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Abstract 

The use of renewable generation and demand response programs become a reality in the nowadays electricity 

markets and distribution networks. An intelligent energy management system is required in all levels of 

electricity supply chain, in order to efficiently profit from the distributed energy sources. However, before the 

implementation of the business models, the mathematical and simulation models should be well surveyed and 

verified. This paper presents a model of low voltage distribution network of a university campus developed in 

MATLAB/Simulink tools. Several types of resource modelings have been used in order to develop a reliable 

distribution network model. In the case study of this paper, the real consumption profiles of the buildings located 

in the university campus are provided to the developed model and the behaviors of the network components are 

surveyed. 
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1. Introduction 

Nowadays, the network operators are forced to use efficient solutions for renewable energy sources due 

to the daily increment of energy demand [1]. Demand Response (DR) programs and Distributed Renewable 

Energy resources (DRERs) are two main concepts, which are appeared with the implementation of smart 

grids and microgrids. DR programs can be defined as altering the consumption profile of customers in 

response to the price variations or financial profits paid by the DR managing entity, namely aggregator [2]. 

This means the DR programs would aid the two sides of the network, including demand sides and network 

operators. There are two classifications for the DR programs: price-based and incentive-based [3][4]. 

The demand side customers utilize DR programs for reducing their electricity costs, and the network 

operator employs DR program to reduce the congestion of the grid and reduce the peak consumptions [5]. 

The integration of the DR programs with DRERs is the hot topic of research society since they can provide 

flexibility for the market negotiations [6]. However, the consumers should have enough capacity for 

consumption reduction in order to participate in the DR programs. This means the small and medium 

consumers should be aggregated and participated in the electricity markets as a unique resource [7][8]. 

Therefore, the role of this small and medium consumers should be well tested and validated through several 

models in order to identify future problems [9][10]. 

This paper presents a modeling of low voltage distribution network of a university campus considering 

DR programs and DRERs. The model is implemented in MATLAB/Simulink tools. Three types of loads 
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has been tested in this model: A Series RL load, a Parallel load, and Dynamic load. Through several studies, 

it is found out that dynamic load is the best choice for network modeling of a university campus, somehow 

each building of the university is simulated by a dynamic load block. The model developed in 

MATLAB/Simulink is based on the real architecture of the transmission lines implemented in the area of 

the university, and all power loses, and impedances are considered in the model. In the case study of this 

paper, at first, the behavior of one specific bus in the network is surveyed while several load modelings are 

implemented in order to validate and select the best approach, considering response time and accuracy of 

the simulation. In the second stage, several scenarios investigate the reaction of the entire network in various 

conditions. The real consumption profile of each building is presented to the load model associated with 

that building, and the simulation results regarding the entire network as well as each consumer will be 

surveyed. 

After this section, Section 2 presents the real university network and the developed Simulink model. 

Section 3 focuses on the case study description, and its results are provided in Section 4. Finally, the main 

conclusions of the work are explained in Section 5. 

2. University Campus Modelling 

The low voltage distribution network considered in this paper is related to a university campus in Porto, 

Portugal. This network consists of 21 buses, one bus for each building, connected via underground electrical 

lines with a total length of 3.350 km. There is an MV/LV transformer in BUS 21, which connects the 

campus network to the external supplier with the following features: 15kV / 400V-230V, 2050 kVA. Fig. 

1 illustrates the network architecture indicating the location of the buildings, buses, and transmission lines. 

Also, Table 1 provides the electrical characteristics of the distribution network. 

 

Fig. 44: Internal low voltage distribution network of the university campus. 

Fig. 2 illustrates the setup of the network in the Simulink tool. As it was mentioned, the distribution 

network contains 21 buildings, which each building is modeled as a load. All the loads are connected 

through a branch that has resistance and an inductance value, as shown in Table 1. The three-phase loads 

provide the information regarding the voltages and currents, and therefore, the model would be able to 

calculate the number of power losses in the branches for different buildings of the university.  

The network model is operated as 400 V and 1000 VA at a frequency of 50 Hz. Also, the source of the 

network is modeled as a three-phase source providing 400 V and 1000 VA at 50 Hz, which are based on 

the real data in the current form of the network. Moreover, as it can be seen in Fig. 2, the entire network 

buses are modeled with three-phase loads. BUS #18 that is the most distant bus from the supply, is surveyed 

with two different load models, including a series and a dynamic load. By this way, the most suitable load 

model is determined and used for the entire model. 
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Table 13: Electrical charactriscits of university campus distribution network. 

Line Bus Distance (km) R (p.u) X (p.u) Maximum Power Limit (kVA) 

1 21 – 1 0.04 1.67 × 10-4 2.00 × 10-5 121 

2 21 – 2 0.07 6.96 × 10-5 3.50 × 10-5 276 

3 21 – 3 0.08 2.47 × 10-4 3.50 × 10-5 143 

4 21 – 4 0.135 4.16 × 10-4 5.90 × 10-5 133 

5 21 – 4 0.135 4.16 × 10-4 5.90 × 10-5 133 

6 21 – 5 0.080 1.97 × 10-3 4.00 × 10-5 37 

7 21 – 6 0.085 6.79 × 10-5 3.71 × 10-5 316 

8 21 – 7 0.155 2.26 × 10-3 7.75 × 10-5 52 

9 21 – 8 0.135 2.89 × 10-4 5.90 × 10-5 170 

10 21 – 9 0.170 5.24 × 10-4 7.44 × 10-5 133 

11 21 – 9 0.170 5.24 × 10-4 7.44 × 10-5 133 

12 21 – 10 0.175 1.37 × 10-4 8.75 × 10-5 251 

13 21 – 11 0.115 3.54 × 10-4 5.03 × 10-5 143 

14 21 – 12 0.195 2.39 × 10-4 9.75 × 10-5 240 

15 21 – 12 0.195 2.39 × 10-4 9.75 × 10-5 240 

16 21 – 13 0.105 1.28 × 10-4 5.25 × 10-5 238 

17 21 – 14 0.215 1.98 × 10-3 1.08 × 10-4 69 

18 21 – 15 0.245 2.25 × 10-3 1.23 × 10-4 69 

19 21 – 16 0.255 7.86 × 10-4 1.12 × 10-4 133 

20 21 – 17 0.240 1.88 × 10-4 1.20 × 10-4 251 

21 21 – 18 0.085 1.24 × 10-3 4.25 × 10-5 52 

22 21 – 19 0.155 6.47 × 10-4 7.75 × 10-5 121 

23 21 – 20 0.115 1.06 × 10-3 5.75 × 10-5 78 

As can be seen in Fig. 2, each load of the network is modeled by a group of three blocks. The blocks are 

a three-phase series branch, a three-phase measurement block, and three-phase series load. Also, the three-

phase source located in BUS #21 supplies the loads and a three-phase V-I measurement block measures the 

main power input of the whole network. 

 

Fig. 2: Simulink model of the distribution network of the university campus. 

BUS 18 
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3. Case Studies 

In this section, several case studies are implemented in order to test and validate the proposed network 

modeling. For this purpose, the behavior of the network will be surveyed in different conditions considering 

various rates of consumption.  

At the first stage, the focus is given to BUS #18, which is the most distant bus from the power source. 

Three types of load modelings are considered for BUS #18 in order to survey the behavior of this specific 

bus. In the first test, a dynamic load is considered for BUS #18 while the rest of the loads are modeled as 

series loads consuming 100 kW, and in the second and third tests, a series and a parallel load is associated 

respectively for BUS #18 while the conditions are as same as the first test. The results of these three 

experiments would be illustrated and surveyed in the next section. 

The second part of the case study is related to validate the performance of the developed model, while 

all the loads are modeled by dynamic loads. Three scenarios are considered for this section: 

1. Winter profiles: the real consumption profile of each building on a winter day is considered 

for the network model; 

2. Summer profiles: the real consumption profile of university on a summer day is considered; 

3. Off-peak: the profiles would be as same as scenario 1, however, it is considered that the three 

most consuming buildings are not participating in the consumption profiles, since it is a public 

holiday and there are no classes in the faculty.  

Fig. 3 shows the real consumption profiles of each bus (each building) considered for three scenarios. 

All the charts are stacked lines, which means the last line presents the total consumption of the network.  

 

Fig. 3: The real consumption profiles of university considered for the case study in three scenarios: (A) winter 

profiles, (B) summer profiles, (C) off-peak. 

As Fig. 3 shows, the profiles are for one day with a 1-hour time interval. The simulation is set to run 

each hour period values in a fixed-step size of 30 seconds. Therefore, the outcomes of simulations would 

be obtained in 12 minutes after it starts running. 

4. Results 

The present section shows the results obtained from the simulation described in the previous section. 

The first gained results are related to the performance of BUS #18 with three different load models. Fig. 4 

shows the behavior of these load models in the first second of the simulation while there is 100 kW active 

power and 40 kVAR reactive power demand in BUS #18. 
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Fig. 45: Behaviour of BUS #18 in the first second of the simulation with three different loads modeling: (A) Dynamic 

load, (B) Series load, (C) Parallel load. 

As Fig. 4 shows, the response of the dynamic load is slower to reach to its permanent state comparing 

to the other two load models that have similar behaviors. In the dynamic load, it takes 0.15 seconds for the 

reaching to the permanent state while the other two load models immediately reached the desired rate. 

Furthermore, Table 2 presents the power consumptions of loads and branches in BUS #18 at the end of the 

simulation. As it can be observed from Table 2, there are some internal losses in the series and parallel load 

model somehow, they do not allow the consumption rate to be as same as the desired rate. Also, the losses 

in the branch of the dynamic load are slightly higher than the rest of the loads. 

Table 2: Power measurement regarding BUS #18. 

 
Measured Power Branch Power Total Consumption 

P (W) Q (VAR) P (W) Q (VAR) P (W) Q (VAR) 

Dynamic Load 100000 40000 145,4 0 100145,4 40000 

Series Load 99641,805 39857,541 144,5 0 99786,3 39857,54 

Parallel Load 99642,372 39856,817 144,5 0 99786,87 39856,82 

Another important difference between these models is to set the desired power rate. In Series and Parallel 

loads, the power consumption rate can only be set before starting the simulation, however, in the dynamic 

load model it can be changed throughout the simulation. These differences between the load modelings, 

especially the dynamic load, are due to the nature of the type of loads and blocks that are being used for the 

testing in the Simulink tool. 

Regarding the results of the whole network, Fig. 5 shows the overall consumption of the network 

simulated by the developed model for the university campus distribution network in three scenarios 

mentioned before. In all three scenarios, the loads are modeled using dynamic load, since its outputs are 

closer to a realistic load and also it allows to change the power input while the simulation is running. 

The results shown in Fig. 5, are for 12 minutes in total, which means each 30 seconds a new power 

consumption rate is transmitted to all loads and therefore, they react and try to reach the favorable 

consumption rate. Also, in the same figure, while the consumption rate is changed, there is a peak in active 

power, which is due to the nature of the dynamic load, as it was discussed in Fig. 4. 

Based on the results shown on this section, it can be concluded that the developed Simulink model has 

adequate and acceptable performance in simulation, and the obtained results validated the functionalities 

of that in different conditions with the various rate of consumption. 
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Fig. 5: Overall consumption of university campus network simulated by the developed Simulink model: (A) winter 

profiles, (B) summer profiles, (C) off-peak. 

5. Conclusions 

This paper presented a MATLAB/Simulink model of a low voltage distribution network of a university 

campus. Several load modelings have been surveyed and their performances in various conditions were 

demonstrated. The real consumption profiles of the university campus were used for the case studies 

through different scenarios. In the model, each building of the university was considered as a dynamic load 

for simulating the consumption rate. The results of the simulation show that three-phase dynamic load is 

the best approach for modeling the consumption of each building since it reacts closer to a realistic load. 

Moreover, the dynamic load model allows the user to modify and change the rate of consumption while the 

simulation is running, which this is not possible to implement using other types of load modelings.   
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