
Pedro Pinto

PEDRO MIGUEL DA SILVA PINTO
Outubro de 2020

The Solid Ecosystem: Ready for
Mainstream Web Development?

Pedro Pinto

Supervisor:
Professor Nuno Bettencourt

Mestrado em Engenharia Informática
Instituto Superior de Engenharia do Porto
Departamento de Engenharia Informática

Rua Dr. António Bernardino de Almeida, 431, P-4200-072 Porto
October 2020

iii

Dedicatory

I would like to dedicate this dissertation to all of those who have supported me unconditionally
during its development, as well as everyone who keeps pushing me to do more and to do
better.

v

Abstract

Companies have been collecting data from its users over the years. This data it is often
grouped in places called data silos and may then be used for profit in many ways: building
data models to predict or enforce user behaviour, selling their data to other companies,
among others.

Moreover, the centralisation of data makes it appealing for people with malicious intentions
to attack data silos. Security breaches violate users’ privacy, by exposing its sensitive data
such as passwords, credit card information, and personal details. One solution to this problem
is to separate data from these systems, demanding a shift in the way companies create web
applications.

This dissertation explores different solutions and compares them, focusing on a particular
project named Solid. Created by the inventor of the World Wide Web, Tim Berners-Lee,
Solid is a solution that takes advantage of the power of RDF in order to create a web of
Linked Data, introducing decentralisation on software architecture in different layers.

In order to achieve mainstream adoption, various aspects such as the impact of the intro-
duction of this technology have on the user experience and development experience need to
be considered.

This dissertation documents the development of a prototype web application built with Solid
at its core and compares it with the same application developed using a more traditional
stack of technologies.

An analysis was conducted under two perspectives: developer and final user. While in the
former it is considered aspects such as development time and documentation diversity and
quality, the latter is focused on the user experience.

Resorting to a questionnaire presented to real users, it was concluded that the user expe-
rience of some the features of these applications, such as the user’s registration and the
login process is affected by introducing this type of decentralisation. Moreover, it was also
considered the lack of documentation this technology has at the moment, though it has
improved throughout the development of this dissertation.

Keywords: Data, Security, Privacy, Decentralisation, Solid

vii

Resumo

As empresas têm coletado dados dos seus utilizadores ao longo dos anos. Esses dados são
frequentemente agrupados em locais denominados de data silos e podem ser usados para
fins lucrativos através de várias formas: construção de modelos de dados para prever ou
impor comportamentos nos seus utlizadores, venda dos seus dados a outras empresas, entre
outras.

Para além disso, a centralização desses dados capta a atenção de pessoas com intenções
maliciosas, que possuem interesse em atacar esses agrupamentos de dados. Falhas de segu-
rança violam a privacidade dos utilizadores, expondo dados confidenciais, como passwords,
informações de cartões de crédito e outros detalhes pessoais. Uma solução para este prob-
lema passa por separar os dados das aplicação, exigindo uma mudança na forma como as
empresas criam aplicações.

Esta dissertação explora diferentes soluções e efetua uma comparação entre elas, com foco
num projecto específico denominado de Solid. Desenvolvido pelo criador da World Wide
Web, Tim Berners-Lee, Solid é uma tecnologia que aproveita o poder de RDF para criar uma
rede de informação interligada, introduzindo descentralização nas arquitetures de software
em diferentes camadas.

Por forma a conseguir uma adoção massiva, vários aspetos, como o impacto que esta
tecnologia tem na experiência de utilizador e no desenvolvimento de software, necessitam
de ser considerados. Esta dissertação documenta o desenvolvimento de uma aplicação que
utiliza Solid no seu núcleo e compara-a com uma outra aplicação desenvolvida com uma
pilha de tecnologias mais tradicional.

Foi conduzida uma análise através de duas perspectivas: desenvolvedores e utilizador final.
Enquanto que na primeira os aspetos considerados estão relacionados com tempo de desen-
volvimento assim como qualidade e diversidade de documentação, a última está mais focada
na experiência de utilizador.

Recorrendo a um questionário apresentado a utilizadores que tiveram a oportunidade de
experimentar ambas as aplicações, concluiu-se que a experiência do utilizador em algumas
funcionalidades, como o registo de utilizador e o processo de login, é afetada pela introdução
deste tipo de descentralização, ainda que em muitas outras a diferença seja impercetível.
Além disso, também foi considerada a falta de documentação que esta tecnologia possui no
momento, embora tenha melhorado ao longo do desenvolvimento desta dissertação.

Palavras-chave: Dados, Segurança, Privacidade, Descentralização, Solid

ix

Acknowledgement

I would like to express my gratitude to my supervisor who has been supporting me during
this entire process. I would also like to thank the Solid Community for all the help and great
insights during the development of this dissertation.

xi

Contents

List of Figures xv

List of Tables xvii

List of Source Code xix

Glossary xxi

1 Thesis Structure 1
1.1 Problem . 1
1.2 Objectives . 2
1.3 Research Questions . 3
1.4 Document Structure . 3

2 State Of The Art 5
2.1 Solid . 5

2.1.1 Storage Architecture . 5
2.1.2 Resource Description Framework 6
2.1.3 Authentication . 7

2.2 Blockstack . 9
2.2.1 Storage Architecture . 9
2.2.2 Authentication and Authorisation 10

2.3 Elastos . 10
2.3.1 Storage Architecture . 11
2.3.2 IPFS . 11
2.3.3 Decentralised Authentication . 11

2.4 Solutions Comparison . 12
2.4.1 Storage . 12
2.4.2 Authentication . 12

2.5 Testing . 13
2.5.1 Unit Testing . 13
2.5.2 End-to-End Testing . 14

2.6 Summary . 14

3 Value Analysis 15
3.1 Function Analysis System Technique . 15

3.1.1 Business Perspective . 15
3.1.2 User Perspective . 16
3.1.3 Value Proposition Canvas . 17

3.2 Customer Perceived Value . 20
3.3 Summary . 20

xii

4 Business Analysis 21
4.1 Functional Requirements . 21
4.2 Non-functional Requirements . 21
4.3 Domain Model . 22
4.4 Use Cases . 22
4.5 Summary . 23

5 Design 25
5.1 Architecture . 25

5.1.1 Centralised Approach . 25
5.1.2 Decentralised Approach . 26
5.1.3 Architecture Comparison . 26

5.2 Sign Up . 26
5.2.1 Centralised Approach . 27
5.2.2 Decentralised Approach . 27
5.2.3 Approaches Comparison . 28

5.3 Authentication . 28
5.3.1 Centralised Approach . 28
5.3.2 Decentralised Approach . 29
5.3.3 Approaches Comparison . 29

5.4 Consult Medical Notes . 30
5.4.1 Centralised Approach . 30
5.4.2 Decentralised Approach . 30
5.4.3 Approaches Comparison . 31

5.5 Submit Medical Note . 31
5.5.1 Centralised Approach . 31
5.5.2 Decentralised Approach . 32
5.5.3 Approaches Comparison . 32

5.6 Share Medical Exam . 33
5.6.1 Centralised Approach . 33
5.6.2 Decentralised Approach . 33
5.6.3 Approaches Comparison . 34

5.7 Solid Applications Interoperability . 34
5.8 Summary . 35

6 Implementation 37
6.1 Technology Stack . 37

6.1.1 Centralised Approach . 37
6.1.2 Decentralised Approach . 38

6.2 Communication Standards . 38
6.3 Use Cases . 38

6.3.1 Sign Up . 39
6.3.2 Authentication . 40
6.3.3 Consult Medical Notes . 40
6.3.4 Submit Medical Note . 41
6.3.5 Share Medical Exam . 42

6.4 Solid Applications Interoperability . 43
6.5 Testing . 44

6.5.1 Unit Testing . 44

xiii

6.5.2 Frontend . 44
6.5.3 Backend . 44
6.5.4 End-to-End Testing . 44

6.6 Summary . 45

7 Evaluation 47
7.1 Indicators and Information Sources . 47
7.2 Assessment Methodology . 47
7.3 Results Analysis . 48

7.3.1 Documentation and Libraries Availability 48
7.3.2 User Experience . 48

7.4 Summary . 51

8 Conclusions 53
8.1 Research Questions . 53
8.2 Contributions . 54
8.3 Results . 54
8.4 Limitations . 55
8.5 Future Work . 55
8.6 Final Remarks . 55

Bibliography 57

A End-to-End Testing 59

xv

List of Figures

2.1 Solid Architecture (Source [7]) . 5
2.2 RDF Triples (Based on [9]) . 6
2.3 Authentication Flow with WebID-TLS [11] 8

3.1 FAST applied in a Business Perspective 16
3.2 FAST applied in a User Perspective . 17
3.3 Value Proposition Canvas . 18

4.1 Domain Model . 22
4.2 Use Case Diagram . 23

5.1 Centralised Approach Architecture . 26
5.2 Decentralised Approach Architecture . 26
5.3 User Registration - Centralised Approach 27
5.4 User Registration - Decentralised Approach 28
5.5 User Authentication - Centralised Approach 29
5.6 User Authentication - Decentralised Approach 29
5.7 Consult User’s Medical Notes - Centralised Approach 30
5.8 Consult User’s Medical Notes - Decentralised Approach 31
5.9 Submit Medical Note - Centralised Approach 32
5.10 Submit Medical Note - Decentralised Approach 32
5.11 Share Medical Exam - Centralised Approach Approach 33
5.12 Share Medical Exam - Decentralised Approach Approach 34
5.13 Consulting Patient’s Medical Exam through another Solid application . . . 35

xvii

List of Tables

2.1 Comparison of storage characteristics between solutions 12
2.2 Comparison of authentication characteristics between solutions 13

6.1 Technologies used in the centralised approach development 37
6.2 Technologies used in the decentralised approach development 38
6.3 Consult Medical Notes API - Centralised Approach 41
6.4 Consult Medical Notes API - Decentralised Approach 41
6.5 Submit Medical Note API - Centralised Approach 42
6.6 Submit Medical Note API - Decentralised Approach 42
6.7 Share Medical Exam API - Centralised Approach 43
6.8 Share Medical Exam API - Decentralised Approach 43

7.1 User Experience Survey Result . 49
7.2 User Experience Survey Result Analysis 50

xix

List of Source Code

2.1 RDF Syntax Example . 6
6.1 Excerpt of the returned WebId data representation 39
6.2 Example of a Public Type Index response 41
6.3 Saving a new medical note through a SPARQL Query 42
6.4 Creating an ACL file for the medical exam 43
A.1 System Authentication End-to-End Test 59

xxi

Glossary

Backend Component(s) of a system located on the Server side.

Frontend Component(s) of a system located on the Client side.

Jest JavaScript testing framework.

JHipster FullStack framework that allows to bootstrap systems.

JUnit Java testing framework.

NodeJS Backend JavaScript framework.

PostgreSQL SQL Database.

RDF Resource Description Framework.

React Frontend JavaScript framework.

Solid Pod Server that stores the user information and exposes an API so that other com-
ponents can interact with it.

Spring Boot Java framework.

UI User Interface.

Web Id URI that uniquely identifies someone or something.

1

Chapter 1

Thesis Structure

Nowadays we live in an interconnected world, where internet may be considered humanity
most valuable resource. It is using the internet that we do business, we entertain ourselves,
we talk and see our loved ones from all over the world, we educate ourselves, among other
activities.

Since the mainstream adoption of the Internet, some companies have acquired a big share
of the overall internet users within its products usage, offering, in most cases, a huge variety
of services so powerful that some of these users have even built their own social life and
businesses on it (e.g., companies like Amazon and Google are the main information vehicle
for a considerable amount of the global Internet users). On its Small Business Impact Report
of 2008 [1], Amazon has reported that nine hundred thousand jobs have been created by
small and medium companies selling on Amazon.

1.1 Problem

With all the power over the users data, big corporations have created ways within its plat-
forms in order to boost their profits. One example is by gathering users’ data and storing it
in "data silos". This data can then be used to predict or force behaviour on users (e.g. mar-
keting, political influence) or even to simply sell it to other companies. All of this is mostly
executed without user consent, or at least without users understanding the consequences
implied when they accept the terms and conditions of the different platforms, in order to
use them. Not accepting the company’s terms means, for the most part of the available
products and services, disallows their usage.

Companies are able to profit from data in multiple ways, making it one of the most valuable
assets. Some services are free just because of how valuable it is to collect the data the users
produce by using it. Recently, some attention has been redirected to data scandals like the
Cambridge-Analytica[2], where data belonging to millions of Facebook users was harvested
and exploited. These kind of events highlight the importance of privacy and security on
Web Applications. Ideally, users would have the option to move away from this "data
silos", empowered by the ownership of their own data and having access to fine-grained
authorisation layers.

Moreover, often companies rely on third-party services which integrate within their own
products. The increased coupling between services, often reduce the overall security of a
product. According to the authors in [3], a study conducted with more than thousand Chief
Information Security Officer in the United Kingdom and United States of America, revealed

2 Chapter 1. Thesis Structure

that around sixty percent of the companies have already experienced a data breach caused
by their vendor or third parties.

As of May 2018, the General Data Protection Regulation (GDPR) [4] was enforced in the
European Union and the European Economic Area, with the main goal of improving trans-
parency over how personal data is handled by services [5]. However, companies developed
strategies to overlook this regulation, applying dark patterns that, for instance, utilise im-
plicit consent inferred via non-affirmative actions on the website (e.g. scrolling the website
or closing the consent pop-up without providing a response)[6]. Strategies like the previ-
ously mentioned prove that GDPR, by itself, may not be enough to protect users and give
them back the control over their personal data and that significant architectural changes to
applications may be needed.

Tim-Berners Lee, known for creating the World Wide Web, has been working on a new
web development framework with privacy at its core, named Solid. This framework enables
Web Artisans to build products with the data decoupled from the application itself empow-
ering users with the control over their data and enabling a set of use cases, such as data
reutilization[7].

1.2 Objectives

Although being a promising technology given its privacy-focused characteristics, Solid-based
architectures represent a major shift on how applications are developed and possibly used,
when compared to what users are invited to use at the moment of writing and if the develop-
ment approach is not well-defined and has the right tools or if, the user experience provided
by the architecture itself is not good enough for the users, it will most certainly struggle to
achieve massive adoption.

In order to truly achieve privacy and security, decentralisation should be implemented on
the different web layers, namely authentication, authorisation and data storage. A proof-of-
concept regarding decentralisation within the previously mentioned layers should be designed
and implemented using Solid, with the end goal of evaluating the solution according to
different metrics related to the entire development process, considering the following set of
metrics:

1. Non-empirical study comparing existing approaches;

2. How (architecturally) different from a more traditional development approach it is to
build this kind of applications;

3. The development time (man-hours) for this kind of applications when compared to
the more traditional and centralised approaches;

4. How is the on-boarding of the user affected;

5. Documentation availability from a developer perspective;

6. If the designed approach is a better solution for privacy and consent problems affecting
our society at the time of writing.

For the proof-of-concept, there will be developed two approaches: one that utilises Solid at
its core and another built using a current web stack. The domain of these approaches is the
Healthcare area, and the users will be able to submit, share and control information with

1.3. Research Questions 3

their doctor. Each of the doctors will, therefore, only have access to the information shared
with them and the user should have full control to revoke the authorisation whenever they
want to.

1.3 Research Questions

Considering the proposed objectives, a set of research questions were defined which are
analysed and answered during this dissertation. The questions are the following:

1. How architecturally different are applications built with Solid at its core compared to
those built with a more traditional web stack?

2. Can web social applications built with Solid at its core have the same user experience
as others currently built with a more traditional web stack?

3. Do Solid applications require more man-hours to be developed than those built with a
more traditional web stack?

4. Is Solid ready to achieve mainstream adoption?

1.4 Document Structure

This dissertation is composed by 7 chapters.

In Chapter 1 (Introduction) it is provided some background that led to the development of
this dissertation, as well as explained the problem and the objectives.

In Chapter 2 (State of the Art) it is studied the solutions that currently exist for the present
problem, as well as the technologies that support the development of this dissertation.

In Chapter 3 (Value Analysis) it is present the value that Solid can bring from a business
and user perspectives.

In Chapter 4 (Requirements Engineering) it is presented the domain of the prototype that
will be implemented, as well as the functional and non functional requirements.

In Chapter 5 (Design) it is presented the design of the implemented prototype, where it is
included an analysis on each of the use cases.

In Chapter 6 (Implementation) it is presented the technologies utilised as well as the imple-
mentation process for each of the use cases.

In Chapter 7 (Experimentation and Assessment) it is presented the indicators and method-
ologies used to analyse them, as well as the analysis results for each of them.

In Chapter 8 (Conclusions) is finally presented the conclusions of the dissertation, analysed
the limitations found as well as the future work.

5

Chapter 2

State Of The Art

In this chapter we explore different solutions that, similarly to Solid, are working towards
returning the control of the data back to the users by offering decentralisation in many of
the layers of web applications, such as storage and authentication.

2.1 Solid

Solid is a decentralised platform for social Web applications. Nowadays, most of the popular
applications that store users’ data (either implicitly or explicitly produced) take ownership
over it. Solid is built relying on existing W3C standards, based on the Resource Description
Framework (RDF) and semantic Web Technologies, and provides data independence and
simple, yet powerful, data management mechanisms[7].

In the Figure 2.1 it is possible to depict Solid’s architecture, representing authentication and
communications between pod-to-pod and application-to-pod[7].

Figure 2.1: Solid Architecture (Source [7])

2.1.1 Storage Architecture

Solid’s architecture allows the development of applications that enable users to choose a Pod
of their choice (either their own or rely on a Pod provider) in order to grant the applications
authorisation to store or read data from it. This fact alone allows users to run from the
traditional "data silos" that big companies have been building throughout all these years.
Additionally, these pods can offer different granularity for privacy, reliability, availability, legal
protection, among others[7].

An important feature achievable with these Pods is data reutilization, which is not a recurrent
practice in the current State of the Web. This allows different applications to use data

6 Chapter 2. State Of The Art

available on the user’s pod - Solid applications are decoupled from the data they need to
operate by design[7].

2.1.2 Resource Description Framework

Solid is based on RDF, a standard model that takes part of a family of World Wide Web
Consortium (W3C) specifications for data interchange on the Web[8].

This model provides interoperability between applications that exchange information on the
Web[9]. It names not only the relationship between things but also the two ends of the link,
creating triples (subject, predicate and object).

An RDF model consists of three object types:

• Resources: Described by RDF expressions, resources can differ substantially in terms
of granularity, e.g. it can be a set of Web Pages, only one Web Page or even a XML
element of a page. Resources are named by URIs, optionally ending with anchor IDs;

• Properties: It holds a specific meaning, permitted values, types of resources it can
describe and even its relationships with other resources. These can be specific aspects,
characteristics, attributes or anything else that can describe a resource;

• Statements: A statement is composed of a resource coupled with a named property
with a value of that property. These three values are named, respectively, the subject,
the predicate, and the object. The object can be another resource or simply a string
or other primitive datatype defined by XML[9].

These models are used to represent named properties and property values. Its properties
may be thought of as attributes of resources and in this sense correspond to traditional
attribute-value pairs. Additionally, these properties may also represent relationships between
resources, so a RDF model can therefore resemble an entity-relationship diagram[9].

Figure 2.2: RDF Triples (Based on [9])

The Figure 2.3 represents a triple, illustrating that the given subject has Pedro as its creator.
With a circle, we have the subject which is Pedro’s WebId Profile URI, pointing to his Solid
Community Pod. Moreover, the rectangle is representing the object as a literal, whereas the
arrow is characterising the predicate. In RDF/XML, this would be represented as showed in
the Listing 2.1.

1 < r d f :RDF>
2 < r d f : D e s c r i p t i o n about=" h t t p s : // p e d r o p i n t o . s o l i d . community / p r o f i l e /

ca r d#me">
3 <s : Crea to r >Pedro </ s : C rea to r >
4 </ r d f : D e s c r i p t i o n >

2.1. Solid 7

5 </ r d f :RDF>

Listing 2.1: RDF Syntax Example

Instead of having a literal as the object of this relationship, it is possible to point to other
URIs, which will then have their own relationships, creating a web of linked data.

2.1.3 Authentication

The decentralised aspect of this technology has a set of requirements for its authentication
mechanisms that are not commonly encountered on traditional platforms. Its main authen-
tication mechanism relies on WebID-TLS, using WebIDs as unique identifiers with the help
of cryptographic certificates which, in its turn, allows the users to prove that they are who
they say they are[10].

At the moment of writing, Solid’s development team is implementing support for WebID-
OIDC as another primary authentication mechanism. Additionally, other authentication
mechanisms are being investigated, such as combinations of WebID Delegation and the
traditional username-password mechanism[10].

WebID-TLS

The WebID-TLS protocol enables secure, efficient authentication on the Web. It enables
users to authenticate on any website by choosing one of the certificates presented to them
by their browser 1. WebIDs are URIs with an HTTP or HTTPs scheme which denotes an
agent (i.e., Person, Organisation, Group, Device, among others)[11].

In order to achieve a truly distributed social web, we need to ensure that:

• Each person has control of their own identity;

• The Identity is linkable across sites (taking apart of a Web of relationships);

• It is possible to globally authenticate such identities[11].

The Figure 2.3 illustrates how the authentication process works using this protocol. The
flow starts with the client opening a TLS connection with the server which authenticates
using the standard TLS protocol.

Afterwards, the server may intercept the resource and, if there are authorisation and authen-
tication needs, it may request the client to authenticate itself using public key cryptography
by signing a token with its private key and having the Client send its certificate.

The server must then ask the Verification Agent to verify that the WebIds in the WebId
certificate do identify the agent who knows the given public key.

Finally, the server can check if one of the verified WebIDs is authorised to request the
intended resource and, if granted to do so, may allow the access[11].

1https://github.com/solid/solid-spec/blob/master/authn-webid-tls.md

8 Chapter 2. State Of The Art

Figure 2.3: Authentication Flow with WebID-TLS [11]

WebID-OIDC

This authentication delegation protocol is suitable for WebID-based decentralised systems
such as solid as well as most LDP-based systems. It is built on top of OpenID Connect
(OIDC), which in its turn is built on top of OAuth2.

The end result of any WebID-based authentication workflow is a verified WebID URI. While
the WebID-TLS derives the WebID URI from a TLS certificate and matches it against the
public key, in an agent’s WebID Profile, the end result of OpenID Connect (OIDC) workflows
is a verified ID Token[12]. The WebID-OIDC protocol takes advantage of the proven security
of OpenID Connect while still benefiting the decentralised flexibility of WebID, specifying a
mechanism in order to get a WebID URI from an OIDC ID Token.

As presented by Solid’s WebID-OIDC Authentication Specification[12], the workflow for this
delegation protocol is designed as follows:

1. The user makes a request to a resource;

2. After receiving a HTTP 401 Unauthorised response code, users can select their WebId
provider;

3. A local authentication process takes place within the service provider, where users
authenticate with their preferred method (e.g., WebID-TLS, password, among others);

4. Optionally, the users are presented with a consent screen in order to verify if they
really want to proceed with the login;

2.2. Blockstack 9

5. If the login is successful, the user is redirected to the originally requested resource and
the server receives a signed ID Token that was returned on step 3;

6. The server validates the token and extracts the user’s WebID URI from it;

7. Finally, by matching the provider URI on the user’s WebID profile with the Issuer URI
in the ID Token the server can confirm that the service provider is the user’s authorised
OIDC provider.

2.2 Blockstack

Blockstack is an open-source project that aims to build a decentralised computer network
that provides a full-stack alternative to traditional computing using the existing Internet
transport layer and underlying communication protocols while removing points of central-
isation in the application layer[13]. It follows an end-to-end design principle[13] pushing
complexity into the edges (e.g, user devices and user-controlled storages) while keeping its
core simple[14]. In order to achieve this, Blockstack designed its architecture with a set of
layers, including:

• Stacks Blockchain: enables users to control and register digital assets such as user-
names and also execute smart contracts and awards developers with tokens for pub-
lishing high-quality applications in the ecosystem;

• Gaia: Decentralised Storage for applications;

• Blockstack Authentication: protocol responsible for enabling authentication decen-
tralisation within applications;

• Libraries and Software Development Kits (SDKs): user for developers to build
Blockstack applications and interact with the different architecture components easily
[13].

2.2.1 Storage Architecture

Blockstack uses a set of components in order to achieve storage decentralisation, namely its
Sacks Blockchain and Gaia Hubs. Even though Blockchains would guarantee data privacy
and security (among other properties), they can be slow because they require consensus
amongst a number of participants in the network. Thus, storing data on a Blockchain would
slow down applications besides being an expensive process[15].

In order to solve the performance problem, Blockstack has built a layered architecture that
takes advantage of the immutability and security of Blockchain to store essential information,
while storing user data in another container. At the base of the architecture there is a
blockchain and the Blockstack Naming System (BNS) and the former governs information
such as domain names, usernames and application names [16].

On the second layer there is the Atlas Peer Network, which stores all the names in Blockstack
(which correspond to routing data in the traditional OSI model). Every node that joins the
blockchain obtains an entire copy of the routing data, which is then used associate names
with a particular storage location [16].

Blockstack applications can achieve storage decentralisation by taking advantage of the Gaia
Storage System (Gaia Hubs). It corresponds to the third and final layer, and it is a system

10 Chapter 2. State Of The Art

consisting of hubs that work as a storage resource for decentralised applications. These
hubs can be installed locally or in software provider (e.g., Azure, Amazon EC2). Users’ data
as well as any data needed by the applications in order to work properly are stored in these
containers so they achieve much better performance and cost-efficiency than applications
built entirely on Blockchains. Moreover, users get to choose where their data is stored, and
the system has an API in order for applications to be able to retrieve and store information
consistently[16].

2.2.2 Authentication and Authorisation

Blockstack provides users with a universal username that works across all the applications in
its ecosystem without the need for passwords, recurring to public-key cryptography and using
a locally-running software responsible for handling sign-in requests and signing authentication
requests[13]. Moreover, its login is designed to be very similar to third-party authentication
techniques that they are familiar with, such as OAuth, and it happens totally on client-
side [15]. Each application has a specific private key, which is securely exchanged with the
application on each authentication. This key serves mainly three purposes:

• it is involved in the credentials, for that application, that give access to the user’s Gaia
Hub;

• is used for encryption of the files stored by the application on the user’s hub;

• has other cryptography functions that applications are able to use[15].

2.3 Elastos

Elastos aims to create a new kind of internet powered by blockchain technology, where users
are able to generate digital assets and generate wealth from them.

The organisation believes that property rights pave the way for wealth creation and their
main goal is to allow users to access articles, movies, games or any other digital assets
without going through intermediaries, making digital assets scarce, tradable and identifiable
[17].

Elastos is an open source software, whose development is backed by relevant industry leaders
such as Tsinghua Science Park, the TD-SCDMA Industrial Alliance and the Foxconn Group.
It wants to create a platform in which applications and services are not allowed to access
the internet directly, in order to avoid malware to steal user data, as well as other types
of attacks to online services. This vision culminated in a lightweight operating system
for virtual machines, where decentralised applications communicate through a peer-to-peer
network and are accessible via the users’ mobile phones or personal computers, without
making them change operating systems, i.e. applications run on Elastos’ own operating
system.

The Elastos Smart Web is mainly composed of four components:

• Elastos Blockchain: Elastos wants to build a decentralised Web where each digital
assets has its own trustworthy ID, i.e. this is enabled by default because of the main
properties that Blockchains provide;

2.3. Elastos 11

• Elastos Runtime: lightweight operating system that prevents applications from con-
necting directly to the internet, available for on different processor architectures which
enables applications to run either on the users’ personal computer or mobile devices;

• Elastos Carrier: completely decentralised peer-to-peer-platform, which takes over the
network traffic between the different virtual machines and exchanges information on
the behalf of the applications;

• Elastos Software Development Kit: applications use the Elastos SDK in order to access
their IDs and Elastos Carrier.

2.3.1 Storage Architecture

Elastos Hive is a service infrastructure that provides decentralised storage capabilities to
Elastos Decentralised Applications. This technology takes advantage of IPFS and IPFS
Cluster as the base infrastructure to save data, with the added benefit of compatibility with
the rest of the services that are part of the ecosystem 2.

2.3.2 IPFS

IPFS is a peer-to-peer hypermedia protocol designed to make the web faster, safer and open,
aiming to surpass HTTP in order to build a better web for the world.

Developed to be a peer-to-peer distributed filesystem that seeks to connect all comput-
ing devices in the same system of files, it provides high throughput content-addressable
hyperlinks.

It combines a distributed hashtable, an incentivised block exchange, and a self-certifying
namespace. Moreover, it has no single points of failure and the nodes taking part of the
network do not need to trust each other[18].

This technology, when compared to the traditional web protocol, is more efficient distributing
high volumes of data without duplication and stays true with the original vision of an open,
flat web3. Additionally, IPFS is able to keep every version of the files and makes it simple
to set up resilient networks for mirroring data.

2.3.3 Decentralised Authentication

Applications built within the Elastos Ecosystem use Decentralised IDs (DIDs), enable users
to be secured with the power of blockchain, but with the easy and convenience like the
existent protocols (e.g., Google, Facebook)[19].

At the moment of writing, users have to manage multiple IDs for the different applications
they use, even with some developments that have been approaching this problem (e.g.
Google OAuth - users have multiple IDs issued by multiple platforms). This is, by itself, a
security problem, as the users have to trust these central authorities, responsible for issuing
IDs and storing their information, to secure their infrastructure. On Elastos, DID Sidechains
are responsible for issuing DIDs, which act as a proof of ownership of digital identity. While
in traditional systems, a centralised entity is needed in order to avoid conflicts when issuing
IDs, blockchain-based systems use wallet addresses as user’s ID in order to carry the different

2https://elastos.academy/hive/
3https://ipfs.io/

12 Chapter 2. State Of The Art

Table 2.1: Comparison of storage characteristics between solutions

Characteristic Solid Blockstack Elastos

Storage Decentralisation X X X

Data Reutilisation X X

transactions. In these decentralised systems, public-key cryptography is used i.e. each public
key is linked to a private key used to sign different assets) which eliminates the need for
third party to confirm identities 4.

2.4 Solutions Comparison

Solid aims to empower users and organisations with privacy and control over their data,
separating it from the applications they use5. Other projects also intend to offer this level
of privacy to the users.

During this section, we will understand how comparable at this degree are the solutions
offered by Solid, Blockstack and Elastos, mainly focusing on two key aspects: Storage and
Authorisation/Authentication.

2.4.1 Storage

Solid relies on its pods in order to achieve storage decentralisation, exposing an HTTP
interface for applications to communicate and operate with. Blockstack also offers similar
functionalities through its Gaia hubs, even though not offering, as of the moment of writing,
the possibility for applications to reuse the user data as Solid does. Elastos, unlike the other
two solutions, uses IPFS for storage purposes, through Elastos Hive - making it also possible
to reuse data.

In the Table 2.1 we expose the characteristics in comparison related to what the storage of
the three solutions provides.

2.4.2 Authentication

Solid takes advantage of WebID-TLS as its main authentication mechanism, using cryp-
tography certificates in order to verify that the users are, in fact, who they say they are.
These certificates are owned by the user and no centralised authority is necessary for the
authentication to proceed.

Blockstack also achieves authentication decentralisation by utilising public-key cryptogra-
phy. Since there is no need for a password, the user owning the private key can directly
authenticate and start using the applications.

Similarly to Solid and Blockstack, Elastos also enables decentralised authentication, this
time taking advantage of Blockchain technology which issues decentralised IDs to the users
which in turn also capitalises on a public-private key authentication-based method.

4https://elastos.academy/decentralized-identifier-sidechain-2/DIDSpotlightStart
5https://solid.inrupt.com/

2.5. Testing 13

Table 2.2: Comparison of authentication characteristics between solutions

Characteristic Solid Blockstack Elastos

Authentication Decentralisation X X X

Multiple Authentication Mechanisms X

As mentioned in the Table 2.2, all the compared solutions offer a decentralised authentication
mechanism, with Solid currently implementing multiple options, enriching its ecosystem by
doing so.

2.5 Testing

Testing is a fundamental process in Software Development. A variety of tests such as Unit
and End-to-End testing ensure that the software was implemented as it was specified/de-
signed. It also increases the confidence level during the deploy process and facilitates the
maintenance of the system, by ensuring that previously implemented behaviours were not
altered.

2.5.1 Unit Testing

This type of testing focuses on testing small pieces of code that can be logically isolated in
the system6. This helps to ensure that whatever changes are introduced in the system, the
blocks of code covered by the unit tests can maintain the expected behaviour if the tests
are still passing.

Jest

Jest is a JavaScript testing framework that works with projects built with a variety of tech-
nologies, such as Babel, TypeScript, Node, React and Angular7.

This framework allows the parallelisation of the tests by running them in their own process
in order to maximise performance. Additionally, allows the mocking of objects outside of
the test scope, tracks the coverage of the code and presents a report with the failed tests8.

JUnit

This open-source framework is used to write unit tests on Java applications. By offering
features such as assertion instructions, basic built-in template and test runners, it helps
developers to write independent, testable modules9.

Additionally, it provides an error report that allows developers to know exactly which test
and which assertions failed in each of the developed test suites10.

6https://smartbear.com/learn/automated-testing/what-is-unit-testing/
7https://jestjs.io/
8https://jestjs.io/
9https://www.softwaretestinghelp.com/junit-tutorial/

10https://www.softwaretestinghelp.com/junit-tutorial/

14 Chapter 2. State Of The Art

2.5.2 End-to-End Testing

This type of testing helps to validate multiple scenarios across the layers of the built software,
being able to replicate entire scenarios as if it was the user executing real tasks on the system
by interacting with the user interfaces. It is also useful to ensure accurate interaction and
experience and to ensure that error situations are handled correctly 11.

Cypress

Cypress is an end to end open-source testing framework, that offers time travelling, debug-
ging and real-time reloads whenever the tests are changed12.

Unlike other frameworks, Cypress works with every frontend framework and every test is
written with JavaScript. This framework sets itself apart from others for not using Selenium
while being an all-in-one framework, assertion library, with mocking and stubbing13.

Protractor

Protractor is an end-to-end framework that enables developers to mock user behaviour,
capable of supporting Angular-specific locator strategies14.

Based on Node.js, this framework utilises Jasmine for its testing interface and needs a
Selenium Server in order to control the browser that is running the tests15.

2.6 Summary

In this chapter we have studied the state of the art, including Solid and technologies with
similar objectives and their own architectures, exposing different details for each of them.
Finally, we have compared the solutions on two key characteristics: storage and authentica-
tion.

11https://www.testing-whiz.com/blog/5-reasons-to-perform-end-to-end-testing
12https://www.cypress.io/
13https://www.cypress.io/how-it-works
14https://www.protractortest.org/
15https://www.protractortest.org//tutorial

15

Chapter 3

Value Analysis

Since the main goal of the present work is to study how and if Solid can achieve mainstream
development and adoption, experimentation and unpredictable results are expected.

This technology disrupts how traditionally we build social applications, so new processes,
techniques, and good practices will, most probably, emerge in order to help developers and
companies to with the development and distribution pipelines.

Moreover, it should consider that there is no mainstream development if there is no customer
demand for it, so it is very important to emphasise why would users create demand for this
shift to happen.

For this analysis, it was chosen The Fuzzy Front End Process (FFE), since it is ideal for
projects focused on research. Unlike other processes like the New Product Development
(NPD) where it is mainly applied to projects with a high degree of certainty and, possibly,
predictable results, the FFE is more oriented to experimental and projects with high risk and
where potential should be optimised[20].

3.1 Function Analysis System Technique

Keeping in mind that a proof of concept for Healthcare will be developed, and given that
user adoption is ultimately the main drive for mainstream web development with Solid, we
can find in this section an analysis using the Function Analysis System Technique (FAST)
in two perspectives: business and users oriented. While on the former we will analyze why
companies should adopt a technology such as Solid, on the latter it is more evident the
benefits that the users can directly have with such experience.

3.1.1 Business Perspective

The ultimate goal of most companies is profitability, and frameworks such as Solid that
have privacy at its core will not be adopted by these organizations if there is no monetary
advantages of doing so. The Figure below applies the FAST technique from a Business
perspective.

16 Chapter 3. Value Analysis

Figure 3.1: FAST applied in a Business Perspective

Organizations will most probably not want to build applications with Solid if the properties
it provides do not bring them enough opportunities to achieve profitability.

At times, the process of registering into a service or product is a little bit cumbersome and
that can be solved with a shared identity across services/products - which is achievable with
decentralized authentication processes. Additionally, shared identities mean that services,
if authorized to do so, might reuse existing data on the users profile which, by itself, is an
opportunity to deliver a personalized service fast.

Nowadays we have seen some data scandals on the media such as the Cambridge Analytica
scandal where millions of user had its data harvested by a third party without consent[2]
and Facebook got not only its credibility affected, but also got legally fined [21]. Secu-
rity breaches can also be avoided by adopting an architecture where the data storage is
decentralized, giving more confidence to the users when using the service.

Finally, by asking for users’ consent, companies can pay the users for a more fine-grained,
controlled and accurate data for different purposes, such as data models that can be used
to offer better experiences within a set of services or even research purposes.

3.1.2 User Perspective

In order to achieve what Solid offers at its core, there are a set of requirements that must be
met. In the Figure 3.2, we can follow the FAST technique applied to the users perspective.

3.1. Function Analysis System Technique 17

Figure 3.2: FAST applied in a User Perspective

With Privacy as the Higher Order Function, that is, what we ultimately want to achieve, it
can only be attainable if we implement decentralisation at, at least, two levels: Data Storage
and Authentication/Authorization.

When users find themselves in control of their own data, they can start profiting over it
(Data Monetization) in order to help companies to give them better services, build data
models or even donate their data for research purposes (e.g. Medical Research).

Moreover, it is essential to implement authentication and authorization decentralisation, so
that users can opt in different services using the same identity (e.g., people would sign in on
Twitter and Facebook with the same profile) or multiple (e.g., a user might want to remain
anonymous in a service for any valid reason).

3.1.3 Value Proposition Canvas

Through the Value Proposition Canvas, it is possible to intersect what a product has to
offer with what the customer desires (i.e. what we make and why would people acquire it).
The value proposition canvas helps to quickly achieve a “minimum viable clarity” required to
start building and testing a product or service1.

The Value Proposition Canvas adds elements from behavioural psychology and design think-
ing2. It can be divided into two segments: Business and Customer. On the former, we
identify Products and Services, Gain Creators and Pain Relievers while on the latter we
clarify Gains, Pains and Customer Jobs.

1Value Proposition Canvas: https://www.peterjthomson.com/2013/11/value-proposition-canvas/
2Value Proposition Canvas: https://www.peterjthomson.com/2013/11/value-proposition-canvas/

18 Chapter 3. Value Analysis

Figure 3.3: Value Proposition Canvas3

This analysis takes into consideration the value that services built with Solid at its core can
provide for the customer as well as its benefits (Gains and Customer Jobs) and sacrifices
(Pains).

Products and Services

In this section, it is listed all the products and services a value proposition is built around,
specifying which of them help the customer in a functional, social or emotional way[22].

Since we want to build social web applications with privacy at its core, and given all the
previously mentioned technologies, there is not a specific product or service to be listed,
rather an architecture that can help customers to be in control of their online data and be
exactly aware of whom and how is accessing it.

Gain Creators

This section describes the benefits that can be achieved from a customer perspective, as
well as its desires, including social gains, cost savings and positive emotions. It may include
not only outcomes the customer expect but also what he would be surprised by[22].

The following characteristics were considered:

• Storage Decentralization;

• Data Reutilization enables interoperability between services;

• Fine grained control over authorizations;

• Shared Identity across services.

Pain Relievers

This category exhibits how a product or service can alleviate, eliminate or reduce negative
emotions, costs, risks or overall weaker user experiences[22].

3.1. Function Analysis System Technique 19

The following characteristics were identified:

• Less cumbersome sign up process, taking advantage of shared identity;

• Permanently disconnect from service or revoke all permissions from it when a customer
wants to do so;

• Evident control over resources and storage.

Gains

This area describes the benefits customers expect, desire or would appreciate to have - either
functionalities, social gains, cost savings or positive[22].

The following characteristics were identified:

• Data Monetization - customers can get paid to give consent over their data for research
purposes, among others;

• Shared identity - different services can be accessed with the same identity, which by
itself reduces some of the cumbersome sign up processes;

• Fine-grained authorisation control over their data.

Pains

This category describes negative emotions, situations with considerable risk, undesired costs
and negative experiences that the customer might be subjected to[22].

For this category, the following pains were identified:

• Storage Provider Reliability;

• Customers might loose their private keys, thus not being enabled to authenticate again
with the same profile;

• Storage Provider maintenance cost - if the customer is using its own self-hosted storage
provider then it might need to do its own maintenance, otherwise may need to pay to
use an external storage provider if he can not find a reliable free one.

Customer Jobs

This final section describes which customer tasks that the products or service built with Solid
might enable, problems they are trying to solve or the needs they are trying to satisfy[22].

The following customer jobs were identified:

• Control over data while sharing it with friends or any other entity (e.g., photos, files)
- customers are able to control when and who exactly can see a photo or open a file;

• Provide Storage for other users - this represents a business opportunity for both or-
ganisations and regular users, who can provide reliable storage at a price;

20 Chapter 3. Value Analysis

• Identity credibility - verified identity across services (also easily proven through public-
private key techniques). Nowadays some social services like Twitter manually verify
identities of politicians and celebrities4.

3.2 Customer Perceived Value

Customers buy products or services for the perceived benefit they will gain from it. Customer
Perceived Value is created by adding this perceived benefit to the customer’s opinion on the
product or service[23].

The perceived value is often not related to the price itself, but with the relationship between
perceived benefits and perceived costs. If the difference between these two dimensions is
positive, it means that the customer’s perceived value is high and the customer will most
likely want to buy the product/service.

Customer Perceived Value may exist in three levels: Physical, Logical and Emotional[23].
Solid’s benefits are more integrated within the Logical and Emotional levels.

Services empowered by Solid technology offer higher security than what users have today
within the social web applications they use and may also financially compensate them as
described in the Gains section of the Value Proposition Canvas.

Solid’s advantages may also bring positive emotional value with its high privacy level. More-
over, by empowering users with universal identities, people may find friends and family more
easily in different services, or rest assured that the person they are interacting with is who
they say they are - attacking a currently growing problem: Identity Theft 5.

3.3 Summary

In this section, it was presented the analysis of the value of the present work. We have
started by applying the FAST models in business and customer perspective, followed by the
value proposition canvas that enabled us to study what organisations can offer and which
problems they can solve with Solid and how can users capitalise on it. Finally, the chapter
ends with an overview of the customer’s perceived value.

4Twitter on verified accounts: https://help.twitter.com/en/managing-your-account/about-twitter-
verified-accounts

5https://www.thebalance.com/college-identity-theft-a-growing-problem-1947515

21

Chapter 4

Business Analysis

Business Analysis is the process responsible for defining and maintaining requirements. In
this chapter the functional and non-functional requirements are analysed and documented.

For the prototype that allowed the study of the Solid technology, it was adopted a medical
use case that involves security as well as privacy between Patients and their Doctors.

4.1 Functional Requirements

This section describes the features that the systems composing our proof of concept will
provide. These systems support the same set of functional requirements, allowing a direct
comparison in terms of the software development processes:

FR1 As a Patient, I want to be able to create an account so that I can be able to access
the system

FR2 As a Patient, I want to be able to log in on the system, so that I can use the imple-
mented features

FR3 As a Patient, I want to be able to consult my saved medical notes;

FR4 As a Patient, I want to submit notes, so that I can keep track of important medical
information

FR5 As a Patient, I want to share my medical exams with my doctor, so that he can assess
my health concerns

These features were chosen specifically so that the systems can support a variety of concerns
of current web social applications relevant for this study, such as the authentication process
and the submission and control of information.

4.2 Non-functional Requirements

This section describes the other attributes other than features that the system should sup-
port.

The following Non-functional requirements were chosen:

NFR1 The Look and feel of both systems should be similar, so that the user experience
analysis is not impacted as much as possible by the user interface

22 Chapter 4. Business Analysis

NFR2 High degree of testability: both systems should be capable of being tested at a unit
and end-to-end levels

NFR3 Data should be kept separated from the application

4.3 Domain Model

Considering the domain of the intended functional requirements, we can see an abstraction
of the business logic behind the software through domain models.

The domain of our proof of concept (cf. 4.1) consists of a patient storing medical notes
and medical exams in the system. The Patient will, therefore, give authorisation to their
doctor so that they can visualise the submitted exams.

The medical notes as well as the medical exams submitted by the Patient will be stored in
different storage systems depending on the adopted approach.

Figure 4.1: Domain Model

4.4 Use Cases

In this section we deep dive on each of the proposed functional requirements (cf. section
4.1), getting an abstraction on the overall design of both of the systems. The figure 4.2
represents the uses cases through an Use Case Diagram (cf. image 4.2.

4.5. Summary 23

Figure 4.2: Use Case Diagram

4.5 Summary

In this chapter, it was defined, analysed and documented the functional and non-functional
requirements for the present work as well as the use cases originated from them.

25

Chapter 5

Design

Given that it is intended to study if Solid is prepared for mainstream adoption not only from
a standpoint of web development but also in terms of user experience, it was designed a
proof of concept composed by two systems in order to be possible to better study and deep
dive on the subject.

These two systems were designed to support the same functionalities (cf. section 4.1).
Even though their frontend implementation will be similar, their backend infrastructure will
significantly differ: one of them was designed to use Solid at its core, while the other will be
provided with a centralised backend component built with a more traditional web technology
stack. In this document, the former is often described in this study as the Decentralised
Approach, while the latter is referred to as the Centralised Approach.

Although both of the implemented approaches offer a certain degree of decentralisation, in
this study the focus is on how decentralised are the processes that manage data, such as
storage, authorisation and data ownership.

These systems will allow us to compare the software development as a whole (e.g., average
development time, documentation, testability) as well as the user experience enabled by
them.

In this chapter we deep dive into the design of the systems composing our proof of concept,
starting by defining the architecture of both approaches and comparing them, as well as
design the use cases that will be implemented.

In each of the use cases, it is first analysed each of the approaches and then they are
compared against each other. Finally, it is presented how Solid applications are interoperable
and can often complement each other.

5.1 Architecture

This section presents the Architecture of the two implemented approaches and compares
them.

5.1.1 Centralised Approach

This system will be provided by a traditional Client-Server Architecture as illustrated in figure
5.1.

26 Chapter 5. Design

Figure 5.1: Centralised Approach Architecture

5.1.2 Decentralised Approach

This approach will be provided by a Client-Server Architecture, even though there can be as
many Servers as the users want to, taking in consideration that they are the ones providing
it (cf. figure 5.2).

Figure 5.2: Decentralised Approach Architecture

5.1.3 Architecture Comparison

Although both approaches have apparently a similar Architecture, there are some key details
that makes the decentralised approach stand out.

From a frontend perspective, both systems will be similar (cf. requirement NFR1 on section
4.2), communicating with their respective backend through an endpoint it exposes.

Its mostly on the backend that the Architecture differs significantly. While in the centralised
approach we have a backend in a certain location, awaiting requests from the frontend, in the
decentralised approach the location of the backend component (i.e., Solid Pod) is provided
in the moment of login.

Each user can connect the frontend application to their own storage system (cf. figure 5.2).
Ultimately, this shifts the ownership of the data from the companies to the users, enabling
them to decide when, for how long and which data applications can access and control.

5.2 Sign Up

Creating user accounts is one of the most basic features of social web applications, but given
the decentralised context of the project is crucial to understand how that can be done in a
system that uses Solid Pods as its base layer. In this section we analyse the implementation
of this feature in both systems, starting with the centralised implementation and moving
towards the decentralised one, highlighting the main differences with a direct comparison.

5.2. Sign Up 27

5.2.1 Centralised Approach

In centralised systems, user registration is very similar across different web social applications.
As illustrated in figure 5.3, user access the registration page on the frontend that then
performs a request to the API exposed by the backend in order to create the user account.

Figure 5.3: User Registration - Centralised Approach

On the backend each process might differ slightly even within centralised solutions depending,
for instance, if the backend is a monolithic system or composed by multiple microservices. In
this case, the designed approach is only composed by one server and the data flows through
the different layers and the account is finally created in a SQL database.

5.2.2 Decentralised Approach

The process to create an account on the system that utilises Solid at its core, as illustrated
in figure 5.4, starts by having the Patient indicate its storage provider (i.e., Solid Pod). This
makes it so that the data is not storage in the application, respecting the non functional re-
quirement NFR3. Afterwards, the process is completely controlled by the provided instance,
which displays a form in its own UI and creates the user account if all the requirements are
met.

One notable characteristic is the fact that the user, after completing the registration process,
is not redirected back to the application that triggered the process, but rather to its WebID
profile page, generated by the chosen Solid Pod instance itself.

28 Chapter 5. Design

Figure 5.4: User Registration - Decentralised Approach

5.2.3 Approaches Comparison

These approaches differ significantly both at a frontend and backend levels. In the centralised
solution, the user is directly requested by the application to fill a form which is then validated
by the backend and the frontend knows when the process ends.

Conversely, in the decentralised approach, the frontend delegates the entire process to an-
other component chosen by the user and has no information if the process was completed
or not. This application will also not keep a list of all its users, nor will be responsible for
storing credentials, thus avoiding data leaks, which can happen in the centralised approach.

5.3 Authentication

One important concern when introducing decentralisation into systems is how the authen-
tication process will be implemented and how much complexity may be introduced as a
consequence of this specific characteristic. In this section we deep dive in the design of the
Authentication process in the centralised and decentralised approaches.

5.3.1 Centralised Approach

The centralised approach follows a common user/password sign-in process. The frontend is
responsible for displaying the authentication form and the submitted information is validated
by the backend (cf. figure 5.5).

5.3. Authentication 29

Figure 5.5: User Authentication - Centralised Approach

5.3.2 Decentralised Approach

Although Solid allows different authentication processes (cf. section 2.1.3, for this proof
of concept and in accordance with the section 4.2, the one chosen was the WebID-OIDC
mechanism (cf. section 2.1.3). This allows a familiar experience to the user as this is a
common authentication method for social web applications at the moment of writing.

In this scenario, the user must first provide the Solid Pod location, so that the authenti-
cation itself can be performed on it. After that, they should fill the form and authenticate
successfully if the information is correct (cf. figure 5.6).

Figure 5.6: User Authentication - Decentralised Approach

5.3.3 Approaches Comparison

In this use case, both approaches have a very similar approach in terms of the steps they
need to perform in order to authenticate in the applications. The main difference is the fact

30 Chapter 5. Design

that in the decentralised approach, the user provides the location where its authentication
information is stored, thus having total control over it.

5.4 Consult Medical Notes

This section explores the visualisation of the user notes and the process in order to re-
trieve it from the backend. Firstly, it is presented the centralised approach, followed by
the decentralised approach and finishing with the main differences between both designed
systems.

5.4.1 Centralised Approach

In order to retrieve the user medical notes, the frontend of this approach retrieves the notes
directly through an API, parsing each of them and finally displaying them on the UI (cf.
figure 5.7).

Figure 5.7: Consult User’s Medical Notes - Centralised Approach

5.4.2 Decentralised Approach

The decentralised approach retrieves the user’s medical notes in two steps (cf. figure 5.8):
firstly, it starts by retrieving the user’s Public Type Index file, which contains the different
public files present on the user’s pod and, finally, it queries the file to retrieve the location
of the medical notes and performs request to the Solid Pod in order to fetch them.

5.5. Submit Medical Note 31

Figure 5.8: Consult User’s Medical Notes - Decentralised Approach

5.4.3 Approaches Comparison

From a frontend perspective, both approaches follow a similar structure in what concerns
components and services. The main differences rely on the APIs needed to retrieve the
information regarding the user’s medical notes.

In the centralised approach, the frontend requests the medical notes in one request through
one endpoint exposed by its backend component. Conversely, the decentralised approach
needs three endpoints to do the same, as described in section 5.4.2, retrieving the medical
notes location through the Public Type Index file and creating a new one in case it does not
exist already.

5.5 Submit Medical Note

In the designed systems, Patients should have the possibility to save medical notes. This
section describes two approaches from a frontend and backend perspective and highlights
the main differences between them.

5.5.1 Centralised Approach

In this approach, the frontend display a form to the user, who fills and submits the note. This
component makes use of an endpoint exposed by the backend component, which allows the
creation of this note. The sequence diagram illustrated in figure 5.9 describes the flow with
more detail. The backend receives the note through an API and stores it in the database
after validating the necessary credentials.

32 Chapter 5. Design

Figure 5.9: Submit Medical Note - Centralised Approach

5.5.2 Decentralised Approach

The user can save medical notes in the decentralised approach by filling a form and the
Solid Pod allows the creation of the note through a request to the respective endpoint. The
complete process is illustrated in the figure 5.10.

Figure 5.10: Submit Medical Note - Decentralised Approach

5.5.3 Approaches Comparison

From a frontend perspective, both approaches present a very similar design: the user fills a
form, which then has its data mapped into a component and, finally, a service handles the
data and performs request to the backend.

On the backend, both approaches save the request with the decentralised one acting as a
black box, and the centralised one handling the data through its different layers and ultimately
saving the note in the database.

5.6. Share Medical Exam 33

5.6 Share Medical Exam

This section presents the design of the feature in which the Patient can share a medical exam
with their Doctor. Firstly it is presented the design for the centralised approach, followed
by the decentralised one and finishes with a comparison between both of them.

5.6.1 Centralised Approach

In the centralised approach, the user has to select the medical exam they want to share from
their file system, and select one of the Doctors available in the system for the exam to be
shared with. The backend will then be responsible for setting up the authorisation and store
the exam.

Figure 5.11: Share Medical Exam - Centralised Approach Approach

5.6.2 Decentralised Approach

In order to share a medical exam in the decentralised approach, the Patient submits it
through an input and chooses the Doctor with who they want to share the exam. This
process has to be done in two steps because of the way the Solid Pod API works: first the
frontend performs a request in order to save the exam on the user’s Solid Pod and then, if
successful, performs another request so that it can authorise the Doctor to see the exam
(cf. figure 5.12).

34 Chapter 5. Design

Figure 5.12: Share Medical Exam - Decentralised Approach Approach

5.6.3 Approaches Comparison

In this use case, the flows differ significantly especially on the authorisation flow. While the
centralised approach can delegate work to the backend by performing a single request where
it sends both the image and the identification of the Doctor with who the exam should be
shared, the decentralised one has two perform two separate requests.

5.7 Solid Applications Interoperability

In a context where the Patient can save and share their medical exams, it is desirable to
have a requirement in order to allow the Doctors to consult the exams shared by the Patient.
Even though not chosen as a functional requirement for this project, as described in section
4.1, applications built with the Solid technology at its core are interoperable by default.

This interoperability allows applications to extend the functionalities of each other. In this
case, it is possible to connect another application (in this case, a file explorer) from the
existing Solid ecosystem to allow the Doctor to check files in the Patient’s Pod as long as
they have the authorisation to do so, as illustrated in figure 5.13).

5.8. Summary 35

Figure 5.13: Consulting Patient’s Medical Exam through another Solid ap-
plication

5.8 Summary

This chapter presents the design of the systems for this project, starting with the architec-
ture designed for both approaches, followed by each of the use cases’ design and finishing
with information on how interoperability between Solid applications can be introduced on a
solution.

37

Chapter 6

Implementation

This chapter documents the implementation of the present dissertation. It starts by present-
ing the technology stack for both implemented approaches, followed by explaining how the
approaches communicate within their architecture. Finally, it presents the implementation
of the uses cases as well as how the testing was performed.

6.1 Technology Stack

In this section it is presented the technologies used in order to develop the applications
used in both the centralised and decentralised approaches. The technologies, libraries and
programming languages should be current and facilitate the development of the applications.

6.1.1 Centralised Approach

In the centralised approach (cf. section 5.1), the application was generated with JHipster.
This development platform allowed the creation of the frontend and the backend as well as
some base infrastructure, such as Docker files, and boilerplate code, including the base code
for the user creation and login both ends. The list of different technologies used as well as
a description of each of them is provided on table 6.1.

Table 6.1: Technologies used in the centralised approach development

Technology Description
Docker Tool that allows the Containerization of software
Docker Compose Tool that allows the creation and managing of multi-containers software
PostgreSQL SQL Database
Java Object-oriented programming language

Spring Boot
Framework that facilitates the creation applications, providing boilerplate code for
Web Services

JHipster
Development Platform that accelerates the development process by generating
applications with boilerplate code and infrastructure

JavaScript
Interpreted Programming Language mainly used to build Frontend
and Backend applications

React JavaScript library used for building component-based user interfaces

The frontend was developed using React, a JavaScript library, allowing it to be composed
by different components that interact with each other. These components kept the code
organised and allowed separation of concerns and responsibilities.

The backend component, in its turn, was developed using Spring Boot with Java as the cho-
sen programming language. Similarly to what React provided in the frontend, this framework

38 Chapter 6. Implementation

allowed the backend to be easily developed using different components/services known as
Beans, making it easier to design boundaries within the system and separate concerns as
well as enabling an easy integration with the PostgreSQL database.

6.1.2 Decentralised Approach

The decentralised approach (cf. section 5.2) has the Solid Pod as its backend component
and storage system, therefore not requiring development on it apart from the infrastructure
setup.

The frontend component was developed using JavaScript, embedded in the React framework
just as in the centralised approach. The backend component is the Solid Pod that the user
has the possibility to connect, which exposes a HTTP API that can be used to manage
the Pod and its information. The development was aided by tools like Docker and Docker
Compose which facilitated the construction of the different components and elements of
the system. In the table 6.2 there is a description of the main tools used.

Table 6.2: Technologies used in the decentralised approach development

Technology Description
Docker Tool that allows the Containerization of software
Docker Compose Tool that allows the creation and managing of multi-containers software

Solid Pod
Technology that serves as a storage system to organise data, applications and
as well as manage identification

JavaScript
Interpreted Programming Language mainly used to build Frontend
and Backend applications

React JavaScript library used for building component-based user interfaces

6.2 Communication Standards

During the development of both the centralised as well as the decentralised approach, it was
adopted some communication standards for both of them.

The centralised approach follows a traditional HTTP API, that mostly consumes and pro-
duces JSON, with an exception to the submission of the medical exam, which is accomplished
through a multipart request (cf. section 6.7).

In order to explore what the Solid Pods are capable of and how applications can communi-
cate with, the decentralised approach communicates through the Turtle Syntax as well as
SPARQL Queries, with the same exception to the centralised approach (cf. section 6.8).
This allowed to experiment with different methodologies when interaction with the Solid
Pod.

6.3 Use Cases

This section explains the implementation of each of the functional requirements (cf. section
4.1), exposing the main flows and highlighting key features for each of them.

6.3. Use Cases 39

6.3.1 Sign Up

The sign up process is the first feature that Patients encounter when using both systems.
This process is as straightforward as possible according to current standards.

For the centralised approach, each Patient will encounter a similar form as many other
current social applications such as Facebook or LinkedIn have available. From an architecture
point of view, the frontend component carries the information to the backend through an
API and provides the feedback to the user accordingly (cf. section 5.3.

The decentralised approach, however, starts the flow by asking the Patient about the location
of its storage system. This is where the decentralisation aspect is introduced to the system,
allowing the application to perform every application on the user’s Solid Pod, which can be
either one set up by the user or one opened by a community that is allowing new users.
After this step, the application completely delegates the sign up process to the provided
component.

As described in 5.4, after the user successfully submits the form, the Solid Pod redirects
them to a page where they can manage its WebId profile. One notable characteristic of this
flow is that the user is not redirected to the application that originated the sign up process,
which can impact the user experience. Upon completion of the registration process, the
Solid Pod returns the information of the WebId profile described in the Turtle syntax. An
excerpt of the provided profile data can be consulted in the listing 6.1.

1 @p r e f i x : </#> .
2 @p r e f i x p ed : <> .
3 @p r e f i x l d p : h t t p : //www. w3 . o rg / ns / l d p#.
4 @p r e f i x t e rm s : h t t p : // p u r l . o rg /dc/ te rms / .
5 @p r e f i x XML: h t t p : //www. w3 . o rg /2001/XMLSchema#.
6 @p r e f i x n0 : </ . we l l−known/> .
7 @p r e f i x i n b o x : </ i n b o x /> .
8 @p r e f i x p r i v : </ p r i v a t e /> .
9 @p r e f i x p r o : </ p r o f i l e /> .

10 @p r e f i x pub : </ p u b l i c /> .
11 @p r e f i x s e t : </ s e t t i n g s /> .
12 @p r e f i x s t : h t t p : //www. w3 . o rg / ns / p o s i x / s t a t #.
13 @p r e f i x v nd : h t t p : //www. w3 . o rg / ns / i a n a /media−t y p e s / image / vnd . m i c r o s o f t .

i c o n#.
14 @p r e f i x c : </ p r o f i l e / ca r d#> .
15 @p r e f i x t e r : h t t p : //www. w3 . o rg / ns / s o l i d / te rms#.
16 @p r e f i x p l : h t t p : //www. w3 . o rg / ns / i a n a /media−t y p e s / t e x t / p l a i n #.
17

18 pub :
19 a l d p : B a s i c C o n t a i n e r , l d p : C o n t a i n e r , l d p : R e s o u r c e ;
20 t e rm s :mo d i f i e d "2020−08−23T22:10:07Z"^^XML:dateTime ; s t :mt ime

1598220607 .5 ;
21 s t : s i z e 4096 .
22 </ r o b o t s . t x t > a p l : R e s o u r c e , l d p : R e s o u r c e ;
23 t e rm s :mo d i f i e d "2020−08−23T22:10:07Z"^^XML:dateTime ; s t :mt ime

1598220607 .5 ;
24 s t : s i z e 83 .
25

26 s e t :
27 a l d p : B a s i c C o n t a i n e r , l d p : C o n t a i n e r , l d p : R e s o u r c e ;
28 t e rm s :mo d i f i e d "2020−08−23T22:10:07Z"^^XML:dateTime ; s t :mt ime

1598220607 .5 ;

40 Chapter 6. Implementation

29 s t : s i z e 4096 .

Listing 6.1: Excerpt of the returned WebId data representation

The returned WebId information describes the different elements present on the user’s Pod
such as the public folder and the files in it, as well as useful metadata such as the description
of what type each element has and the last modification date. The line 22, for instance,
specifies a file named robots, which was modified on the 23rd of August of 2020 and has a
size of 83 bytes. This can be specially useful for applications that may lookup for files of a
certain type in order to retrieve information useful for the user experience of the application.

6.3.2 Authentication

An important concern when introducing decentralisation into systems should be how the
authentication process will be implemented and how much complexity may be introduced as
a consequence of this specific characteristic.

The centralised approach follows a traditional sign in process (cf. section 5.5), with a form
through which the user provides its username and password. The backend exposes a HTTP
API and validates the information comparing it with what is stored on the database, allowing
the frontend to redirect the user to the application main page in case of success and saving
the returned Bearer token in the local storage so that it can be used to prove the user is
who they say they are in future HTTP requests. An error message is shown in case the
authentication process fails.

The decentralised approach does not have a backend component until the Patient provides it
as the first step of the authentication flow (cf. section 5.6), introducing the decentralisation
in the sense that the provided component (i.e., Solid Pod) is the one proving that the users
are who they are saying they are and stores their credentials. This specific characteristic also
provides an additional layer of security to the overall ecosystem, since there is no centralised
component holding all the credentials for the users that use this application.

Although Solid allows different authentication processes, the one chosen for the proof of
concept was the WebID-OIDC mechanism (which can utilise the traditional username/pass-
word), allowing the user to have not only a similar experience in both the implemented
approaches, but also a similar experience as they would have in a popular social application
at the time of writing. From a technical perspective, similarly to the centralised approach,
the Solid Pod returns a Bearer token which is stored to be used in future requests to this
storage system. Along with the token, the storage system provides a description of the
user’s WebId to the application, as described in 6.1.

6.3.3 Consult Medical Notes

In both systems, the Patient has the possibility to consult medical notes submitted by them
into the system.

The frontend of the centralised approach takes advantage of an API exposed by the backend
(cf. section 6.3) which enables the retrieval of this notes returned through the traditional
JSON syntax. For each one of the created notes it is created a React component that is
rendered onto the display. The process is straightforward and can be done in just one flow.

6.3. Use Cases 41

Table 6.3: Consult Medical Notes API - Centralised Approach

Resource HTTP Verb Media Type
/api/notes GET application/json

Conversely, in the decentralised approach, the process is more complex. When the Patients
are using the application for the first time, they do not have any medical notes on their
storage system. Therefore, the first step is to setup the Solid Pod to have a place so that
it can save the submitted notes. Every time the notes page initialise, it is first verified if the
file exists in the backend component and it is created if not.

In order to check if the file already exists, the Solid Pod provides a HTTP API (cf. section
6.4) that allows to check if the type of file the application is looking for is already on the
system. This can be done by retrieving the Public Type Index file stored in the settings
folder, which is a Turtle Language Document. This file is returned as can be seen in the
code listing 6.2.

1 @p r e f i x : <#> .
2 @p r e f i x s o l i d : < h t t p : //www. w3 . o rg / ns / s o l i d / te rms#> .
3 @p r e f i x schem: < h t t p : // schema . o rg /> .
4

5 <> a s o l i d : L i s t e dDoc umen t , s o l i d : T y p e I n d e x .
6

7 :1590350348549705354539393265
8 a s o l i d : T y p e R e g i s t r a t i o n ;
9 s o l i d : f o r C l a s s s chem:Tex tD ig i t a lDocument ;

10 s o l i d : i n s t a n c e </ p u b l i c / med i c a l n o t e s . t t l > .

Listing 6.2: Example of a Public Type Index response

The index allows applications to look for documents inside the Pod as well as to be aware
of the schema of these applications, so that they know how to manipulate it. This pattern
is common when developing Solid applications: it starts by retrieving the public type index
location from the user’s WebId and then it is possible to look for the intended information
by filtering for its schema type.

If the file where the application wants to read the medical notes from did not exist, it would
have to be created. For this, the application can perform a PUT HTTP Request (cf. section
6.4) to the Solid Pod in order to create it.

Table 6.4: Consult Medical Notes API - Decentralised Approach

Resource HTTP Verb Media Type
/settings/publicTypeIndex.ttl GET text/turtle
/linkedmed/medicalnotes.ttl GET text/turtle
/linkedmed/medicalnotes.ttl PUT text/turtle

6.3.4 Submit Medical Note

In the implemented systems, Patients are able to save medical notes in the system, so that
they can keep track of any symptoms or other relevant information on their health.

42 Chapter 6. Implementation

The centralised approach follows a traditional flow where it exposes a HTTP endpoint (cf.
section 6.5) that enables the frontend to perform a request in behalf of the user, with the
Bearer token retrieved in the authentication process. It’s a straightforward process with just
one end-to-end step since the submission of the note to the storage of it in the database.

Table 6.5: Submit Medical Note API - Centralised Approach

Resource HTTP Verb Media Type
/api/notes POST application/json

Similarly, in the decentralised approach, the process is also straightforward by having the
frontend performing a PATCH HTTP Request (cf. 6.6) to the Patient’s storage system.

Table 6.6: Submit Medical Note API - Decentralised Approach

Resource HTTP Verb Media Type
/linkedmed/medicalnotes.ttl PATCH application/sparql-update

The request is successfully achieved through a SPARQL Update Query to the Turtle Lan-
guage Document that as retrieved and/or created when the frontend displayed the Medical
Notes page (cf. section 6.3.3). The query responsible for the creation of the medical note
in the storage system is described in the listing 6.3.

1 INSERT DATA {
2 h t t p s : // p e d r o p i n t o . s o l i d . community / p u b l i c / med i c a l n o t e s . t t l

#15983982761065545934177619549
3 a h t t p : // schema . o rg / Tex tD ig i t a lDocument ;
4 h t t p : // schema . o rg / t e x t " Another headache . Th i s t ime i t l a s t e d 3

hou r s . " ;
5 h t t p : // schema . o rg / da t eC r e a t e d "2020−08−25T23:31:16Z"^^ h t t p : //www

. w3 . o rg /2001/XMLSchema#dateTime .
6 } ;

Listing 6.3: Saving a new medical note through a SPARQL Query

The query starts by explicitly stating that will perform an insert, as well as pointing the
file in which it wants to insert data and providing an ID (in this case, the note ID will be
15983982761065545934177619549). Along with it, it is also provided the creation date of
the note as well as its schema which allows application to understand how to manipulate
this note.

6.3.5 Share Medical Exam

The last implemented feature on both approaches is the possibility for a Patient to share
their medical exams with a Doctor. This feature is particularly interesting given that it
explores the authorisation process with the Solid Pod.

In the centralised approach, the backend component does most of the work: it exposes a
HTTP API (cf. section 6.7) in which it receives the exam and the identifier of the user that
can access the exam.

6.4. Solid Applications Interoperability 43

Table 6.7: Share Medical Exam API - Centralised Approach

Resource HTTP Verb Media Type
/exams POST multipart/form-data

Conversely, in the decentralised approach, the process can not be as simple as its counterpart
approach. With Solid, this process must be done in two steps: firstly the image is created
in the Solid Pod and then an ACL file is created for that image, applying the authorisation.
In the the table 6.8, it is described the endpoints exposed by the Solid Pod that allow both
actions.

Table 6.8: Share Medical Exam API - Decentralised Approach

Resource HTTP Verb Media Type
/linkedmed/medicalexam.png PUT image/png

/linkedmed/medicalexam.png.acl PUT text/turtle

This ACL file includes the authorisation rules for the submitted medical exam, as can be
seen in the code listing 6.4.

1 @p r e f i x a c l : < h t t p : //www. w3 . o rg / ns / auth / a c l#> .
2 @p r e f i x f o a f : < h t t p : // xmlns . com/ f o a f /0 .1/> .
3 @p r e f i x n : < h t t p : //www. w3 . o rg /2006/ v ca r d / ns#> .
4 @p r e f i x r d f : < h t t p : //www. w3 . o rg /1999/02/22− r d f−s yn tax−ns#> .
5 @p r e f i x : < h t t p s : // p e d r o p i n t o . s o l i d . community / l i n kedMed /med ica l exam . png .

a c l#> .
6 @p r e f i x me: < h t t p s : // p e d r o p i n t o . s o l i d . community / p r o f i l e / ca r d#me> .
7

8 : R e adWr i t eCon t r o l a a c l : A u t h o r i z a t i o n ;
9 a c l : a c c e s sT o < h t t p s : // p e d r o p i n t o . s o l i d . community / l i n kedMed /med ica l exam .

png> ;
10 a c l : d e f a u l t < h t t p s : // p e d r o p i n t o . s o l i d . community / l i n kedMed /med ica l exam .

png> ;
11 a c l : a g e n t < h t t p s : // p e d r o p i n t o . s o l i d . community / p r o f i l e / ca r d#me> ;
12 ac l :mode ac l :Read , a c l :W r i t e , a c l : C o n t r o l .
13

14 :ReadWr i t e a a c l : A u t h o r i z a t i o n ;
15 a c l : a c c e s sT o < h t t p s : // p e d r o p i n t o . s o l i d . community / l i n kedMed /med ica l exam .

png> ;
16 a c l : d e f a u l t < h t t p s : // p e d r o p i n t o . s o l i d . community / l i n kedMed /med ica l exam .

png> ;
17 a c l : a g e n t < h t t p s : // tm d e i t e s t e r . s o l i d . community / p r o f i l e / ca r d#me> ;
18 ac l :mode ac l :Read , a c l :W r i t e .

Listing 6.4: Creating an ACL file for the medical exam

In this case, it can be seen that the Doctor with the username TMDEITester is getting both
read and write access to the submitted medical exam.

6.4 Solid Applications Interoperability

In the developed applications, even though Patients can submit their medical exams and
manage who can see it, it is not possible for the Doctor to authenticate and see the shared

44 Chapter 6. Implementation

checkups. Using Solid, interoperability can easily be achieved between applications and
therefore it is possible for some applications to complement functionalities that others may
lack.

As long a user has the necessary permissions to access a resource, that can be done inde-
pendently of the frontend component being used. Using a File Manager built by a developer
of the Solid community 1, the Doctor can login and explore the Patient’s storage system,
accessing its medical exams.

6.5 Testing

Even though the development systems are only a proof of concept, testing was also consid-
ered not only because it helped to ensure that the features were working as expected, but
also because it is important to understand if an application built with Solid at its core is as
easily tested as other current approaches and more centralised approaches.

This section presents the different developed tests as well as how they are conceived and
which technologies or libraries or used for that sense.

6.5.1 Unit Testing

Unit tests are a fundamental part of the development process of any system, ensuring
correctness and integrity as well as facilitating changes across the code.

6.5.2 Frontend

In the developed applications, both frontend components utilise React which takes advan-
tage of JavaScript at its core. For that reason, there are no differences between testing
the centralised and the decentralised approach. Both approaches communicate with their
backend components using HTTP (cf. sections 5.1 and 5.2) and that can be mocked by
Jest - the testing library used when testing both approaches.

6.5.3 Backend

In the decentralised approach, the Solid Pod is the only backend component and it acts as a
black box, allowing applications to be built on top of it. This component is by the team that
develops it and that also tracks issues on its Github project with the help of the community
2.

The centralised approach, developed with SpringBoot, was tested using JUnit 5. The ratio
of tested code was not taken as the most important factor given that this is a proof of
concept, even though in an ideal scenario the majority of the code should be covered by unit
tests.

6.5.4 End-to-End Testing

End-to-end testing allows the developers to automated tests that mock the user behaviour,
ensuring the software layers are working together as expected given a set of inputs.

1 File Manager: https://otto-aa.github.io/solid-filemanager/
2 Solid Pod Repository: https://github.com/solid/node-solid-server/issues/

6.6. Summary 45

During the development of this dissertations, two end-to-end frameworks were studied (cf.
section 2.5.2): Cypress and Protractor. Because there was previous knowledge acquired on
the development of tests using Cypress, this was the chosen framework.

While developing the tests, it was detected that Cypress does not support, at the moment
of the development of the tests, testing across multiple browser windows/tabs. Since the
authentication process opens a new window so that the user can introduce their storage
system location (cf. section 5.3.2) and no workaround was found for this limitation, the
end-to-end tests were developed using the framework Protractor

One of the developed tests can be seen through Appendix A.1.

6.6 Summary

This chapter presents the implementation of the centralised and decentralised approaches.

Firstly, it is introduced the technologies utilised for each of the approaches, followed by how
the communication between the frontend and the backend works.

Afterwards, each of the use cases implementations is showcased, highlighting certain aspects
between each of them, along with an additional feature introduced by the interoperability
that Solid applications are able to have.

Finally, the chapter presents how the testing was performed.

47

Chapter 7

Evaluation

This chapter explores the experimentation done through the course of this dissertation as
well as its assessment. Firstly it is presented the indicators and information sources, followed
by the assessment methodology and, finally, the analysis of the results.

7.1 Indicators and Information Sources

Considering the proposed objectives (cf. section 1.2), it was defined a set of metrics that
will support the conclusions of the present work. These metrics are as follows:

1. Availability of the development tools/libraries to develop Solid applications

2. The current state of the Solid technology documentation availability

3. Comparison of the approximate man-hours invested developing an application with
Solid at its core compared with another with a more traditional web stack

4. How easy is the onboarding of the user compared to a traditional sign-up/sign-in
process

5. How the user experience was impacted by adopting a more decentralised approach
when compared to its counterpart

7.2 Assessment Methodology

In order to achieve results and draw conclusions for each of the metrics, it was thought a
methodology to assess each of them, presented in this section.

The availability of tools and libraries as well as the documentation to develop Solid applica-
tions could be researched and studied during the process of developing the Solid application.

As for the onboarding process of the users and the impact that Solid can have in the user
experience of applications, it was presented a survey to ten users who could evaluate it so
that more precise insight could be collected.

The man-hours invested for each of the applications will also be considered, with the amount
spent having been saved when both approaches were developed. In this case, variables such
as the previous experience with the experimented technologies, among others, will have a
considerable influence.

48 Chapter 7. Evaluation

7.3 Results Analysis

This section deep dives in the presented indicators (cf. section 7.1) and presents the analysis
for each of them.

7.3.1 Documentation and Libraries Availability

When developing the decentralised approach, it was researched possible libraries that would
make it easier to communicate with the Solid Pod. There were some libraries that signifi-
cantly helped to develop the decentralised system:

1. Tripledoc - Helps developers to communicate with the Solid Pods without having
significant knowledge about RDF. 1

2. Plandoc - Utilises Tripledoc and helps initialise documents in the Solid Pod if they are
not present 2

3. Solid Auth Client - Allows applications to log in to Solid Pods and manage data 3

4. Solid ACL Utils - Allows the creation and manipulation of ACL files 4

As for the documentation itself, since the beginning of this research, the Solid team has been
improving and organising their documentation 5 substantially, facilitating the understanding
of the project and providing more resources and tutorials to developers.

At the moment of writing, what is available is organised enough for developers to try the
technology and learn the basics, even though it lacks deeper knowledge on subjects related
with Linked Data such as vocabularies and how applications can take more advantage of
them and create interoperability between multiple projects through the creation of new
vocabularies.

7.3.2 User Experience

The user experience that can be achieved using Solid as its core technology its fundamental
in order to achieve mass adoption from a end user perspective, since no one would want
to use an application that advertises itself as more private and secure, but its slow and
complicated to use.

In order to study how the user experience on the implemented functionalities are perceived
by the user, a questionnaire was presented to ten users who had to experiment with all
the features made available for both approaches. As a prerequisite for the selection of who
would answer the survey, the user had to be active in any social application at least once a
day.

Although the user interface for both approaches is not exactly the same, the simplicity of
the flows from a frontend perspective makes it so that it does not have a significant impact
on the results.

1https://vincenttunru.gitlab.io/tripledoc
2https://developer.aliyun.com/mirror/npm/package/plandoc
3https://www.npmjs.com/package/solid-auth-client
4https://github.com/Otto-AA/solid-acl-utils
5https://solidproject.org/

7.3. Results Analysis 49

In this section, we deep dive in each of the questions the users had to respond to, with the
decentralised approach being referenced as Service 1 and the centralised on as Service 2.
Each of the participants performed all the actions in both services and responded to the
survey right after.

All the questions were provided by a categorical Likert scale, with the following options:

1. Strongly Disagree

2. Disagree

3. Agree

4. Strongly Agree

The lack of neutral response was intentional because even though it is mostly introduced
with the intention of reducing false responses, studies show that it contributes to an increase
of the number of respondents that do not have an opinion on the subject when they actually
do [24].

In order to simplify the survey analysis, the submission of medical notes and the sharing of
medical exams are referenced as Task A and Task B, respectively.

In total, there were 6 questions in the survey, as follows:

1. Do you agree that creating an account on Service 1 is at least as simple than on
Service 2?

2. Do you agree that logging into Service 1 is at least as simple as logging into Service
2?

3. Do you agree that executing Task A on Service 1 is at least as easy as on Service 2?

4. Do you agree that finishing the execution of Task A on Service 1 is at least as fast
compared to the same task on Service 2?

5. Do you agree that executing Task B on Service 1 is as easy as on Service 2?

6. Do you agree that finishing the execution of Task B on Service 1 is at least as fast
compared to the same task on Service 2?

The table 7.1 showcases the results of the survey. In the first column, there are the numbers
corresponding to the questions and all the other columns have the number of responses for
each of the Likert scale options.

Table 7.1: User Experience Survey Result

Question Strongly Disagree Disagree Agree Strongly Agree
1 0 8 2 0
2 0 4 6 0
3 0 0 0 10
4 0 0 0 10
5 0 0 0 10
6 0 0 0 10

50 Chapter 7. Evaluation

Results Analysis

The analysis of the survey results was conducted by calculating the average for each of the
questions. This average could be achieved by attributing a number to each of the Likert
scale options from 1 to 4, with 1 being attributed to Strongly Disagree and 4 to Strongly
Agree.

The table 7.2 demonstrates the average of the responses for each of the questions:

Table 7.2: User Experience Survey Result Analysis

Question Average
1 2.2
2 2.6
3 4
4 4
5 4
6 4

A result above 2.5 or more in each of the questions means that the experience performing
an action in the decentralised approach was at least as good as the same action performed
in the centralised approach.

An average of 2.2 and 2.6 for the first and second questions, respectively, means that the
users do not agree that creating an account in the decentralised approach is as simple as
creating it in the centralised approach, unlike the login process.

As described in 5.4, the process that allows the user to sign up in the system has the users
choose a storage provider in which their account should be created. Although there were
different options from which the user could choose without any additional setup, the user
has to perform an additional decision when compared to more traditional social applications.

Conversely, a result of 2.6 for the login process demonstrates that this process has similar
user experience in both approaches. Similarly to the registration process, here the user also
has to select the provider with which they want to log in, even though they can enter the
system with a common username and password form after.

All the other questions that explore the simplicity and velocity of the tasks on the decen-
tralised approach when compared to its counterpart got the maximum result from all the
users, from which we can perceive that the user experience was not significantly affected by
introducing the decentralised characteristics.

Development Time

This metric is significantly impacted by multiple external variables. The amount of time
presented in this analysis includes not only the time spent coding and testing but also the
infrastructure setup and the time researching and exploring the different libraries. For the
centralised approach, the approximate number of hours spent was 50 hours, while on the
decentralised approach the total number was approximately 110 hours.

The centralised approach, on the backend side, was built with tools with which there was a
lot of knowledge and experience acquired already, so it is natural that the development of
that component was smoother than the others.

7.4. Summary 51

Conversely, the backend of the decentralised approach was already built (i.e., Solid Pod) so
the time was mainly spent on working out how to effectively communicate with it and how
to better take advantage of the libraries in order to do it in the cleanest way possible.

Although it is interesting to consider the development time as a metric in order to compare
the development of two approaches that share the same goal, the fact that there was
absolutely no knowledge priorly acquired on the technology of one of them indicates that
this metric should not have a significant impact in their comparison.

Finally, other metrics such as the availability of the documentation, tutorials and other
resources impacts significantly the development productivity.

7.4 Summary

In this chapter, it is presented with the indicators and information sources defined having
the objectives of the dissertation taken into account as well as the assessment methodology
for each of them. Finally, we have analysed the results through the information gathered
throughout the development of the present work.

53

Chapter 8

Conclusions

This dissertation allowed the exploration of a disruptive technology that proposes a sig-
nificantly different approach on how social web applications can be built with security and
privacy as the main focus.

The present work resulted in a Solid application that could cover different interactions that
occur in modern social web applications. From the requirements analysis, to the architecture
design and the implementation, it is possible to get an overview on how Solid applications
can be built and how interactions with the Solid Pod are possible.

This final chapter walks through the research questions, contributions, results, limitations,
future work and final assessment.

8.1 Research Questions

According to the research questions formulated in section 1.3, they are now answered taking
into account the analysis performed during this dissertation.

1. How architecturally different are applications built with Solid at its core compared to
those built with a more traditional web stack?

As described in section 5, from a frontend perspective the architecture of the applications is
quite similar. The main difference is that while in the centralised approach most frontends
will be communicating directly with a known backend service, the decentralised one will be
communicating with whatever Solid Pod the user logged in with.

From a backend perspective, Solid Pods already have an immutable interface, while the
centralised approaches can have a backend service more tailored for its needs.

Considering a high-level perspective, Solid applications and applications built with a Client-
Server architecture are quite similar, in which the frontend component of both solutions can
communicate with one or more services.

2. Can web social applications build with Solid have the same user experience as others
currently built with a more traditional web stack?

In this dissertation, the developed Solid application performed different operations common
in social web applications (e.g., submissions, reading and sharing of information) and as long
as the frontend orchestrates the requests as Solid allows, it is possible to give the same look
and feel to the applications.

54 Chapter 8. Conclusions

However, this dissertation did not deep dive enough in concepts such as performance, which
highly impact the user experience (e.g., long time retrieving information), or notifications
management. For this reason, it is not possible to achieve a confident conclusion in this
item without exploring this technology with more detail.

3. Do Solid applications require more man-hours than those built with a more traditional
web stack?

The Solid ecosystem is currently in development, with documentation and tutorials covering
the basics but lacking diversity. Information on topics such as performance tuning in multi-
pod queries, notification management and clarity on the best practices of when and how
new vocabularies should be created are scarce.

For applications that only require basic operations, once the developers get practice with the
technology it is possible that the development time difference becomes insignificant when
compared with systems built with a more traditional web stack.

4. Is Solid ready to achieve mainstream adoption?

This question has a high correlation with the previous ones as well as this dissertation as
a whole. Mainstream adoption of a technology needs to be considered at the development
and user levels.

From a developer perspective, the fact that the documentation diversity is still lacking makes
it harder for more developers to try out the technology and come out with innovative im-
plementations as well as collaborate in the core of the project.

Additionally, from a user perspective, in order to achieve mass adoption these applications
need to support the same functionalities that popular social web applications provide at the
current time of writing, offering more security and privacy without sacrificing core popular
features.

For the current time, the conclusion is that Solid is still not ready for mainstream adoption
and one could argue that, ultimately, it will only be when a Solid application achieves a
significant amount of active users. This would shift attention to the technology and possibly
accelerate its development.

8.2 Contributions

Along with the present work, a short paper was published [25] in the 1st Edition of Simpósio
de Engenharia Informática in the Instituto Superior de Engenharia do Porto.

The implemented Solid application is also available on GitHub, so that other developers can
explore and learn how to develop applications with this technology 1.

8.3 Results

The analysis and development achieved during this dissertation indicates that Solid is still
not ready to achieve mainstream adoption.

From a developer perspective, the technology needs to have better and more diverse docu-
mentation when it comes to common real use cases for social web applications.

1https://github.com/pedropinto/linkedmed

8.4. Limitations 55

Additionally, from a final user perspective, one could argue that Solid will be ready for
mainstream adoption when one of its application gathers a significant amount of usage,
offering security and privacy while being performant and easy to use.

8.4 Limitations

During the development of this dissertation, it was possible to identify multiple limitations
when studying if Solid could achieve mainstream adoption.

At the moment, the user registration process is quite cumbersome (cf. section 5.4), given
that a new browser tab is opened and not only no feedback is provided to the application
itself when the Pod finishes the process, but also the user is not redirected to the application.
This is a limitation in multiple levels, because not only it impacts the overall user experience,
but also, for instance, can impact the collection of metrics (e.g., number of people who
start the registration process but does not complete it or never log in the system for the
first time).

The lack of diversity when it comes to documentation and tutorials is also an important
limitation, since a showcase of what the technology can do and how its libraries work would
facilitate new developers to experiment with it.

From a frontend development perspective, the Solid Pod can also limit the way the use cases
are structured since it is not possible to open new APIs or endpoints in the Pod. This can
lead to the frontend having to perform several requests, while in other centralised approaches
this could be mitigated by having an API tailored for a specific need.

8.5 Future Work

There are topics that could not be investigated in the scope of the present work and its
analysis would be important to better understand the technology potential.

A common feature in social web applications is the notification system, from which the
users are notified when an action of their interest is performed in the system. Given the
decentralised character of the Solid applications, where each user can connect their own
Pod, this is an important topic to work on.

One of the main features of a Solid architecture is that it can utilise a knowledge network
provided by the Linked Data. Since a Pod can query another Pod for information, it is
important to understand how the performance can be impacted when the depth level of the
queries (e.g., the number of Pods it has to query) exponentially grows.

Even though this dissertation focus significantly on the developer and end-user experience,
it is also important to consider how the shift can happen from a business perspective.
Businesses often rely on metric collection in order to make data-oriented decisions and how
(or if) Solid architectures can handle this needs to be analysed.

8.6 Final Remarks

The Solid technology represents a major shift on how applications are built when compared
to what is currently presented to the users. In a global perspective, this dissertation covers

56 Chapter 8. Conclusions

the proposed objectives and approaches the essentials of what the Solid technology can
provide.

Since there was no previous knowledge on the main topic and taking into account how
different the studied decentralised approach is from what is currently implemented, this
dissertation could not cover other important topics (as covered in section 8.5).

Solid is an exciting project able to create a massive impact in how the world approaches
privacy and security with software. Hopefully, this dissertation along with the work that
the community is developing can create an impact either by creating more adoption of this
technology, or serving as a base layer for other similar and disruptive ideas that puts the
users first.

57

Bibliography

[1] Amazon. Small Business Impact Report. Tech. rep. 2008. url: https://bit.ly/
3nYV7aT (visited on 02/12/2020).

[2] Hilary Osborne and Hannah Jane Parkinson. Cambridge Analytica scandal: the biggest
revelations so far. 2018.

[3] Business Wire. “Opus & Ponemon Institute Announce Results of 2018 Third-Party
Data Risk Study: 59% of Companies Experienced a Third-Party Data Breach, Yet
Only 16% Say They Effectively Mitigate Third-Party Risks”. In: (2018). url: https:
//www.businesswire.com/news/home/20181115005665/en/Opus- Ponemon-
Institute-Announce-Results-2018-Third-Party (visited on 12/02/2019).

[4] European Commission. What does the General Data Protection Regulation (GDPR)
govern? (Visited on 02/05/2020).

[5] European Commission. EU data protection rules. url: https://ec.europa.eu/
info/priorities/justice-and-fundamental-rights/data-protection/2018-
reform-eu-data-protection-rules/eu-data-protection-rules%7B%5C_%7Den
(visited on 12/02/2019).

[6] Midas Nouwens et al. “Dark Patterns after the GDPR: Scraping Consent Pop-ups
and Demonstrating their Influence”. 2020. url: http://arxiv.org/abs/2001.
02479%7B%5C%%7D0Ahttp://dx.doi.org/10.1145/3313831.3376321 (visited on
12/02/2019).

[7] Andrei Vlad Sambra et al. “Solid: A Platform for Decentralized Social Applications
Based on Linked Data”.

[8] W3C. RDF. (Visited on 02/05/2020).
[9] W3C. Resource Description Framework (RDF) Model and Syntax Specification. url:

https://www.w3.org/TR/PR-rdf-syntax/ (visited on 02/05/2020).
[10] Solid. Solid Specification Draft. url: https://github.com/solid/solid- spec

(visited on 02/10/2020).
[11] W3C. Web-ID TLS. url: https://www.w3.org/2005/Incubator/webid/spec/tls/

(visited on 01/17/2020).
[12] Solid. WebID-OIDC Authentication Spec. url: https://github.com/solid/webid-

oidc-spec (visited on 02/08/2020).
[13] M. Ali et al. “Blockstack Technical Whitepaper”. In: (2019). url: https://blockstack.

org/whitepaper.pdf.
[14] David D. Clark and Marjory S. Blumenthal. “The End-to-End Argument and Applica-

tion Design: The Role of Trust”. In: (2011). (Visited on 02/02/2020).
[15] Blockstack. Authentication and Gaia. url: https://docs.blockstack.org/storage/

authentication.html (visited on 01/10/2020).
[16] Blockstack. A decentralized storage architecture. url: https://docs.blockstack.

org/storage/overview (visited on 01/10/2020).
[17] Elastos Foundation. “Elastos white paper”. In: (2018), pp. 1–26. url: https://www.

elastos.org/static/file/elastos%7B%5C_%7Dwhitepaper%7B%5C_%7Den.pdf
(visited on 01/02/2020).

58 Bibliography

[18] Juan Benet. “IPFS - Content Addressed, Versioned, P2P File System”. 2014. (Visited
on 01/16/2020).

[19] Elastos Academy. Elastos DID Login Integration Webpage. url: https://elastos.
academy/did-login-integration/ (visited on 01/14/2020).

[20] Peter A. Koen et al. “Fuzzy Front End: Effective Methods, Tools, and Techniques”. url:
https://web.stevens.edu/cce/NEW/PDFs/FuzzyFrontEnd%7B%5C_%7DOld.pdf
(visited on 02/05/2020).

[21] David Pegg and Alex Hern. Facebook fined for data breaches in Cambridge Analytica
scandal. 2018. url: https://www.theguardian.com/technology/2018/jul/
11/facebook-fined-for-data-breaches-in-cambridge-analytica-scandal
(visited on 02/10/2020).

[22] Alex Osterwalder et al. Value Proposition Design. Wiley, 2014. (Visited on 02/15/2020).
[23] Gina Winsky. Customer Perceived Value: Understanding What Appeals to the Con-

sumer. url: https://aircall.io/blog/customer-happiness/customer-perceived-
value/ (visited on 01/12/2020).

[24] Melinda L. Edwards and Brandon C. Smith. The Effects of The Neutral Response
Option on The Extremeness of Participant Responses. 2014. url: https://blogs.
longwood.edu/incite/2014/05/07/the-effects-of-the-neutral-response-
option-on-the-extremeness-of-participant-responses/ (visited on 06/14/2020).

[25] Pedro Pinto, Pedro Piloto, and Nuno Bettencourt. “A study about web development
frameworks focused on users’ privacy”. 2019. (Visited on 09/25/2020).

59

Appendix A

End-to-End Testing

1 d e s c r i b e (’ Log i n t o the sys tem ’ , f u n c t i o n () {
2 b rowse r . i g n o r e S y n c h r o n i z a t i o n = t r u e ; // f o r non−a n g u l a r w e b s i t e s
3 i t (’ Log i n t o the sys tem ’ , f u n c t i o n () {
4

5 b rowse r . manage () . t imeou t s () . i m p l i c i t l yW a i t (30000) ;
6

7 b rowse r . ge t (" h t t p : // l o c a l h o s t :3000 ") ;
8

9 b rowse r . getWindowHandle () . then (f u n c t i o n (parentGUID) {
10

11 e l ement (by . bu t tonText (’ Connect ’)) . c l i c k () ;
12 b rowse r . s l e e p (3000) ;
13

14 b rowse r . g e tA l lW indowHand l e s () . then (f u n c t i o n (a l lGU ID) {
15

16 f o r (l e t g u i d o f a l lGU ID) {
17

18 i f (g u i d != parentGUID) {
19 // sw i t c h to the opened l o g i n window
20 b rowse r . sw i tchTo () . window (gu i d) ;
21

22 b r eak ;
23 }
24 }
25 e l ement (by . bu t tonText (’ I n r u p t ’)) . c l i c k () ;
26 b rowse r . s l e e p (2000) ;
27 e l ement (by . i d (" username ")) . sendKeys (" p e d r o p i n t o ") ;
28 e l ement (by . i d (" pas sword ")) . sendKeys (" password ") ;
29 e l ement (by . bu t tonText (’ Log I n ’)) . c l i c k () ;
30

31 b rowse r . s l e e p (3000) ;
32 // c l o s e the b rowse r
33 b rowse r . c l o s e () ;
34 // sw i t c h back to the p a r e n t window
35 b rowse r . sw i tchTo () . window (parentGUID) ;
36 })
37 })
38 }) ;
39

40 }) ;

Listing A.1: System Authentication End-to-End Test

