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Abstract 

This paper proposes an optimal bidding strategy for autonomous residential energy management 

systems. This strategy enables the system to manage its domestic energy production and 

consumption autonomously, and trade energy with the local market through a novel hybrid 

interval-stochastic optimization method. This work poses a residential energy management 

problem which consists of two stages: day-ahead and real-time. The uncertainty in electricity 

price and PV power generation is modeled by interval-based and stochastic scenarios in the day-

ahead and real-time transactions between the smart home and local electricity market. 

Moreover, the implementation of a battery included to provide energy flexibility in the 

residential system. In this paper, the smart home acts as a price-taker agent in the local market, 

and it submits its optimal offering and bidding curves to the local market based on the 

uncertainties of the system. Finally, the performance of the proposed residential energy 

management system is evaluated according to the impacts of interval optimistic and flexibility 

coefficients, optimal bidding strategy, and uncertainty modeling. The evaluation has shown that 

the proposed optimal offering model is effective in making the home system robust and achieves 

optimal energy transaction. Thus, the results prove that the proposed optimal offering model for 

the domestic energy management system is more robust than its non-optimal offering model. 

Moreover, battery flexibility has a positive effect on the system’s total expected profit. With 

regarding to the bidding strategy, it is not able to impact the smart home’s behavior (as a 

consumer or producer) in the day-ahead local electricity market. 

Abstract: Bidding strategy, energy management, interval optimization, smart home, stochastic 

programming. 
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Nomenclatures 

Indices 

t Index of time periods. 

j Index of electrical loads. 

𝜔 Index of real-time scenarios.  

Objective Function Variables 

𝐸𝑃 Expected profit ($). 

Day-ahead Variables 

𝜆𝑑𝑎(𝑡) Day-ahead electricity price at time period t (€/kWh). 

𝐶𝑑𝑎(𝑡) Day-ahead state of the charge of the battery at time period t (kWh). 

𝐸𝐿𝑑𝑎(𝑡) Day-ahead home energy consumption at time period t (kWh). 

𝑘(𝑡) Day-ahead Dispatched status of PV power system at time period t. 

𝑃𝑐ℎ 
𝑑𝑎(𝑡) Day-ahead battery energy charged at time period t (kWh). 

𝑃𝑑𝑖𝑠
𝑑𝑎(𝑡) Day-ahead energy discharged from the battery at time period t (kWh). 

𝑃𝑑𝑖𝑠,𝑖𝑛
𝑑𝑎 (𝑡) Day-ahead discharged energy of the battery that is injected to the smart home 

at time period t (kWh). 

𝑃𝑑𝑖𝑠,𝑜𝑢𝑡
𝑑𝑎 (𝑡) Day-ahead energy discharged from the battery that is injected into the power 

grid at time period t (kWh). 

𝑃𝑝𝑣,𝑖𝑛
𝑑𝑎 (𝑡) Day-ahead PV energy generation that is injected to the smart home at time 

period t (kWh). 

𝑃𝑝𝑣,𝑜𝑢𝑡
𝑑𝑎 (𝑡) Day-ahead PV energy generation that is injected into the power grid at time 

period t (€/kWh). 
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𝑃𝑝𝑣,𝑝
𝑑𝑎 (𝑡) Day-ahead PV energy generation at time period t (kWh). 

𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡) Day-ahead energy purchased from the local market at time period t (kWh). 

𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡) Day-ahead energy sold from home to the local market at at time period t (kWh). 

𝑢𝑑𝑎(𝑡) Day-ahead discharging commitment binary variable for the battery at time 
period t. 

𝑣𝑑𝑎(𝑡) Day-ahead transacted energy status at time period t (kWh). 

Real-time Variables 

𝛥𝑃𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) Real-time sold energy from home to the local market in scenario 𝜔 and at time 

period t (kWh). 

𝛥𝑃𝑛𝑒𝑡
𝑟𝑡 (𝑡, 𝜔) Real-time energy purchased from the local market in scenario 𝜔 and at time 

period t (kWh). 

𝜃𝑖𝑛(𝑡, 𝜔) Indoor temperature in scenario 𝜔 and at time period t (℃). 

𝐶𝑟𝑡(𝑡, 𝜔) Real-time state of charge of the battery in scenario 𝜔 and at time period t (kWh). 

𝐸𝐿𝑟𝑡(𝑡, 𝜔) Real-time home energy consumption in scenario 𝜔 and at time period t (kWh). 

𝐸𝐿𝑗
𝑟𝑡(𝑡, 𝜔) Real-time energy consumption of load j in scenario 𝜔 and at time period t (kWh). 

𝐸𝐿𝑚𝑟𝑠
𝑟𝑡 (𝑡, 𝜔) Real-time energy consumed by the must-run services in scenario 𝜔 and at time 

period t (kWh). 

𝐸𝐿𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) Real-time energy consumed by the pool pump in scenario 𝜔 and at time period 

t (kWh). 

𝐸𝐿𝑠ℎ
𝑟𝑡 (𝑡, 𝜔) Real-time energy consumed by the space heater in scenario 𝜔 and at time 

period t (kWh). 

𝐸𝐿𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔) Real-time energy consumed by the storage water heater in scenario 𝜔 and at 

time period t (kWh). 
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𝐸𝑆𝑟𝑡(𝑡, 𝜔) Load shedding of home in scenario 𝜔 and at time period t (kWh). 

𝐸𝑆𝑗
𝑟𝑡(𝑡, 𝜔) Shedding of load j in scenario 𝜔 and at time period t (kWh). 

𝐸𝑆𝑚𝑟𝑠
𝑟𝑡 (𝑡, 𝜔) Load shedding of the must-run services in scenario 𝜔 and at time period t (kWh). 

𝐸𝑆𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) Load shedding of the pool pump in scenario 𝜔 and at time period t (kWh). 

𝐸𝑆𝑠ℎ
𝑟𝑡(𝑡, 𝜔) Load shedding of the space heater in scenario 𝜔 and at time period t (kWh). 

𝐸𝑆𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔) Load shedding of the storage water heater in scenario 𝜔 and at time period t 

(kWh). 

𝐿𝑚𝑟𝑠
𝑟𝑡 (𝑡, 𝜔) Real-time load of the must-run services in scenario 𝜔 and at time period t (kW). 

𝐿𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) Real-time load of the pool pump in scenario 𝜔 and at time period t (kW). 

𝐿𝑠ℎ
𝑟𝑡 (𝑡, 𝜔) Real-time load of the space heater in scenario 𝜔 and at time period t (kW). 

𝐿𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔) Real-time load of the storage water heater in scenario 𝜔 and at time period t 

(kW). 

𝑃𝑐ℎ 
𝑟𝑡 (𝑡, 𝜔) Real-time battery energy charged in scenario 𝜔 and at time period t (kWh). 

𝑃𝑑𝑖𝑠
𝑟𝑡 (𝑡, 𝜔) Real-time energy discharged from the battery in scenario 𝜔 and at time period 

t (kWh). 

𝑃𝑑𝑖𝑠,𝑖𝑛
𝑟𝑡 (𝑡, 𝜔) Real-time energy discharged from the battery that is injected into the smart 

home in scenario 𝜔 and at time period t (kWh). 

𝑃𝑑𝑖𝑠,𝑜𝑢𝑡
𝑟𝑡 (𝑡, 𝜔) Real-time energy discharged from the battery that is injected into the power 

grid in scenario 𝜔 and at time period t (kWh). 

𝑃𝑝𝑣
𝑟𝑡(𝑡, 𝜔) Real-time PV energy generation in scenario 𝜔 and at time period t (kWh). 

𝑃𝑝𝑣,𝑖𝑛
𝑟𝑡 (𝑡, 𝜔) Real-time PV energy generation that is injected into the smart home in scenario 

𝜔 and at time period t (kWh). 



5 
 

𝑃𝑝𝑣,𝑜𝑢𝑡
𝑟𝑡 (𝑡, 𝜔) Real-time PV energy generation that is injected into the power grid at scenario 

𝜔 and at time period t (kWh). 

𝑆𝑃𝑉(𝑡, 𝜔) Energy spilled from PV in scenario 𝜔 and at time period t (kWh). 

𝑢𝑟𝑡(𝑡, 𝜔) Real-time discharging commitment binary variable for the battery in scenario 𝜔 
and at time period t. 

𝑣𝑟𝑡(𝑡, 𝜔) Day-ahead transacted energy status at scenario 𝜔 and at time period t. 

𝑧(𝑡, 𝜔) Operation status of the pool pump in scenario 𝜔 and at time period t. 

Parameters 

𝛼𝑝𝑟𝑖𝑐𝑒 Optimistic coefficient of price. 

𝛼𝑝𝑣 Optimistic coefficient of PV energy generation. 

𝜎𝑝𝑟𝑖𝑐𝑒
𝑑𝑛 (𝑡) Lower bound predicted price error at time period t (€/kWh). 

𝜎𝑝𝑟𝑖𝑐𝑒
𝑢𝑝 (𝑡) Upper bound predicted price error at time period t (€/kWh). 

𝜎𝑝𝑣
𝑑𝑛(𝑡) Lower bound predicted error for PV energy generation at time period t (kWh). 

𝜎𝑝𝑣
𝑢𝑝(𝑡) Upper bound predicted error for PV energy generation at time period t (kWh). 

𝜆𝑑𝑎(𝑡) Day-ahead electricity price at time period t (€/kWh). 

𝜆𝑝𝑟𝑒𝑑(𝑡) Day-ahead price prediction at time period t (€/kWh). 

𝜆𝑛𝑒𝑡
𝑟𝑡 (𝑡, 𝜔) Price of the electrical energy purchased from the real-time local market in 

scenario 𝜔 and at time period t (€/kWh). 

𝜆𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) Price of the electrical energy sold to the real-time local market in scenario 𝜔 

and at time period t (€/kWh). 

𝜂𝐵2𝐻 Discharging efficiency of the battery. 
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𝜂𝐻2𝐵  Charging efficiency of the battery. 

𝛾 Flexibility coefficient. 

𝜋𝜔 Probability of real-time scenarios in scenario 𝜔. 

𝜃𝑑𝑒𝑠
𝑖𝑛  Desired indoor temperature (℃). 

𝜃𝑖
𝑖𝑛 Initial indoor temperature (℃). 

𝜃𝑜𝑢𝑡,𝑝𝑟𝑒𝑑(𝑡, 𝜔) Predicted outdoor temperature in scenario 𝜔 and at time period t (℃). 

𝐶 Thermal energy capacity of the building  (kWh/℃). 

𝐶𝑖 The initial state of the charge of the battery (kWh). 

𝐸𝐿𝑝𝑟𝑒𝑑(𝑡)  Day-ahead predicted of home’s energy consumption at time period t (kWh). 

𝑃𝑏
𝑚𝑎𝑥  Maximum storage level of the battery (kWh). 

𝑃𝑏
𝑚𝑖𝑛 Minimum storage level of the battery (kWh). 

𝐿𝑝𝑝
𝑚𝑎𝑥  Maximum electrical consumption for the pool pump (kW). 

𝐿𝑠ℎ
𝑚𝑎𝑥  Maximum electrical consumption for the space heater (kW). 

𝐿𝑠𝑤ℎ
𝑚𝑎𝑥  Maximum electrical consumption of the storage water heater (kW). 

𝐿𝑖
𝑚𝑟𝑠 Initial load consumption of the must-run services (kW). 

𝐿𝑖
𝑝𝑝 Initial load consumption of the pool pump (kW). 

𝐿𝑚𝑟𝑠
𝑝𝑟𝑒𝑑(𝑡) Predicted electrical consumption for the must-run services in scenario 𝜔 and 

at time period t (kW). 

𝐿𝑖
𝑠ℎ  Initial load consumption of the space heater (kW). 

𝐿𝑖
𝑠𝑤ℎ  Initial load consumption of the storage water heater (kW). 



7 
 

𝑃𝑃𝑉
𝑝𝑟𝑒𝑑(𝑡) Day-ahead predicted PV energy generation at time period t (kWh). 

𝑃𝑝𝑣
𝑠𝑐𝑒𝑛(𝑡, 𝜔) Scenarios of wind energy generation in scenario 𝜔 and at time period t (kWh). 

𝑅 Thermal resistance of the building shell (℃/kW). 

𝑆𝑚𝑎𝑥 Maximum capacity of the end-user distributed line (kWh). 

𝑇𝑂𝑁 Maximum daily-hours that pool pump can be ON (h). 

𝑈𝑠𝑤ℎ
𝑚𝑎𝑥 Daily energy consumption for the storage water heater (kWh). 

𝑉𝑃𝑉
𝑆  Cost of PV Spillage (€/kWh). 

𝑉𝑂𝐿𝐿𝑗(𝑡) Value Of Lost Load (VOLL) of load j at time period t (€/kWh). 

𝑤𝑚𝑎𝑥   Maximum ramping rate of the battery’s state of charge (kWh). 

𝑤𝑚𝑖𝑛 Minimum ramping rate of the battery’s state of charge (kWh). 

1. Introduction 
1.1. Aims and Approaches 

Customers are going to play a key role in the prospective power systems [1]. This will be possible 

because power will no longer be generated at centralized facilities, instead different technologies 

will be used to generate energy locally, this is called distributed generation. The infrastructure of 

smart grid makes this transition possible [1]. Thus, in power distribution systems’ demand-side 

players -e.g. smart homes- will manage their own electrical energy according to the real and fair 

price [2]. Besides, current electricity markets are not able to satisfy customers’ strategic behavior 

based on their autonomous decision-makings [3]. Hence, decentralized electricity markets are 

capable of adapting to the flexible behavior of electrical customers.  In this way, smart homes are 

active agents and play a critical role in the bottom layer of the power systems. Smart homes are 

prosumers, this means they can be both producers and consumers. Hence, smart homes need 

energy management systems in order to make optimum decisions related to the management of 

energy inside the home, such as the choice of the best strategies when trading energy with other 

players (e.g. aggregators, retailers, local market operator, other consumers) in the distribution 

power network. In this way, distribution power networks are defined as complex ecosystems 

consisting of machines, networks, procedures, operators, and players which are organized 

hierarchically in the bottom layer of power systems in order to deliver electric power to end-

users [34]. Different studies have considered distinct aspects of Residential Energy Management 
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Systems (REMSs), e.g. residential electrical appliances [7], the main purposes of residential 

scheduling [8, 15], decision-making under uncertainty [2], the implementation of the Residential 

Energy Management Systems (REMSs) [7], and interaction between the REMSs and other 

systems in their neighborhood or up-stream grid [2]. 

1.2. Literature review and Contributions 

Residential energy management systems have been modeled and studied from different points 

of view. For instance, in [4], a multi agent-based structure is presented to model homes and 

retailers in the distribution power network. The main purpose of [4] is to optimize residential 

Demand Response (DR). This way, authors predict electrical loads and implement the optimal 

load control model for home agents. In [5], authors propose a multi-objective stochastic 

optimization problem. According to their model, the REMS can control home appliances, and 

exchange energy and price with the upstream power grid's agents. In [6-8], REMSs are 

implemented by means of Multi Agent Systems (MASs). In [6], the main goal of authors was to 

provide optimum DR without negatively impacting the consumers’ level of comfort. Demand 

response was a topic of interest to many authors. References [7, 8] propose a MAS-based REMS 

which enables smart homes to manage their energy autonomously and trade it with the local 

electricity market based on Time of Use (ToU) tariff. In [9], the home appliances are controlled 

under uncertainty of outdoor temperature and electricity price based on the DR programs. In 

[10], a combined DR program based on machine learning and an optimization method is used in 

the REMS. In [11], the uncertainty of price and residential loads is tackled via chance constrained 

programming, and the DR is used to optimize the operation of devices. In [12], authors classified 

domestic appliances into fixed and flexible loads. Moreover, the purpose of their proposed model 

is to tradeoff between the expected energy cost and the residents’ level of comfort. Reference 

[13] assumes that the main purpose of REMSs is to improve the energy efficiency of smart homes. 

In [14], authors presented a MAS-based cooperation smart grid and smart buildings to maximize 

comfort and energy efficiency, it also proposes a MAS-based approach for energy management 

in smart homes. According to [14], smart homes can manage their energy independently to 

decrease expected electricity cost of homes and make a softer load profile. 

In [15, 16], different strategies were proposed for the control of energy storage systems (e.g. 

batteries and EVs).  In [15], authors defined a flexibility coefficient to model energy flexibility in 

the REMS. Moreover, the hybrid interval-stochastic optimization method was used to consider 

uncertainties in the system. In [16], authors proposed a method to operate renewable generation 

and minimize cost of lost energy in the home area and bought energy from the power grid. 

Reference [17] proposed an REMS which consists of prediction, operation and control units, and 

utilized stochastic programming in the modeling of the uncertainty of different home appliances. 

In [18-20], authors predict and estimate the behavior of residential consumers and analyze their 

impacts on energy consumption. In [21], the bi-level day-ahead REM program was presented. In 

the first level, electrical customers scheduled their energy autonomously. In the second level, the 

system operator optimized the centralized multi-objective problem through fuzzy decision-
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making. In [22], a decomposition approach was adapted in autonomous REMSs. In [23] authors 

used Markovian processes to model the uncertainty of power generation from renewable energy 

resources and controllable loads that depend on weather conditions. Reference [24] presented 

three methods for reducing the energy costs in the REMS. These methods were based on a 

partially observable Markov decision process. In [25], authors solved the home energy 

management problem through the two-point estimate optimization method to model 

uncertainty of PV power generation and decrease the computational burden of the problem. 

The interaction between small consumers and all emerging energy resources is enhanced by the 

introduction of local energy markets. In Europe for example, interest in energy communities has 

increased since energy cooperative have already undertaken 2400 initiatives [26]. Energy 

cooperative initiatives have been driven by the inability of public utilities to provide the kind of 

services that end-users require, as well as to contest the existing monopoly [26]. In this way the 

small final users (consumers, producers, and prosumers), are creating local communities of 

energy. The creation of local electricity markets could be the solution to some of the economic 

and efficiency challenges that energy cooperatives will face. In [27], it is argued that the market 

for electricity transactions at the local level was probably constrained due to the focus on the 

restructuring of electricity markets. In turn, the author affirms that the creation of business 

models of the local power supply has the potential to give a better way to the production of small 

community generators, thus supporting the growing sector of local generation. In [28], the 

author states that the realization of a local commerce contributes significantly to the autonomy 

of the micro-networks, reducing the demand and dependence of the main network. The author 

also suggests that it is intriguing to devise a market that allows local commerce of electricity 

between users who have excess electricity and those who demand it. Marketing at the local level 

could also be beneficial to the network itself. According to the ENTSO-E harmonized electricity 

market role model a local electricity market is a geographic area where consumption and 

production can be metered, there are no transmission capacity restrictions and for which there 

is one balance responsible party (BRP) and, thus, one price for the imbalance [28]. One of the 

most promising approaches in this domain is the creation of a local grid controller (LGC) which is 

responsible for different control tasks, i.e. voltage and frequency control, demand response, DG 

control as well as market trading and system monitoring. Therefore, certain participants and 

actors are clustered and connected to the LGC. Thus, a large number of users (producers, 

consumers, suppliers, network operators, aggregators, etc.) are connected through a bi-

directional flow of energy and information. The interface between the market system operator 

and the LGC, and consequently the producers, consumers, etc., is given by an aggregator. The 

aggregator participates in the energy trading and provides further services to the distribution 

grid [28]. Within local energy markets, different trading mechanism, e.g. bilateral contracts, 

auctions, supermarkets, etc. are intended. 

From this literature review we can see that REMS proposals deal with a wide range of issues as 

shown in Table (1). Some of these works [1-5, 7-8, 14-16, 21-22] discussed the possible 

interaction between buildings and distribution power network, retailers and local electricity 
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markets. For instance, authors in [30] proposed a day-ahead bidding approach, which allowed 

residential consumers to submit their bidding curves to the power system operator. Reference 

[31] presented a probabilistic method where the demand aggregator can submit bids for its 

residential customers to follow the DR programs.  

Reference [32, 33] presented pricing methodologies to provide reserve from buildings so as to 

counteract the uncertainty of renewable energy generation. In [32, 33], authors proposed a 

decentralized approach to obtain distribution locational marginal price. However, a building 

integration framework has been presented in the distribution grid. Therefore, buildings are not 

able to participate autonomously in the local market. In other words, aggregators are in charge 

of managing the buildings’ demand flexibility in [32]. Moreover, in [33], authors proposed an 

extended model of [32] where aggregators handle the uncertainties of flexible loads. Thus, 

cooperation between the Distribution System Operator (DSO) and the aggregators has been 

studied in [33].  To the best of our knowledge, however, there is no other study in the literature 

to present an optimal model for residential energy management systems that would empower 

buildings and consumers to participate directly as autonomous players in the local electricity 

market. This is a significant gap in the literature that should be promptly addressed because local 

energy markets are quickly becoming a reality, and small consumers and prosumers are not 

prepared to deal with this paradigm change. This may cause significant problems to the 

successful implementation and execution of local markets, since the consumer is the central 

player. 

This paper presents a probabilistic scenario-based method for the autonomous management of 

the production and consumption of residential energy and for deriving optimal offering and 

bidding curves as a price-taker prosumer in a local electricity market. The proposed residential 

energy management problem consists of two stages: day-ahead and real-time stages. In the day-

ahead stage, uncertainty in the electricity price and PV energy generation is modeled by interval-

based scenarios. However, uncertainty in the REMS is modeled through scenarios in the real-time 

stage, to determine optimal transactions between the smart home and the local electricity 

market. In our proposed REMS, the battery is considered to provide the energy flexibility in the 

domestic system. According to our proposed model, the REMS can send its optimal offering and 

bidding curves to the local market based on the uncertainties of the system a price-taker agent 

in the local market. On the other hand, our proposed REMS without optimal bidding strategy is 

able to participate in peer-to-peer energy transactions with other small consumers, producers, 

and prosumers in its neighborhood through its optimum decisions in the management of the 

smart home. 

1.3. Paper organization 

The rest of this paper is organized as follows. Section 2 describes our method to model 

uncertainty in the system and proposes the two-stage probabilistic scenario-based residential 

energy management problem for which optimal offering and bidding strategies are derived. In 
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Section 4, the effectiveness of our proposed methodology is studied. Finally, Section 5 concludes 

the paper. 

Table 1. Taxonomy of some of the reviewed papers. 

References Model Purpose Decision-making Interaction 

[1] 
Mathematical-

based 
Maximizing comfort & 

energy efficiency 
Deterministic 

Interaction between smart 
buildings and smart grid 

[4] 
Forecasting-

based 
Optimizing residential  

DR 
Point 

forecasting 
No communication 

between homes 

[5] 
Mathematical-

based 
Optimizing residential 

energy scheduling 
Stochastic 

programming 

Homes transact energy and 
price signals with 

transaction energy nodes 

[7] 
Mathematical-

based 
Optimizing residential 

energy based DRP. 
Interval 

optimization 

Interaction between the 
smart home and the local 

market 

[8] 
Mathematical-

based 
optimizing residential 

energy based DRP 

Interval 
optimization based 
on moving window 

algorithm 

Interaction between the 
smart home and the local 

market 

[13] 
Real-time  
metering 

Improving energy efficiency Deterministic 
Only interaction between 
devices inside the home 

[14] 
Mathematical-

based 

Minimizing home’s 
electricity bill to flatten 

total demand curve  

Stochastic 
model 

Each home manages 
energy autonomously, and 

there is no interaction 
between homes 

2. Methodology 

It is not easy to obtain an accurate market price forecast, due to the main characteristics of 

market prices. The main features of electricity prices are non-stationary mean and variance, 

multiple seasonality and the calendar effect. Uncertainty is associated with the forecasted values. 

Although the electricity market prices are highly volatile, the market agents need to obtain an 

estimation from the price to make optimal decisions in the market [39]. This section discusses 

the uncertainty modeling for power generation of the PV solar panels and market prices. 

2.1. Uncertainty Representation 

The modeling of uncertainty is one of the main concerns of the energy management systems. In 

[35], authors studied energy systems from the perspective of decision making under uncertainty. 

In this way, in [35], authors classified uncertainty modelling methods into probabilistic, interval, 

robust, possibilistic, hybrid probabilistic-possibilistic optimization approaches, and information 

gap decision theory. In [36] and [37], authors presented a combined forecasting technique using 

time-varying weights to model uncertainty of distributed energy resources in electric power 

systems. In this way, uncertainties have been modeled by interval bands and stochastic scenarios 

to be considered in interval linear programming, mixed-integer linear programming, and chance-
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constrained programming in a general structure. In addition, in [37], bi-level programming has 

been presented to control air pollution and plan renewable energy resources in an inexact bi-

level optimization model. In [37], authors proposed a multi-level algorithm for decision making 

problems. According to the proposed model of [38], authors did not concentrate on interval 

bands of uncertain parameters as inputs of the system. Hence, solutions of the decision-makers 

have been represented by interval bands, and authors proposed how optimal solutions could be 

achieved if the solutions desired by the decision-makers are conflicting. 

Among the uncertainties that influence the operation of the residential energy management 

systems, the solar irradiation and the electricity market prices have the highest impact [45]. 

Hence, the uncertainties associated with these inputs are considered in the proposed model and 

the scheduling problem is developed as a stochastic scenario-based optimization model [46].  

In stochastic models, a set of realizations should be considered, and therefore the foremost 

problem is to produce a set of scenarios for random variables, which can effectively characterize 

the probabilistic features of the data [39, 47]. The initial set of scenarios is a large data set 

generated by the Monte Carlo Simulation (MCS) technique for representing power system 

uncertainties. The MCS parameters are the probability distribution functions of the forecast 

errors, which are obtained from the historical data [47,49]. An additional term which can be 

positive or negative is added to the forecasted profile (xforecasted(t)) to include the impact of 

uncertainty. 

𝑥𝑠(𝑡) = 𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑(𝑡) + 𝑥𝑒𝑟𝑟𝑜𝑟,𝑠(𝑡), ∀ 𝑡, ∀ 𝑠 (1) 

According to Eq. (1), the error term, xerror,s(t), is a zero-mean noise with standard deviation σ 

[47,50]. Scenarios are represented with xs(t). In this model, the forecast errors are all assumed 

normally distributed. It is noticeable that electricity prices present very high spikes. However, it 

depends on the structure of the markets and the behavior of the participants. Some studies, e.g. 

[55-56], authors in [55] prove that the market price can fit well with the normal distribution 

function, while [56] adopts normal distribution to model market price uncertainty. Thus, the 

scenario tree concept can clearly explain how the discrete outcome for each stochastic input can 

be combined to construct the larger set of scenarios. A scenario tree consists of nodes that 

represent the states of the random variable at particular time points, branches to show different 

realizations of the variable and the root which shows the beginning point where the first stage 

decisions are made [47]. Fig. 1 shows the scenario tree model for the proposed scenario-based 

stochastic programming model [47]. xn
s(t)refers to the nth random variable. Variables can be of 

different nature. In this way, x1
s(t) may represent PV power generation and x2

s(t) can denote 

local market prices. The number of the nodes at the second stage is equal to the total number of 

scenarios. The occurrence probability of each scenario is equal to the product of the branches’ 

probabilities [47-48]. 

Using the initial set of generated realizations in the optimization problem will lead to a large-

scale optimization model [47]. It is essential to obtain a tradeoff between model accuracy and 
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the computation speed [51,52]. In order to handle the computational tractability of the problem, 

the standard scenario reduction techniques developed in [53] is implemented. The scenario 

reduction algorithms exclude the scenarios with low probabilities of occurrence and combines 

the scenarios that are close to each other in terms of statistic metrics [53]. They determine a 

scenario subset of the prescribed cardinality and probability which is closest to the initial 

distribution in terms of a probability metric [49]. The main purpose of scenario reduction is to 

reduce the dimension of the problem through decreasing the number of variables and equations.  

Thus, it would be possible to obtain the solutions more efficiently, without losing the main 

statistical characteristics of the initial dataset [54]. The drawback of applying these approaches 

is introducing imprecision in the final solution [52]. The reduction algorithms proposed in [53] 

incorporate algorithms with different computational performance and accuracy, namely fast 

backward method, fast backward/forward method and fast backward/backward method. The 

selection of the algorithms depends on the problem size and the expected solution accuracy 

[49,53]. For instance, the best computational performance with the worst accuracy can be 

provided by the fast-backward method for large scenario trees. Furthermore, the forward 

method provides the best accuracy and the highest computational time. Thus, it is usually used 

where the size of reduced subset is small [49].  

 

Figure 1. Scenario tree representation [47]. 

2.2. Problem Formulation 

This paper addresses a two-stage probabilistic residential energy problem in which it is necessary 

to determine optimal offering and bidding curves in the Day-Ahead (DA) and Real-Time (RT) Local 
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Electricity Markets (LEMs). Energy is defined to be the only electrical commodity that is 

exchanged with the DA and RT local electricity markets. In the DA stage, the uncertainty of the 

PV energy generation and electricity price is modeled through interval-based scenarios, but the 

scenarios are used to model the corresponding uncertainty of the PV generation and electrical 

price in the RT stage. In this way, the two-stage interval-stochastic optimization method to solve 

the residential energy management problem is described. Then, our proposed problem is 

modeled by a two-stage stochastic programming. The difference between these two methods is 

to model the DA stage. While the uncertainties in the DA stage are modeled by interval bands in 

interval-optimization method, the stochastic interval-based scenarios are used to model the DA 

stage’s uncertainty in the two-stage stochastic programming. 

2.2.1. Two-stage Interval-Stochastic model  

a. Objective Function 

In the context of this paper, smart home- as a prosumer- is defined as an active player that can 

trade energy with the LEM in the DA and RT stages. Fig. 2 shows a schematic of our proposed 

residential energy management system. Thus, the objective is to maximize the Expected Profit 

(EP) of the energy served in the home and the energy transacted with the market. In this paper, 

the PV system is considered as the Distributed Energy Resource (DER) in the domestic energy 

system. The battery system acts as an Energy Storage System (ESS). Also, Electrical Loads (ELs) 

consist of Space Heater (SH), Storage Water Heater (SWH), Pool Pump (PP), and Must-Run 

Services (MRSs).   

Max. 

𝐸𝑃 =∑[𝜆𝑑𝑎(𝑡)(𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡) − 𝑃𝑛𝑒𝑡

𝑑𝑎(𝑡))]

𝑡

⏞                    
𝑑𝑎𝑦−𝑎ℎ𝑒𝑎𝑑 𝑃𝑟𝑜𝑓𝑖𝑡

+

∑𝜋𝜔
𝜔

{∑(𝜆𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔)

𝑡

Δ𝑃𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) − 𝜆𝑛𝑒𝑡

𝑟𝑡 (𝑡, 𝜔)Δ𝑃𝑛𝑒𝑡
𝑟𝑡 (𝑡, 𝜔)

−𝑉𝑃𝑉
𝑆 𝑆𝑃𝑉(𝑡, 𝜔) −∑𝑉𝑂𝐿𝐿𝑗(𝑡)𝐸𝑆𝑗

𝑟𝑡(𝑡, 𝜔))

𝑗

}

⏞                                      
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡

 

(2) 
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Figure 2. A generic layout of our residential energy management system. 

As seen in Eq. (2), the EP is represented as an objective function of the two-stage interval-

stochastic residential energy management problem.  The EP consists of two parts. The first part 

represents the profit of the day-ahead stage and the second part expresses the real-time 

expected profit. In the DA part, the revenue of selling the electrical energy to local market is 

stated as a first term, and the second term states the costs of buying the electrical energy from 

the market. In the RT part, they are presented in the following order:  the revenue of extra energy 

sold in real-time, the cost of extra energy bought in real-time, PV’s spillage cost, and the cost of 

loads’ shedding. The constraints related to the DA and RT stages are represented in the following.  

b. Day-ahead Stage 

As discussed further on, we account that the smart home can transact electrical energy in both 

day-ahead and real-time local electricity markets. Eqs. (3) and (4) represent the power flow 

limitation through the distribution line which ends at the home building. In this way, Smax 

expresses the maximum power capacity of the distribution line that links the smart home and 

the power grid (hereinafter, authors refer to the Smart HomE as “SHE” for short, note that the 

abbreviation does not intend to make any association with gender). Also, vda(t) is a binary 
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variable which states the transacted energy status. In other words, SHE purchases energy from 

the local market when vda(t) is equal to 1, and SHE sells energy to the local market when vda(t) 

equals 0. Eqs. (3) and (4) guarantee that the SHE cannot act as a producer and a consumer, 

simultaneously. In this model, the smart home provides for its demand first and then SHE sells 

its extra energy to the local market. 

0 ≤ 𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡) ≤ 𝑆𝑚𝑎𝑥𝑣

𝑑𝑎(𝑡) , ∀ 𝑡 (3) 

0 ≤ 𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡) ≤ 𝑆𝑚𝑎𝑥(1 − 𝑣

𝑑𝑎(𝑡)) , ∀ 𝑡 (4) 

Moreover, Eq. (5) expresses that the energy sold to the local market consists of two terms: the 

energy produced by the PV system, Ppv,out
da (𝑡), and the discharged energy, Pdis,out

𝑑𝑎 (𝑡), of the 

battery system; these are injected into the power grid in the day-ahead stage.  Besides, the 

flexibility coefficient, γ,  is multiplied by the discharged and charged energy of the battery in the 

day-ahead stage, obtaining a value between 0 and 1. If γ equals 0 it means that the battery is not 

considered in the day-ahead residential energy management problem. On the other hand, the 

battery is considered to have full capacity in the day-ahead stage of the problem when γ equals 

1. Also, only the corresponding portion of the battery’s capacity will be considered in the day-

ahead stage when γ gets an amount between 0 and 1. 

𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡) = 𝑃𝑝𝑣,𝑜𝑢𝑡

𝑑𝑎 (𝑡) + 𝛾𝑃𝑑𝑖𝑠,𝑜𝑢𝑡
𝑑𝑎 (𝑡) , ∀ 𝑡 (5) 

Eq. (6) establishes the power balance equation due to the energy output of the PV system and 

the discharged energy of the battery injected into the home (Ppv,in
da (𝑡) and Pdis,in

𝑑𝑎 (𝑡), 

respectively), the electrical energy bought from the local market, Pnet
da (𝑡), total energy 

consumption of the domestic loads, ELda(t), and charged energy of the battery system, Ptω
ch.  

𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡) + 𝑃𝑝𝑣,𝑖𝑛

𝑑𝑎 (𝑡) + 𝛾𝑃𝑑𝑖𝑠,𝑖𝑛
𝑑𝑎 (𝑡) = 𝐸𝐿𝑑𝑎(𝑡) + 𝛾𝑃𝑐ℎ 

𝑑𝑎(𝑡) , ∀ 𝑡 (6) 

As discussed further in this paper, the DA stage’s uncertainty is modeled by interval bands in the 

two-stage interval-stochastic model. Eq. (7) presents the maximum and minimum bands of the 

price in the day-ahead local market. Hence, λpred(t) and σprice
up

(t)/σprice
dn (t) are predicted price 

and upper/lower predicted price error, respectively. Also, αprice is the corresponding Optimistic 

Coefficient (OC) of the electricity price. The OC is a slack parameter for the decision-maker which 
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can take amounts between 0 and 1. If αprice equals 0/1 the uncertainty of price is modeled as 

conservative/optimistic.  

𝜆𝑝𝑟𝑒𝑑(𝑡) − 𝜎𝑝𝑟𝑖𝑐𝑒
𝑑𝑛 (𝑡)(1 − 𝛼𝑝𝑟𝑖𝑐𝑒) ≤ 𝜆

𝑑𝑎(𝑡) ≤ 𝜆𝑝𝑟𝑒𝑑(𝑡) + 𝜎𝑝𝑟𝑖𝑐𝑒
𝑢𝑝 (𝑡)𝛼𝑝𝑟𝑖𝑐𝑒, ∀ 𝑡 (7) 

Moreover, the following constraints correspond to all devices in the smart home. The total 

potential energy generated by the PV system in each time period, Ppv,p
da (t), is the sum of the 

produced PV’s energy that is injected into the home, Ppv,in
da (t), and the power grid, Ppv,out

da (t) as 

represented in Eq. (8). Also, k(t) is a binary variable which states the dispatched status of the PV 

system.  

𝑃𝑝𝑣,𝑝
𝑑𝑎 (𝑡)𝑘(𝑡) = 𝑃𝑝𝑣,𝑖𝑛

𝑑𝑎 (𝑡) + 𝑃𝑝𝑣,𝑜𝑢𝑡
𝑑𝑎 (t), ∀ 𝑡 (8) 

Furthermore, our uncertainty modeling relies on confidence intervals for energy generation of 

the PV as well as price. Hence, Eq. (9) deals with the possibility of point forecasting error. This 

way, PPV
pred

(t) and σpv
up
(t)/σpv

dn(t) are predicted PV energy generation and upper/lower predicted 

energy error, respectively. Also, αpv is the corresponded Optimistic Coefficient (OC) of the PV 

energy produced that can be between 0 and 1. 

𝑃𝑃𝑉
𝑝𝑟𝑒𝑑(𝑡) − 𝜎𝑝𝑣

𝑑𝑛(𝑡)(1 − 𝛼𝑝𝑣) ≤ 𝑃𝑝𝑣,𝑝
𝑑𝑎 (𝑡) ≤ 𝑃𝑃𝑉

𝑝𝑟𝑒𝑑(𝑡) + 𝜎𝑝𝑣
𝑢𝑝(𝑡)𝛼𝑝𝑣, ∀ 𝑡 (9) 

The battery is used based on the charging and discharging strategies in the residential energy 

management problem. Eq. (10) represents the state-of-charge (SOC) balance equation of the 

battery, where 𝐶𝑖 is the initial state of charge in the battery.  

𝐶𝑑𝑎(𝑡) = 𝐶𝑑𝑎(𝑡 − 1) + 𝑃𝑐ℎ
𝑑𝑎(𝑡)𝜂𝐻2𝐵 −

𝑃𝑑𝑖𝑠
𝑑𝑎(𝑡)

𝜂𝐵2𝐻
                    , ∀ 𝑡 ≥ 2 

𝐶𝑑𝑎(𝑡) = 𝐶𝑖 + 𝑃𝑐ℎ
𝑑𝑎(𝑡)𝜂𝐻2𝐵 −

𝑃𝑑𝑖𝑠
𝑑𝑎(𝑡)

𝜂𝐵2𝐻
                                     , ∀ 𝑡 = 1 

(10) 

Eq. (11) presents the maximum and minimum limitations of the battery's SOC.  

𝑃𝑏
𝑚𝑖𝑛 ≤ 𝐶𝑑𝑎(𝑡) ≤ 𝑃𝑏

𝑚𝑎𝑥                                            , ∀ 𝑡 (11) 

The ramping upper and lower constraints related to the SOC are expressed in Eq. (12).  

−𝑤𝑚𝑖𝑛 ≤ 𝐶𝑑𝑎(𝑡) − 𝐶𝑑𝑎(𝑡 − 1) ≤ 𝑤𝑚𝑎𝑥                     , ∀ 𝑡 ≥ 2 (12) 
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−𝑤𝑚𝑖𝑛 ≤ 𝐶𝑑𝑎(𝑡) − 𝐶𝑖 ≤ 𝑤
𝑚𝑎𝑥                                , ∀ 𝑡 = 1 

Maximum and minimum limitations of the discharged and charged energy of the battery are 

stated in Eqs. (13) and (14), respectively.  

0 ≤ 𝑃𝑑𝑖𝑠
𝑑𝑎(𝑡) ≤ 𝑤𝑚𝑎𝑥𝑢𝑑𝑎(𝑡)                                        , ∀ 𝑡 (13) 

0 ≤ 𝑃𝑐ℎ
𝑑𝑎(𝑡) ≤ 𝑤𝑚𝑖𝑛(1 − 𝑢𝑑𝑎(𝑡) )                             , ∀ 𝑡 (14) 

Eq. (15) represents that the total discharged energy of the battery system, Pdis
da(t), is the sum of 

discharged energies that are injected into the home, Pdis,in
da (t), and the power grid, Pdis,out

da (t), in 

the day-ahead stage. 

𝑃𝑑𝑖𝑠
𝑑𝑎(𝑡) = 𝑃𝑑𝑖𝑠,𝑖𝑛

𝑑𝑎 (𝑡) + 𝑃𝑑𝑖𝑠,𝑜𝑢𝑡
𝑑𝑎 (𝑡)                                , ∀ 𝑡 (15) 

In our proposed model, it is considered that the day-ahead electrical loads are equal to the 

predicted load as seen in Eq. (16), and their corresponding equations are defined only in the real-

time stage. Moreover, for the sake of simplicity, the uncertainty of the electrical loads is not 

considered in this paper. 

𝐸𝐿𝑑𝑎(𝑡) = 𝐸𝐿𝑝𝑟𝑒𝑑(𝑡) , ∀ 𝑡 (16) 

c. Real-time Stage 

In the DA stage the smart home can exchange energy with the LEM. However, in contrast to the 

DA stage, stochastic programming is used to model the uncertainty of the electricity price and PV 

energy generation in the RT stage, and the prices of sold and bought electricity can be different 

in the RT stage. The power balance equation in the RT is expressed in Eq. (17) to represent the 

mismatch between the DA transacted energy and RT expected exchanged energy. According to 

Eq. (17), the sum of energy bought in the DA and RT markets, Pnet
da (t) and ∆Pnet

rt (t,ω), produced 

energy of the PV system in the RT, Ppv
rt(t, ω), and discharged energy of the battery in the RT, 

Pdis
rt (t,ω), equal total electrical energy consumption in the RT, ELrt(t,ω),  charged energy of the 

battery in the RT, Pch 
rt (t,ω), the energy sold to the local market in the DA and RT, Psold

da (t) and 

∆Psold
rt (t,ω), minus total energy loss, ESrt(t,ω).   
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𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡) + 𝑃𝑝𝑣

𝑟𝑡(𝑡, 𝜔) + 𝑃𝑑𝑖𝑠
𝑟𝑡 (𝑡, 𝜔) + ∆𝑃𝑛𝑒𝑡

𝑟𝑡 (𝑡, 𝜔)

= 𝐸𝐿𝑟𝑡(𝑡, 𝜔) − 𝐸𝑆𝑟𝑡(𝑡, 𝜔) + 𝑃𝑐ℎ 
𝑟𝑡 (𝑡, 𝜔) + 𝑃𝑠𝑜𝑙𝑑

𝑑𝑎 (𝑡)

+ ∆𝑃𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) , ∀ 𝑡, ∀𝜔 

(17) 

Eq. (18) presents the power flow limitation in a distribution line that ends at the smart home. It 

is noticeable that both, Eqs. (17) and (18), are coupling constraints that cause the DA and RT 

problems to be solved simultaneously. 

−𝑆𝑚𝑎𝑥 ≤ 𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡) + ∆𝑃𝑛𝑒𝑡

𝑟𝑡 (𝑡, 𝜔) − 𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡) − ∆𝑃𝑠𝑜𝑙𝑑

𝑟𝑡 (𝑡, 𝜔) ≤ 𝑆𝑚𝑎𝑥 , ∀𝑡 , ∀𝜔 (18) 

 In addition, Eqs. (19) and (20) ensure that the smart home cannot be a producer and a consumer 

in the same scenario in the real-time stage. 

0 ≤ ∆𝑃𝑛𝑒𝑡
𝑟𝑡 (𝑡, 𝜔) ≤ 𝑆𝑚𝑎𝑥𝑣

𝑟𝑡(𝑡, 𝜔) , ∀ 𝑡, ∀𝜔 (19) 

0 ≤ ∆𝑃𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) ≤ 𝑆𝑚𝑎𝑥(1 − 𝑣

𝑟𝑡(𝑡, 𝜔)) , ∀ 𝑡, ∀𝜔 (20) 

Eq. (21) represents the energy output equation of PV in the real-time stage. According to Eq. (21), 

Ppv
scen(t,ω) presents the stochastic potential PV energy generation, and SPV(t,ω) is the spilled 

energy of the PV system.  

𝑃𝑝𝑣
𝑟𝑡(𝑡, 𝜔) = 𝑃𝑝𝑣

𝑠𝑐𝑒𝑛(𝑡, 𝜔) − 𝑆𝑃𝑉(𝑡, 𝜔), ∀ 𝑡, ∀𝜔 (21) 

As well as Eq. (8), Eq. (22) presents the total energy generated by the PV system in the RT stage 

that is the sum of energy produced by the PV which is injected into the home, Ppv,in
rt (t,ω), and 

the energy grid, Ppv,out
rt (t, ω) .  

𝑃𝑝𝑣
𝑟𝑡(𝑡, 𝜔) = 𝑃𝑝𝑣,𝑖𝑛

𝑟𝑡 (𝑡, 𝜔) + 𝑃𝑝𝑣,𝑜𝑢𝑡
𝑟𝑡 (𝑡, 𝜔) , ∀ , ∀𝜔 (22) 

The maximum and minimum bands of spilled PV energy produced are represented in Eq. (23).  

0 ≤ 𝑆𝑃𝑉(𝑡, 𝜔) ≤  𝑃𝑝𝑣
𝑠𝑐𝑒𝑛(𝑡, 𝜔), ∀ 𝑡, ∀𝜔 (23) 

In the following, the battery system’s constraints in the RT stage are stated in Eqs. (24) -(29). 

𝐶𝑟𝑡(𝑡, 𝜔) = 𝐶𝑟𝑡(𝑡 − 1,𝜔) + 𝑃𝑐ℎ
𝑟𝑡(𝑡, 𝜔)𝜂𝐻2𝐵 −

𝑃𝑑𝑖𝑠
𝑟𝑡 (𝑡, 𝜔)

𝜂𝐵2𝐻
                    , ∀ 𝑡 ≥ 2, ∀𝜔 

𝐶𝑟𝑡(𝑡, 𝜔) = 𝐶𝑖                                                                     , ∀ 𝑡 = 1, ∀𝜔 

(24) 

𝑃𝑏
𝑚𝑖𝑛 ≤ 𝐶𝑟𝑡(𝑡, 𝜔) ≤ 𝑃𝑏

𝑚𝑎𝑥                                               , ∀ 𝑡, ∀𝜔 (25) 

−𝑤𝑚𝑖𝑛 ≤ 𝐶𝑟𝑡(𝑡, 𝜔) − 𝐶𝑟𝑡(𝑡 − 1,𝜔) ≤ 𝑤𝑚𝑎𝑥                 , ∀ 𝑡 ≥ 2, ∀𝜔 (26) 
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−𝑤𝑚𝑖𝑛 ≤ 𝐶𝑟𝑡(𝑡, 𝜔) − 𝐶𝑖 ≤ 𝑤
𝑚𝑎𝑥                                 , ∀ 𝑡 = 1, ∀𝜔 

0 ≤ 𝑃𝑑𝑖𝑠
𝑟𝑡 (𝑡, 𝜔) ≤ 𝑤𝑚𝑎𝑥𝑢𝑟𝑡(𝑡, 𝜔)                                  , ∀ 𝑡, ∀𝜔 (27) 

0 ≤ 𝑃𝑐ℎ
𝑟𝑡(𝑡, 𝜔) ≤ 𝑤𝑚𝑖𝑛(1 − 𝑢𝑟𝑡(𝑡, 𝜔) )                       , ∀ 𝑡, ∀𝜔 (28) 

𝑃𝑑𝑖𝑠
𝑟𝑡 (𝑡, 𝜔) = 𝑃𝑑𝑖𝑠,𝑖𝑛

𝑟𝑡 (𝑡, 𝜔) + 𝑃𝑑𝑖𝑠,𝑜𝑢𝑡
𝑟𝑡 (𝑡, 𝜔)                   , ∀ 𝑡, ∀𝜔 (29) 

In the context of this paper, electrical loads consist of loads that can be controllable and/or 

shiftable, or not. In this paper, Space Heater (SH) is a controllable load, Storage Water Heater 

(SWH) and Pool Pump (PP) are modeled as shiftable loads, and Must-Run Services (MRSs) are 

defined as a class of loads that are non-controllable and non-shiftable. Eqs. (30) and (32) 

represent the total electrical energy consumption and energy shedding in the RT stage. 

𝐸𝐿𝑟𝑡(𝑡, 𝜔) =∑𝐸𝐿𝑗
𝑟𝑡(𝑡, 𝜔)

𝑗

= 𝐸𝐿𝑠ℎ
𝑟𝑡 (𝑡, 𝜔) + 𝐸𝐿𝑠𝑤ℎ

𝑟𝑡 (𝑡, 𝜔) + 𝐸𝐿𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) + 𝐸𝐿𝑚𝑟𝑠

𝑟𝑡 (𝑡, 𝜔) , ∀ 𝑡, ∀𝜔 

(30) 

𝐸𝑆𝑟𝑡(𝑡, 𝜔) =∑𝐸𝑆𝑗
𝑟𝑡(𝑡, 𝜔)

𝑗

= 𝐸𝑆𝑠ℎ
𝑟𝑡(𝑡, 𝜔) + 𝐸𝑆𝑠𝑤ℎ

𝑟𝑡 (𝑡, 𝜔) + 𝐸𝑆𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) + 𝐸𝑆𝑚𝑟𝑠

𝑟𝑡 (𝑡, 𝜔) , ∀ 𝑡, ∀𝜔 

(31) 

Space heater controls the indoor temperature at the desired temperature band. Eq. (32) states 

the linear equation between the indoor and outdoor temperature and the electrical consumption 

of the space heater. Here, θi
in is the initial indoor temperature which, in this model is assumed 

to equal the desired temperature, θdes
in .  

θ𝑖𝑛(𝑡 + 1,𝜔) = 𝑒
−1
𝑅𝐶θ𝑖𝑛(𝑡, 𝜔) + 𝑅 (1 − 𝑒

−1
𝑅𝐶) 𝐿𝑠ℎ

𝑟𝑡 (𝑡, 𝜔) + (1 − 𝑒
−1
𝑅𝐶)θ𝑜𝑢𝑡,𝑝𝑟𝑒𝑑(𝑡, 𝜔),

∀𝑡 ≥ 2, ∀𝜔 

θ𝑖𝑛(𝑡, 𝜔) = 𝜃𝑖
𝑖𝑛 = 𝜃𝑑𝑒𝑠

𝑖𝑛 ,            ∀𝑡 = 1, ∀𝜔 

(32) 

Eq. (33) represents that the indoor temperature is limited to 1 degree above and below the 

desired temperature.  

−1 ≤ θ𝑖𝑛(𝑡, 𝜔) − 𝜃𝑑𝑒𝑠
𝑖𝑛 ≤ 1 (33) 

Besides, the corresponding maximum and minimum bands of the space heater’s load 

consumption in Eq. (34).  

0 ≤ 𝐿𝑠ℎ
𝑟𝑡 (𝑡, 𝜔) ≤ 𝐿𝑠ℎ

𝑚𝑎𝑥,            ∀𝑡, ∀𝜔 (34) 
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Eq. (35) presents how energy consumption of the SH is determined based on its power 

consumption.  

𝐸𝐿𝑠ℎ
𝑟𝑡 (𝑡, 𝜔) =

(𝐿𝑠ℎ
𝑟𝑡 (𝑡,𝜔)−𝐿𝑠ℎ

𝑟𝑡 (𝑡−1,𝜔))   

2
                 , ∀ 𝑡 ≥ 2, ∀𝜔  

𝐸𝐿𝑠ℎ
𝑟𝑡 (𝑡, 𝜔) =

(𝐿𝑠ℎ
𝑟𝑡 (𝑡, 𝜔) − 𝐿𝑖

𝑠ℎ)   

2
                 , ∀ 𝑡 = 1, ∀𝜔 

(35) 

Energy shedding constraint of the SH is expressed in Eq. (36). 

0 ≤ 𝐸𝑆𝑠ℎ
𝑟𝑡(𝑡, 𝜔) ≤ 𝐸𝐿𝑠ℎ

𝑟𝑡 (𝑡, 𝜔),            ∀𝑡, ∀𝜔 (36) 
SWH is in charge of storing the heat in the water tank. The maximum and minimum constraints 

of the storage water heater's load consumption are stated in Eq. (37).  

0 ≤ 𝐿𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔) ≤ 𝐿𝑠𝑤ℎ

𝑚𝑎𝑥 , ∀ 𝑡, ∀𝜔 (37) 

Besides, Eq. (38) represents that the total energy consumption of the SWH should be equal to its 

maximum energy capacity, and it guarantees that the SWH is only a shiftable load, not a shavable 

load.  

∑𝐿𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔)

𝑁𝑇

𝑡=1

= 𝑈𝑠𝑤ℎ
𝑚𝑎𝑥 , ∀ 𝑡, ∀𝜔 (38) 

Also, Eq. (39) represents that relation between energy and load consumption of the SWH. 

𝐸𝐿𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔) =

(𝐿𝑠𝑤ℎ
𝑟𝑡 (𝑡,𝜔)−𝐿𝑠𝑤ℎ

𝑟𝑡 (𝑡−1,𝜔))   

2
                 , ∀ 𝑡 ≥ 2, ∀𝜔  

𝐸𝐿𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔) =

(𝐿𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔) − 𝐿𝑖

𝑠𝑤ℎ)   

2
                 , ∀ 𝑡 = 1, ∀𝜔 

(39) 

Eq. (40) states the energy shedding constraint related to the SWH. 

0 ≤ 𝐸𝑆𝑠𝑤ℎ
𝑟𝑡 (𝑡, 𝜔) ≤ 𝐸𝐿𝑠𝑤ℎ

𝑟𝑡 (𝑡, 𝜔),            ∀𝑡, ∀𝜔 (40) 
PP should not run more than TON hours in a day as represented in Eq. (41). 

𝐿𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) = 𝐿𝑝𝑝

𝑚𝑎𝑥𝑧(𝑡, 𝜔) (41) 

Besides, Eq. (42) represents when the PP is “ON” it consumes its maximum load capacity. In Eqs. 

(41) and (42), z(t, ω) is a binary variable that represents the “ON”/ “OFF” status of the PP. This 

way, z(t,ω) is equal to 1 when the PP is “ON”, and z(t, ω) equals 0 when the PP is “OFF”.  
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∑𝑧(𝑡, 𝜔)

𝑁𝑇

𝑡=1

≤ 𝑇𝑂𝑁 (42) 

The relation between the energy and power consumption of the PP is stated in Eq. (43).  

𝐸𝐿𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) =

(𝐿𝑝𝑝
𝑟𝑡 (𝑡,𝜔)−𝐿𝑝𝑝

𝑟𝑡 (𝑡−1,𝜔))   

2
                 , ∀ 𝑡 ≥ 2, ∀𝜔  

𝐸𝐿𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) =

(𝐿𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) − 𝐿𝑖

𝑝𝑝)   

2
                 , ∀ 𝑡 = 1, ∀𝜔 

(43) 

Also, the limitations regarding the shedded energy of the PP is expressed in Eq. (44). 

0 ≤ 𝐸𝑆𝑝𝑝
𝑟𝑡 (𝑡, 𝜔) ≤ 𝐸𝐿𝑝𝑝

𝑟𝑡 (𝑡, 𝜔),            ∀𝑡, ∀𝜔 (44) 

MRSs include the loads that should be provided quickly - e.g. lighting, entertainment, etc. Hence, 

MRS are not dispatchable, and the quantity of them are determined based on the prediction as 

seen in Eq. (45).  

𝐿𝑚𝑟𝑠
𝑟𝑡 (𝑡, 𝜔) = 𝐿𝑚𝑟𝑠

𝑝𝑟𝑒𝑑(𝑡) (45) 

The relation between the energy and power consumption and energy shedding of the MRSs are 

obtained the same as SH, SWH and PP as represented in Eqs. (46) and (47), respectively.  

𝐸𝐿𝑚𝑟𝑠
𝑟𝑡 (𝑡, 𝜔) =

(𝐿𝑚𝑟𝑠
𝑟𝑡 (𝑡,𝜔)−𝐿𝑚𝑟𝑠

𝑟𝑡 (𝑡−1,𝜔))   

2
                 , ∀ 𝑡 ≥ 2, ∀𝜔  

𝐸𝐿𝑚𝑟𝑠
𝑟𝑡 (𝑡, 𝜔) =

(𝐿𝑚𝑟𝑠
𝑟𝑡 (𝑡, 𝜔) − 𝐿𝑖

𝑚𝑟𝑠)   

2
                 , ∀ 𝑡 = 1, ∀𝜔 

(46) 

0 ≤ 𝐸𝑆𝑚𝑟𝑠
𝑟𝑡 (𝑡, 𝜔) ≤ 𝐸𝐿𝑚𝑟𝑠

𝑟𝑡 (𝑡, 𝜔),            ∀𝑡, ∀𝜔 (47) 
All equations- which are represented above- described physical home system’s objective and 

constraints, and our proposed model for optimal bidding strategy has not been represented up 

to now. In the following, we present an optimal bidding strategy for our proposed residential 

energy management system. 

d. Optimal Bidding strategy 

The equations presented in this section derive optimal offering (when SHE is a producer) and 

biding (when SHE is a consumer) curves of the smart home for each decision-making time period 

in the DA and RT local electricity markets. In the context of this work, the offering curves should 

be ascending. However, the bidding curves should be descending. Eqs. (48) and (49) represent 

the offering model of the smart home in the RT stage. 
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Δ𝑃𝑛𝑒𝑡
𝑟𝑡 (𝑡, 𝜔) ≥ Δ𝑃𝑛𝑒𝑡

𝑟𝑡 (𝑡, 𝜔′)      , ∀ 𝜔 > 𝜔′ & 𝜆𝑛𝑒𝑡
𝑟𝑡 (𝑡, 𝜔) < 𝜆𝑛𝑒𝑡

𝑟𝑡 (𝑡, 𝜔′), ∀ 𝑡 (48) 

Δ𝑃𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) ≥ Δ𝑃𝑠𝑜𝑙𝑑

𝑟𝑡 (𝑡, 𝜔′)    , ∀ 𝜔 > 𝜔′ & 𝜆𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) > 𝜆𝑠𝑜𝑙𝑑

𝑟𝑡 (𝑡, 𝜔′), ∀ 𝑡 (49) 

As seen in the above constraints, Eq. (48) makes the descending bidding curves. On the other 

hand, Eq. (49) guarantees that the offering curves should be ascending. However, the above 

equations are not practical in an offering model of the smart home in the day-ahead stage 

because the uncertainty of PV energy generation and day-ahead electricity price is modeled 

through interval bands. In this situation, one solution is to use an iterative algorithm according 

to [40] to derive offering and bidding curves for the smart home in the day-ahead stage. However, 

the PV energy generation/electricity price will get its maximum/minimum amount in each 

iteration interval. Hence, using the iterative algorithm is not an appropriate solution for an 

offering model in the DA stage. This way, a new method for bidding strategy via interval-based 

scenarios is presented in this paper as described in next subsection.  

2.2.2. Two-stage Stochastic model  

According to our proposed method, the scenarios for the day-ahead stage are come from the 

interval bands. This way, interval bands of the day-ahead PV energy generation and electricity 

price are divided into two scenarios that consist of: minimum and maximum bands (however, 

these scenarios can be extended). In this case, total day-ahead scenarios, Nφ, equals Nib
Np. In 

this way, Nib and Np represent number of number of scenarios in each interval band in each time 

period, and number of uncertain parameters. Therefore, in this paper, Nφ equals 4, Nib equals 2 

as mentioned above, and Np is equal to 2 because only the uncertainty of the PV energy 

generation and electricity price is considered in this paper. Also, the corresponding probability, 

πφ, for all scenarios equal 1 Nφ⁄   which are equal to 0.25 (=1 4⁄ ) in this paper. 

Therefore, new scenarios are added to the variables of the DA stage instead of interval bands of 

the PV energy generation and electricity price. The scenarios in the DA stage will be represented 

by φ. In this way, the expected profit based on the two-stage stochastic model of the REMS is 

represented in Eq. (50). 

𝐸𝑃 =∑𝜋φ
φ

{∑[𝜆𝑑𝑎(𝑡, φ)(𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡, φ) − 𝑃𝑛𝑒𝑡

𝑑𝑎(𝑡, φ))]

𝑡

}

⏞                              
𝑑𝑎𝑦−𝑎ℎ𝑒𝑎𝑑 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡

+

∑𝜋𝜔
𝜔

{∑(𝜆𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔)

𝑡

Δ𝑃𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) − 𝜆𝑛𝑒𝑡

𝑟𝑡 (𝑡, 𝜔)Δ𝑃𝑛𝑒𝑡
𝑟𝑡 (𝑡, 𝜔)

−𝑉𝑃𝑉
𝑆 𝑆𝑃𝑉(𝑡, 𝜔) −∑𝑉𝑂𝐿𝐿𝑗(𝑡)𝐸𝑆𝑗

𝑟𝑡(𝑡, 𝜔))

𝑗

}

⏞                                      
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡

 

(50) 
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As seen in Eq. (50), only variables and parameters of the day-ahead stage depend on φ in 

comparison to Eq. (2). In the following, Eqs. (3) -(18) will be redefined in Eqs. (51) -(66), 

respectively. In this way, Eqs. (51) and (52) express the power flow limitation for the distribution 

line which ends at the building. 

0 ≤ 𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡, φ) ≤ 𝑆𝑚𝑎𝑥𝑣

𝑑𝑎(𝑡, φ) , ∀ 𝑡, ∀φ (51) 

0 ≤ 𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡, φ) ≤ 𝑆𝑚𝑎𝑥(1 − 𝑣

𝑑𝑎(𝑡, φ)) , ∀ 𝑡, ∀φ (52) 

Eq. (53) represents that the energy sold to the local market consists of energy produced by the 

PV system discharged energy of the battery system. 

𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡, φ) = 𝑃𝑝𝑣,𝑜𝑢𝑡

𝑑𝑎 (𝑡, φ) + 𝛾𝑃𝑑𝑖𝑠,𝑜𝑢𝑡
𝑑𝑎 (𝑡, φ) , ∀ 𝑡, ∀φ (53) 

Eq. (54) states the power balance equation in the building. 

𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡, φ) + 𝑃𝑝𝑣,𝑖𝑛

𝑑𝑎 (𝑡, φ) + 𝛾𝑃𝑑𝑖𝑠,𝑖𝑛
𝑑𝑎 (𝑡, φ) = 𝐸𝐿𝑑𝑎(𝑡, φ) + 𝛾𝑃𝑐ℎ 

𝑑𝑎(𝑡, φ) , ∀ 𝑡, ∀φ (54) 

Eq. (55) presents the scenarios for the day-ahead electricity price which are come from its interval 

bands. 

𝜆𝑑𝑎(𝑡, φ1) = 𝜆
𝑑𝑎(𝑡, φ2) = 𝜆

𝑝𝑟𝑒𝑑(𝑡) − 𝜎𝑝𝑟𝑖𝑐𝑒
𝑑𝑛 (𝑡)(1 − 𝛼𝑝𝑟𝑖𝑐𝑒), ∀ 𝑡 

𝜆𝑑𝑎(𝑡, φ3) = 𝜆
𝑑𝑎(𝑡, φ4) = 𝜆

𝑝𝑟𝑒𝑑(𝑡) + 𝜎𝑝𝑟𝑖𝑐𝑒
𝑢𝑝 (𝑡)𝛼𝑝𝑟𝑖𝑐𝑒, ∀ 𝑡 

(55) 

Eq. (56) represents the potential energy generated by the PV system. 

𝑃𝑝𝑣,𝑝
𝑑𝑎 (𝑡, φ)𝑘(𝑡, φ) = 𝑃𝑝𝑣,𝑖𝑛

𝑑𝑎 (𝑡, φ) + 𝑃𝑝𝑣,𝑜𝑢𝑡
𝑑𝑎 (t, φ), ∀ 𝑡, ∀φ (56) 

The scenarios for the day-ahead PV energy generation based on its interval bands are 

represented in Eq. (57). 

𝑃𝑝𝑣,𝑝
𝑑𝑎 (𝑡, φ1) = 𝑃𝑝𝑣,𝑝

𝑑𝑎 (𝑡, φ3) = 𝑃𝑃𝑉
𝑝𝑟𝑒𝑑(𝑡) − 𝜎𝑝𝑣

𝑑𝑛(𝑡)(1 − 𝛼𝑝𝑣), ∀ 𝑡 

𝑃𝑝𝑣,𝑝
𝑑𝑎 (𝑡, φ2) = 𝑃𝑝𝑣,𝑝

𝑑𝑎 (𝑡, φ4) = 𝑃𝑃𝑉
𝑝𝑟𝑒𝑑(𝑡) + 𝜎𝑝𝑣

𝑢𝑝(𝑡)𝛼𝑝𝑣, ∀ 𝑡 
(57) 

Eq. (58) expresses the state-of-charge (SOC) equation of the battery in the day-ahead stage. 

𝐶𝑑𝑎(𝑡, φ) = 𝐶𝑑𝑎(𝑡 − 1, φ) + 𝑃𝑐ℎ
𝑑𝑎(𝑡, φ)𝜂𝐻2𝐵 −

𝑃𝑑𝑖𝑠
𝑑𝑎(𝑡, φ)

𝜂𝐵2𝐻
                    , ∀ 𝑡 ≥ 2, ∀φ 

𝐶𝑑𝑎(𝑡, φ) = 𝐶𝑖                                                                  , ∀ 𝑡 = 1, ∀φ 

(58) 

Eq. (59) represents the maximum and minimum bands of the battery's SOC.  

𝑃𝑏
𝑚𝑖𝑛 ≤ 𝐶𝑑𝑎(𝑡, φ) ≤ 𝑃𝑏

𝑚𝑎𝑥                                             , ∀ 𝑡, ∀φ (59) 

The ramping upper and lower limitations related to the SOC are stated in Eq. (60).  

−𝑤𝑚𝑖𝑛 ≤ 𝐶𝑑𝑎(𝑡, φ) − 𝐶𝑑𝑎(𝑡 − 1, φ) ≤ 𝑤𝑚𝑎𝑥         , ∀ 𝑡 ≥ 2, ∀φ (60) 
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−𝑤𝑚𝑖𝑛 ≤ 𝐶𝑑𝑎(𝑡, φ) − 𝐶𝑖 ≤ 𝑤
𝑚𝑎𝑥                               , ∀ 𝑡 = 1, ∀φ 

Eqs. (61) and (62) represent maximum and minimum constraints of the discharged and charged 

energy of the battery, respectively. 

0 ≤ 𝑃𝑑𝑖𝑠
𝑑𝑎(𝑡, φ) ≤ 𝑤𝑚𝑎𝑥𝑢𝑑𝑎(𝑡, φ)                                  , ∀ 𝑡, ∀φ (61) 

0 ≤ 𝑃𝑐ℎ
𝑑𝑎(𝑡, φ) ≤ 𝑤𝑚𝑖𝑛(1 − 𝑢𝑑𝑎(𝑡, φ) )                       , ∀ 𝑡, ∀φ (62) 

Eq. (63) presents that the total discharged energy of the battery system. 

𝑃𝑑𝑖𝑠
𝑑𝑎(𝑡, φ) = 𝑃𝑑𝑖𝑠,𝑖𝑛

𝑑𝑎 (𝑡, φ) + 𝑃𝑑𝑖𝑠,𝑜𝑢𝑡
𝑑𝑎 (𝑡, φ)                     , ∀ 𝑡, ∀φ (63) 

As highlighted before, in this paper, the uncertainty of the electrical loads is not seen in the day-

ahead stage, and the day-ahead electrical loads are considered to be equal to their point 

forecasting as seen in Eq. (64). 

𝐸𝐿𝑑𝑎(𝑡, φ) = 𝐸𝐿𝑝𝑟𝑒𝑑(𝑡) , ∀ 𝑡, ∀ φ (64) 

Eq. (65) represents the power balance equation in the real-time stage.  

𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡, φ) + 𝑃𝑝𝑣

𝑟𝑡(𝑡, 𝜔) + 𝑃𝑑𝑖𝑠
𝑟𝑡 (𝑡, 𝜔) + ∆𝑃𝑛𝑒𝑡

𝑟𝑡 (𝑡, 𝜔)

= 𝐸𝐿𝑟𝑡(𝑡, 𝜔) − 𝐸𝑆𝑟𝑡(𝑡, 𝜔) + 𝑃𝑐ℎ 
𝑟𝑡 (𝑡, 𝜔) + 𝑃𝑠𝑜𝑙𝑑

𝑑𝑎 (𝑡, φ)

+ ∆𝑃𝑠𝑜𝑙𝑑
𝑟𝑡 (𝑡, 𝜔) , ∀ 𝑡, ∀𝜔, ∀φ 

(65) 

Eq. (66) states the power flow constraints a distribution line which end at the building. 

−𝑆𝑚𝑎𝑥 ≤ 𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡, φ) + ∆𝑃𝑛𝑒𝑡

𝑟𝑡 (𝑡, 𝜔) − 𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡, φ) − ∆𝑃𝑠𝑜𝑙𝑑

𝑟𝑡 (𝑡, 𝜔) ≤ 𝑆𝑚𝑎𝑥 , ∀𝑡 , ∀𝜔, ∀φ (66) 

Hence, the offering model for deriving the offering and bidding curves of the smart home 

presented according to Eqs. (67) and (68): 

𝑃𝑛𝑒𝑡
𝑑𝑎 (𝑡, φ) ≥ 𝑃𝑛𝑒𝑡

𝑑𝑎 (𝑡, φ′)      , ∀ φ > φ′ & 𝜆𝑑𝑎(𝑡, φ) < 𝜆𝑑𝑎(𝑡, φ′), ∀ 𝑡 (67) 

𝑃𝑠𝑜𝑙𝑑
𝑑𝑎 (𝑡, φ) ≥ 𝑃𝑠𝑜𝑙𝑑

𝑑𝑎 (𝑡, φ′)    , ∀ φ > φ′ & 𝜆𝑑𝑎(𝑡, φ) > 𝜆𝑑𝑎(𝑡, φ′), ∀ 𝑡 (68) 

This way, according to the reformulated equations, the decision-making problem is represented 

below: 

Max.    

Eq. (50) 

Subject to 

 Eqs. (51) -(68) & (19) -(49). 
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The above model expressed our proposed optimal bidding strategy for the REMS via two-stage 

stochastic programming.  

3. Case Studies 
3.1. Cases 

The residential system that has been used in [7-8, 41-43] is utilized as a test system in this paper. 

However, electric vehicle is not considered in this paper. The proposed Mixed Integer Linear 

Programming (MILP) is solved in GAMS 24.2.3 [44]. Also, Table 2 presents data of the proposed 

domestic system. Prediction, interval bands, and scenarios data are presented in Tables 7-11 in 

Appendix Section. 

Table 2. Data of the domestic system. 

Battery Space heater 

ηH2B 
Charging efficiency  

0.90 Li
sh 

Initial load 
consumption 

1.00 kW 

ηB2H 
Discharging 
efficiency 

0.90 θi
in 

Initial indoor 
temperature 

23 ℃ 

Ci 
Initial state of the 
charge 0.48 kWh C 

Thermal 
energy 
capacity 

0.525 kWh/℃ 

Pb
max 

Maximum storage 
level 2.40 kWh R 

Thermal 
resistance of 
the building  

18 ℃/kW 

Pb
min 

Minimum storage 
level 0.48 kWh Lsh

max 
Maximum 
electrical 
consumption 

5.525 kW 

wmax 
Maximum ramping 
rate 

0.40 kW Storage water heater 

wmin 

Minimum ramping 
rate 0.40 kW Lswh

max  
Maximum 
electrical 
consumption 

3.00 kW 

Pool pump Li
swh 

Initial load 
consumption 

0.00 kW 

Lpp
max 

Maximum electrical 
consumption 

1.10 kW Uswh
max 

Daily energy 
consumption 

10.46 kWh 

Li
pp

 
Initial load 
consumption 

0.00 kW End-user distributed line 

TON 
Maximum daily-
hours 

1.00 h Smax 
Maximum 
capacity 

10.00 kW 

Must-run services PV system 

Li
mrs 

Initial load 
consumption 

0.00 kW VPV
S  

Cost of PV 
Spillage 

1 $/kWh 
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As mentioned before, the predicted day-ahead home’s energy consumption and load of must-

run services in the real-time do not depend on the scenarios in our proposed model, only their 

point forecasting is modeled in this paper. Characteristics of the residential system are described 

in the following: 

• Battery can store between 0.48 kWh and 2.4 kWh, and its maximum charging and 

discharging rates are 400 W. Charging and discharging rates represent maximum amount 

of power of the battery that can be charged or discharged in each decision-making time 

step. Also, the charging and discharging efficiencies of the battery are 90% [41-43].  

• Maximum load capacity of the space heater in each time period is equal to 5.525 kW.  

• Daily energy capacity of the storage water heater is 10.46 kWh (180 lt). Also, it has a 3 kW 

heating element.  

• The desired temperature of the building is assumed to equal 23 ℃. Furthermore, the 

thermal resistance of the building shell and C are equal to 18 ℃/kW and 0.525 kWh/℃, 

respectively.  

The assessment of the performance of the proposed residential energy management problem is 

done in two cases that are described as follows: 

• Case 1: The residential energy management problem is solved by Mixed-Integer Linear 

Programming (MILP) through a two-stage stochastic optimal bidding strategy which. In 

this way, scenarios of the first stage come from interval bands, while stochastic scenarios 

are used in the second stage. In this case, influences of the optimistic and flexibility 

coefficients are assessed in the performance of the proposed residential energy 

management system based on the optimal bidding strategy. 

In this way, the stochastic optimal bidding strategy for the REMS will be: 

Max.    

Eq. (50), 

Subject to 

 Eqs. (51) -(68) & (19) -(49). 

• Case 2: The residential energy management problem is solved without considering the 

bidding strategy. In this case, the uncertainty of price and PV energy output in the day-

ahead stage is modeled by both methods: Interval-based scenarios and interval bands. In 

this way, the performance of the system is evaluated according to the impacts of 

optimistic coefficients on both methods. 

In the two-stage stochastic scenario-based method (hereinafter, this method is called 

InterStoch), the proposed residential energy management problem without the optimal bidding 

strategy will be: 
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Max.    

Eq. (50), 

Subject to 

 Eqs. (51)-(66) & (19)-(47). 

However, for the two-stage interval-stochastic optimization method (hereinafter, this method is 

called Hybrid), the residential energy management problem without the optimal bidding strategy 

is represented in the following: 

Max.    

Eq. (2) 

Subject to 

 Eqs. (3)-(47). 

Although InterStoch method optimizes the residential energy management problem by MILP, 

uncertainty modeling based on Hybrid method in our proposed energy management problem is 

solved by Mixed-Integer Non-Linear Programming (MINLP). 

3.2. Results 

3.2.1. Case 1: With Optimal Offering Model 

In this section, the performance of the proposed two-stage stochastic residential energy 

management problem is assessed taking into account optimal bidding strategy. In this way the 

performance of the proposed problem is evaluated based on the impacts of the optimistic 

coefficients of the PV energy output and electricity price, and flexibility coefficient on the 

expected profit of the system and transacted energy between the smart home and the local 

market.  

a. Impact of 𝜶𝒑𝒗, 𝜶𝒑𝒓𝒊𝒄𝒆, and 𝜸 

In this section, impacts of αpv and αprice on total, day-ahead and real-time expected profits of 

the smart home are studied. Moreover, their influences on the exchanged energy through smart 

home and the local market is evaluated.  In Fig. 3, impact of the αpv on the expected profits of 

the system is studied considering αprice and γ equal 1. As seen in Fig. 4, increment of αpv 

increases total expected profit, and the maximum amount of the total expected profit is where 

αpv is equal to 1. However, the worst case is where αpv equals 0, and the total expected profit of 

the system gets its minimum amount.  Thus, modeling a residential energy management system 

considering αpv equals 0 increases the robustness of the system. On the hand, the increment of 

αprice has a negative effect on the total expected profit of the system where αpv and γ equal 0 

and 1, respectively. This way, worst and robust case of the system is when  αpv equals 0 and 

αprice equals 1. Fig.5 demonstrates the impact of the flexibility coefficient on the expected costs 
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in the worst case of the system when αpv and αprice equal 0 and 1, respectively. As shown in Fig. 

5, increment of the flexibility coefficient increases the total expected profit of the system. Hence, 

the maximum amount of the expected profit is where γ equals 1. In this case, the best case is 

more interested to model energy flexibility of the smart home since the best case to manage 

energy flexibility in the domestic energy management problem is where γ equals 1. 

 

Figure 3. Impact of 𝜶𝒑𝒗 on total, day-ahead and real-time expected profits of the residential energy 

management problem considering 𝜶𝒑𝒓𝒊𝒄𝒆 and 𝜸 equal 1. 

 

 

Figure 4. Impact of 𝜶𝒑𝒓𝒊𝒄𝒆 on total, day-ahead and real-time expected profits of the residential energy 

management problem considering 𝜶𝒑𝒗 equals 0 and 𝜸 equals 1. 
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Figure 5. Impact of 𝜸 on total, day-ahead and real-time expected profits of the residential energy management 
problem considering 𝜶𝒑𝒗 equals 0 and 𝜶𝒑𝒓𝒊𝒄𝒆 equals 1. 

b. Optimal offering and bidding curves 

In this section, optimal offering and bidding curves of the residential energy management 

problem through the two-stage stochastic model are represented. As in the day-ahead stage, the 

home energy management system only offers and bids one quantity for all price scenarios, since 

the optimal bought/sold energy curve of the smart home from/to the local market is shown in 

Fig. 6. As seen in Fig. 6, the offering set-points of the home in all scenarios and time steps in the 

day-ahead stage equal 0. It means that the proposed home is eager to participate only as a 

consumer in the day-ahead local market. However, Fig. 7 and Table 3 represent that the smart 

home acts as a prosumer, and SHE submit both its optimal and bidding curves to the real-time 

local market in all time steps. Table 3 expresses the state of vrt(t, ω) in green and orange cells. 

In this way, green cells represent states in which vrt(t, ω) is equal to 1. In this way, in t equals 1, 

7 to 15, 18, 19, and 21 to 24, the smart home only acts as a producer and there is no green cell. 

However, in t equal 6, SHE plays as a consumer in scenarios 2, 4 and 7. In Fig. 7, optimal offering 

and bidding curves are demonstrated at t=1, t=3, and t=6. Although it is expected that SHE only 

participates as a consumer in the day-ahead local market in all time steps, according to Table 3 

and Figs. 6 and 7, SHE plays as both a consumer and a producer and submits both optimal offering 

and bidding curves at t=2, t=3, t=4, t=5, t=6, t=16, t=17, and t=20 in the real-time local market. 
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Figure 6. The optimal scheduled transacted energy for the smart home in the day-ahead stage. 

 

Figure 7. The optimal bidding and offering curves for the smart home in t equals 1, 3, and 6 in the real-time 
stage. 

As it has been explained in Section 2, three types of electrical loads- controllable, shiftable and 

non-dispatchable- are defined in this paper. In this way, the space heater is modeled as 

controllable load based on Eqs. (32)-(34). Fig. 8 shows real-time expected electrical consumption 

of the space and indoor temperature. In the case study, it is considered that the desired indoor 
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temperature of the home equals 23 ℃. Hence, the real-time expected indoor temperature is 

constrained to 22 ℃ and 24 ℃ according to Eq. (33) as it is shown in Fig. 8. On the other hand, 

the Storage Water Heater (SWH) and Pool Pump (PP) are defined as shiftable loads in this system. 

Hence, shiftable loads are switched off in the time periods of higher electricity price. As 

highlighted in Table 9, electricity price is the highest amount in the time period from t=6 to t=15. 

Hence, both SWH and PP are not committed by the REMS from t=6 to t=15 as shown in Fig. 

9Although the maximum daily operational time period of the PP has been assumed to be 1 hour 

( TON = 1), Fig. 9(b) shows the amount of real-time expected electrical consumption is nonzero 

in four time steps. For this reason, Fig. 9 (b) presents expected electrical consumption of the PP 

in each time period of the residential energy management problem. In this way, real-time 

operation status on the PP (𝑧(𝑡, 𝜔)) is shown in Fig. 9(c). As it is seen in Fig. 9(c), 𝑧(𝑡, 𝜔) is only 

committed to one time period of each scenario. However, 𝑧(𝑡, 𝜔) is committed to six scenarios 

(w2, w3, w5, w6, w7, w10) in t=24, so real-time expected electrical consumption of the PP is the 

highest at t=24.  

Table 3. Status of energy transaction between the smart home and local market in the real-time stage. 

Time (hour) 
𝑣𝑟𝑡(𝑡, 𝜔)  

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 
1           

2           

3           

4           

5           

6           

7           

8           

9           

10           

11           

12           

13           

14           

15           

16           

17           

18           

19           

20           

21           

22           

23           

24           
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Figure 8. Real-time expected electrical consumption of the space heater (a), real-time expected indoor 
temperature (b) in the optimal offering model of the REMS. 

 

Figure 9. Real-time expected electrical consumption of the storage water heater (a), real-time expected 
electrical consumption of the pool pump (b), real-time operation status of the pool pump (c) in optimal offering 

model of the REMS. 

Fig. 10 shows the real-time expected state of charge of the battery. In this paper, it is considered 

the battery’ SOC is in the minimum storage level in the initial state (𝐶𝑖=0.48 kWh). As it is shown 

in Fig. 10, the SOC of battery is at its minimum level of charge at t=24. Fig. 11 shows real-time 

SOC, charged energy, and energy discharged from the battery at t=1 (a), t=3 (b), and t=6 (c). By 

comparing Figs. 10 and 11, it can be deduced that there is not fixed incremental or decreasing 

relationship between the SOC of the battery and electricity price. Thus, the use of a battery as an 
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energy storage system can provide energy flexibility to make optimal offering and bidding curves 

for the REMS. 

 

Figure 10. Real-time expected state of charge of the battery in the optimal offering model of the REMS. 

 

Figure 11. Real-time state of charge, charged energy, and discharged energy of the battery at t=1 (a), t=3 (b), t=6 
(c). 

3.2.2. Case 2: Without Optimal Offering Model 

In this section, performance of the proposed residential energy management problem is studied 

while constraints related to the optimal bidding strategy are not seen in the problem, and both 

proposed methods are used to model uncertainty of the PV energy generation and electricity 
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price. In the following, the results of the system based on InterStoch and Hybrid methods are 

demonstrated and compared. 

a. Results of the InterStoch method 

In this section, the uncertainty of the system is modeled by the InterStoch method. Hence, 

effectiveness of the optimal bidding strategy that consists of constraints (48), (49), (67), and (68) 

is evaluated in this section.  

 

Figure 12. Without offering model (InterStoch model): impact of 𝜶𝒑𝒗 on total, day-ahead and real-time expected 

profit of the residential energy management problem considering 𝜶𝒑𝒓𝒊𝒄𝒆 and 𝜸 equal 1. 

As seen in Figs. 12 and 13, increment of the optimal coefficients of the PV energy generation and 

electricity price has positive and negative influence on the expected profit of the system. In other 

words, the worst case of the system is to consider that αpv and αprice equal 0 and 1, respectively. 

In this way, in Fig. 14 and Table 4, the real-time offering and bidding curves of the domestic 

energy management system are assessed in the worst case without the optimal bidding strategy. 

Fig. 10 demonstrates the real-time bidding and offering curves in t=1, t=3, and t=6. As mentioned 

before, optimal offering and bidding curves must be ascending and descending, respectively. In 

Fig. 14, red circles indicate offering and bidding transacted energy steps that are descending and 

ascending, respectively, and they cause the offering and bidding curves to not be optimal. 

Moreover, Table 4 presents the state of vrt(t,ω). In this case, dark green cells represent states 

in which vrt(t, ω) equals 1 in optimal and non-optimal strategies, and dark orange cells express 

that  vrt(t, ω) equals 0 in both strategies. Also, light green cells are related to the states in which 

vrt(t,ω) equals 1 only in the non-optimal strategy, and light orange cells show states that 

vrt(t,ω) equals 1 only in the optimal strategy. Eventually, as it is seen in Table 4, the smart home 

is committed more as a consumer in the non-optimal bidding strategy. Hence, in non-optimal 

offering model, SHE is not able to submit its offering and bidding curves to the local market so as 
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to maximize its expected profit. This is because offering and bidding curves are not optimal in 

this Case. Hence, an appropriate strategy for SHE is to transact energy with other local market 

players- e.g. small consumers, producers, and prosumers- according to its optimum decisions in 

home energy management. 

 

Figure 13. Without offering model (InterStoch model): impact of 𝜶𝒑𝒊𝒄𝒆 on total, day-ahead and real-time expected 

profit of the residential energy management problem considering 𝜶𝒑𝒗 equals 0 and 𝜸 equals 1. 

 

Figure 14. Without offering model (InterStoch model): the bidding and offering curves for the smart home in t 
equals 1, 3, and 6 in the real-time stage. 
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 participate in the local market to maximize its profit because its bidding and offering curves are 

not optimal. However, their setpoints decisions regarding transacted energies are optimal. In this 

way, the REMS can exchange energy with other local market players in its neighborhood 

according to the results of this section. 

Table 4. Without offering model (InterStoch model): status of energy transaction between the smart home and 
local market in the real-time stage. 

Time (hour) 
𝑣𝑟𝑡(𝑡, 𝜔)  

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 
1           

2           

3           

4           

5           

6           

7           

8           

9           

10           

11           

12           

13           

14           

15           

16           

17           

18           

19           

20           

21           

22           

23           

24           

b. Results of the Hybrid method 

In this section, the Hybrid method is used to model uncertainty of the PV’s energy generation 

and electricity price in the residential energy management problem. In this case, interval bands 

are defined to consider uncertainty in the day-ahead stage of our proposed energy management 

problem. Moreover, as it has been highlighted before, the optimization problem will be MINLP. 
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Table 5. Total expected profit of the residential energy management problem considering optimal and non-
optimal strategies in the worst scenario (𝜶𝒑𝒗 equals 0 and 𝜶𝒑𝒊𝒄𝒆 equals 1). 

 Non-optimal offering models Optimal offering 
model  Hybrid method InterStoch method 

Day-ahead EP (€) -2.684 -3.130 -3.130 

Real-time EP (€) 1.965 1.971 1.945 

Total EP (€) -0.719 -1.159 -1.185 

 

Figure 15. Without offering model (Hybrid model): impact of 𝜶𝒑𝒗 on total, day-ahead and real-time expected 

profit of the residential energy management problem considering 𝜶𝒑𝒓𝒊𝒄𝒆 and 𝜸 equal 1. 

Fig. 15 demonstrates that increment of the optimistic coefficient of the PV energy generation 

increases the total expected profit of the system. However, increasing the αprice decreases the 

total expected profit as it is shown in Fig. 16. Hence, these facts state that impact patterns of the 

optimistic coefficients on the expected profit of the system are the same in both methods. 

Moreover, Fig. 17 proves that bidding and offering curves are not optimal in this case. By 

comparing between Tables 4 and 6, it can be observed that the smart home is eager to act as a 

consumer in the model based on the hybrid method as opposed to the model based on the 

InterStoch method. The results of this eagerness can be seen in Table 5. 

In this way, although total and day-ahead expected profits of the system in the hybrid method is 

less than the InterStoch method, the real-time expected profit of the system in the InterStoch 

method is higher. For this reason, SHE prefers to play as a consumer in more scenarios in the 

hybrid method in comparison to the InterStoch one. Besides, Table 5 compares expected profits 

of the REMD in non-optimal and optimal offering models in the worst scenario where αPV equals 

0 and αprice equals 1. As seen in Table 5, total EP of the REMS is the highest when the non-optimal 

model is solved by hybrid method. Moreover, total EP of the system is lowest in optimal offering 

model of the REMS. In other words, Table 5 shows that the InterStoch optimization method is 
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more robust than the hybrid method because it provides a lower total expected profit of the 

system in this case study. Also, the optimal offering model is more robust than the non-optimal 

offering one. 

 

Figure 16. Without offering model (Hybrid model): impact of 𝜶𝒑𝒊𝒄𝒆 on total, day-ahead and real-time expected 

profit of the residential energy management problem considering 𝜶𝒑𝒗 equals 0 and 𝜸 equals 1. 

 

Figure 17. Without offering model (Hybrid model): the bidding and offering curves for the smart home in t 
equals 1, 3, and 6 in the real-time stage. 
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Table 6. Without offering model (Hybrid model): status of energy transaction between the smart home and local 
market in the real-time stage. 

Time (hour) 
𝑣𝑟𝑡(𝑡, 𝜔)  

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 
1           

2           

3           

4           

5           

6           

7           

8           

9           

10           

11           

12           

13           

14           

15           

16           

17           

18           

19           

20           

21           

22           

23           

24           

4. Conclusions and Discussions 

In this paper, a probabilistic scenario-based method was presented for the management of 

residential energy and energy trading with the local electricity market based on an optimal 

bidding strategy. Our residential energy management problem includes two stages: day-ahead 

and real-time. In the day-ahead stage, two methods have been proposed to model the 

uncertainty of electricity price and PV energy generation. Their uncertainty is modeled by interval 

bands and interval-based scenarios. In the real-time stage, stochastic scenarios have been used 

to consider the uncertainty affecting the system. In addition, energy flexibility is provided by a 

battery system. Our proposed optimal offering model for the REMS is assessed in two different 

cases.  Case 1 assesses the impacts of optimistic and flexibility coefficients on the REMS 

considering the optimal bidding strategy. However, in case 2, the performance of the two 

different optimization methods- called InterStoch and Hybrid- on the REMS are evaluated 
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without considering the optimal bidding strategy. According to the simulation results in our case 

study: 

• The robustness of our proposed residential energy management system is increased 

where αpv and αprice- the optimistic coefficients of PV power generation and electricity 

price- equal 0 and 1, respectively. In other words, increment of αpv is in line with 

increment of the expected profit of the system. However, increment of αprice has a 

negative impact on the REMS’ expected profit. In this way, worst and robust case of the 

system is where  αpv equals 0 and αprice equals 1.  

• Optimistic coefficients have the same pattern of impact on the system’s expected profit 

in both InterStoch and Hybrid methods.  

• Robustness of the InterStoch optimization method is higher than the Hybrid method 

because the total expected profit of the system is lower in the case study that is solved 

by the InterStoch optimization method. Besides, the Hybrid optimization method obtains 

suboptimal results because it is solved by MINLP, and it is not as efficient as the InterStoch 

optimization method. 

• Our proposed optimal offering model for the residential energy management system is 

more robust than its non-optimal offering model because the optimal offering model 

brings lower expected profit to the system in the worst scenario where αpv equals 0 and 

αprice equals 1. 

• Increment of the flexibility coefficient is in line with the total expected profit of the 

system. Therefore, the best case of the system is where flexibility coefficient equals 1.   

• Our proposed residential energy management system only offers and bids one quantity 

for all price scenarios in the day-ahead stage. In other words, modeling the domestic 

system with or without bidding strategy represents that it cannot impact on the smart 

home’s behavior (as a consumer or producer) in the day-ahead local electricity market.  

In our future works, we will model different energy management strategies in the distribution 

power systems based on a community of smart buildings in order to look at how smart buildings 

can impact local energy trading as price-maker agents. 
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7. Appendix 

The loads prediction data is stated in Table 7. Table 8 presents the predicted day-ahead central 

forecasting and interval errors of price and PV energy generation. As it can be seen in Table 8, 

upper and lower forecasting errors are considered to be equal in this paper. Moreover, the real-

time electricity price and PV energy generation scenarios are reduced to ten scenarios for each 

time period as presented in Tables 9 and 10, respectively. The corresponding probabilities of the 

real-time scenarios are stated in Table 11. It should be highlighted that the sold and bought 

electricity price in the real-time are considered to be equal in this case study. Hence, λrt(t, ω) is 

defined in Table 5 instead of λnet
rt (t, ω) and λsold

rt (t, ω). 
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Table 7. Day-ahead predicted energy consumption of the home and predicted load of the must-run services 
in real-time. 

Time 
(Hour) 

ELpred(t) 
(kWh) 

Lmrs
pred

(t) 
(kW) 

1 4.605 0.005 

2 4.605 0.005 

3 4.605 0.005 

4 4.605 0.005 

5 3.065 0.005 

6 2.605 0.005 

7 2.435 0.005 

8 2.245 0.005 

9 2.055 0.005 

10 1.865 0.005 

11 1.675 0.005 

12 1.675 0.005 

13 1.675 0.005 

14 1.675 0.005 

15 1.675 0.005 

16 1.675 0.005 

17 1.85 0.005 

18 1.935 0.005 

19 2.278 1.218 

20 2.452 0.262 

21 2.582 0.262 

22 2.59 0.14 

23 2.727 0.127 

24 2.605 0.005 
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Table 8. Central forecasting and interval forecasting error of the market price and the PV energy output in the 
day-ahead stage. 

Time 
(hour) 

λ𝑑𝑎(t) (€/MWh) Ppv,p
da (t) (kWh) 

Central 
forecasting 

Forecasting 
error 

Central 
forecasting 

Forecasting 
error 

1 39.13 13.11 0 0 

2 35.51 12.77 0 0 

3 33.13 12.59 0 0 

4 31.91    12.37 0 0 

5 31.62    12.32 0 0 

6 33.25    12.34 0 0 

7 38.04    13.03 0.042 0.042 

8 43.30    13.81 11.78 11.78 

9 45.95    13.58 91.47 75.02 

10 46.61    12.75 271.1    147.7 

11 46.31    12.82 494.1    215.7 

12 45.39    12.83 698.7    275.8 

13 44.88    12.84 853.2    312.8 

14 44.73    13.00 973.7    328.2 

15 43.52    13.31 1066.1   312.7 

16 42.42    13.74 1071.8   285.7 

17 42.40    14.11 972.6    285.0 

18 43.73    14.47 800.8    259.4 

19 45.19    14.86 589.6    230.5 

20 46.75    14.13 370.1    169.7 

21 47.44    13.42 146.3    105.3 

22 47.18    12.12 25.06    25.06 

23 44.43    11.63 0.680    0.680 

24 40.84    11.86 0 0 
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Table 9. Scenarios of the market price in the real-time stage. 

Time (hour) 
λrt(t, ω) (€/MWh) 

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 
1 11.96     22.42    30.48    31.56    34.23    41.23    47.42    48.90    52.85    59.20 

2 29.05     34.35    19.32    31.38    27.70    33.83    32.40    50.91    21.01    34.40 

3 41.22     17.40    25.82    29.68    41.83    22.75    32.09    30.28    24.66    34.18 

4 24.20     30.15    28.56    39.21    29.80    31.45    34.78    40.37    39.17    29.35 

5 13.49     33.30    39.75    37.96    26.81    30.57    20.85    38.17    41.58    53.09 

6 36.62     23.10    43.12    21.33    32.85    37.74    27.52    33.01    32.80    35.33 

7 40.18     46.20    37.62    41.97    32.70    43.00    35.64    47.69    32.14    30.76 

8 46.71     38.62    47.66    43.39    49.46    33.96    49.51    46.68    47.04    48.18 

9 49.29     42.51    47.84    36.27    43.07    41.45    58.31    44.12    41.82    48.57 

10 40.14     61.71    64.09    36.72    39.46    52.21    43.75    36.02    35.13    40.04 

11 37.05     39.08    29.24    43.01    55.78    47.82    47.79    53.98    54.90    55.20 

12 34.53     39.80    55.38    32.61    37.76    64.35    44.50    54.37    34.39    42.58 

13 37.50     48.56    43.54    39.54    50.76    45.38    67.95    23.15    46.28    45.44 

14 43.32     42.59    52.83    33.82    39.99    40.04    49.73    52.87    34.58    50.54 

15 42.47     42.89    32.35    47.86    51.53    41.00    47.19    27.01    35.75    43.31 

16 26.11     30.76    49.69    23.35    46.66    36.85    27.31    57.41    32.81    45.03 

17 45.90     30.30    47.90    16.84    39.27    24.37    72.74    34.35    41.71    67.24 

18 28.00     49.67    35.27    31.16    29.82    40.23    44.97    40.25    31.91    38.66 

19 53.04     40.93    47.06    49.15    40.53    61.46    54.31    53.95    54.42    57.43 

20 28.17     58.00    27.05    49.46    58.08    28.05    48.24    40.36    55.23    48.96 

21 41.61     51.30    51.10    47.98    60.90    42.25    45.62    51.61    39.05    45.47 

22 27.68     53.03    41.27    51.70    37.96    47.51    31.93    48.34    45.07    53.13 

23 56.34     48.24    49.41    46.56    51.08    43.00    38.23    52.57    47.93    36.63 

24 46.38     29.20    50.56    22.86    33.41    33.68    27.80    43.71    50.39    38.75 
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Table 10. Scenarios of the PV energy output in the real-time stage. 

Time (hour) 
Ptω
pv,scen

 (W) 

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 
1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 

8 7.22      26.69   0        0.37     20.80    22.48    17.71    6.50     9.91     13.30 

9 80.52     140.6   125.7    99.96    34.55    69.55    107.6    84.43    97.65    63.73 

10 203.5     206.9   287.6    195.2    307.8   278.8    320.7    210.3    275.2    160.0 

11 531.6     607.5   526.4    452.9    585.5    530.4    476.0    507.5    554.5    513.9 

12 895.5     666.1   654.8    864.2    747.0    832.3    586.4    676.5    725.1    610.2 

13 745.8     792.3   405.0    994.4    1007.4   1015     805.3    791.6    788.1    1082 

14 1165      637.2   899.8    994      1336.9   1138.9   825.7    810.4    1106.2   1049.4 

15 916.0     1267.8  1024.5   1282.8   1003.9   1211.2   1074.9   1292.2   923.7    874.7 

16 870.9     1306.8  1068.9   988.1    1077.7   1120     1246.6   861.8    903.7    1092.7 

17 1152.4    938.9   1061.8   882.2    1072.9   1065.6   1083.8   1058.5   895      925.4 

18 773.8     777.5   795.2    738.9    881.5    814.09   950.9    725      868.1    714.9 

19 434.8     540.2   582.4    523.9    654.2    493.3    443.9    612.2    615.3    561.4 

20 314.3     313.2   305.5    415.3    282.9    379.4    332.7    378.09   360.7    346 

21 160.8     150.9   148.1    261.9    98.10    120.1    149.7    87.45    106.8    163 

22 24        35.40   19.70    13.29    8.640    48.21    17.18    22.75   0 21.75 

23 0.465     0       1.783    0.435    0.851    0        0.694    0.330    0.553    0.054 

24 0 0 0 0 0 0 0 0 0 0 
 

 

Table 11. Scenario Probabilities in the real-time stage. 

 
Real-Time Scenarios 

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 
𝜋𝜔 0.07 0.10 0.10 0.09 0.08 0.11 0.12 0.08 0.11 0.13 

 


