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Abstract—In the smart grid (SG) era, the energy resource
management (ERM) in power systems is facing an increase in
complexity, mainly due to the high penetration of distributed
resources, such as renewable energy and electric vehicles (EVs).
Therefore, advanced control techniques and sophisticated plan-
ning tools are required to take advantage of the benefits that
SG technologies can provide. In this paper, we introduce a
new approach called multi-dimensional signaling evolutionary
algorithm (MDS-EA) to solve the large-scale ERM problem in
SGs. The proposed method uses the general framework from
evolutionary algorithms (EAs), combined with a previously pro-
posed rule-based mechanism called multi-dimensional signaling
(MDS). In this way, the proposed MDS-EA evolves a population
of solutions by modifying variables of interest identified during
the evaluation process. Results show that the proposed method
can reduce the complexity of metaheuristics implementation
while achieving competitive solutions compared with EAs and
deterministic approaches in acceptable times.

I. INTRODUCTION

The dawn of Smart Grids (SG) together with the high

penetration of distributed generation (DG) possess a new level

of complexity in power systems. The inclusion of Distribute

Energy Resources (DER) and information and communication

technologies (ICTs) in power grids promises potential benefits

for both, network operators and users, as long as an efficient

and effective management and control of DER can be achieved

[1], [2].

One approach to allow high penetration of DER, while

avoiding operational issues, is the aggregation of them through

a virtual power plant (VPP). A VPP can provide same visibility

controllability and market functionality as conventional gen-

eration by centralizing the management of DER in a common

point [3]. However, to provide efficient operational support

of VPPs in SGs, a complex Energy Resource Management

(ERM) problem must be solved.

The ERM problem that a VPP must solve could consider

a large variety of DER, such as Electric Vehicles (EVs),

Energy Storage Systems (ESS), and DG including renew-

ables [4]. Additionally, considering Demand Response (DR),

Vehicle-to-grid (V2G) capabilities, market bids and external

suppliers, along with AC network power balance constraints

turns the ERM into a Mixed-Integer Non-Linear Programming

(MINLP) problem [5], [6]. Therefore, solving the large-scale

ERM problem with deterministic approaches is a complex task

that in some cases requires a huge amount of computational re-

sources and time. In such situations, Evolutionary Algorithms

(EAs) have proved to be a useful tool to addresses large-scale

optimization problems, even when they cannot guarantee an

optimal solution [7], [8].

In this paper, a new approach that combines the standard

framework of EA with a knowledge-base method is proposed

to solve the large-scale ERM in SGs. The Multi-Dimensional

Signaling EA (MDS-EA) evolves a set of solutions using the

standard framework of EAs, namely initialization, evaluation,

generation of new solutions, and replacement. The proposed

method uses a rule-based mechanism, initially introduced in

[6], to cleverly identify variables of interest in the evaluation

process. By doing so, the MDS-EA modifies the bounds of

variables that directly affect the objective function value or

lead to constraints violations, resulting in a more efficient

exploration of the search space.

We compare the performance of the MDS-EA with some

state-of-the-art population-based EAs, namely Differential

Evolution (DE) [9], an application-specific modified Particle

Swarm Optimization (ASMPSO) [10] and Differential Search

Algorithm (DSA) [11]. Additionally, we provide the solution

found with deterministic methods, such as MILP and MINLP,

as a benchmark. Two case studies are used for the analysis,

one corresponding to a 33-bus distribution network with DG

and 1800 EVs, and a second considering a larger 180-bus

distribution network with high penetration of DGs and 2000

EVs. Results show that a rule-based mechanism can boost the

search capabilities of EAs and that MDS-EA can provide near-

optimal solutions for both case studies with simple mutation

strategies.
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II. PROBLEM FORMULATION

The day-ahead ERM model is based on a recent work [6],

namely a multi-period optimization with 24 periods of 1 hour

each. The ERM model includes the following assumptions: a)

High accuracy models of load forecast, such as the ones de-

veloped in [12], [13], allows VPP predictions of the load with

small errors. b) Advanced ICTs are available for monitoring

and controlling of the grid guaranteeing optimal operation. c)

The VPP can sell/buy energy to the main grid or other external

entities. d) a centralized control approach is adopted in which

a VPP aims to minimize its operational cost for the day-ahead

(Eq. (1)) while maximizing its incomes (Eq. (2)). The total

costs are modeled such as:

where the first term corresponds to DG cost; the second term

is the generation curtailment (GCP) cost; the third term refers

to non-supplied demand (NSD) penalizations; the fourth term

is the cost of DR programs; fifth term quantifies external

suppliers energy cost; sixth and seventh terms are associated

with discharging of EVs and ESS respectively. On the other

hand, the total incomes are modeled as:

where the first term is the incomes obtained by selling energy;

the second term is referred to profits of selling to the pool

market; the fourth and fifth terms are the incomes that VPP

perceives for charging EVs and ESS respectively.

Both equations (Eq. (1) and Eq. (2)) can be combined into

a single equation as follows:

Minimize f(~x) = OC
Day+1
Total − In

Day+1
Total (3)

where f(~x) represents the fitness function, and ~x is a solution,

encoded in the vectorial space, including active and reactive

power, and charge and discharge values for each DG, EV,

and ESS, and for each period t. The full mathematical model

also includes network power constraints, i.e. bus and line

power limits. The reader can refer to [6] for details on the

mathematical model, and to Appendix section for the notation

of Eqs. (1-3).

III. MULTI-DIMENSIONAL SIGNALING EVOLUTIONARY

ALGORITHM (MDS-EA)

The proposed mechanism uses some ideas from EAs com-

bined with a rule-based method, proposed in [6], called Multi-

Dimensional Signaling (MDS). The original MDS (called

embedded MDS in this paper) is a technique that improves

the convergence capabilities of any population-based EA, e.g.,

PSO, DSA, or DE. Therefore, in the former work presented in

[6], a particular EA is the main responsible for the search of

the optimal solution, while MDS was somehow ”embedded”

inside of it to boost its search capabilities.

In this work, however, the MDS is used over a standard

population-based EA framework. We call this approach MDS-

EA because it uses the common steps that characterize EAs,

namely initialization, evaluation, generation of new solutions

and selection, together with the MDS method of [6]. Figure 1

shows a flow chart of the MDS-EA. The main components of

MDS are explained in the next subsections.
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Fig. 1: MDS-EA flowchart.

A. Initialization, Encoding of Solutions, and Evaluation

A matrix PopN×D with N solutions and D decision vari-

ables is defined to contain the population of solutions. Then,

each solution is encoded as a vector ~x = [x1, x2, ..., xD] where

D is the dimension of the problem. ~x for the ERM problem

must contain the continuous values of active and reactive

power within the limits of each DG. It also contains binary
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variables indicating a connection (’1’ value) or disconnection

(’0’ value) of a particular DG. EVs and ESS variables can take

negative and positive values within their ranges of discharge

(negative value) and charge (positive value). All these values

are encoded in ~x for each considered period t.

In the initialization stage, N solutions are generated ran-

domly within the range [xlb,j , xub,j ], where xlb,j and xub,j

are the upper and lower bounds limits of the jth variable

respectively (i.e., the power limits of DGs, EVs and ESS, for

each period t). After random initialization of Pop, all vectors

are evaluated in the objective function. Different from other

EAs, MDS-EA uses a rule-based mechanism (detailed in Sect.

III-B) in the evaluation process to identify variables of interest.

B. Multi-Dimensional Signaling

MDS is a method proposed in [6] to improve metaheuristics’

performance. The method is applied in the evaluation process

to identify variables that can improve the value of the objective

function or avoid constraints violation. After that, the method

is applied to the main mutation operator of a metaheuristic to

improve convergence capabilities. To do so, an MDS matrix

is defined as MN×D ∈ Z
N×D with N rows corresponding to

a number of solutions (e.g., population or number of particles

in some EAs), and D columns corresponding to the number of

decision variables. The matrix M change its value according

to:

M =











sigFa(M), if g(ca(~xn)) ≥ 0, a ∈ A, n ∈ N

sigFb(M), if condb = true, b ∈ N, b 6= a

0, otherwise

(4)

where sigFa(M) and sigFb(M) change the value of M in

each iteration. A is the list of constraints that are suitable for

signaling, condb is a custom condition b, and ~xn is the solution

n ∈ N . After identification of such variables, a modification in

the bounds (i.e., a modification of the values that a variable can

take) is applied, and MDS-EA is ready to apply any mutation

strategy to generate new solutions.

Table I shows the rules applied to signaling variables during

the evaluation process. In that table, MC(t) corresponds to

the marginal price of the system at time t. Signal code

’−1’ indicates that signaled variables should take a negative

value (i.e., EVs and ESS to discharge). On the contrary,

signal code ’1’ indicates that signaled variables should take

a positive value (i.e., EVs and ESS to charge). Finally, code

’2’ indicates that such variables should take a value of 0 (i.e.,

no participation of EVs and ESS, as well as DR and market

sells).

C. Mutation strategies

Once the new bounds (or direction of movements) are

defined, any mutation mechanism can be adopted over such

signaled variables to create new solutions. In this paper, we

explore the use of two simple generation strategies, namely

MDS-EA with uniform mutation and MDS-EA with Gaussian

mutation strategies.

TABLE I: Rules and signal codes applied during evaluation

process.

Variables Rule Signal Code

Evs

MC(t) ≥ CV dis(M,t) -1

MC(t) ≤ UV cha(M,t) 1

Random 2

ESS

MC(t) ≥ CSdis(K,t) -1

MC(t) ≤ UScha(K,t) 1

Random 2

DR
MC(t) ≥ (CLDR(L,t) + ULoad(L,t)) 1

MC(t) ≤ (CLDR(L,t) + ULoad(L,t)) 2

Market
MC(t) ≥ Usell(N,t) 2

MC(t) ≤ Usell(N,t) 1

In the first strategy, we create a new solution ~m as follows:

NPopi,j,G =



















x ∼ U([0, xub,j ]) if Mi,j = 1

x ∼ U([−xlb,j , 0]) if Mi,j = −1

0 if Mi,j = 2

Popi,j,G otherwise

(5)

where NPopi,j,G is a new set of solutions created at gen-

eration G. Notice that Eq. (5) uses a uniform distribution

to generate a random value for the variables signaled in

matrix M . A probability pr can also be defined to control the

application of the uniform distribution. If a random number

rnd is less or equal to pr then the variable is set to 0.

Otherwise, the random generation is performed.

The second strategy includes a creation mechanism for the

variables that are not signaled in the evolution process. Then a

random number x ∼ N(Popi,j,G, σj) is assigned to the entries

of NPopi,j,G that were not signaled in the evaluation process,

instead of keeping the value of Popi,j,G. N(Popi,j,G, σj) is

a normal distribution with mean Popi,j,G and σj = 0.001 ∗
(xub,j − xlb,j). This strategy then, allows flexibility in the

exploration of variables that are not signaled in the evaluation

process. More sophisticated mutation schemes can be explored

and will be considered in future work.

D. Elitist Replacement

This operator is applied by comparing the fitness between

the new set of solutions NPopi,j,G (originated with some of

the above strategies), and the current Popi,j,G in the objective

function. Then, Popi,G+1 is the group of solutions of the next

generation, that changes by accepting new individuals when

they give a better fitness in the objective function (i.e., Eq. (4)).

Notice that the signaling matrix M will also be modified in this

stage of evaluation, so even if an individual from NPopi,j,G
does not survive to the next generation, it changes matrix M

when its evaluation occurs giving new bounds for the creation

of new solutions.

IV. RESULTS AND DISCUSSION

In this section, the case studies and the application of MDS-

EA to the ERM problem are presented. All the experiments

were performed using MATLAB 2014b 64 bits in a computer

with an Intel Xeon W3565 processor and 6 GB of RAM
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running Windows 10. The reported results correspond to the

average of 30 test.

A. Case Studies

Two case studies, a 12.66 kV 33-bus and 30kV 180-bus

distribution networks, are considered to test the MDS-EA1.

Tables II and III present the resources for both case studies.

1) 33-bus Network: The 33-bus network scenario adapted

from [16] includes 67 DGs (with a large wind unit), 10 external

suppliers, 15 ESS and 1800 EVs with V2G capabilities.

External suppliers are modeled as a substation connected to

the main grid in bus 33. DR with Direct Load Control (DLC)

is considered, setting DLC contracts to 0.16 m.u./kWh. The

consumers receive this benefit for each unit of energy reduced,

instead of paying the VPP contracted supply price of 0.14

m.u./kWh. The selling energy price is set to 0.14 m.u./kWh as

well. A fleet of 1800 EVs with V2G capabilities is considered

with a total energy demand predicted for trips of 13.77 MWh

and a total of 2553 trips. The discharging cost for EVs and ESS

is set to 0.19 m.u./kWh. The charging/discharging efficiency

is set to 70% for EVs and 90 % for ESS.

TABLE II: Available resources for 33-bus network [6]

Resources No. Units Price (m.u./kWh) Capacity (kW)

Biomass 4 0.09 380
CHP 15 0.06 1150
Fuel cell 7 0.15 110
Small hydro 2 0.07 70
PV 31 0.2 0-840
Waste-to-energy 1 0.1 10
Wind 6 0.15 180-890
Large wind 1 0.07 1580-1800
External suppliers 10 0.09-0.3 6200
V2G 1800 0.19 0-5720
ESS 15 0.19 900
DR 32 0.16 600-1170

2) 180-bus network: For this case study, a 6000 EVs

fleet with total energy demand predicted of 34.26 MWh,

corresponding on average to a 5.7 kWh per vehicle, and a

total of 10137 trips was considered. The discharging cost

for the EVs was set to 0.19 m.u./kWh. For the ESS, the

discharging cost (that also include battery degradation cost)

was set to 0.18 m.u./kWh. Charging/discharging efficiency

for both, EVs and ESS, was set to 90 %. External suppliers

contracts are considered with a minimum purchase of 2MW

in the considered time horizon and a maximum capacity of

10MW. Total forecast load without taking into account EVs,

ESS and DR program was 243.36 MWh.

B. Results and Comparison

In this section, extensive experimentation showing the per-

formance of MDS-EA, with uniform mutation and Gaussian

mutation schemes, is presented. We also compare the results

of MDS-EA with some popular EAs, namely DE (including

1Both networks represent a SG operated by a VPP with projections of
DG and V2G penetration levels for the year 2040. The prices and capacities
of DG take into account the observations made in [14]. The scenarios
of EVs were developed using [15]. The complete data can be found in
http://www.gecad.isep.ipp.pt/ies/public-data/swevo/.

TABLE III: Avaialable resources for 180-bus network [6]

Resources Units Price (m.u./kWh) Capacity (kWh)

PV 44 0.15 1490
Wind 55 0.09 1070-1760
Biomass 17 0.13 1980
External supplier 1 0.10-0.16 10000
V2G 6000 0.19 19050
ESS 7 0.18 1200
DR 90 0.16 2470-4260

DE/rand/1 and DE/target-to-best/1 strategies) [9], DSA [11],

and (ASMPSO) [10]. Results of the EAs with embedded MDS,

as proposed in [6], are also presented. Also, two deterministic

methods using MILP and MINLP are used as a benchmark.

All the population-base methods use a population of 10

solutions (e.g., individuals in DE or particles in PSO) and a

stop criteria of either 400 iterations without objective function

improvement or a total of 2000 iterations. All the implemented

EAs use the same individual encoding in a vector space.

An individual ~x includes decision variables that are within

the limits of the active and reactive power of DG. EVs and

ESS variables are negatives indicating a discharging power

value, and positives otherwise (i.e., when charging). DR and

external supplier are also included in individual ~x as positive

continuous variables between allowed limits. Finally, binary

variables indicating connection and disconnection of DGs are

included as continuous values in the range [0,1] and are

evaluated using a rounding mechanism that maps such values

to either ’0’ or ’1’ depending on their values. Regarding the

particular set of parameters for each EA, for DE strategies

an empirical configuration was carried out to determine the

set of parameters that leads to good performance. Therefore,

F = 0.3 and Cr = 0.5 were used for DE/rand/1 strategy,

while F = 0.8 and Cr = 0.4 was adopted for DE/target-to-

best/1 strategy. For DSA and ASMPSO, the parameter setting

obtained with empirical experimentation in [6] was used.

Table IV presents the total income (IN), operational cost

(OC), average profits (a negative fitness value represents

positive profits because the algorithms were set up to minimize

Eq. 4), time and number of iterations used by the methods for

the two case studies. The table is divided into four horizontal

sets. In the first set (first to fourth row), results of EAs without

MDS are presented. In the second set (fifth to eighth row), we

present the application of embedded MDS with the EAs as

proposed in [6]. The third set (eighth and ninth rows), presents

MDS-EA results with simple uniform and Gaussian strategies.

Finally, the fourth set (eleventh and twelfth rows) presents the

results with deterministic approaches as a benchmark.

It can be observed in the columns corresponding to case

study 33-bus of Table IV, that ASMPSO presents the best

performance among EAs without signaling. That was expected

since ASMPSO is a PSO algorithm modified to tackle this spe-

cific problem in [10]. However, we observe that DE strategies

and DSA still provide acceptable profits for this case study.

In the second set of results, it is clear that the application

of embedded MDS offers an improvement of fitness in all

EAs. When MDS is embedded in the EAs, DE/rand/1 presents
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TABLE IV: 33-bus and 180-bus case studies results and comparison of methods.

Method
33-bus case study 180-bus case study

IN (m.u.) OC (m.u.) Profits ± std Time Iter IN (m.u.) OC (m.u.) Profits ± std Time Iter

DE/rand/1 20552 17306 3247 ± 73 15 2000 47491 47345 146 ± 57 40 2000
DE/target-to-best/1 20741 17136 3605 ± 50 14 2000 47218 46870 347 ± 53 42 2000
DSA 20762 17278 3484 ± 97 13 2000 47154 46935 219 ± 97 38 2000
ASMPSO 16736 11522 5215 ± 59 15 1968 41647 39168 2479 ± 17 39 2000

DE/rand/1 + MDS 16910 11363 5547 ± 10 14 1536 44939 41922 3018 ± 10 40 2000
DE/target-to-best/1 + MDS 16860 11330 5530 ± 11 12 1609 44623 41627 2996 ± 15 38 1863
DSA + MDS 16773 11234 5539 ± 11 12 1744 44983 41947 3036 ± 12 36 1986
PSO + MDS 16736 11227 5510 ± 12 9 1169 44399 41473 2925 ± 27 29 1341

MDS + uniform strategy 16765 11232 5533 ± 9 11 1554 45056 42014 3042 ± 6 34 1948
MDS + Gaussian strategy 16799 11263 5536 ± 8 12 1696 44973 41932 3041 ± 7 37 2000

MILP 17110 11256 5854 ± - 0.2 - 42571 38813 3758 ± - 0 -
MINLP 16968 11301 5667 ± - 834.3 - 42303 38938 3365 ± - 0 -

the best performance (showed in bold). Overall, our MDS-

EA method provides competitive results compared with the

other EAs in terms of profits. It is worth noting that MDS-

EA and EAs+embedded MDS present competitive results

compared with the deterministic approaches. MILP approach

returns a solution in only 0.2 minutes, but such method does

not consider the full mathematical model (including network

constraints), which can lead to solutions that violate voltage

and thermal limits in the lines (i.e., unfeasible solutions).

MINLP and EAs consider the full model during their optimiza-

tion process. However, MINLP returns the optimal solution

in approximately 834 minutes, while EAs methods return

acceptable solutions in 13 minutes on average.

The behavior of EAs and MDS-EA is similar when such

methods are applied to the 180-bus case study. In this case,

the EAs without MDS (columns of 180-bus case study in

Table IV) present very poor performance regarding profits

(except for ASMPSO, that got 2479 of profits). When MDS

is embedded, the metaheuristics improve their performances.

Among them, MDS-EA with uniform mutation gives slightly

better profits compared with all EAs. However, MDS-EA is

still 300 m.u. below the optimal solution found with MINLP,

so a window for improvement is still open. Moreover, the

time required to find the optimal solution with the MINLP

was around 19361 minutes (more than 13 days), while the

EAs return a solution in around 37 minutes.

Figure 2 shows box plots (including minimum, 25th, me-

dian, 75th and maximum values) for the average results

Fig. 2: Box plot for results in 180-bus network.

of EAs+embedded MDS and MDS-EA with uniform and

Gaussian strategies applied to the 180-bus network. It can be

noticed that MDS-EA, with both uniform and Gaussian muta-

tion, presents the best performance regarding average profits.

The performance of MDS-EA is more robust, compared with

the other EAs tested, since MDS-EA presents less variability in

the results. ASMPSO and DE/target-to-best/1 with embedded

MDS present the worst performance, with average profits

below the 3k. All the other heuristics show profits higher

than the 3k. The profits of the implemented EAs are still

far from the optimal result found with the MILP approach

(without considering full network constraints). Compared with

the MINLP, EAs obtained a value around 300 m.u. below the

optimal, which is an acceptable solution concerning m.u..

Finally, Fig. 3 shows the best scheduling obtained with

MDS-EA with a uniform strategy for the 180-bus network

case study. It can be observed that EVs have a substantial

charging activity during the late night. This activity may be

due to EVs should guarantee a good charge capacity to make

the trips during the day. The scheduling also present a high

participation of external suppliers, mainly due to an excessive

amount of load to supplied and a low DG generation in all the

periods. DR programs are used in periods 12-13 and 19-20,

which corresponds commonly to peak hours of the day, so the

solutions make an adequate use of this feature.

Fig. 3: MDS-EA consumption and generation scheduling.
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V. CONCLUSIONS

In this paper, a new approach called MDS-EA was proposed

to solve the large-scale ERM problem in SGs. The MDS-EA

combines the standard framework of population-based EAs

(i.e., initialization, evaluation, generation of new solutions,

and selection) with a rule-based technique, called MDS, that

was originally proposed to work as an embedded method

for population-based metaheuristics. Results show that MDS-

EA with a simple uniform or Gaussian mutation strategy can

provide competitive and more robust results compared with

other well-known EAs. Moreover, MDS-EA uses a simple

framework that eases the implementation and complexity of

the algorithm compared with sophisticated heuristics such

as DSA+MDS or ASMPSO+MDS. As future work, more

advanced generation strategies, based e.g. in local search rather

than uniform and Gaussian random generation presented in

this work, can be explored to improve the performance of the

MDS-EA. Also, MDS-EA relies on a proper design of the set

of rules employed in the domain of application, so to explore

a new design of rules or automatic identification of them are

other interesting research directions for further work.

APPENDIX

Indices:

t period

I DG units

L loads

J external suppliers

K ESS

M EVs

N energy buyers

Parameters:

T number of periods

NI number of DG

NL number of loads

NJ number of external suppliers

NK number of ESS

NM number of EVs

CDG(I,t) generation cost of DG I in period t (m.u./kWh)

CGCP (I,t) generation curtailment cost of DG I in period t (m.u./kWh)

CNSD(L,t) non-supplied demand cost of load L in period t (m.u./kWh)

CLDR(L,t) demand response cost of load L in period t (m.u./kWh)

CSup(J,t) energy price of external supplier J in period t (m.u./kWh)

CSdis(K,t) discharging cost of ESS K in period t (m.u./kWh)

CV dis(M,t) discharging cost of EV M in period t (m.u./kWh)

ULoad(L,t) electricity retail price of load L in period t (m.u./kWh)

USell(N,t) electricity sell price to market N in period t (m.u./kWh)

UScha(K,t) charging price of ESS K in period t (m.u./kWh)

UV cha(M,t) charging price of EV M in period t (m.u./kWh)

PLoad(L,t) day-ahead active power forecast of load L in t (kW)

Variables:

OC
Day+1
Total total day-ahead operation cost (m.u.)

In
Day+1
Total total day-ahead income (m.u.)

PDG(I,t) active power generation of DG I in period t (kW)

PGCP (I,t) generation curtailment power of DG I in period t (kW)

PNSD(L,t) non-supplied demand power of load L in period t (kW)

PLDR(L,t) active power reduction of load L in period t (kW)

PSup(J,t) active power flow in the branch connecting to external

supplier J in period t (kW)

PSdis(K,t) Power discharge of EES K in period t (kW)

PV dis(M,t) Power discharge cost of EV M in period t (kW.)

PSell(N,t) electricity sell price to market N in period t (kW)

PScha(K,t) Power charge of EES K in period t (kW)

PV cha(M,t) Power charge of EV M in period t (kW)
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