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Abstract—Power systems are showing a dynamic evolution in
the last few years, caused in part by the adoption of smart grid
technologies. The integration of new elements that represent a
source of uncertainty, such as renewables generation, electric
vehicles, variable loads and electricity markets, poses a higher
degree of complexity causing that traditional mathematical for-
mulations struggle in finding efficient solutions to problems in
the smart grid context. In some situations, where traditional
approaches fail, computational intelligence has demonstrated
being a very powerful tool for solving optimization problems. In
this paper, we analyze the application of Differential Evolution
(DE) to address an energy resource management problem under
uncertain environments. We perform a systematic parameter
tuning to determine the best set of parameters of four state-
of-the-art DE strategies. Having knowledge of the sensitivity of
DE to the parameter selection, self-adaptive parameter control
DE algorithms are also implemented, showing that competitive
results can be achieved without the application of parameter tun-
ing methodologies. Finally, a new hybrid-adaptive DE algorithm,
HyDE, which uses a new ”DE/target− to− perturbed best/1”
strategy and an adaptive control parameter mechanism, is
proposed to solve the problem. Results show that DE strategies
with fixed parameters, despite very sensitive to the setting, can
find better solutions than some adaptive DE versions. Overall,
our HyDE algorithm excelled all the other tested algorithms,
proving its effectiveness solving a smart grid application under
uncertainty.

I. INTRODUCTION

Due to the importance of the energy resource manage-

ment (ERM) in the smart grid field, several mathematical

formulations have been successfully proposed in the literature

[1]. However, the very dynamic evolution of electrical grids,

mainly due to the development of smart grid technologies,

has caused that the traditional formulations, which were de-

signed for different scenarios, sometimes cannot deal with the

problem efficiently. Challenges in the management of energy

resources have been recently identified [2], [3], [4]. Common

issues have been consistently highlighted concerning, namely

the growing complexity of a large number of distributed energy

resources, the increase of electric vehicles (EVs) penetration

and the increase of sources of uncertainty. Since the aggregator

performs the scheduling of resources for the day-ahead (i.e.,

the next 24 hours), it relays in the forecast of weather

conditions (to predict renewable generation), load demand, EV

trips, and market prices. However, the assumption of perfect or

highly accurate forecast might bring unforeseen consequences

into the operation of the grid when the realizations do not

follow the expected predictions [5]. Due to this situation, it

is desired that the aggregator determines solutions that are

robust to the uncertainty inherent in some parameters and

the environment. Four aspects of uncertainty that affect the

performance of a solution are considered in this paper, namely:

a) weather conditions, b) load forecast, c) planned EVs trips,

and d) market prices. Regarding the aforementioned aspects,

some efforts have been made in the literature to tackle different

sources of uncertainty but essentially most proposed models

are based on mathematical approaches, namely stochastic

models (e.g., two-stage stochastic models [6], [7], [8]) or

robust optimization models [9], [10]. Those approaches are

usually solved as deterministic Mixed-integer Linear Program-

ming (MILP) models after linearization and conversion of

the original formulation. The limitations of those traditional

deterministic approaches are that they cannot efficiently incor-

porate nonlinear functions (e.g., generator quadratic function,

AC power flow, and other complex conditions or resources

constraints), a large number of resources and considerable

accuracy of uncertainty representation (e.g., the number of

scenarios in stochastic models). Also, due to different legal

aspects of energy markets all over the world, the proposed

ERM models do not consider the same business model which

adds up more complexity to this research field [3].

In this paper, we propose to solve the ERM problem

using evolutionary computation (EC) techniques, namely vari-

ous versions of the differential evolution (DE) algorithm to

tackle the problem with several sources of uncertainty, as

highlighted early. DE and other metaheuristics have been

applied with satisfactory results to the ERM problems [11],

[12], yet few EC works, we are aware of, have considered

parameter uncertainty and scenario-based information into the

ERM. Since traditional DE is highly dependent on the control

parameters’ selection, a proper tuning is required to obtain

good results but such tuning is typically time consuming and

tedious process. Adaptive Control parameters DE versions
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solve that problem by selecting the parameters automatically

during iterations. Yet, the adaptive versions do not cope well

with all the problems with different characteristics, and their

performance might be improved in different directions. Hence,

we propose a new hybrid-adaptive DE, HyDE, which uses

a ”DE/target− to− perturbed best/1” strategy combined

with a self-adaptive parameter selection of the jDE algorithm

[13]. Our HyDE algorithm is suited to overcome the lim-

itations of traditional techniques, e.g., a higher number of

scenarios representing the problems uncertainty, and shows

promise performance, excelling fixed and adaptive parameter

DE strategies when solving the smart grid problem proposed

in this work.

II. PROBLEM FORMULATION

We divide this section into three parts for better understand-

ing: A) Objective function, B) Uncertainty modelling, and C)

encoding of solutions and fitness function.

A. Objective Function

The problem can be modelled as a combinatorial Mixed-

Integer Linear Programming (MILP) problem due to the

presence of continuous, discrete and binary variables. The

objective of the aggregator is to minimize operational costs

(OC) while maximizing incomes (In). OC are associated

with the management of resources by the aggregator and

represented by:

OC =
T
∑

t=1

(

NDG
∑

i=1

pDG(i,t) · CDG(i,t) +
Nk
∑

i=1

pext(k,t) · Cext(k,t)

)

+

Ns
∑

s=1

T
∑

t=1











































NPV
∑

j=1

pPV (j,t,s) · CPV (j,t)+

Ne
∑

e=1

pESS− (e,t,s) · CESS− (e,t)+

Nv
∑

v=1

pEV − (v,t,s) · CEV − (v,t)+

NL
∑

l=1

pcurt(l,t,s) · Ccurt(l,t)+

NL
∑

l=1

pimb−(l,t,s) · Cimb−(l,t)+

NDG
∑

i=1

pimb+(i,t,s) · Cimb+(i,t)











































· π(s)

(1)

Eq. 1 considers the cost associated with Distributed Gen-

eration (DG), external suppliers, discharge of ESS and EVs,

DR by direct load control programs (curtailable loads), pe-

nalization of non-supplied demand (negative imbalance) and

penalization for excess of DG units generation (positive im-

balance). On the other hand, the aggregator can receive its

incomes (In) from market transactions as follows:

MT =
Ns
∑

s=1

T
∑

t=1

(

Nm
∑

m=1

(

pbuy(m,t) − psell(m,t)

)

·MP(m,t,s)

)

· π(s).

(2)

where bids and offers are allowed into two markets with dis-

tinctive characteristics, namely wholesale and local markets.

Notice that both equations, Eqs. 1 and 2, can be linearly

combined given as a result the objective minimization func-

tion:

Minimize f(~x) = OCDay+1
Total − InDay+1

Total (3)

where f(~x) is the fitness function that DE aims to optimize.

The minimum value of f(~x) is the total cost (or profits if

negative) for the energy aggregator.

The Eq. (3) is also subject to resource limit capacities and

balanced energy constraints, which enhance the complexity

of the problem. The reader can be referred to the appendix

section for the nomenclature used in this work, and to [7] to

consult a complete mathematical model of this problem (i.e.,

including all the constraints).

B. Uncertainty modelling

The aggregator relays in forecast of weather conditions

(to predict renewable generation), load demand, EV trips,

and market prices to perform the scheduling of resources

for the day-ahead (i.e., the next 24 hours). However, the

assumption of perfect or highly accurate forecast might bring

catastrophic consequences into the operation of the grid when

the realizations do not follow the expected predictions.

To overcome this issue, we assume that a correct set of

scenarios that simulate real-world conditions can be generated

considering forecast and associated errors based on historical

data or previous experiences. The uncertainty considered in

this paper comes from: i) PV renewable sources, ii) load pro-

files, iii) EVs scheduling, and iv) market prices for wholesale

and local markets.

We apply a technique for scenario generation (and scenario

reduction) used in [7]. In a first step, a large number of

scenarios is generated by Monte Carlo Simulation (MCS).

The MCS uses the probability distribution function of the

forecasted errors (which can be obtained from historical data)

to create a number of scenarios according to:

Xs(t) = xforecast(t) +N (0, σerror) (4)

where x(error,s) is a normal distribution function with zero-

mean and standard deviation σerror, and xforecast(t) is the

forecasted value of variable x at time t. To simplify, all

forecast errors for the uncertain inputs are represented by

a normal distribution function. In a second step, a standard

scenario reduction technique is applied that excludes scenarios

with low probabilities and combines those that are close

to each other in terms of statics metrics (for a complete

description of these techniques see [7]).

C. Encoding of the solutions and fitness function under un-

certainty

The solution representation (i.e., an individual in DE) is

a fundamental part in the development of EC algorithms. In

this paper, we adopt the same encoding used in the WCCI2018
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Competition Evolutionary Computation in Uncertain Environ-

ments: A Smart Grid Application [14].

Each solution is therefore encoded as a vector with ’6’

groups of variables that are repeated sequentially across the 24

periods (hours) of optimization. In the vector representation,

all variables, apart from group (2), are continuous variables

with bounds matching the power or capacity limits of the as-

sociated variables. Group (2), generator binaries, corresponds

to binary variables that are used to indicate if a generator is

connected (’1’ value) or disconnected (’0’ value). A special

attention is pointed to variables representing PV generation.

PV generation cannot be controlled, so even when it is part

of the vector solution, the variable corresponding to the PV

generation (last variable of group (1)) will take a specific, and

thus unalterable, value depending on the considered scenario.

The fitness function in the optimization process is evaluated

through all the available scenarios generated by the method

presented in Sect. II-B. This means that for a given input

solution, the fitness function returns an array of fitness values

over all the set of available scenarios. Figure 1 illustrates the

design of the fitness function.

Fitness 

Function
Scenario 1

Scenario 2

Scenario Ns

Input:

Solution Evaluate 

scenarios

Output:

Fitness 

Array

+  
   1 1

F x f x  

   2 2
F x f x  

   Ns Ns
F x f x  

Fig. 1: Fitness function design. A single solution returns a set

of values based on the considered scenarios.

A solution ~x is evaluated into different pre-computed sce-

narios as follows:

Fs(~x) = f(~x+ δs) (5)

where δs is the disturbance of variables and parameters in

scenario s, and Fs(~x) is the fitness value associated to the s

Monte Carlo sampling. Since the fitness of a given individual

is a set of values and not a single fitness value (as occurs

typically in problems without uncertainty consideration), a per-

formance criterion (e.g., mean value, best value, less standard

deviation) should be selected to guide the search and select

the best individuals in the population.

In this paper, we have chosen a robust approach, meaning

that the fitness of a given solution correspond to the worst-case

scenario. Other fitness metrics should be analyzed in further

studies. The reader can be referred to [14] for specific details

of the encoding and fitness function design.

III. DIFFERENTIAL EVOLUTION ALGORITHM

The basic DE algorithm uses a population (Pop) of individ-

uals ~xj,i,G = [x1,i,G, ..., xD,i,G], where G is the generation

number, and i = [1, ..., NP ] is the number of individuals in

the population, to optimize a function with D variables (i.e.,

the dimension of the problem). DE iterates by creating new

offspring using mutation and recombination operators.

At each generation G, all individuals ~xi,G ∈ Pop are

evaluated in a fitness function. The individual being evaluated

is called the target vector (~xi,G). For each target vector ~xi,G,

a mutant individual ~mi,G is generated using the mutation

operator:

~mi,G = ~xr1,G + F (~xr2,G − ~xr3,G) (6)

where ~xr1,G, ~xr2,G, ~xr3,G ∈ Pop are three random individuals

from the Pop, mutually different and also different from the

current target vector ~xi,G. This is the standard DE mutation

strategy also known as DE/rand/1.

After create the mutant vector, the recombination operator

combines the mutant individual ~mi,G with the target vector

~xi,G creating the trial vector ~ti,G. Particularly, for each com-

ponent j, where j = {1, 2, . . . , D}, we choose the jth element

of the ~mj,i,G with probability RC, otherwise from the ~xj,i,G.

Moreover, a random integer value Rnd is chosen from the

interval [1, D] to guarantee that at least one element is taken

from ~mi,G. The ~ti,G is created as follows:

~tj,i,G =

{

~mj,i,G if (randi,j [0, 1] < Cr) ∨ (j = Rnd)
~xj,i,G otherwise

(7)

After we create ~ti,G, it is necessary to verify the boundary

constraints of each element of ~ti,G to avoid creating infeasible

solutions. If any element of the trial vector violates the

constraints, it should be repaired either with a random number

in the allowed range, or any other technique such as back-

bounce or boundary reinitialization [11].

Finally, the selection operator in the basic DE is a simple

rule of elitist done by comparing the fitness between the trial

vector ~ti,G, and the target vector ~xi,G in the objective function:

Popi,G+1 =

{

~ti,G if f(~ti,G) ≤ f(~xi,G)
~xi,G otherwise

(8)

where Popi,G+1 is the population of the next generation, that

changes by accepting or rejecting new individuals, and f(.)
is the fitness function used to measure the performance of an

individual (i.e., Eq. (3)).

A. DE mutation strategies with fixed parameters

For each target vector ~xi,G, a mutant individual ~mi,G is

generated using typically the mutation operator from Eq. 6.In

this paper we analyze also some other state-of-the-art DE

strategies, namely:

• DE/target-to-best/1: In this strategy, the DE operator is

modified to generate base vectors that lie on the line

defined by the target vector ~xi,G and the best-so-far found

vector ~xbest:

~mi,G = ~xi,G+F (~xbest−~xi,G)+F (~xr1,G−~xr2,G) (9)
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This strategy has some similarities with the velocity up-

date formula of the PSO algorithm, in which a stochastic

attraction towards the best particle and neighborhood best

position are modeled by scaled difference vectors as well

[15].

• DE/rand/1 with dither: In this strategy, F is randomly

varied (this variation is known as dither) in certain range:

~mi,G = ~xr1,G + rand(F, 1) ∗ (~xr2,G − xr3,G) (10)

where rand(F, 1) is a random number in the range [F, 1]

for each member of the population. The dither variation

has proved to improve the performance of DE in different

problems [15].

• DE/rand/1/either-or: In this strategy, the mutant vector is

generated either by a three-vector pure mutation scheme

(as in standard DE) with probability PF or as a randomly

recombination scheme with probability 1− PF :

~mi,G =

{

~xr1,G + F (~xr2,G − ~xr3,G) if (rand < 0.5)
~xr1,G + k(~xr2,G + ~xr3,G − 2~xr1,G) o.w.

(11)

where a recommended a value of k = 0.5(F + 1) and

PF = 0.4 is a good choice for these two parameters

[16]. This strategy has shown competitive results against

classical DE strategies[15].

B. Adaptive DE algorithms

DE strategies’ performance is highly dependent on a proper

selection of parameters, as has been shown in many studies

[11], [15]. To overcome this situation and obtain acceptable

performance, a preliminary phase of tuning is required to

determine the best set of parameters for each problem. This

tuning phase, either by a trial-and-error approach or a system-

atic framework, usually requires tedious and time consuming

optimization trials [17].

The aforementioned situation has motivated the develop-

ment of different adaptive parameter control mechanisms to

dynamically determine the best set of parameters without

involving previous knowledge on the characteristics of the

problem. In addition, self-adaptive parameter DE versions are

capable of improving the convergence of the algorithms in

different problems. Among the vast variety of self-adaptive

DE versions, JADE [18] and jDE [19] algorithms have proven

to be effective in various benchmark functions with different

characteristics. These two adaptive versions are selected in this

paper for comparisons purposes. The adaptive mechanisms,

very simple and effective, are briefly described next.

1) JADE: The JADE algorithm is an adaptive param-

eter version of DE based on a mutation strategy called

”DE/current-to-pbest” [18]. The JADE algorithm also incor-

porate an external archive of solutions to extract historical

knowledge about the success and failure of solutions in the

evolution process. The ”DE/current-to-pbest” used in JADE is

a less greedy generalization of the DE/target-to-best/1 strategy

(i.e., Eq. ), and is defined as:

~mi,G = ~xi,G + F (~xp
best − ~xi,G) + F (~xr1,G − ~xh

r2,G) (12)

where ~xp
best is randomly chosen as one of the top 100p%

individuals of the current population with p ∈ (0, 1], and ~xh
r2,G

is chosen randomly from the union of and external archive of

solutions A and the current population P (i.e., from P ∪A).

In addition, JADE update the control parameters F and

Cr at each generation, and for each individual, using simple

update rules. The Cr parameter is updated as follows:

Cri = randni(µCr, 0.1) (13)

where randni(µCr, 0.1) is a random number taken from a

normal distribution with mean µCr and standar deviation 0.1.

µCr is also updated at the end of each generation as:

µCr = (1− c) · µCr + c ·meanA(SCr) (14)

where c is a positive number between 0 and 1, and

meanA(SCr) is the arithmetic mean of the set of all successful

Cri parameters at generation g.

Similarly, the F parameter is updated using a cauchy distri-

bution as:

Fi = randci(µF , 0.1) (15)

The mean value µF is also updated at the end of each

generation according to:

µF = (1− c) · µF + c ·meanL(SF ) (16)

where c is a positive number between 0 and 1, and

meanL(SF ) is the Lehmer mean of the set of all successful Fi

parameters at generation G. Further details and the application

of the adaptive JADE algorithm can be found in [18].

2) jDE: Another simple, yet successful self-adaptive DE

variant is the jDE algorithm proposed in [13].

jDE algorithm in its original form incorporates a simple

self-adapting control parameter F and Cr mechanism applied

in the standard ”DE/rand/1” strategy (Eq. 6). New control

parameters for each individual in the population are calculated

as:

Fi,G+1 =

{

Fl + rand1 ∗ Fu, if (rand2 < τ1)
Fi,G o.w.

(17)

Cri,G+1 =

{

rand3, if (rand4 < τ2)
Cri,G o.w.

(18)

where randj , j ∈ 1, 2, 3, 4 are uniform random values in the

range [0, 1], Fl and Fu are the lower and upper limits of F , and

τ1 and τ2 represent probability factors. In the results section of

this paper, the original jDE set of parameters is used, namely

τ1 = τ2 = 0.1, and Fl = 0.1 and Fu = 0.9.

jDE was later improved in [19], where a population multi-

population method with aging mechanism was designed to

handle dynamic landscapes. With this modification, the jDE
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algorithm achieved the first rank in the competition on ”Evo-

lutionary Computation in Dynamic and Uncertain Environ-

ments” in CEC2009 [20], which indeed attract our attention

making it a good choice for the application presented in this

paper.

IV. HYBRID-ADAPTIVE DIFFERENTIAL EVOLUTION WITH

”DE/target− to− perturbed best/1”

Self-adaptive DE versions eliminate the necessity of a

parameter tuning and typically show acceptable performance

in different type of problems. DE versions with fixed pa-

rameters, after a proper parameter tuning, have also proven

excelled performance in a wide variety of problems. Inspired

by this context, in this paper we have developed a hybrid-

adaptive DE algorithm (HyDE). Our HyDE combines the

DE/target-to-best/1 strategy with a perturbation of the best

individual (inspired by EPSO [21]), called ”DE/target−to−
perturbed best/1” strategy, and the self-adaptive mechanism

of jDE algorithm. The main operator in HyDE is defined as

follows:

~mi,G =
~xi,G + F 1

i ((~xbest · N (F 2
i , 1))− ~xi,G) + F 3

i (~xr1,G − ~xr2,G)
(19)

where F 1
i , F 2

i , and F 3
i , are scale factors in the range [0,1]

independent for each individual i, updated each iteration

following the same rule of jDE algorithm (see Sect. III-B2,

Eq. 17). Notice that HyDE uses a perturbation of the ~xbest best

individual by a random value taken from a Normal distribution

with mean F 2
i , which is also an adaptive parameter updated

using the same rule of jDE. Such perturbation is inspired in

EPSO [21], and has proven to improve the convergence capa-

bilities of the algorithms when solving optimization problems

in the energy domain. Our HyDE algorithm also update Cr
parameter using the same rule as in jDE algorithm (Eq. 18).

V. RESULTS AND DISCUSSION

In addition to the proposed HyDE (Sect. IV), one of the

contribution of this paper is to compare the performance of DE

strategies with fixed parameters with adaptive DE algorithms.

To provide a comparison between DE strategies with fixed

parameters (requiring a proper set of parameters) and adaptive

DE versions, the results section is divided into two parts. In

a first part, we conduct a parameter tuning methodology (as

in [11]) to provide the most suitable values for F , Cr and

NP parameters for the standard DE/rand/1 strategy and the

three DE strategies presented in Sect. III-A. In the second part,

we compare the DE strategies (with the most-suitable fixed

setting found in part 1) with two of the most popular adaptive

DE versions (i.e., JADE and jDE), and also our new adaptive

DE with Target-to-Best-Perturbation, HyDE. The experiments

were performed using MATLAB 2014b 64 bits in a computer

with Intel Xeon(R) E5-2620v2@2.1 GHz processor with 16

GB of RAM running windows 10.

The case study used in this paper is based on a 25-bus

microgrid that represents a residential area with 6 DGs (5

dispatchable units and 1 PV generator), 1 external supplier, 2

ESSs, 34 EVs, and 90 loads with demand response capability.

Moreover, it is considered that two markets (wholesale and

local) are available for buy/sale energy for the day-ahead 24

hours. Table I outlines the resources available in the microgrid.

TABLE I: Available Energy Resources

Energy resources Prices (m.u./kWh) Capacity (kW) Units

Dispatchable DGs 0.07-0.11 10-100 5
External suppliers 0.07-0.16 0-150 1

ESS
Charge - 0-16.6

2
Discharge 0.03 0-16-6

EV
Charge - 0-111

34
Discharge 0.06 0-111

DR curtailable loads 0.04 4.06-8.95 90

Forecast (kW)

Photovoltaic - 0-106.81 1 (17 agg)
Load - 35.82-83.39 90

Limits (kW)

Market 1 (WS) 0.021-0.039 0-85 1
Market 2 (LM) 0.021-0.039 0-40 1

A. Tuning of the parameters

We carried out two experiments for the tuning of pa-

rameters. In the first experiment, we fixed NP = 30 and

GEN = 100 for all DE strategies, and performed a swept

of parameters F and Cr in the range [0,1] in steps of 0.1

(as in [11]). The swept of parameters allows us to try all

combinations of parameters F and Cr. With the help of

heatmaps showing the average results of each combination

of F and Cr in the [0,1] range, it is possible to find the

combination of these parameters that lead to best performance.

Figure 2 shows heatmaps to represent the average fitness

value when varying F and Cr parameters. In these figures, a

darker color represents a better fitness (i.e., a low value of Eq.

(3)), whereas a lighter color represents a poor performance. It

can be noticed that all DE strategies have a different set (or

area) of parameters were they perform better. This is a very

important result to point out, since highlight the importance

of a parameter tuning methodology when fixed parameter DE

strategies are used. For instance, DE/rand/1 present a good

performance when both F and Cr parameters are chosen in

the range of [0,0.4] (see Fig. 2a). On the other hand, DE/target-

to-best/1 shows a better performance when F is in the range

of [0.5,0.7] and Cr in the range [0.2,0.6] (see Fig. 2b).

Overall, the parameter tuning clearly shows that the most-

suitable combination of these parameters is different depend-

ing on the DE strategy, and a bad selection of parameters might

lead to a poor performance for this case study. To summarize,

Table II present the most-suitable setting of parameters F and

Cr. The table also includes the average fitness value, standard

deviation (std), minimum and maximum values, and execution

time after the ten runs. It can be seen that DE/rand/1, the

classic and simple version of DE, presents the best average

fitness (with a slightly higher standard deviation) of all the

tested DE strategies.

In the second experiment of the parameter tuning, we fixed

the values of F and Cr to the ones from Table II, and varied
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NP in the range [10,70] in steps of 10. Ten optimization

runs were done for each strategy. Since increasing the size of

the population leads to more function evaluation (FE) in each

iteration (i.e., NP evaluations are required in each generation),

Cr
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Fig. 2: Heatmap of analyzed DE strategies. (a) DE/rand/1.

(b) DE/target-to-best/1. (c) DE/rand/1 with dither. (d)

DE/rand/1/either-or.

TABLE II: Best DE tuning of F and Cr parameters.

Strategy F Cr Fitness ± Std (Min-Max)

DE/rand/1 0.2 0.3 43.98 ± 0.92 (42.70-45.51)
DE/target-to-best/1 0.6 0.2 46.89 ± 0.47 (46.34-47.69)
DE/rand/1 with dither 0 0.4 47.64 ± 0.44 (46.84-48.22)
DE/rand/1/either or 0.3 0.2 44.16 ± 0.45 (43.25-44.74)

*All algorithms used a fixed NP=30 and Gen=100.

we fixed also the number of functions evaluations to 5000, and

calculate the number of generations according to GEN =
⌈5000/NP ⌉.

Figure 4 shows the mean fitness value of the DE strategies

when NP is varied. It is important to notice that all DE

strategies are sensitive also to a proper selection of NP. From

this analysis, we can observe that a small NP lead to most

of the DE strategies to poor performance. A population of

NP= 30 results in better performance for all the DE strategies.

Contrary to what intuition might suggest, increasing the value

of the population (i.e., NP > 30) is not beneficial for any of

the tested strategies.

Additionally, we tested the behavior of DE strategies when

the number of generation were increased systematically from

100 to 500 in steps of 100 generations. We noticed that

the quality of the solution improves when the number of

generations grows for all the DE strategies (i.e., the best

fitness values for all the strategies were found with Gen=500).

However, more generations imply more function evaluations

and time, so the user should choose this parameter carefully

to avoid an excessive computational time. For this application,

a number of generation Gen=1000 (resulting in 30,000 func-

tion evaluations when NP=30) was selected, which results in

execution times of 5 minutes each experiment.

To close the parameter tuning analysis, we use the best

setting of F and Cr for each strategy (reported in Table II), a

value of NP = 30, and Gen = 1000 in Sect. V-B to compare

with the adaptive DE versions and our new HyDE.
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TABLE III: Results and comparison of DE variants and the new HyDE.

DE strategy Expected Fitness Std Min Max Time % Improvement

DE/rand/1 29.628 0.798 27.840 30.168 276.490 14.248
DE/target-to-best/1 31.520 0.695 29.931 31.983 282.750 8.773
DE/rand/1 with dither 31.656 0.799 29.811 32.195 285.392 8.377
DE/either-or-algorithm 31.977 0.648 30.489 32.400 280.184 7.450

JADE 33.781 0.625 32.401 34.221 285.629 2.227
jDE 34.551 0.687 33.068 35.048 274.813 0

HyDE 17.326 0.810 16.052 18.267 289.843 49.855

B. Performance of HyDE and comparison with diverse DE

strategies.

In the second part of the results, we compare the DE strate-

gies (with the best set of fixed parameters found), two self-

adaptive DE algorithms (JADE and jDE), and our new HyDE

algorithm. The reported results correspond to the average of

30 runs.

Figure 4 shows the average worse-case scenario fitness

convergence of the tested algorithms. From the figure, it

can be noticed that DE/rand/1 presents the best performance

from the fixed parameters DE strategies. It can be also seen

that the self-adaptive version of DE perform slightly worse

than the DE strategies with fixed parameters. However, we

must keep in mind that the self-adaptive DE versions can

achieve an acceptable performance without any tuning in the

first place, which turns out in saving considerable amount of

time compared with DE strategies with fixed parameters. Our

new HyDE, however, does not require any parameter tuning

and presents outstanding performance for this application,

achieving a worst-case fitness value of around 20 m.u., and

defeating both, adaptive and fixed, DE versions tested in this

paper.

Since each final solution provided by the algorithms is

subject to the uncertainty of some parameters, an analysis

of the robustness of the solutions is worth it. We have
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Fig. 4: Convergence of the average worst-case value over 30

runs.

computed the value of the solutions over all the available

scenarios (10 scenarios have been considered) to appreciate

the sensitive of the solutions to these variations. Table III

presents the expected mean fitness value, standard deviation,

minimum and maximum values and execution time of the

final solutions over all the considered scenarios. Table III also

provides the percentage of improvement with regard to the

worse performance algorithm, i.e., the jDE algorithm. It can

be noticed that all the algorithms present similar execution

times (slightly below 5 minutes each). The two self-adaptive

versions achieve an expected fitness around 33 m.u., which

is slightly worse to the one obtained with the fixed parameter

DE strategies (after an extensive parameter tuning), which was

about 30 m.u. on average. HyDE showed excelled convergence

capabilities, achieving a fitness value of 17.32 m.u., which

represents the best performance of the tested algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we compared fixed parameters and self-

adaptive DE algorithms with a new proposed DE algorithm

HyDE, applied to an ERM problem in SGs under uncertainty.

DE strategies with fixed parameters are a simple, yet effective

algorithms that depend on the proper selection of a few control

parameters, namely F , Cr, and NP, to provide acceptable

solutions. Such proper selection of parameters can be achieved

by a systematic, yet time consuming, preliminary optimization

tuning. Self-adaptive DE versions eliminate such tuning, being

able to achieve a similar performance for the analyzed SG

problem. Motivated by this situation, we have combined a

fixed parameter strategy, the DE/target-to-best/1, with the

self-adaptive mechanism of parameters from jDE. Our new

adaptive algorithm, HyDE, also incorporates a perturbation of

the best individual inspired by EPSO and IMPSO. Results

showed that the fixed parameter DE versions, if a proper

tuning of parameters is conducted, show better performance

of other self-adaptive algorithms. However, the tested self-

adaptive versions, JADE and jDE, obtain competitive results

without any tuning of parameters, saving valuable time in

this process. Overall, our proposed HyDE algorithm presents

excelled performance in this application, obtaining the best

results of the tested algorithms. As future work, the rational

used to develop HyDE can be adapted to other metaheuristics.

In addition, an extension of this paper comparing HyDE with

a broader set of EA and showing its performance in a set

of benchmark functions as well as problems with different

characteristics in the context of SGs is of special interest.
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APPENDIX

Indices:

t period

i DG units

j PV units

k external suppliers

l loads

m markets

e ESS

v EVs

s scenarios

Parameters:

T number of periods

NDG number of DG

NPV number of PV

Nk number of external suppliers

Nl number of loads

Nm number of markets

Ne number of ESS

Nv number of EVs

Ns number of scenarios

CDG generation cost of DG (m.u./kWh)

CPV cost of PV generation (m.u./kWh)

Cext energy price of external supplier (m.u./kWh)

CESS− discharging cost of ESS (m.u./kWh)

CEV − discharging cost of EV (m.u./kWh)

Ccurt Load curtailment cost (m.u./kWh)

Cimb imbalance cost (m.u./kWh)

MP electricity market price (m.u./kWh)

Pload Forecasted load (kW)

PPV photovoltaic generation (kW)

π(s) Probability of scenario s

Variables:

OCDay+1
Total total day-ahead operation cost (m.u.)

InDay+1
Total total day-ahead income (m.u.)

PDG active power generation of DG (kW)

Pext active power of external supplier (kW)

PESS− discharging power of ESS (kW)

PEV − discharging power of EV (kW)

Pcurt Power reduction of Load (kW)

Pimb− Non-supplied power to load (kW)

Pimb+ Exceeded power of DG unit (kW)

Pbuy Power buy to the market (kW)

Psell Power sell to the market (kW)

xDG Binary variable for DG unit status

ACKNOWLEDGMENT

This work has received funding from the European Union’s

Horizon 2020 research and innovation programme under the

Marie Sklodowska-Curie grant agreement No. 641794 (project

DREAM-GO) and from FEDER Funds through COMPETE

program and from National Funds through FCT under the

project UID/EEA/00760/2013.

REFERENCES

[1] W. L. Theo, J. S. Lim, W. S. Ho, H. Hashim, and C. T. Lee, “Review
of distributed generation (DG) system planning and optimisation tech-
niques: Comparison of numerical and mathematical modelling methods,”
Renewable and Sustainable Energy Reviews, vol. 67, pp. 531 – 573,
2017.

[2] J. Hu, H. Morais, T. Sousa, and M. Lind, “Electric vehicle fleet
management in smart grids: A review of services, optimization and
control aspects,” Renewable and Sustainable Energy Reviews, vol. 56,
pp. 1207 – 1226, 2016.

[3] T. Soares, M. Silva, T. Sousa, H. Morais, and Z. Vale, “Energy and
reserve under distributed energy resources managementday-ahead, hour-
ahead and real-time,” Energies, vol. 10, no. 11, p. 1778, 2017.

[4] P. Kaufmann, O. Kramer, F. Neumann, M. Wagner et al., “Optimization
methods in renewable energy systems design,” Renewable Energy,
vol. 87, pp. 835–836, 2016.

[5] M. Severini, E. Principi, M. Fagiani, S. Squartini, and F. Piazza, “Energy
management with support of PV partial shading modelling in micro grid
environments,” Energies, vol. 10, no. 4, 2017.

[6] H. Liang and W. Zhuang, “Stochastic modeling and optimization in a
microgrid: A survey,” Energies, vol. 7, no. 4, pp. 2027–2050, 2014.

[7] J. Soares, B. Canizes, M. A. F. Ghazvini, Z. Vale, and G. K. Venayag-
amoorthy, “Two-stage stochastic model using benders decomposition
for large-scale energy resource management in smart grids,” IEEE

Transactions on Industry Applications, vol. 53, no. 6, pp. 5905–5914,
Nov 2017.

[8] W. Su, J. Wang, and J. Roh, “Stochastic energy scheduling in microgrids
with intermittent renewable energy resources,” IEEE Transactions on

Smart Grid, vol. 5, no. 4, pp. 1876–1883, July 2014.
[9] M. Rahimiyan and L. Baringo, “Strategic bidding for a virtual power

plant in the day-ahead and real-time markets: A price-taker robust
optimization approach,” IEEE Transactions on Power Systems, vol. 31,
no. 4, pp. 2676–2687, 2016.

[10] L. Ju, Z. Tan, J. Yuan, Q. Tan, H. Li, and F. Dong, “A bi-level stochastic
scheduling optimization model for a virtual power plant connected to
a wind–photovoltaic–energy storage system considering the uncertainty
and demand response,” Applied Energy, vol. 171, pp. 184–199, 2016.

[11] F. Lezama, L. E. Sucar, E. M. de Cote, J. Soares, and Z. Vale,
“Differential evolution strategies for large-scale energy resource man-
agement in smart grids,” in Proceedings of the Genetic and Evolutionary

Computation Conference Companion. ACM, 2017, pp. 1279–1286.
[12] F. Lezama, E. M. de Cote, L. E. Sucar, J. Soares, and Z. Vale, “Evo-

lutionary framework for multi-dimensional signaling method applied to
energy dispatch problems in smart grids,” in International Conference

on Intelligent System Application to Power Systems, 2017, pp. 1–6.
[13] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-

adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on Evo-

lutionary Computation, vol. 10, no. 6, pp. 646–657, Dec 2006.
[14] F. Lezama, J. Soares, Z. Vale, and J. Rueda. (2017, Dec.)

Guidelines for the CEC 2018 competition on evolutionary com-
putation in uncertain environments: A smart grid application.
http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/.

[15] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE transactions on evolutionary computation,
vol. 15, no. 1, pp. 4–31, 2011.

[16] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a

practical approach to global optimization. Springer Science & Business
Media, 2006.
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