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Abstract. This paper proposes a reinforcement learning model for intelligent en-

ergy management in buildings, using a UCB1 based approach. Energy manage-

ment in buildings has become a critical task in recent years, due to the incentives 

to the increase of energy efficiency and renewable energy sources penetration. 

Managing the energy consumption, generation and storage in this domain, be-

comes, however, an arduous task, due to the large uncertainty of the different 

resources, adjacent to the dynamic characteristics of this environment. In this 

scope, reinforcement learning is a promising solution to provide adaptiveness to 

the energy management methods, by learning with the on-going changes in the 

environment. The model proposed in this paper aims at supporting decisions on 

the best actions to take in each moment, regarding buildings energy management. 

A UCB1 based algorithm is applied, and the results are compared to those of an 

EXP3 approach and a simple reinforcement learning algorithm. Results show that 

the proposed approach is able to achieve a higher quality of results, by reaching 

a higher rate of successful actions identification, when compared to the other 

considered reference approaches. 
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1 Introduction 

During the last decade a centralized approach is being used in energy (and more 

specifically, in electricity) markets. Energy consumers are only connected to energy 

producers and thus the energy distribution is all cantered around one production point 

[1]. Alternatives to this traditional energy market are emerging and future energy mar-

kets are evolving towards a more distributed model. The biggest difference is the de-

centralization of the energy production, which has originated a new type of role in the 
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market: besides energy producers and energy consumers, consumers who are also ac-

tively producing energy become part of the market, and are referred to as “prosumers” 

[2]. With the emergence of prosumers, new possibilities open in the market, enabling 

the emergence of distributed energy markets. These markets are categorized by con-

necting consumers and prosumers in a grid while still being connected to centralized 

producers. 

The new characteristics, and consequently the new role, of consumers in the energy 

ecosystem, force these players to pursue more intelligent and adaptive energy manage-

ment solutions, in order to be able to take as much advantage from the environment as 

possible. House or building Energy Management Systems (EMS) are designed to man-

age the energy consumption and generation within the buildings, respond to energy 

requests from the grid and minimize the energy bill, while at the same time taking into 

consideration the comfort levels within the users. The objective is that the EMS will 

use a minimal amount of energy and still keep the user satisfied [3]. 

Creating an EMS for smart-houses is the aim in [4]. The system takes into consider-

ation five a total of five possible electrical loads: fixed loads, lights, dishwasher, wash-

ing machine and dryer. This EMS also considers the desired temperature for the house 

which is set by the user. In [5] a similar concept is explored. The proposed EMS has 

the ability to control the energy consumption within the building and aims to shift the 

electricity usage depending on the current electricity prices in order to lower the electric 

costs. The research presented in [6] proposes an EMS for a smart-house focused on 

managing renewable energy sources such as solar and wind energy generation, Hybrid 

electric vehicles with batteries, supercapacitors (SCs), and the house itself. The system 

makes use of maximum power point tracking (MPPT) algorithms to control and opti-

mize the energy storage, solar generation and wind generation.  

In order to improve its performance, EMS should collect data and make changes in 

its behavior when necessary [3]. Artificial intelligence, and machine learning in partic-

ular, are promising solutions to improve the processes of self-evaluation and adaptation 

[7]. Some relevant work has already been accomplished in this domain, e.g. by using 

reinforcement learning [8], but much has yet to be explored in order to enable an effec-

tive and dynamic adaptation of EMS to the constantly changing environment and un-

certainty associated to energy resources, such as consumption habits, renewable gener-

ation and market prices .  

This paper proposes a novel model based on a Markov decision process for decision-

making in the context of a smart house. A reinforcement learning approach is presented, 

in which the goal is to learn the best action for the user to take, considering the expected 

state of energy resources at each time. An adaptation of the Upper Confidence Bound 

(UCB1) algorithm (a well-known algorithm for multi-armed bandits [9], is applied to 

solve de modelled problem. Results are compared to those achieved by the Exponential-

weight algorithm for exploration and exploitation (Exp3), also a commonly used algo-

rithm for adversarial bandits problems [10]; and by a simple reinforcement learning 

algorithm that simply updates the confidence value in each action-state pair according 

to the given reinforcement value at each time. A case study using real data is presented, 

and shows that the proposed UCB1 based algorithm is able to achieve better results 

than the other reference algorithms. 



 

 

2 Proposed Approach 

The proposed approach aims at enabling a house EMS to learn and adapt to the dy-

namic changes in the environment. The objective is to learn which is the best action a 

to perform at each time t, considering the current state s of the surrounding environ-

ment. The proposed model considers a generic set of actions, which can be instantiated 

depending on each specific application scenario, e.g. as presented in the case study. 

These may represent the action to consume the energy stored in the battery, to sell the 

generated energy to the network, etc. Performing an action in a current state results in 

a specific reward for time t, which represents the value that this action brings in the 

corresponding state. This process is called a Markov Decision Process (MDP) for de-

cision-making. 

Different reinforcement learning algorithms can operate on top of an MDP model. 

This process can be described in a simple number of steps. A state is given as input, an 

action is selected and performed, the reward given to the action is used to determine 

how good that action is in that state and the resulting state is given as the new input and 

the cycle continues [11, 12], this set of steps is shown in Fig. 1.  

 

Fig. 1. Reinforcement learning algorithms learning process, [12] 

Reinforcement learning algorithms are in constant learning  and can adapt to chang-

ing environments, referred by [11] as non-stationary environments. This makes rein-

forcement learning an ideal option for problems that may need to deal with unpredict-

able changes, such as energy pricing. 

There are many reinforcement learning algorithms, with different ways of processing 

the received rewards, which makes them have distinct results depending on the problem 

where they are being applied [12].  

Multi-armed bandit algorithms [9] are reinforcement learning algorithms that try to 

find the best of playing in multiple slot machines, also known as “one-armed bandit” 

or simply “arm”. These may have a biased reward probability distribution picked a 

priori. Searching for the best arm is called the exploratory phase, and using that infor-

mation to make the biggest possible profit is the exploitation phase. The aim on these 

algorithms is to try the different options until enough confidence is built on what option 

is the best. Upper Confidence Bound (UCB) algorithms are usually applied to solve this 

problem. 

This work presents an adaptation of a UCB algorithm to solve the envisaged MDP 

problem. UCB1 combines the exploratory phase and an exploitation phase, in a way 

that the algorithm choses one of those two approaches in each iteration depending on 



 

 

the received rewards. The algorithm also has a concept of a regret function that is used 

to try to find the loss correspondent with each arm. The arm with the lowest value in 

the regret function is considered the best option. 

 

(1) 

Exponential-weight algorithm for exploration and exploitation (Exp3) is an algo-

rithm for adversarial bandits problems, which is similar to the multi-armed bandit prob-

lem, but instead of fixed distributions, adversarial bandits follow the idea that an “ad-

versary” is changing the rewards distributions in each time step algorithms [10]. The 

algorithm uses a parameter called egalitarianism, γ ∈ [0, 1], this parameter is used to 

balance the exploration. The objective with this parameter is to determine the amount 

of time (1 − γ), in which the algorithm is doing a weighted exploration/exploitation. 

The weighted exploration/exploitation is based on the current estimated reward, and the 

rewards received from the weighted exploration/exploitation are immediately used to 

update the correspondent arm’s weight with (2) where 𝑖 indicates the arm, and 𝑃𝑖 rep-

resents the received reward for the arm, and (3) is used to calculate the current proba-

bility for each arm. 

 
(2) 

 

(3) 

A simple reinforcement learning algorithm is also considered in this work, for bench-

marking comparison purposes. This algorithm considers the updating of the confidence 

value in each action a in time t, through a direct increment of the confidence value C 

according to the reinforcement value R. The update of the values is expressed by (4). 

Ca, t+1 = Ca,t + Ra,t (4) 

3 Case Study 

This case study aims at assessing the proposed approach and comparing the perfor-

mance of the different reinforcement learning algorithms, by using a practical applica-

tion case. The MDP model is instantiated as follows. 5 states are considered, combining 

different possibilities regarding the energy consumption, generation and retail market 

price, as shown in Table 1. The considered values for these three components are based 

on real data of a house studied in [13]. Each of the states is active during a specific 

period in each 24 hours cycle. The probabilities of transitions between states at the end 

of each period are also specified and presented in Table 1. These define the probability 

of each state occurring, based on a random distribution.  

Conversely, 5 possible actions are also considered. These are presented in Table 2, 

together with the considered rewards for each State-Action pair. The proposed MDP 

model is executed for 10000 iterations for each of the three considered algorithms. 



 

 

Table 1. Considered states 

State Description Transition states and probabilities 

GgtC_PL Generation greater than Consump-

tion with low Price 

GgtC_PH     50% 

GetC            50% 

GgtC_PH Generation greater than Consump-

tion with high Price 

GgtC_PH     66.7% 

GgtC_PL      33.3% 

GltC_PL Generation less than Consumption 

with low Price 

GltC_PL       75% 

GltC_PH      25% 

GltC_PH Generation less than Consumption 

with high Price 

GgtC_PL      10% 

GltC_PL       10% 

GltC_PH      80% 

GetC Generation equal to Consumption 

(Price independent) 

GgtC_PL      50% 

GltC_PL       50% 

Table 2. Possible actions and rewards for each s-a pair 

  GgtC_PL GgtC_PH GltC_PL GltC_PH GetC 

Buy 0.1 0 1 0.6 0.2 

Sell 0.8 1 0 0.1 0.2 

Store 1 0.8 0.1 0 0.2 

Use_stored 0.2 0.1 0.8 1 0.2 

Consume 0.4 0.4 0.5 0.8 1 

Fig. 2, Fig. 3 and Fig. 4 show the evolution of the rewards for each action over time, 

for the three algorithms. If the algorithm is able to learn ideally, all actions should con-

verge to the reward value of 1, which is maximum reward value for each action. 

 

Fig. 2. Simple reinforcement learning algorithm  

From Fig. 2 it is visible that in the first iterations, actions appear to be chosen ran-

domly, however as the iterations increase, the algorithm manages to learn when the 

action should be used and in that way the algorithm converges around iteration 8000, 

and all actions start being used ideally.  

 



 

 

 

Fig. 3. EXP3  

 

Fig. 4 - UCB1 

EXP3 shows a different trend of results. It appears that algorithm is converging to 

the 1.0 reward value, which would indicate that actions are often being used ideally, 

however there also low points throughout the entire graph, which indicates that the 

algorithm is constantly exploring and trying to adapt to possible changes to the envi-

ronment. On the other hand, UCB1 shows a much more stable behaviour. Most of the 

time actions are chosen ideally (exploitation), with a convergence to the reward value 

= 1 around iteration 5000. However, the algorithm still continues to explore other ac-

tions in a very small frequency, trying to adapt to possible changes. 

Table 3 shows the ideal action frequency, which should be achieved if the algorithms 

would only exploit the best actions and not explore possible alternative actions. Table 

4, Table 5 and Table 6 show the frequency of application of each action in each state, 

for all 3 algorithms. The highest frequency actions in each state are highlighted in green.  



 

 

Table 3. Ideal action frequency 

  Buy Consume Sell Store Use_stored 

GetC 0 1 0 0 0 

GgtC_PH 0 0 1 0 0 

GgtC_PL 0 0 0 1 0 

GltC_PH 0 0 0 0 1 

GltC_PL 1 0 0 0 0 

Table 4. Simple reinforcement learning algorithm action frequency 

  Buy Consume Sell Store Use_stored 

GetC 0.009 0.971 0.008 0.006 0.006 

GgtC_PH 0.003 0.011 0.852 0.130 0.004 

GgtC_PL 0.006 0.013 0.176 0.796 0.009 

GltC_PH 0.043 0.119 0.004 0.002 0.831 

GltC_PL 0.839 0.017 0.004 0.004 0.136 

Table 5. EXP3 action frequency 

  Buy Consume Sell Store Use_stored 

GetC 0.054 0.833 0.029 0.042 0.042 

GgtC_PH 0.026 0.042 0.762 0.138 0.033 

GgtC_PL 0.040 0.036 0.159 0.725 0.040 

GltC_PH 0.028 0.037 0.017 0.023 0.895 

GltC_PL 0.796 0.040 0.027 0.029 0.109 

Table 6. UCB1 action frequency 

  Buy Consume Sell Store Use_stored 

GetC 0.022 0.914 0.022 0.022 0.022 

GgtC_PH 0.007 0.017 0.878 0.090 0.008 

GgtC_PL 0.011 0.021 0.109 0.845 0.013 

GltC_PH 0.022 0.065 0.005 0.005 0.903 

GltC_PL 0.896 0.017 0.005 0.006 0.075 

By comparing the three algorithms’ action selection frequency in each state, it can 

be seen that the proposed UCB1 approach is able to achieve the best results, with the 

highest frequency of choice of the best action in 4 of the 5 considered states. Only for 

the state when the generation is equal to the consumption is the simple reinforcement 

learning algorithm able to reach a higher frequency for the Consume action, which 

means to simply consume the generated energy. The EXP3 algorithm reaches a low 

quality of results, giving a high priority to the exploration of alternative actions, and 

neglecting the exploitation of the best actions. The fact that the EXP3 algorithm does 

not consider the probability of transition between states, rather using a probability dis-

tribution for each state independently from the possible transitions, makes this algo-

rithm disregard important information about the problem, which may be one of the main 

causes for its lack of success in this problem. The UCB1 approach, on the other hand 

is able to learn that the best action is to buy when the price is low and the generation is 

lower than the consumption; to sell when there is more generation than consumption 

and the price is high, but to store instead when the price is low; and to use the stored 

energy when price is high and the generation is not enough to meet the consumption.  



 

 

4 Conclusion 

Energy management in buildings is a central priority worldwide, due to the incen-

tives to the increase of energy efficiency and renewable energy sources penetration. 

The uncertainty associated to the different resources makes this a hard problem to solve 

while considering its dynamic characteristics, and constantly changing nature.  

This paper addresses this problem by proposing a solution modelled as a Markov 

decision process. A reinforcement learning model is applied for the intelligent energy 

management in buildings. A UCB1 based algorithm is applied, and the results are com-

pared to those of an EXP3 approach and a simple reinforcement learning algorithm.  

The results from the presented case study show that the proposed UCB1 approach is 

able to achieve a higher quality of results, by reaching a higher rate of successful actions 

identification, when compared to the other considered reference approaches. 
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