIM) system as input data. SHIM uses this specification to determine the loads that 

should be reduced in order to fulfill the reduction suggested by the CBR approach. Results show that the 

proposed approach is capable of suggesting the most adequate levels of reduction for the considered house, 

without compromising the comfort of the users.  
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1. Introduction 

In the European Union (EU), buildings are responsible for 40% of energy consumption and 36% of CO2 

emissions. These quantities are due to the fact that most of the buildings in EU are outdated (35% are over than 

50 years old) [10]. As this sector is considered to be expanded, the increment of energy consumption obligates 

the EU to reduce it and utilize the renewable energy resources in the demand side [16]. These measures were 

taken to allow the EU to comply with the Kyoto Protocol to the United Nations Framework Convention on 

Climate Change, which aims to reduce global greenhouse gas emissions by at least 20% belong 1990 levels to 

the year 2020 [8].  According to the data provided by European Commission, in each country, the electricity 

consumption in the service and household sectors are higher than the consumption in the transport or industrial 

services section [2].  

Generally, the consumption in buildings is due to people spending most of their time indoors, whether for 

housing or work. Due to the relationship between the productivity and comfort at work, the operation costs of 

an office building are directly linked to the workers' income [33]. In this sense, the energy consumption and the 

conditions of environmental comfort are, in most cases, in conflict with each other [6]. Due to the existing 

scenario of energy consumption in buildings, combined with the fact that construction activity accounts for 

about one-eighth of the European economy, the EU has released the Energy Performance of Buildings Directive 

(EPBD), which concerns the energy use in buildings. The EU calls on member states to introduce stricter 

regulations on the efficient use of energy in buildings [9]. 

The Smart Home concept is defined as a residence equipped with sensors and possibly actuators to collect 

data and send controlling commands, according to the activities and expectations of the occupants [3], which 

make it possible to develop a Building Energy Management System (BEMS) [20]. BEMS is considered as a 

system that determines energy management strategies in order to change the way of energy consuming and 

producing. This enables the occupants to achieve better energy performance and comfort [22]. 

In accordance with the requirements imposed by the EU for reducing CO2 emissions, where buildings are 

considered to be the casters of most of these emissions, energy efficiency should be increased, by decreasing 

the consumption of unnecessary power; and buildings should be able to respond to demand response events, 

where some need for reduction can be asked in specific times (e.g. during times when renewable based 

generation in lower). Although the existing BEMS are able to provide some contribution in this direction, there 



 

3 

 

is a significant difficulty in identifying the exact values of consumption reduction that could be asked or applied 

to each consumer.  

In [30], authors present a mathematical model for the optimal energy management of residential buildings 

and propose a centralised energy management system. The mathematical model was constructed including the 

model of each component and their physical constraints, parameter settings, external information, and user 

preferences to generate optimal decisions. By requiring the exact information of all parameters, including the 

models of all components, user preferences and external factors, which are usually variable, e.g. temperature, 

luminosity, this model becomes limited in terms of application, as it can only be applied in contexts in which 

all the information is available. Using the approach proposed in the current paper, the Case Based Reasoning 

(CBR) approach uses historical data from past knowledge to learn from past experiences, thereby becoming 

much more open to a wide set of new application scenarios. The execution time and simplicity of 

implementation (as the proposed model does not require the mathematical formulation of all components and 

settings) are other relevant advantages of the proposed model.   

An application of CBR in the context of buildings, more precisely in green buildings, can be seen in [37]. 

In this publication, authors developed a model using CBR and text mining, which tries to take advantage of the 

evaluations of green buildings and their conclusions and solution, to learn lesson to be applied in new cases, 

with the objective of predicting if the new buildings will be successful in their evaluation. The use of CBR in 

buildings has been widely used for predicting consumption as can be observed in the following sources [26,36]. 

In the current paper, on the other hand, CBR is used to support decisions on how much electricity can be reduced 

in a house. 

This paper addresses the described problem, and overcomes the identified limitations by proposing a CBR 

methodology that determines the level of instantaneous reduction in a building that could be applied without 

compromising the comfort of the users. The proposed CBR model considers a database of registered past 

scenarios referring to the same building, and generates a reduction value based on the existing cases. Firstly, 

the k Nearnest Neighbors (k-NN) clustering algortihm [5] is applied to identify the most similar cases to the 

current one. After the similar cases are identified, an optimization process using Particle Swarm Optimization 

(PSO) [15] is applied to optimize the weights attributed to each variable that characterizes each case, in order 

to reach the optimal combination of the similar cases with the aim of achieving a solution for the new case. 
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Finally, the achieved solution is refined by means of an expert system [35]. After the final solution is achieved, 

the solution is sent to the SCADA House Intelligent Management (SHIM) [13], which is a BEMS in the 

residential context, which will decide which loads should be reduced based on the output results proposed by 

the CBR approach and taking into account the current context and the users’ comfort. 

This article is divided into 6 sections. After this introductory section, where the contextualization of the 

problem is described, section 2 provides an overview on the CBR process, considering all the stages related to 

the common CBR cycle. Section 3 provides a description of SHIM, while section 4 presents the proposed model, 

including a description of the applied techniques. Section 5 describes the case study and presents and discusses 

the achieved results. Finally, the main conclusions of the work are provided in section 6. 

2. Case Based Reasoning 

The CBR methodology is defined as an intelligent technique to learn CBR biases in the past for solving 

new problems, and also capture new knowledge/experience to apply it in the future [17]. Research in cognitive 

science on human memory was the main driver for the development of CBR, as it tried to portray how the 

human brain reacts when situations that require reasoning emerge [29]. As an example: imagine that the hand 

of a human is in the eminence of meeting a flame, if the human brain still did not experience that situation, the 

human will contact the flame and he/she will suffer the consequences. On the other hand, if the brain already 

has the information that this action is harmful to him/her, there will not be a contact with the flame. This example 

clarifies the use of past knowledge to act on future. Similarly, the CBR is based on memory, which enables the 

human to use the remembered solutions of the problems, as the starting point of new solutions of problems, 

contrarily to most of the problem-solving methodologies in Artificial Intelligence (AI) [18].  

It can be considered that the CBR is a subfield of the learning machine since it is mostly driven by the 

machine learning the community. Thus, the CBR assumes itself as a paradigm of machine learning that allows 

sustained learning by updating the case base after a problem has been solved. Learning in the CBR occurs as a 

natural result of solving the problem. When a problem is solved successfully, the experience is maintained to 

solve similar problems in the future. CBR learning process requires a well-developed set of methods in order 

to be able to extract relevant knowledge from experience, to integrate a case into an existing knowledge 

structure, and to index the case for later correspondence with similar cases [1]. 
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Janet Kololner developed the first system that can be called CBR, entitled CYRUS, which is basically a 

question and answer system with knowledge of the various trips and meetings of former Secretary of State 

Cyrus Vance [29]. The PROTOS system is also a tool based on the CBR and used in classification task. This 

system was developed by Bruce Porter and his team [2]. 

Figure 1 illustrates the operating principle of a CBR system. After the presentation of a problem, the retrive 

process of one or more of previously exprimented cases is undertaken. Afterwards, CBR reuses the case(s) in a 

specific way, depending on the problem in hands, and reviews the solution based on the reuse of a previous 

case. Finally, the new experience is retained by incorporating it in the knowledge base. 

As Figure 1 illustrates, there are four main tasks in a CBR cycle: Retrieve, Reuse, Revise, and Retain. 

These four tasks are described as follows: 

 

 
Figure 1 – The overall architecture of CBR Cycle [1]. 

2.1. Retrieve 

Retrieval is a very important step in the CBR cycle. As one can see in Figure 1, in this step the new case 

and the retrieved case are compared, so that the system can select the most similar cases to the new problem. If 

the best (most similar) cases are not identified in this step, the rest of the CBR process will not provide any 

useful results or information. For this step, classical methods such as k-NN [5] or Fish and Shrink [28], or more 
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elaborate methods, such as artificial neural networks [14] or genetic algorithms [31] can be useful. Furthermore, 

there are some statistical methods to recover the best cases of the case base [4]. In [25], a method of extracting 

the similar cases called Statistical CBR is proposed, which recovers the optimal number of neighbors based on 

their probabilistic similarity. 

2.2. Reuse 

The reuse task in the CBR cycle is responsible for proposing a solution to the new problem [27]. This 

solution is based on the case(s) collected from the retrieve process. As can be seen in the Figure 1, this is the 

second stage of the cycle. In many cases, this process becomes easy to execute since the solution of the new 

problem can be the same as the recovered solution, and will be unchanged. This situation happens in 

classification tasks, where the most similar recovered case (if they are sufficiently similar) is susceptible and 

contains an appropriate solution. When the new case and the retrieved cases present significant differences, the 

process becomes more difficult. In this case, it is necessary to adapt the solutions of the retrieve case to obtain 

a new solution [19]. 

There are problems in which it is even possible to perform the adaptation of the solution if the solution to 

the new case does not exist in the case base, as is the case of design, configuration and planning problems. 

According to Janet Kolodner [17], the adaptation can be clasiffied in two ways: substitution and adaptation. 

Substitution simply reestablishes some parts of the recovered solution, and adaptation is the transformation 

where the solution structure changes. Graza & Maher [32] proposed the use of evolutionary methods for the 

process of adaptation for the new solution. In this case, the solutions of the retrieved cases become the initial 

population for a genetic algorithm, where mutation and crossover operators are used to generate new solutions 

for the population. 

2.3. Revise 

As it is clear from Figure 1, the revise process starts when the reuse process is finished. The review aims 

to assess the applicability of the proposed solution. The evaluation of the solution is often done in simulations, 

as it would be very risky to make the evaluation in the real world, (e.g, in the area of the medicine, it could 

injure the human). On the other hand, sometimes the simulation can not represent the reality and can neglect 

important aspects. This situation can be compared to an existing problem in AI called a "frame problem", which 

mentions that one can never completely formulate all possible factors that can occur in the real world [21]. 
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2.4. Retain 

The retention task is the last step to be carried out in the CBR classic cycle, in which the recently solved 

case is incorporated into the knowledge base of the system. In most CBR systems, the specification of the 

problem and the final solution are recorded, assuming that the result was successful. But there are more complex 

systems that hold other types of data that record a much deeper representation of the problem in order to solve 

the process that led to the specific solution. In the retain process, Veloso & Carbonell [34], not only store the 

final solution, but also save knowledge structures that describe how a particular solution was constructed in 

order to provide a path of decision-making processes that led to a particular solution.  

3. SCADA House Intelligent Management (SHIM) 

The SHIM system is a testbed platform for power consumption optimization and learning model 

application. One of the main objectives of SHIM is to adjust the system with the user preferences and the 

environmental parameters via learning algorithms. For this purpose, a new learning model has been developed 

in order to enable the SHIM platform to optimze the use of energy while it is required.  

3.1. System Architecture 

The overall view of the SHIM platform is illustrated in Figure 2. The main objective of SHIM is to simulate, 

examine, and survey the new methodologies and algorithms, which are going to be utilized in house or building 

management. This platform includes several real hardware equipment in order to provide a realistic simulation 

platform, namely several types of loads, Photovoltaic (PV) and wind generation as mini and micro distributed 

generation (DG), and energy storage systems to simulate electric vehicles. 

The SHIM platform has been developed in the Institute of Engineering – Polytechnic of Porto (ISEP/IPP). 

In fact, SHIM is a section of a large simulation platform called Multi-Agent Smart Grid Simulation Platform 

(MASGriP), which is test platform for simulate and evaluating the competitive enviornment in future power 

systems [24].  SHIM is capable of controling real and virtual loads to ensure the simulation of complex 

scenarios. In the virtual loads, the technical and realistic parameters of the real ones have been applied. As it 

can be seen on Figure 2, the platform consists of three main groups: the Data Acquisition, Actuators, and 

Intelligent Applications. All of the operations regarding the learning algorithms located on Intelligent 

Application category. More information about the structure of SHIM platform are available in [13].  
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Figure 2 - SHIM platform overview [13]. 

 

3.2. Optimization algorithm   

There is an optimization algorithm developed for SHIM in order to minimize the impact of power 

curtailments on user comfort and preferences. This algorithm consists of two regulation variables: regulation 

up and down, which are responsible for optimization feasibility. This means that if the regulation down is equal 

to zero, the optimization has achieved an adequate solution, and if it is greater than zero, the optimization has 

gained a solution with higher power consumption comparing with power limit.  

SHIM takes into the account the comfort level, and the user interaction in different types of the events. The 

objective function used in the algorithm is shown in equation (1): 
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Where 

DG
  

DG priority 
Load  Load index (ID) 

 Down
  

Regulation down priority 
nLoad  Maximum number of loads 

Grid
  

Grid priority 
DG

P  Power generation of DG [W] 

Load
  

Load priority 
Grid

P  Power injection in the grid [W] 

Up  Regulation up priority 
Load

P  Power consumption of load [W] 

DG  
DG index (ID) 

Down
Reg  Power regulation down [W] 

nDG  
Maximum number of DG 

Up
Reg  Power regulation up [W] 

The main purpose of optimization algorithm is to guarantee the power consumption limit, represented by 

PLimit in the objective function. λLoa represents the resource priority factor, which is varies from 0 (lowest priority 

resources) to 10 (highest priority resources). More detailed information regarding the formulation and its 

nomenclature can be found in [13].  

4. Proposed model  

The model proposed in this paper is represented through Figure 3. Figure 3 shows the connection between 

SHIM and the CBR approach. The proposed methodology aims to reduce the instant consumption of buildings.  

As can be observed by Figure 3, the data collected by the measurement units constitute knowledge for the 

model. This knowledge is used by the CBR in order to reach a reduction value, assimilating the knowledge of 

the past situations with the current state that is registered in the building. After the reduction value is generated, 

it can be sent to SHIM, which optimizes the consumption and generation according to the target reduction value. 

All cases are saved in a data base so that they can be acceded in the future. An overview of the proposed CBR 

approach is presented in Figure 4. 
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Figure 3 - Overview of the proposed model 

 

 

Figure 4 - Flowchart of the proposed CBR approach 

As can be seen by Figure 4, the proposed CBR approach is composed by four steps, as described in detail 

in the following sections. During the retrieve phase, the past cases that are similar to the new case are identified 
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and retrieved from the Data Base (DB). This is performed by applying the k-NN clustering algorithm. The main 

innovation of this work, apart from the scope of application, is the implementation of a PSO based approach to 

enable optimizing the importance of the different parameters that characterize each case for the calculation of 

the new result for the new case. The originated solution is then refined through the application of another 

innovative aspect of this work – an expert system that is composed by a set of ad-hoc rules that guarantee that 

the solution is adequate and applicable to the new case scenario. Finally, the retain phase determines if the new 

case should be included in the BD, according to its similarity to the cases that are already part of the BD.  

In order to apply the proposed model, it is necessary to have a DB that inlcudes the historic provious cases. 

In this case, the available DB is constructed from the scenarios saved regarding the building for which the model 

will be applied [39]. This DB has 11 different variables, which are collected and recorded from different sensors 

and other types of data collection systems. TABLE I represents all of variables and their types. 

TABLE I – Characteristics of variables used in the case. 

Representation Name of variables Variable type Measurement scale (converted scale) 

𝑥1 Weekday Numerical Integer 

𝑥2 Month Numerical Integer 

𝑥3 Hour Hourly Real Number 

𝑥4 Season Numerical Integer 

𝑥5 External Temperature Numerical Real Number 

𝑥6 External Humidity Numerical Real Number 

𝑥7 Persons Number Numerical Integer 

𝑥8 Electricity consumption Numerical Real Number 

𝑥9 Electricity Generation Numerical Real Number 

𝑥10 Electricity Tariff Numerical Real Number 

𝑅 Electricity Reduction Numerical Real Number 

As visible from TABLE I, 𝑥1 is a variable that represents the day of the week. This variable enables the 

system to know in which day of the week the case occurs. In this variable, Sunday is equivalent to 1, Monday 

to 2 etc. until Saturday which is represented by 7. 𝑥2 represents the month of the year, which is also represented 

by an integer value, where January corresponds to 1 continuing until December that is represented by a 12. 𝑥3, 
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represents the time to which the case refers. This variable undergoes a transformation from the time format to 

the numerical format (real number). 𝑥4  represents the corresponding season of the year, where summer is 

equivalent to 1, autumn to 2, winter to 3, and spring is equivalent to 4. The external temperature 𝑥5, external 

humidity 𝑥6, electric consumption 𝑥8, electric generation 𝑥9 and the electricity tariff 𝑥10, are considered as real 

numbers. The number of persons 𝑥7 should be represented by an integer number, which in some cases, it may 

be zero. The electric reduction 𝑅, is the result of the association between the variables and is considered as the 

resolution of each case. While the system uses the CBR before a new case, a reduction value will be generated. 

For creating the DB, it is necessary to normalize the values of the variables. The normalization process 

converts raw values to standart scores, which requires selecting the values that span one range and representing 

them in another range. Normalization is often done by dividing each value by the highest value recorded in the 

DB. This type of process can cause problems when it is working with a DB where there are variables of different 

natures and different ranges of values. This type of normalization is limited by the possibility of distorting the 

values of the different variables, since the DB variables can have large discrepancy between each other and they 

are different in their types, (e.g., binary, integer, etc.). In this work, the 11 types of variables consider diferent 

data ranges (presented in TABLE I), which are converted to a scale from 0 to 1 through a statistical 

standardization process. By assuming that the data are aproximated by the normal distribuation, this is converted 

to a standard normal distribuation, where the mean is 0 and the STandard Deviation (STD) is 1. Equation (2) 

presents the probability density function of the standard distribution.  

𝑓(𝑢) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑢−𝜇

𝜎
)

2

 (2) 

Where: 

• 𝑓(𝑢) represents the probability density of normal distribution; 

• 𝜇 is the mean and is equal to 0; 

• 𝜎 is the standard division, and is equal to 1; 

Equation (3) proposes the cumulative probability function, and is the function of each real number 𝑢. This 

is called cumulative distribution function, since it accumulates the probabilities values, which are less than 𝑢. 

𝐹(𝑢) = ∑ 𝑓(𝑢𝑖)

𝑢𝑖≤𝑥

 (3) 
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Where: 

• 𝐹(𝑢) is the cumulative probability distribution function; 

• 𝑢𝑖 represents the discrete random variable. 

Equation (3) calculates the cumulative probability for each DB value, thus, it enables obtaining a DB with 

all values between 0 to 1. In order to obtain the original values, it is simply necessary to apply the inverse 

function of the cumulative distribution. 

4.1. Task Retrieve 

As mentioned in section 2.1, the retrive step is the most important task of the CBR cycle and it is the task 

in which the system will select the most similar cases. In the proposed methodology, this process employs a k-

nearest neighbor (k-NN) technique [5], clustering based method [11], which is utilized to select the most similar 

cases. For this purpose, the k-NN algorithm uses a distance measure to analyse each case. This measure is the 

Euclidean distance and is expressed in equation (4). 

𝑑(𝑢𝑖 , 𝑢𝑗) = √∑ ((𝑢𝑖) − (𝑢𝑗))
2

𝑛

𝑟=1

 (4) 

Where:  

• 𝑛 is the dimensionality of the input vector, namely the number of attributes of the examples; 

• 𝑟 is from 1 to n; 

When 𝑑(𝑢𝑖 , 𝑢𝑗) becomes smaller, it means that the two examples are more similar. Equation (5) 

expresses the prediction that will be the class, and that has the most members in the k nearest neighbours. 

𝑦(𝑑𝑖) = arg max ∑ 𝑦(𝑢𝑗, 𝑐𝑘)

𝑢𝑗∈𝑁𝑁

 
(5) 

Where:  

• 𝑑𝑖 is a text example; 

• 𝑢𝑗 is one of its k nearest neighbours in the training; 

• 𝑢𝑗, 𝑐𝑘 indicates whether 𝑢𝑗belongs to class 𝑐𝑘. 
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4.2. Task Reuse 

In the reuse task, a solution is obtained from the retrieved cases. In order to enable to arrive at a value 

equation (6) is used. According to Thomas Mitchell [23], this is called hypothesis fitness, and assumes that the 

electricity reduction 𝑅 of specific case 𝑗 can be formulated by appropriately weighting its attributes. 

𝑅𝑗 = 𝑤1𝑥1 + 𝑤2𝑥𝑗2 + 𝑤3𝑥𝑗3 … + 𝑤𝑖𝑥𝑗𝑖 (6) 

Applying this relation to the set of cases obtained through the retrieved process, can be performed by 

equation (7). 

[

𝑥11 ⋯ 𝑥1𝑖

⋮ ⋱ ⋮
𝑥𝑗1 ⋯ 𝑥𝑖𝑗

] ∙ [

𝑤1

⋮
𝑤𝑖

] = [

𝑅1

⋮
𝑅𝑗

] (7) 

Equation (8) performs the matrix transformations where the vector of electricity reduction passes to the 

first member. In this equation, the matrix multiplication between the variable of each case with the weight of 

each variable subtracted from the electric reduction, is equal to a certain error 𝑒𝑗. 

[

𝑥11 ⋯ 𝑥1𝑖

⋮ ⋱ ⋮
𝑥𝑗1 ⋯ 𝑥𝑖𝑗

] ∙ [

𝑤1

⋮
𝑤𝑖

] − [

𝑅1

⋮
𝑅𝑗

] = [

ℯ1

⋮
ℯ𝑗

] (8) 

Equation (9) is an objective function that has the main goal of minimizing the sum of square root of the 

error 𝑒𝑗. The optimal combination of weight will be obtained when the function reaches a minimum value, 

which is gained by solving each one of the equations resulting from the matrix calculation. The number of 

equations will be equal to the number of retrieved cases. 

min 𝑓(𝑒) = √ ∑ (𝑒𝑗)2

𝑗=1

max 𝑗

2

 (9) 

For solving equation (9) and finding the ideal solution for combination of weights to minimize the equation, 

PSO is used [12,40]. There may not be a combination of weights that can achieve the global minimum, which 

would be 0. This type of algoritm does not guarantee a global optimal solution; however, a exact methods are 

too time consuming, and would make the proposed too heavy to be applied as decision support for a fast 

response time; therefore a metaheuristic approach is required. Generally the search process in PSO is stopped 

when the stopping criterion is reached after repeating successively [7]. Equations (10) and (11) are applied to 

conduct the search.  
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𝑣𝑖𝑑
𝑘+1 = 𝑤. 𝑣𝑖𝑑

𝑘 + 𝑐1. 𝑟1
𝑘 . (𝑃𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 ) + 𝑐2. 𝑟2

𝑘 . (𝐺𝑏𝑒𝑠𝑡𝑖𝑑
𝑘 − 𝑥𝑖𝑑

𝑘 ) (10) 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1 (11) 

Where: 

• 𝑣𝑖𝑑
𝑘  is the velocity of particle i, parameter d and iteration k; 

• 𝑥𝑖𝑑
𝑘  is position of particle i, parameter d and iteration k;  

• 𝑘 represents iteration; 

• 𝑃𝑏𝑒𝑠𝑡 is personal best; 

• 𝐺𝑏𝑒𝑠𝑡 stands for global best; 

• 𝑤 is inertia term; 

• 𝑐1 presents local attraction term;  

• 𝑐2 is global attraction term;  

• 𝑟1, 𝑟2 represents random numbers between [0,1]. 

Equation (10) guides the algorithm search and equation (11) updates the new position that gives rise to a 

new solution. This solution is evaluated from the objective function expressed in equation (9). According to the 

literature, the search carried out by the PSO is very dependent on the factor of inertia 𝑤, since it controls the 

level of balance between the exploration and exploitation of the search space throughout the iterations. In this 

work, the inertia weight is defined by equation (12), and is proposed in [38]. 

𝑤𝑘 = 𝑤𝑚𝑎𝑥 −
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑘𝑚𝑎𝑥

× 𝑘 (12) 

Where: 

• 𝑤𝑚𝑎𝑥  is the maximum value of inertia; 

• 𝑤𝑚𝑖𝑛 is the minimum value of inertia; 

• 𝑘𝑚𝑎𝑥 is the maximum value of iterations. 

After the PSO converges, the set of weights is obtained, and it is possible to apply these weights to the 

variables of the new case. Therefore, it obtains a reduction value, which corresponds to the result of the new 

case. 
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4.3. Task Revise 

In this work the revise task is formulated from the existing knowledge about the problem. It replicates an 

Expert System [35], which intends to emulate in CBR the decision-making ability of a human expert. For this 

purpose, the rules presented in this sub-section have been created, which are applied to the solution obtained 

by the reuse task. The main target of the created rules is variable 𝑥3 representing the hour of the day. In equation 

(13), if the result of reuse task (𝐶𝑅𝑟𝑒𝑢𝑠𝑒) is less than zero, the result of the revise task (𝐶𝑅𝑟𝑒𝑣𝑖𝑠𝑒) will be zero. 

𝑖𝑓 𝐶𝑅𝑟𝑒𝑢𝑠𝑒 < 0 → 𝐶𝑅𝑟𝑒𝑣𝑖𝑠𝑒 = 0 (13) 

Equation (14) defines the rule for the hours between 0 and 5. In this rule, it is imposed on the system that 

at least there must be Cmin kW of consumption, and reduce the remaining by half. 𝑥8 indicates the electric 

consumption in this and other equations. 

𝑖𝑓 𝑥3 ≥ 0 ∩  𝑥3 < 5 ∩  (𝐶𝑅𝑟𝑒𝑢𝑠𝑒 = 0 ∪  𝑥8 > 𝐶𝑚𝑖𝑛)  → 𝐶𝑅𝑟𝑒𝑣𝑖𝑠𝑒 =  
𝑥8 − 𝐶𝑚𝑖𝑛

2
 (14) 

Equation (15) represents the meal hours. At this time, the reduction should be 25% of the value 

corresponding to the load 𝑥8 , less the production itself , represeting by 𝑥9 in the equations. 

𝑖𝑓 (( 𝑥3 > 7.3 ∩  𝑥3 < 9) ∪ ( 𝑥3 > 12 ∩  𝑥3 < 13.3) ∪ ( 𝑥3 > 19.3 ∩  𝑥3 < 21))

∩ (𝐶𝑅𝑟𝑒𝑢𝑠𝑒 = 0 ∪ 𝐶𝑅𝑟𝑒𝑢𝑠𝑒 > 𝑥8 − 𝑥9) → 𝐶𝑅𝑟𝑒𝑣𝑖𝑠𝑒 = 0.25 × (𝑥8 − 𝑥9) 

(15) 

Equation (16) represents the hours between the breakfast and lunch, and from lunch to dinner. 𝑥7 represents 

the number of inhabitants, which is taken into account by this rule, and if it is less than 3, the value of the 

reduction will be half of the consumption, to which the production is substracted; otherwise the reduction will 

be a quarter. 

𝑖𝑓(( 𝑥3 > 9 ∩  𝑥3 < 12) ∪ ( 𝑥3 > 14 ∩  𝑥3 < 18)) ∩ (𝐶𝑅𝑟𝑒𝑢𝑠𝑒 = 0 ∪ 𝐶𝑅𝑟𝑒𝑢𝑠𝑒 > 𝑥8 − 𝑥9) 

𝑒𝑙𝑠𝑒𝑖𝑓 𝑥7 < 3 → 𝐶𝑅𝑟𝑒𝑣𝑖𝑠𝑒 =
𝑥8 − 𝑥9

2
  

𝑒𝑙𝑠𝑒 𝐶𝑅𝑟𝑒𝑣𝑖𝑠𝑒 =
𝑥8 − 𝑥9

4
 

  

(16) 

Equation (17) represents the hours between 21 of the current day and 0 of the next day. The value of the 

reduction is half of the load minus the production, however, it is expected that the residential production in this 

schedule is around zero. 

𝑖𝑓 𝑥3 > 21 ∩  𝑥3 < 0 ∩ (𝐶𝑅𝑟𝑒𝑢𝑠𝑒 = 0 ∪ 𝐶𝑅𝑟𝑒𝑢𝑠𝑒 > 𝑥8 − 𝑥9) → 𝐶𝑅𝑟𝑒𝑣𝑖𝑠𝑒 =
𝑥8 − 𝑥9

2
  (17) 
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Equation (18) represents the hours between 5 and 7.3, and it is defined so that the 24 hours are all covered. 

This rule indicates a reduction of 10% in all consumption above the minimum standard consumption Cmin.  

𝑖𝑓 𝑥3 > 5 ∩  𝑥3 < 7.3 ∩ (𝐶𝑅𝑟𝑒𝑢𝑠𝑒 = 0 ∪ 𝑥8 > 𝐶𝑚𝑖𝑛) → 𝐶𝑅𝑟𝑒𝑣𝑖𝑠𝑒

= 0.8 + 0.1 × (𝑥8 − 𝐶𝑚𝑖𝑛)  
(18) 

At the end of this task, when all defined rules are applied to the results of the reuse task, the revised value 

will be obtained.  

4.4. Task Retain 

This is the last task of the cycle, which decides if the new case should or not be incorporated in the DB. 

For this goal, equations (19) and (20 )are expressed.  

|𝑆𝐻𝐼𝑀𝑟𝑒𝑠𝑢𝑙𝑡 − 𝐶𝑅𝑟𝑒𝑠𝑢𝑙𝑡|

𝑆𝐻𝐼𝑀𝑟𝑒𝑠𝑢𝑙𝑡

≤ 0.2 (19) 

In equation (19), one of the conditions that the new case should respect to be incorporated in the DB,  is 

represented. If the difference between the SHIM result and the CBR result is greater than 0.2, the new case will 

be excluded, since it doe not represent a good enough solution (the error is too big).  

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦{𝑛𝑒𝑤 𝑐𝑎𝑠𝑒, 𝑏𝑒𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑐𝑎𝑠𝑒 𝑖𝑛 𝐷𝐵} ≤ 95% (20) 

According to equation (20), only new cases with a similarity smaller than 95% relatively to the most similar 

case within DB will be accepted in DB. This is defined so that the DB is not filled with a numerous number of 

very similar cases, which do not added new valuable information. If these two conditions (equation (19) and 

(20)) are true, the new case is incorporated in the DB. 

5. Case study  

This section describes the case study that is carried out in order to demonstrate the performance of the 

proposed methodology. Two sub-sections are presented; the first one assesses the performance of the proposed 

CBR methodology by comparing the CBR results with some reference a-priori known cases. The second sub-

section considers the evaluation of the proposed approach using the SHIM BEMS. In specific, the solution 

provided by the proposed methodology for a completely new case is sent to SHIM, so that this system may 

schedule the reduction of loads according to the output of the CBR method. This way it is possible to assess the 

impact of the results on the users’ comfort, and if it is, in fact, feasible to apply these results in a real application 

scenario. 
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This case study considers a standard house with 4 inhabitants, located in Porto, northern Portugal. All loads 

of this house are completely emulated in a laboratorial setting in GECAD/ISEP campus. All loads are equipped 

with monitoring and control. Lighting devices are equipped with ballasts controlled by one of two different 

technologies: analog signal input; and DALI protocol. The building management system provides a 0-10 V 

analog signal in order to control the actual percentage lighting level. Using the DALI protocol, the building 

management system is able communicate the actual lighting level to the balast. Additionally, one generic 

Programmable Logic Controller (PLC) per room is able to accommodate both control means. However, 

although this case study is applied in this controlled house in order to enable the analysis of the proposed 

methodology application impact, the results of the proposed approach can be applied to any other house. If the 

application house is equipped with monitoring and control means, the outputs from the energy management can 

be applied directly in the loads; on the other hand, if the house does not include such equipment, the results are 

provided to the user by means of suggestions, which the user may apply manually. The consumption profile of 

each load is dependent on several factors, such as the time, day, season, temperature, etc. The detailed 

consumption profile of the house devices for a specific day is shown in sub-section 5.2, in order to assess the 

impact of the proposed methodology for a specific case. TABLE II shows the characteristics of the different 

loads considered in the house.  

As TABLE II demonstrates, the considered house includes several loads, with different consumption 

values. It should be noted that the microwave and the oven are the loads that have the higher consumption in 

this scenario. The aggregation of these different loads in a given period of the day, provides the total consumed 

energy in that period. A set of previous cases regarding the used loads at each time, the contextual information 

and the reduction applied (as described in TABLE I) is used to feed the CBR DB. TABLE II also shows the 

possibility that each home appliance has in its control, which is crucial for the energy management process, 

because there are cases where it will be impossible to act since it would significantly reduce the user's comfort. 

The non-controllable devices are the home appliances in which the control of the consumption values is not 

possible. This means that they are either disconnected or connected. The controllable devices are those in which 

it is possible to adjust their consumption, making it possible to reduce or increase the consumption value. 

Finally, shiftable devices are those whose consumption can be changed to other periods in time. 
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TABLE II - Characteristics of home appliances. 

Home appliance Power (KW) 

Controlling options  

Non-controllable Controllable  Shiftable 

Microwave 1,2 X  X 

Oven 1,5 X   

Coffee machine 0,6 X  X 

Refrigerator 1 0,1 X  X 

Refrigerator 2 0,12 X  X 

Washing machine 0,8 X  X 

HVAC 0,6  X X 

Light hall 0,06  X  

Light room 0,06  X  

Light kitchen 0,12  X  

Light living room 0,1  X  

TV room 0,138 X   

TV living room 0,124 X   

Water heater 0,3  X X 

 

5.1. CBR performance 

Five cases from the DB are considered as the subject cases - they are extracted from the BD and are no 

longer considered as previous cases, so that the proposed methodology can be applied and the achieved results 

compared to the original real values that have been registered for these cases. The selection was made taking 

into account the time of the day (x3), in order to consider cases that refer to different hours. The five considered 

cases are shown in TABLE III. 
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TABLE III - Profile of subject cases for model validation 

Case 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗 𝒙𝟏𝟎 𝑹𝒓𝒆𝒂𝒍 

Case 1 7 1 2,45 3 11,2 95 4 0,6 0 0,1634 0 

Case 2 1 8 9,30 1 17,5 86 4 0,12 0,98 0,1634 0 

Case 3 1 5 12,15 4 20,7 66 4 3,211 1,6 0,1634 0 

Case 4 7 10 18,45 2 20,2 89 4 3,435 0,125 0,1634 0,05 

Case 5 7 10 23,45 2 20,6 67 6 2,413 0 0,1634 0,09 

The validation of the CBR model is done, in a first instance, from the comparison of the real values and 

the values proposed by the CBR. Each of the presented cases is considered as a new case, therefore, the proposed 

CBR model is executed 5 times. In each cycle, the CBR receives the referent case applies the retrieve task, 

which selects the most similar cases in the DB. After this task, the set of weights for each variable is calculated 

in order to be applied to the variables that compose the vase, thus originating the reduction value proposed by 

CBR. After the revise process, where the solution is reviewed, the retention process can only be carried out 

when SHIM completes its action. SHIM is applied using the value of reduction proposed by the CBR approach, 

in order to assess if such reduction is feasible to be applied to the set of loads that re being used in each case, 

without compromising the users’ comfort. 

In order to analyse the impact of k (number of nearest neighbours – most similar cases) selected for the 

reuse task, different options are experimented, namely: considering all cases in the DB, k=10, k=5, k=3, and 

k=1. Due to the influence of the PSO in the optimization objective function - equation (9), two experiences are 

performed: The first one considers 10 executions of the PSO and the second considers 100 cycles. TABLE IV, 

presents the results of proposed methodology, represented through the value of Root Mean Square Error 

(RMSE) between the CBR output value and the real reduction value from the original cases, and the mean 

execution time. The presented values consider the average (error and time) of the 5 considered subject cases, 

and the time is counted from the presentation of the new case to the presentation of a solution.  
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TABLE IV – Proposed CBR methodology results 

k 

10 PSO Runs 100 PSO Runs 

RMSE Time Mean (s) RMSE Time Mean (s) 

All cases 0,067786035 13,11114527 0,060142167 99,0616876 

10 0,118635 11,92354007 0,065897729 87,22773526 

5 0,056884244 12,00484601 0,051008033 85,54363879 

3 0,084792965 11,96009029 0,043725463 84,42065277 

1 0,08213981 9,747374915 0,031159179 63,82456464 

By analysing the value of the RMSE shown in TABLE IV, one can verify that when 10 executions of the 

PSO are performed, the achieved value is subjected to a large randomness and therefore it is not possible to 

establish a connection between the selected number of k and the achieved RMSE. It is noticeable that the highest 

RMSE value was recorded for k=5. Regarding the execution time value for the 10 execution of PSO, it is 

possible to verify that there is a decreasing trend when a smaller k is considered.  

When 100 executions of the PSO are executed, it is possible to establish a relation between the k and the 

RMSE value. Although with k=10, the RMSE value is greater than the selection of all the cases, there is a clear 

tendency of decreasing RMSE when a smaller k is considered. This indicates that it is better for the CBR process 

to consider less, but more similar cases, than considering a large number of less similar cases. This decreasing 

trend is also verified regarding the execution time, which is due to the smaller amount of data to process. When 

comparing the execution time of the 10 execution with the 100 executions, it is possible to verify an increase 

when considering more executions, since there are 10 times more executions carried out with the PSO. Figure 

5 illustrates the details in terms of execution times for the case of k=5.   

  
(a) (b) 

Figure 5 – Execution time when considering k=5, a) 10 PSO cycles, b) 100 PSO cycles 

Load Retrieve PSO Adaptation Revise Retain Load Retrieve PSO Adaptation Revise Retain
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The results presented in Figure 5 refer to the mean values for all executions considering k=5. In this figure, 

the 4 stages of the CBR cycle and the loading of the data are represented. The reuse phase is not expressed in 

the legend of Figure 5, since it is constituted by the PSO phase. In Figure 5 a), the total time is 12 seconds, and 

in Figure 5 b) it is 86 seconds. This significant difference is due to the time that the PSO requires to search for 

the solution. The values of the revise and retain tasks are residual in percentage terms and in both simulations, 

they reach less than 0.1% of the time. 

In Figure 5 a), the optimization time of the PSO takes about 69% of the time, while the retrieve task and 

the load takes respectively 19% and 11% of the time. In Figure 5 b) the percentages for the optimization time 

of the PSO, retrieve, and load are respectively 95%, 2,7% and 1,7% of the time. When comparing the PSO 

times, the 100 executions take nearly 10 times more. The time for 10 cycles is 11,92 seconds, and for 100 cycles 

is 87,23 second. 

TABLE V shows the obtained values from the CBR for each case as well as the real value and the recorded 

error. These results are presented for the two optimization scenarios of 10 and 100 PSO executions. 

TABLE V - Results for k=5 

Case 

10 PSO executions 100 PSO executions 

𝑹𝑪𝑹 𝑹𝒓𝒆𝒂𝒍 |𝑬𝒓𝒓𝒐𝒓| 𝑹𝑪𝑹 𝑹𝒓𝒆𝒂𝒍 |𝑬𝒓𝒓𝒐𝒓| 

Case 1 0,027637 0 0,02763711 0,016333 0 0,016333 

Case 2 0* 0 0 0* 0 0 

Case 3 0,170157 0 0,17015733 0,143535 0 0,143535 

Case 4 0,236603 0,05 0,18660306 0,222625 0,05 0,172625 

Case 5 0,217896 0,09 0,12789607 0,209904 0,09 0,119904 

*Resulting from review at the revise stage. 

As TABLE V shows, the error that occurs between the reduction value proposed by CBR and the actual 

value decreases when 100 executions of PSO are performed. This means the PSO search highly influences the 

final value of reduction. 

In order to assess the relation between k and the objective function value, subject case 5 is analysed in 

detail, as shown in TABLE VI.  
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TABLE VI - Results of PSO optimization for subject case 5 

PSO executions Measurements  k=All cases k=10 k=5 k=3 k=1 

10 

Minimum 0,430837 0,166229 0,126317 0,182658 0,000517 

Mean 1,922872 0,621862 0,4466 0,481716 0,128692 

STD 1,092854 0,517035 0,232452 0,218454 0,136354 

100 

Minimum 0,454242 0,164527 0,124212 0,090836 0 

Mean 2,194597 0,835225 0,42778 0,368762 0,207027 

STD 1,468844 0,568206 0,299163 0,289947 0,159124 

From TABLE VI one can conclude that when k decreases, the objective function approaches 0, which is 

normal since the objective function becomes easier to solve, since there is less noise from least similar cases. 

Furthermore, as TABLE VI shows, if 100 PSO executions are executed by the system, a better value of objective 

function is obtained. 

Figure 6 illustrates the results of k-NN algorithm for subject case 1. As expected, the k-NN makes the 

selection regarding the similarity between the cases. The representations are only in 2D, but the selection is 

performed considering the 10 variables. 

According to the different sections of Figure 6, as k is reduced, the k-NN algorithm selects the most similar 

cases. In this case, the reduction value of the different cases is represented. TABLE VII shows the indices of 

the selected cases, which correspond to the selected cases visible in Figure 6. As expected, the most similar 

cases are repeated until the selection is made for k=1. In this context, case 11 has the most similarity to case 1. 

From TABLE VII it is visible that the k-NN technique is efficient in the selection of most similar cases. From 

TABLE VII it is visible that, as expected, the most similar cases are repeated until the selection is made for 

k=1. In this context, case 11 has the most similarity to case 1. From TABLE VII it is visible that the k-NN 

technique is efficient in the selection of most similar cases. 
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(a) (b) (c) 

  

 

(d) (e)  

Figure 6 – k-NN selection of cases for subject case 1: a) k=all cases, b) k=10, c) k=5, d) k=3m and e) k=1 

TABLE VII – Similar cases selected for case 1 

k Index of case 

All cases All cases 

10 {1, 9, 11, 24, 39, 46, 48, 52, 53 𝑎𝑛𝑑 57} 

5 {1, 9, 11, 39 𝑎𝑛𝑑 52} 

3 {11, 39 𝑎𝑛𝑑 52} 

1 {11} 

 

5.2. CBR evaluation using SHIM 

In order to validate the proposed model using SHIM, a specific simulation day is considered. This 

considered day is a Tuesday in July. Figure 7 shows the total consumption of the house throughout the 24 hours 

of the considered simulation day. Additionally, this figure also shows the amount of consumption reduction that 

is suggested by the proposed methodology throughout the day. 
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Figure 7 – Total consumption of the house throughout the considered day, and demand response 

reduction amount resulting from the proposed methodology 

From Figure 7 it is visible that some amounts of reduction (identified as demand response in the figure) are 

suggested by the proposed methodology to some periods of the day, especially during the peak hours of 

consumption. Figure 8 shows the results of SHIM when applying the reductions resulting from the proposed 

method to the several devices of the house. The red line represents the consumption limit resulting from the 

proposed methodology to be applied by the Energy Resource Management (ERM) performed by SHIM. Hence, 

all consumption values above the line are amounts being reduced. 

 

Figure 8 –Consumption per device of the house throughout the considered day, and reduction applied to 

each device  
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From Figure 8 it is visible that SHIM scheduled the consumption of the several devices according to the 

reduction values provided the proposed methodology. 

In order to analyse the performance of the proposed methodology, and the impact of SHIM over these 

results, a specific case is considered, where the application of the proposed methodology is explained in detail. 

This case considers a specific time during the considered day, namely at 7 p.m., when all 4 inhabitants are 

present inside the house. The variables of this case are shown in Table VIII. With these input variables, the 

CBR model is able to select the most similar cases and present a reduction value that will be the input for SHIM. 

Table VIII - Test case variables characterization 

Case 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗 𝒙𝟏𝟎 𝑹𝒓𝒆𝒂𝒍 

New Case 3 7 19 1 14 85 4 1,779 0,05 0,1634 - 

Five simulations are done, which result in five different values of reduction, as can be seen in Table IX. 

The average reduction from the five simulations is also presented as one of the solutions. These five solutions 

are based on the value of similar cases selected in the retrieve process. In the SHIM algorithm, the possible 

reduction value is limited by the decimal places so given this fact it is only possible to obtain a reduction value 

with two decimal places. In Table IX the input values of reduction for SHIM algorithm are presented.   

Table IX - SHIM inputs 

 Expected Reduction (kW) Reduction (kW) Difference (kW) 

k=All cases 0,18596002 0,17 0,015960017 

k=10 0,17969616 0,17 0,009696158 

k=5 0,16759278 0,17 -0,002407225 

k=3 0,16348578 0,16 0,003485777 

k=1 0,05001877 0,05 1,87651E-05 

Mean 0,1493507 0,15 -0,000649302 

As Table IX shows, the values of reduction are limited, and the maximum reduction value according to the 

user comfort, from SHIM is 0,17 kW. If the reduction is too high (in this scenario above 0,17 kW), it decreases 

the comfort level of the occupants. As can be seen from the Table IX the best presented reduction values are 

the results of k=5 and k=3, for three reasons: (i) these have a very small difference to the actual reduced value, 
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(ii) these enable performing a larger reduction than when considering k=1, and (iii) SHIM is able to respect the 

suggested reduction without compromising the user comfort, contrarily to the results of k=10 and k=all cases, 

which suggest values of reduction that are higher than the maximum level of reduction without affecting the 

comfort - 0,17 kW. Figure 9 shows the appliances that are consuming energy in the considered test case. As 

one can see in Figure 9, only four equipment are connected at the considered time and are consuming 1,779 kW 

in total. Making the analogy with TABLE II one can see that there are ten equipment turned off. The appliances 

that are consuming have a load higher than 95% of their maximum consumption. 

 

Figure 9 - Consumption profile of the four connected appliances. 

By analysing the new case of Table VIII, it is a pre-dinner scenario, where the occupants are in the kitchen 

to cook (oven and kitchen lights connected), while others wait for dinner in the living room (television and 

living room lights connected). It is also a day in the month of June with an exterior temperature of 14 degrees. 

Therefore, it is not necessary to consume energy for the house's refreshment; hence the system of cooling is off.  

Figure 10 represents the reduction results for all reduction values resulting from the several simulations of 

the CBR model. The consumption profiles resulting from the imposed reduction are also shown in Figure 10 . 

The consumption profile prior to the reduction was presented (Figure 9), therefore, it is possible to make the 

comparison between the both.  

1,435 kW

0,12 kW

0,1 kW

0,124 kW

Oven Light kitchen Light living room TV living room
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Figure 10 - Consumption of equipment in the various scenarios 

Figure 10 only shows the equipment that were turned on. As it is possible to observe, in the oven no 

reduction was imposed, which is reasonable since any change could cause to spoil cooking, and consequently 

reduce the inhabitants comfort level. This scenario is also true for the TV located in the living room. TV is a 

device whose consumption cannot be reduced. This means that it can be turned on and its consumption is on 

maximum, or it is turned off and its consumption is zero. In this context, the lights are the only equipment 

available for reduction. For this purpose, it is necessary that the building has enough infrastructure to execute 

the reduction (for instance, the lights equipped with some intelligent ballasts or dimmer). As it can be observed 

on Figure 10, the consumption of the lights has been reduced while the rest of connected equipment stay without 

any changes in their consumption. 

For k=all cases, k=10 NN and k=5, the kitchen lights suffer a reduction of 0.09 kW and living room lights 

are reduced by 0.08 kW. For k=3, 0.08 kW is the reduction applied to both equipment. For the case of k=1, a 

smaller reduction occurs, in which the kitchen lights suffer a reduction of 0.02 kW and living room lights suffer 

0.03 kW. In the mean case, the kitchen lights had 0.07 kW of reduction and the living room lights suffer 0.08 

kW. 

The reduction that occurred was 9.6% in maximum, which is a small reduction. However, by performing 

these types of operation at any instant of time, it will be possible to have economic savings for the user and also 

0 kW

0,2 kW

0,4 kW

0,6 kW

0,8 kW

1 kW

1,2 kW

1,4 kW

Oven Light kitchen Light living room TV living room

Without reduction All NN 10 NN 5 NN 3 NN 1 NN Mean



 

29 

 

determine the best way of responding to demand response events. Additionally, it is noticeable that the comfort 

level of the user should always be taken into account. 

6. Conclusions  

This paper presented a CBR methodology to obtain suggested reduction values for house energy 

management. This methodology presents an innovative combination of two different approaches: intelligent 

house management and CBR, which provides a new body of knowledge regarding the current inexistence of 

such approach in the literature. The proposed approach enables the possibility of adjusting the instant 

consumption of a house according to the required reduction values in each moment. The CBR approach can 

find the solution of reduction for instant consumption profile without large computational efforts, which is by 

itself another relevant contribution. SHIM is able to apply the reduction in real houses, by applying the required 

reduction in different home appliances according to their priority regarding the needs and comfort of the users. 

The CBR DB can bring a limitation of this methodology, because many cases with similarity between them is 

needed to reach good results. On the other hand, the existing cases in the DB should cover every possible option 

or at least similar cases, which is also difficult to verify, especially in early stages of the management and 

execution. Another limitation is the fact the implementation of CBR systems is generally very specific and 

problem-directed. Thus, the application of this model in other areas, or slightly different problems, requires 

significant changes. On the other hand, this combination is able to present an instant reduction result in a short 

time, which a mathematical model cannot achieve due to the number of included variables and difficulty in 

modelling all the necessary constraints, and more importantly, having access to all the required information in 

real time. 

The proposed CBR methodology considers the application of the k-NN algorithm in the retrieve phase, the 

optimization of weights related to importance of each variable that composes a case for the similarity analysis, 

using PSO, and an expert system for the revise phase. The outputs from the proposed methodology are used by 

the energy resource management system SHIM.  

The k-NN technique proved that is efficient to select the most similar cases. The performance of the PSO 

approach has been assessed, considering 10 and 100 executions, from which resulted the conclusion that the 

final results are very dependent on the optimization performed by PSO. Furthermore, as more cycles are 

performed, the most precise results PSO provides. It is also concluded that the selection of many similar cases 
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can spoil the final solution. When the final results of the system and the actual values are compared, it can be 

concluded that the lower the number of similar cases offers fewer errors. It is also visible that the reduction 

values that result from the proposed methodology are appropriate, as validated by the execution of the case in 

SHIM, which has showed that the reductions are feasible without compromising the users’ comfort.   

As future work different techniques of case selection will be experimented, such as the decision trees. In 

the reuse task, it may also be advantageous to use different techniques to optimize the weights associated to 

each variable that composes a case, such as genetic algorithms and simulated annealing. 
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