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Abstract 

Stress is the body's natural reaction to external and internal stimuli. Despite being something 

natural, prolonged exposure to stressors can contribute to serious health problems. These 

reactions are reflected not only physiologically, but also psychologically, translating into 

emotions and facial expressions. 

Once this relationship between the experience of stressful situations and the demonstration of 

certain emotions in response was understood, it was decided to develop a system capable of 

classifying facial expressions and thereby creating a stress detector. 

The proposed solution consists of two main blocks. A convolutional neural network capable of 

classifying facial expressions, and an application that uses this model to classify real-time 

images of the user's face and thereby verify whether or not it shows signs of stress. 

The application consists in capturing real-time images from the webcam, extract the user's face, 

classify which facial expression he expresses, and with these classifications assess whether or 

not he shows signs of stress in a given time interval. As soon as the application determines the 

presence of signs of stress, it notifies the user. 

For the creation of the classification model, was used transfer learning, together with fine-

tuning. In this way, we took advantage of the pre-trained networks VGG16, VGG19, and 

Inception-ResNet V2 to solve the problem at hand. For the transfer learning process, were also 

tried two classifier architectures. 

After several experiments, it was determined that VGG16, together with a classifier made up of 

a convolutional layer, was the candidate with the best performance at classifying stressful 

emotions. Having presented an MCC of 0.8969 in the test images of the KDEF dataset, 0.5551 

in the Net Images dataset, and 0.4250 in the CK +. 

Keywords: Stress, Stress Detection, Emotion, Facial Expression Classification, Convolutional 

Neural Networks 
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Resumo 

O stress é uma reação natural do corpo a estímulos externos e internos. Apesar de ser algo 

natural, a exposição prolongada a stressors pode contribuir para sérios problemas de saúde. 

Essas reações refletem-se não só fisiologicamente, mas também psicologicamente. Traduzindo-

se em emoções e expressões faciais. 

Uma vez compreendida esta relação entre a experiencia de situações stressantes e a 

demonstração de determinadas emoções como resposta, decidiu-se desenvolver um sistema 

capaz de classificar expressões faciais e com isso criar um detetor de stress. 

A solução proposta é constituida por dois blocos fundamentais. Uma rede neuronal 

convolucional capaz de classificar expressões faciais e uma aplicação que utiliza esse modelo 

para classificar imagens em tempo real do rosto do utilizador e assim averiguar se este 

apresenta ou não sinais de stress. 

A aplicação consiste em captar imagens em tempo real a partir da webcam, extrair o rosto do 

utilizador, classificar qual a expressão facial que este manifesta, e com essas classificações 

avaliar se num determinado intervalo temporal este apresenta ou não sinais de stress. Assim 

que a aplicação determine a presença de sinais de stress, esta irá notificar o utilizador. 

Para a criação do modelo de classificação, foi utilizado transfer learning, juntamente com fine-

tuning. Desta forma tirou-se partido das redes pre-treinadas VGG16, VGG19, e Inception-

ResNet V2 para a resolução do problema em mãos. Para o processo de transfer learning foram 

também experimentadas duas arquiteturas de classificadores. 

Após várias experiencias, determinou-se que a VGG16, juntamente com um classificador 

constituido por uma camada convolucional era a candidata com melhor desempenho a 

classificar emoções stressantes. Tendo apresentado um MCC de 0,8969 nas imagens de teste 

do conjunto de dados KDEF, 0,5551 no conjunto de dados Net Images, e 0,4250 no CK+. 

Palavras-chave: Stress, Deteção de Stress, Emoção, Classificação de Expressões Faciais, Rede 

Neuronal Convolucional 
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1 Introduction 

This chapter presents the project context, the problem to be addressed, and the objectives to 

achieve with this document. 

1.1 Context 

Every day people communicate with each other. Not only verbally, but also from gestures and 

facial expressions. Often these gestures and facial expressions are automatic, and the 

transmitter does not even realize that he is executing them. 

This unintentional information is the primary way to know the transmitter's mood in a non-

invasive way. For example, when a person smiles at the same time as the lower eyelid show 

wrinkles below it, it means they are happy, just like many other emotions. 

If a facial expression is expressed by an acquaintance or if it is included in a conversation, it can 

seem quite intuitive to humans to interpret those emotions. However, when the context is not 

known, it is quite complex to determine precisely what a facial expression or a gesture means. 

Like the other most common emotions, stress can be manifested from facial expressions, 

gestures, and even from the voice. 

Demanding jobs are a significant cause of stress in people. Situations like frequent exposure to 

danger, short deadlines, or rigorous tasks are some of the originators. Different people will have 

different rupture points, depending on their ability to deal with these external stressors. Some 

will show signs of stress earlier, others more expressive signs, but all will react to stress. 

According to an opinion pool made in 2014 to workers from all over Europe, 53% considered 

stress as one of the main health and safety risks they face in their workplace. In this same study, 

27% also stated that in the last 12 months they suffered from stress, depression, or anxiety due 

to work (TNS Political & Social, 2014). 
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Constant exposure to stress is already known as a source of health problems, from 

cardiovascular illnesses to depression and exhaustion (also known as burnout). In addition to 

health problems, stress can also have consequences for employers. They may see declines in 

the productivity of their workers, as well as increases in absenteeism and presenteeism. 

According to studies by the European Agency for Safety and Health at Work (EU-OSHA), work-

related depression costs Europe about 600 billion euros annually (Cosmar et al., 2014). 

About 61% of European establishments participating in the 2019 EU-OSHA study (ESENER 3, 

2019) reported that a reluctance to talk openly about these issues seems to be the main 

difficulty for addressing psychosocial risks. 

Not only in Europe but also in the United States of America (USA) the mental illness is on the 

rise, indicating that hundreds of thousands of Americans live with serious psychological 

distress(Thompson, 2017). 

In a survey by the American Psychological Association in 2018 to adults living in the USA, 74% 

indicated that in the last month, stress had impacted their lives at least once. Almost half of 

these adults say they lay awake at night (45%), overeat or eat unhealthy due to stress (American 

Psychological Association, 2018). 

Another relevant point is digitization. Eight out of ten companies have personal computers, 

laptops or mobile computing devices in the work environment, which are used by their 

workers(ESENER 3, 2019). 

1.2 Problem 

Stress is difficult to detect, largely because it is something progressive that comes from an 

accumulation of extreme situations. As such, behavioural changes will also be gradual and 

subtle. Even more difficult due to the lack of openness from workers to talk about their 

psychosocial problems. 

Due to its late detection, there are a large number of cases of depressions, burnouts, loss of 

productivity, among others. 

1.3 Objectives 

The purpose of this dissertation is to create a system capable of detecting signs of stress from 

images of people's facial expressions. For this, the main objectives to be achieved will be: 

• Study and understanding the influence of stress on facial expressions; 
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• Analysis of images taken from stressful situations and the extraction of the main 

characteristics influenced by stress; 

• Evaluate and determine the best machine learning technique, along with the best set 

of characteristics for stress detection; 

• Create a system capable of detecting signs of stress. 

1.4 Expected Results 

Is expected a system capable of running on the background, that through user’s face images, 

detects if that individual is showing signs of stress. In a positive case, notify the user, so he can 

act upon that stress. 

1.5 Methodology 

The methodology to be adopted is the Cross Industry Standard Process for Data Mining (Wirth 

& Hipp, 2000), CRISP-DM for short. This methodology provides guidelines for the Data Mining 

process, breaking it down into six phases, as shown in Figure 1.  

Using the CRISP-DM, will be taken a cyclical approach where the collected images will be 

analysed and pre-processed for corrections and disposal of images not relevant to the solution 

to be developed. 

When the images are ready, will then be built classification models, using Convolution Neural 

Networks. These, in turn, will be evaluated using hold-out techniques. Based on the knowledge 

taken from this iteration, it may be necessary to repeat the whole process until are attained the 

ideal classification model. 

Once satisfied with the built models, they will be deployed, so it can be used in use cases and 

consequently validate the solution's operation. 
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Figure 1 – Phases of the CRISP-DM Process Model for Data Mining. Source: (Wirth & Hipp, 2000) 

1.6 Document Structure 

This document is divided into five chapters. The first chapter presents the context in which this 

project is inserted, what is the problem intended to solve, what objectives to achieve, as well 

as the expected results and the approach to adopt. 

In the second chapter, will be studied the key concepts such as emotions, facial expressions and 

stress. Will then be addressed the techniques and technologies commonly used in Computer 

Vision, followed by the datasets to be used for this project and a state of the art of other existing 

approaches. 

In the third chapter, it will be described the design of the solution and the decisions taken to 

implement the program. 

The fourth chapter will describe the entire process of creating, training and evaluating the facial 

expression classification model that will be part of the final system. 

The fifth chapter will close the document with the conclusions of the project, pointing the 

achieved objectives, the limitations of the developed project, and some viewpoints for future 

work. 
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2 Context and State of the Art 

For a better understanding of the context, it will be presented in this chapter an explanation of 

the theoretical concepts around stress and facial expressions. In a second stage, will be shown 

an overview of some techniques used in computer vision, followed with a more detailed 

explanation on artificial neural networks, pre-trained networks, and datasets. 

At the end of this chapter will be presented some existing solutions and proposals in stress 

detection, finalizing with a comparative analysis of the previously exposed solutions. 

2.1 Facial Expressions 

In one of his books, Paul Ekman indicates the human face as a multi-message system which 

provides three types of signals: “static (such as skin colour), slow (such as permanent wrinkles), 

and rapid (such as raising the eyebrows)” (Ekman & Friesen, 2003). In this study, rapid signals 

are the most valuable. These are the ones that express emotions and moods and are called 

facial expressions. 

2.1.1 Universal Facial Expressions of Emotion 

Paul Ekman wrote an article (Ekman, 1970) where he exposes some evidence of the universality 

of the facial expressions of emotion. That is, regardless of culture, country, race, or religion, 

certain emotions are manifested through the same expressions. In a more recent study (Ekman, 

2016), Ekman conducted a questionnaire to the world’s leading emotion scientists and more 

than 75% of them agreed on the universality of 5 emotions (anger, fear, disgust, sadness and 

happiness). In this same study, scientists also agreed on the relationship between emotions and 

moods. 
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2.1.2 Macro and Micro-expressions 

An expression can have many points of variation, such as the intensity and the time with which 

it is expressed. These are distinguished in macro-expressions and micro-expressions. (Shreve et 

al., 2009). 

Macro-expressions are the most common expressions that untrained people can easily 

distinguish. These are facial expressions that are displayed in full and that typically last longer 

than one second (Ekman & Friesen, 2003). In (Revina & Emmanuel, 2018), are presented several 

systems for recognition of facial expressions, more specifically, macro-expressions. 

Micro-expressions can be described as short-lived facial expressions. They can be as short as 

1/5 to 1/25 of a second and occur mainly when someone is trying to hide a genuine emotion. 

Another characteristic of the micro-expressions is that they can occur only in one part of the 

face (Ekman & Friesen, 2003; Porter & ten Brinke, 2008). 

However, due to micro-expressions being so fast, it is quite a time-consuming task. It requires 

specialized people to analyse videos frame by frame in order to be able to classify micro-

expressions. Considering these disadvantages of micro-expressions, several studies have 

already been carried out to try to automate its detection and classification (Polikovsky et al., 

2009, p.; Shreve et al., 2009, 2011, p.; Wu et al., 2011, p.; Xu et al., 2017).  

2.1.3 Facial Action Coding System 

As a way to facilitate the study of facial expression of emotion and micro-expressions, Paul 

Ekman and Wallace Friesen (Ekman & Friesen, 1976) created a system to taxonomize human 

facial movements. Facial Action Coding System (FACS) encodes all facial movements with a 

unique code, called Action Units (AUs). 

This system has the advantage of being able to interpret facial expressions, or even more subtle 

small signs, without the need to classify into one of the universal emotions. 

Thus, it is possible to capture all the information transmitted by the human face and later 

classify more correctly in a universal emotion or a mood. 

Some work has already been done as a way to automate this translation of images for Action 

Units. For example, in the (Marian Stewart Bartlett et al., 1995) was applied holistic spatial 

analysis, feature measurement, and optic flow techniques, combined in a neuronal network 

that reached a generalization performance of 92%. In (M.S. Bartlett et al., 2004) resorting to an 

AdaBoost algorithm, were selected the best Gabor filters, which were later classified with a 

Support Vector Machine. This system presented an accuracy of 94.5% for the classification of 

18 AU's. In the work (Hamm et al., 2011) was developed a system that uses Gabor filters and 

Active shape model to extract features that were later classified by AdaBoost. This system 

reached an accuracy of 95.9% for 15 AU's. 



7 
 

2.2 Stress 

There is a great discussion around the definition of ‘stress’. The first to present a definition was 

Hans Selye as being “the non-specific response of the body to any demand placed upon it” 

(Selye, 1950). These demands are also called stressors (Selye, 1975). A stressor can be any 

internal or external stimulus with adverse effects (Chrousos, 2009). Later a new definition 

occurred in a literature review, where they added that only when the stimulus is perceived as 

unpredictable and uncontrollable would we be in the presence of a stressor (Koolhaas et al., 

2011). 

2.2.1 General Adaptation Syndrome 

Selye was also the one who proposed the “General Adaptation Syndrome” (Selye, 1946). Here 

he describes the adaptive nature of the stress response, and as illustrated in Figure 2, consisting 

of 3 stages (Selye, 1946, 1975): 

1. “Alarm Reaction”— The definition given by Selye for this stage is to be a set of reactions 

for sudden stimuli for which the organism is not adapted to support. This phase is when 

the body triggers the fight-or-flight response, controlled by the Sympathetic Nervous 

System (McCorry, 2007). It promotes an increase in the production of adrenaline and 

norepinephrine. Such as increases in the heart rate, blood cell oxygenation and cortisol 

levels. 

 

2. “Stage of Resistance” – This stage is when there is a higher resistance of the organism 

to the stressor. Because is when the body is continuously exposed to the stressor and 

consequently tries to develop resistances/ways of supporting it. If the exposure to the 

stressor ends during this stage, the body can recover without damage. 

 

3. “Stage of Exhaustion” – In this last stage, there is a drop in the body’s resistance to the 

stressor. Because of continuous exposure to the stressor, and despite having developed 

an adaptation to these stimuli, the body can no longer maintain such adaptation. Upon 

reaching this stage, there is the possibility of contracting serious health problems. 
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Figure 2 – A diagram of the 3 phases of the General Adaptation Syndrome. Source: (Myers, 2008) 

Due to this duality of stress in which there may be an adaptation to the stressor or exhaustion, 

Selye proposed the terms ‘distress’ and ‘eustress’. The former refers to poor adaptation to a 

stressor and the latter to a beneficial adaptation to a stressor. 

2.2.2 Health Problems 

The relationship between exposure to stress and the contraction of diseases has long been 

studied. Long-term exposure to stress, also called chronic stress, promotes the development of 

cardiovascular problems, obesity, cancer and its spread rate, immune disorders, and mental 

disorders such as depression and burnouts (Esler, 2017; Le et al., 2016; Lupien et al., 2018; 

Matosin et al., 2017; McEwen, 2017). 

2.3 Facial Expressions of Stress 

After showing the most relevant points of facial expressions and stress, it is then necessary to 

understand the relationship between these two and explain how stress can be detected from 

facial expressions. 

In the study (Lerner et al., 2007), was carried out an experiment where ninety-two people were 

exposed to various stressors. During the experiment, were collected images of the subjects face, 

cardiac activity and saliva samples. The saliva samples were used to determine the levels of 

cortisol (stress hormone). 

After analysing the results, were verified some relevant points.  

Negative emotions (fear, anger and disgust) are influenced by stress. That is, the subjects being 

exposed to stressors expresses one of those three negative facial expressions. 
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It was also concluded that facial expressions vary based on the type of reaction to the stressor. 

If the subject considered the stressor as predictable and controllable, it would tend to express 

anger and disgust. Otherwise, if the stressor were unpredictable and the subject felt that had 

lost the control of the situation, then would express fear instead. The feeling of stress was 

validated by the increase in cortisol levels and cardiac activity. In unpredictable and 

uncontrollable situations, was when a greater increase in biological responses was detected. 

It was also confirmed that the timing or intensity of facial expressions is important for predicting 

physiological responses, time for the anger and the intensity for fear and disgust. 

In another study (Dinges et al., 2005), the relationship between the different levels of stress in 

facial expressions was also verified. However, they took an approach to micro-expressions, 

concluding that mouth and eyebrow regions had the best potential to determine stress. They 

used FACS to capture the various singular movements of the face. 

2.4 Methodology 

In this chapter, will be given a brief explanation of various techniques and methodologies 

related to image/video handling, as well as classification algorithms. 

2.4.1 Images Pre-processing 

Collected images do not always have the best quality or represent the face in the best way 

possible. Some of the challenges are head pose towards the camera, poor lighting, or even some 

obstacle between the face and the camera, such as scarfs or the person's hand. 

However, with the evolution of technology, new techniques have been proposed to tackle some 

of these challenges. From changes in the images colour, contrast enhancement, noise removal, 

application of filters, normalization, reshape and resizing. 

Another critical step is the identification of the region of interest, which in the context of this 

document will be face detection. The different face detection techniques can be distinguished 

into four categories:  

• Knowledge-based methods: Methods that use human pre-defined rules to determine 

if it is a face; 

• Feature invariant approaches: Look for facial structures that can stand out even with 

changes in head pose and luminosity; 

• Template Matching methods: Searches for a face in the image that are similar to a pre-

stored face template; 

• Appearance-based methods: Use a statistical model for the detection of faces. This 

model is built from the analysis of face images training set. 
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The category of techniques most used today is the appearance-based methods (Zhang & Zhang, 

2010). Techniques like Eigenfaces, Hidden Markov Models, Naïve Bayes, Support Vector 

Machines (SVM) and Artificial Neural Networks (ANN) are some examples. More can be found 

in (Kumar et al., 2019; Ming-Hsuan Yang et al., 2002; Zhang & Zhang, 2010). 

Despite the existence of numerous algorithms for facial detection in the current days, one of 

the biggest drivers was Viola & Jones who with their work (Viola & Jones, 2001) managed to 

make facial detection practically feasible for real-world applications. His proposal consists of 

Haar-like feature selection, computation of the integral image, classifier learning with AdaBoost, 

and the attentional cascade structure. 

2.4.2 Feature Extraction 

Once the images have been treated and possibly corrected, it is appropriate to extract features. 

The features represent characteristics of the identified face, from the opening of the eyes, 

gauze direction, position of the eyebrows, movements of the lips, or even the heart rate. 

There are different ways to extract this information, depending on the existing images. For 

static images, there are geometric feature-based methods and appearance-based methods. 

In geometric feature-based methods, are used facial landmarks (red dots in Figure 3). From 

these dots, the algorithms can identify the position, direction or shape of the different 

components of the human face. However, one of the defects of the geometric feature-based 

methods is the need for accurate feature point detection techniques and the difficulty of 

implementing such techniques in the complex real-world background (Zhao & Zhang, 2016). 

Active Shape Model, Active Appearance Model (AAM), and Scale-invariant Feature Transform 

(SIFT) are some of the geometric feature-based methods examples. For a more detailed 

description, refer to (Zhao & Zhang, 2016). 

 

Figure 3 – The shape model, defined with 58 facial landmarks. Source : (Chang et al., 2006) 

Appearance-based methods, unlike the previous one, do not use the contour of facial features, 

but directly the image. Based on the photometric appearance as the colour distribution or filter 

responses of the facial features, the algorithms interpret its morphology (Hansen & Ji, 2010). 
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Some examples of such algorithms are Local Binary Pattern and Gabor wavelet representation. 

More information in (Zhao & Zhang, 2016). 

However, when there is a time component, are needed techniques cable of observing changes 

in the face over time. These changes can be movements or changes in the appearance of the 

face, such as changes in colour. 

For movements interpretation, one of the options is the use of Optical Flow (Agarwal et al., 

2016). This method evaluates the movement of each pixel in the image and assigns it a velocity 

vector. From the analysis of this vector, it is then possible to perceive the various movements 

of the facial components. 

Another option is Feature Point Tracking (Pantic & Patras, 2006). This method tracks specific 

landmarks on the face. It obtains the various locations of these points over time, and it is then 

possible to determine which facial movement was performed. 

There are also some variations in skin tone over time. These variations can be extracted with 

photoplethysmography techniques, that allows reading blood volume changes under the skin. 

It is possible to apply this technique with ordinary colour cameras that, from the variations of 

the skin colour of the human face, measure cardiac activity. This specific variation that uses 

images from a camera is called Remote Photoplethysmography (rPPG). In the work of (Wang et 

al., 2015) can be obtained a more detailed explanation. 

2.4.3 Classification 

Once the features of the images/videos are extracted, it is then possible to approach the 

problem as a common machine learning problem. Classification is a type of machine learning in 

which, through the application of mathematical calculations and probabilistic distributions, it 

evaluates the input values, called features and predict the target class. This target class is a 

discrete value that does not imply order. The classification techniques require a set of train data 

where the class to which they belong is known (Krishnaiah et al., 2014).  

Classification problems can be distinguished into two types, binary or multiclass. Binary 

classification is when the objective attribute takes on only two distinct values, for example, 

stress or non-stress. Multiclass problems are when there are more than two possible 

classification options, such as happiness, sadness, disgust, surprise, anger and fear (Krishnaiah 

et al., 2014). 

Numerous algorithms have already been proposed for solving classification problems. SVM, K-

Nearest Neighbour (K-NN), Naïve Bayes, Decision Tree, Random Forest and ANN are some 

examples. In the works (Hemmatian & Sohrabi, 2019; Krishnaiah et al., 2014; Zhao & Zhang, 

2016) can be found more detailed explanations. 
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2.5 Artificial Neural Network 

Artificial Neural Networks are a sub-area of the discipline of Machine Learning, which, like the 

human brain, consists of a network of neurons that communicate with each other. However, in 

the case of ANN, neurons (or nodes), are stratified in several layers, where each connection 

between neurons has a weight. 

The layers can be of the type input, hidden and output, as shown in Figure 4. 

 

Figure 4 – Artificial Neural Network Schematic. Source: (Cburnett, 2006) 

In the input layer is where will enter raw data, which can be anything from numerical values, to 

images and videos. Hidden layers are where functions will be applied, which will influence the 

propagation of information from layer to layer. These functions, together with the connection 

weights, aim to give more or less importance to each relationship between nodes. Finally, the 

output layer will always be the last one in the network. It is responsible for returning a response 

in the form of classification or forecast. 

ANNs can assume two different architectures, feedforward and recurrent. In the former, the 

information only proceeds in the direction of input to output. In the latter, the connections may 

form feedback loops, assigning memory to the network. 

It is also possible to create multi-layered artificial neural networks, known by the name of Deep 

Neural Networks (DNN). An example of DNN is the Convolution Neural Networks (CNN). 

2.5.1 Convolution Neural Network 

Convolution is a mathematical operation that uses a filter, or kernel, and applies him to the 

input data in order to obtain a transformed feature map (Convolution, 2018). This type of DNN 

is widely used for the analysis of images and videos, allowing to achieve state of the art 

performances (Karpathy et al., 2014). 

In addition to the convolution layers that allow feature learning, CNNs can also consist of 

pooling layers that are used to reduce the size of feature maps (subsampling), while allowing 
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the network to be less affected by rotations and translations of the objects to classify. 

Normalization layers that apply techniques such as batch normalization or dropout, and aim to 

improve the stability and performance of the network (Ioffe & Szegedy, 2015). And fully 

connected layers in which the nodes are connected to all other nodes in the previous layer 

(Convolutional Neural Network (CNN), 2018). In Figure 5 is presented a diagram of a CNN. 

 

Figure 5 - An example of a CNN that receives an image of a traffic signal as input and classifies 

that image as "sign" and "60". Source: (Convolutional Neural Network (CNN), 2018) 

In the following subsections, will be presented some of the key concepts of Convolution Neural 

Networks. 

2.5.2 Optimizer 

In deep learning, the standard used optimizers are implementations of gradient descent 

algorithms. Gradient descent is an algorithm that seeks to minimize a loss function by updating 

the model parameters in the opposite direction from the gradient of that same loss function 

(Ruder, 2017). The main parameter of this algorithm is the learning rate, which will indicate the 

magnitude of the updates to be made to the model weights in the backpropagation process. 

Currently, there are already many evolutions to gradient descent, such as the Stochastic 

gradient descent (SGD), Mini-batch Gradient Descent, RMSProp, or Adam. 

Some of the optimizers indicated above implement techniques complementary to gradient 

descent, such as Momentum, Nesterov Accelerated Gradient, and adaptive learning rate. 

2.5.3 Learning Rate 

Learning rate is a hyperparameter from the optimization algorithm, that determines the 

magnitude of the changes made to the model's weights during the backpropagation process. 

The higher the learning rate, the more significant the changes are. 
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This hyperparameter commonly has positive values less than one and greater than zero, 

commonly multiple values of 10. 

However, the value to be attributed to the learning rate depends on each case, with higher 

values generally being assigned at the beginning of training, and reducing his value with 

techniques such as early stopping or schedulers, when reaching plateaus. 

By reducing the learning rate during training, most of the time, it is possible to get out of local 

minima and improve the model's performance. However, when it drops to very low values of 

learning rate, the changes made to the weights are so small that it will be difficult to observe 

improvements in performance. It may even begin to overfit the training data, reducing the 

model's generalization power. Therefore, the learning rate is one of the most important 

hyperparameters that is crucial to tune well. 

2.5.4 Loss Function 

The training of a neural network involves that, at the end of each epoch, its performance is 

evaluated according to a specific objective, which is intended to maximize or reduce. 

Typically, with neural networks, the functions that evaluate the model's performance, seek to 

minimize the error, so they are commonly referred to as loss functions that calculate the 

model's loss (Brownlee, 2019). 

As suggested in (Chollet & Allaire, 2018a), for classification problems the most suitable is the 

calculation of the cross-entropy. Cross-Entropy "is a quantity from the field of Information 

Theory that measures the distance (...) between the ground-truth distribution and your 

predictions.". That is, the farther from the correct value the forecast made by the model is, the 

greater the cross-entropy will be. François Chollet also recommends that for multiclass and 

single-label classification problems, the most suitable loss function is categorical_crossentropy. 

2.5.5 Metrics 

At the beginning of the problem definition, it is necessary to define what is meant by success, 

and as such, determine the metrics to measure that success. 

Since the dataset (KDEF), which will be used to train the neural network, has the same number 

of samples for each of the emotions, we are in the presence of a balanced-classification problem. 

Therefore accuracy and area under the receiver operating characteristic curve (ROC AUC) are 

common metrics to measure these problems (Chollet & Allaire, 2018b). 

2.5.6 Data Augmentation 

Overfitting is one of the main difficulties in creating models. The models adapt too much to the 

training data and lose the ability to predict observations that were not present in the training 
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data. That is, since it has too few samples to learn from, the model will not be able to generalize 

to new information. 

If it is not possible to obtain new data for the dataset, can be applied data augmentation 

techniques. These will generate more data from existing data, using random transformations 

which, depending on the type of existing data, will generate credible artificial data. 

Standardly, the data augmentation is performed during the training process, continually feeding 

the model in training with different information, encouraging him to generalize better to the 

various aspects of the data. 

In computer vision, data augmentation techniques can involve numerous transformations such 

as rotation, translation, magnification, flipping, cropping, Gaussian Noise, contrast change, 

luminosity, and so on. 

However, it is necessary to evaluate the problem at hand and determine which transformations 

will bring plausible aspects to the model. For example, imagine the classification of handwritten 

numbers, techniques such as horizontal flipping and vertical flipping are not advisable, as these 

types of changes would alter the meaning of the image creating invalid data. 

With the use of data augmentation techniques, the model during training will never see the 

same images twice. However, since these images are intercorrelated because they come from 

the same set of original images, it is necessary to be aware of some aspects of the real world 

that were not present in the original dataset. Despite data augmentation techniques, these 

aspects may have not yet been understood by the model (Chollet & Allaire, 2018c). 

2.5.7 Dropout 

Dropout is a regularization technique for neural networks developed in 2014 by Geoff Hinton 

and is students (Srivastava et al., 2014), that improve neural networks performance by reducing 

overfitting. This technique consists of "randomly dropping out (setting to zero) a number of 

output features of the layer during training" (Chollet & Allaire, 2018b). By randomly dropping 

out units and their connections during training, will prevent units from co-adapting, and with 

that, overfit to the training data (Srivastava et al., 2014). 

This technique requires that the parameter "dropout rate" be specified, with a value between 

0 and 1. During the training phase, this value will determine the fraction of the neurons that are 

dropped out. During the test time, the neurons are not dropped out, but instead, the layer's 

output values are scaled down by a factor equal to the dropout rate (Chollet & Allaire, 2018b). 

Dropout in deep neural networks is usually done in the classifier layers before or/and between 

the dense layers. For the dropout rate, the recommended values by Geoff Hinton, in his paper, 

is about 0.8 to 0.5. If there is too much dropout (low values in the dropout rate), the network 

may not learn and contribute to underfitting, but if there is little dropout (high values in the 

dropout rate), it will not effectively counter overfitting (Srivastava et al., 2014). 
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It is important to note that some implementations of this algorithm, Keras is an example, have 

reversed the dropout rate. Where higher dropout rate values contribute to a greater number 

of neurons that are dropped out, and reduced dropout rate values to a smaller number of 

neurons. The values from the original paper to this new implementation can be calculated by 

the formula (1) below. 

 
𝐾𝑒𝑟𝑎𝑠 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑟𝑎𝑡𝑒 = 1 − 𝑃𝑎𝑝𝑒𝑟 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑟𝑎𝑡𝑒 

 

 
(1) 

2.5.8 Transfer Learning 

In the context of deep Learning, transfer learning is a technique that reuses characteristics 

learned in solving a general problem, called source domain, as a starting point for solving 

another problem, target domain. With this technique, it is possible to leverage learning to solve 

a problem in fewer iterations than those that would be necessary without the previous 

knowledge. 

This technique is especially advantageous, for example, in image classification problems where 

the dataset does not contain enough information to train a full-scale model from scratch 

(Chollet, 2020). 

As the project of the current document, the most common in computer vision is the use of pre-

trained networks, which was trained on a large benchmark dataset. Some examples of such pre-

trained networks are VGG or InceptionResNet, which will be covered later. 

Once these pre-trained networks are trained in broad and generic datasets, then, "the spatial 

feature hierarchy learned by the pre-trained network can effectively act as a generic model of 

our visual world, and hence its features can prove useful for many different computer vision 

problems, even though these new problems might involve completely different classes from 

those of the original task." (Chollet & Allaire, 2018c). 

These pre-trained networks are divided into two parts, convolutional base, and classifier.  

The convolutional base, commonly composed by stacks of convolutional and pooling layers, 

aims to generate features from the image. This process is called Feature Extraction. 

The classifier, often composed of fully connected layers, classifies the image based on the 

features extracted by the convolutional base. 

However, the further we progress in the neural network, the more specific the features become 

for the source domain. In other words, the first layers of the convolution base will extract very 

generic features that can be reused to solve multiple target domains. In contrast, in deeper 

layers the extracted features will be less and less relevant for solving other problems, reaching 

the classifier that will be fully tuned for the source domain and will only be useful for solving 

very similar problems. Thus, the classifier is rarely reused in transfer learning. 
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The typical transfer learning workflow in computer vision is:  

• Select a pre-trained network that solves a problem similar to the one intended to be 

solved; 

• Replace the classifier with a new one to be trained in the new dataset;  

• Freeze the convolutional base and train the neural network in the new dataset. 

2.5.9 Fine Tuning 

However, if it is not possible to use a pre-trained network trained in a similar domain to the one 

we want to solve, or even if it is necessary to obtain a better performance of the final model, 

we can proceed to a complementary technique called fine-tuning. Fine-tuning consists of 

enabling the training of some of the deeper layers of the convolutional base, which are more 

specific to the source domain, and in this way readjusting them to make them more relevant to 

the new dataset. 

In fine-tuning, it is necessary to determine how much of the convolutional base to train. It is 

essential to bear in mind two factors, the similarity between the target and source domain, as 

well as the size of the dataset to classify. Figure 6 shows two matrices that can help to decide 

the proportion of the convolutional base to train based on the factors mentioned above. 

 

Figure 6 - Matrix representing the appropriate number of layers to be trained depending on 

the size and similarity between source dataset and target dataset. Source: (Marcelino, 2018) 

Analyzing the matrix can be seen that there are three possible approaches. 

1. If there is little data on which to train the new model and the datasets are similar, then 

training only the new classifier should be enough to achieve acceptable accuracy, not 
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being necessary to apply fine-tuning. 

 

2. If we have a large set of data, but this is different from the one that trained the pre-

trained network, then, the features extracted by the pre-trained network will not be of 

much use, since there is enough data to create a powerful feature extractor from 

scratch. 

Nevertheless, the pre-trained network architecture may still be relevant to the 

resolution of the problem and the previous weights as initialization for the new model. 

However, this approach will require a significant amount of processing power since the 

entire network will be trained. 

 

3. In intermediate cases, only part of the base convolution should be trained to maintain 

the most general knowledge of the superficial layers and readjust the weights of the 

deeper layers that have more specific feature extraction patterns. The more the 

datasets are similar, then more layers can be left frozen, as they have knowledge that 

is still relevant to the problem, thus saving processing capacity.  

In case the datasets are different, it will be necessary to train a more significant number 

of layers, readjusting the more specific layers to the previous problem. 

 

However, when applying fine-tuning, it is necessary to pay attention to three nuances. First, 

before applying fine-tuning to the convolutional base, it is imperative to train the randomly 

initialized classifier with the entire convolutional base frozen. "If the classifier wasn't already 

trained, then the error signal propagating through the network during training would be too 

large, and the representations previously learned by the layers being fine-tuned would be 

destroyed." (Chollet & Allaire, 2018c). 

Second, the more layers are enabled to train, the greater the risk of overfitting the model to 

the dataset. To combat this tendency, can be used data-augmentation, dropout, or even a more 

extensive dataset. Preferably all the three. 

Third, it is vital to use a very low learning rate, so the changes made to the weights during the 

backpropagation process are not too significant, which could damage what was learned by the 

layers of the convolutional base in the source dataset. 

2.6 Pre-Trained Networks 

For the project implementation, were used transfer learning techniques, and as such, it was 

necessary to use pre-trained neural networks. The three selected neural networks were all 

created based on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky 

et al., 2015), which is based on assessing the ability of algorithms for object detection and image 

classification at large scale. ImageNet is a dataset consisting of more than 14 million hand-

labelled images for almost 22,000 different classes. 
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The selected neural networks were VGG16, VGG19 and InceptionResNetV2.  

VGG16 and 19 were selected because they are very simple and straightforward architecturally 

and because they are quite often referred to as the main networks used for transfer learning. 

InceptionResNetV2 was also selected because it is mentioned in (Hung et al., 2019), presenting 

good results in a facial expression classification task. 

The three selected networks also have the advantage of being easily available on Keras. 

2.6.1 VGG16 and VGG19 

K. Simonyan and A. Zisserman proposed these two pre-trained networks in (Simonyan & 

Zisserman, 2015), which were submitted to the 2014 ILSVRC, where they achieved the first and 

the second places in the localization and classification tasks respectively.  

The two networks are practically the same; they differ only in the number of layers of the 

convolution base. In Figure 7 it is possible to see graphically the layers used for each of the 

configurations. 

 

Figure 7 – VGG16 and VGG19 architecture. Source: (Matić et al., 2018) 
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The convolution base of these networks is made of convolutional and max-pooling layers. The 

convolutional layers use a 3 x 3 pixels filter, and padding and stride of 1 pixel. For the max-

pooling layers were used a 2 x 2 pixels window and a stride of 2.  

In all layers is used the ReLU activation function, except for the Dense layer output of the 

classifier that uses Softmax. 

It should also be noted that these networks were trained to receive RGB images of 224 by 224 

pixels. 

2.6.2 Inception-ResNet V2 

Inception-ResNet V2 is the result of an evolution of its predecessors ResNet and Inception, 

being a combination of the main characteristics of both. This was proposed by C. Szegedy and 

colleagues in (Szegedy et al., 2016). This model was also submitted in the 2015 ILSVRC yielding 

state-of-the-art performance. 

At an architectural level, it is a more complex network than the VGG, wider, with filters of 

different sizes, and organized in different types of blocks. 

From the Figure 8, it is possible to observe the condensed architecture of the  Inception-ResNet 

V2.  

By default, the Inception-ResNet V2 input waits for RGB images of 299 X 299 pixels and outputs 

a Dense layer with 1000 neurons and softmax as the activation function. 

Internally, as shown in the image, it consists of a Stem, Inception-ResNet-A, B, and C blocks, 

Reduction-A and B blocks and ends with a layer of Global Average Pooling (GAP) with a dropout 

of 0.8 (keep 80% of neurons). This Average Pooling layer replaces the densely connected layers 

that many networks, like VGGs, usually use in the classifier of the networks. 

Inception-ResNet modules are only made of convolution layers, while Reduction modules are 

made of both convolution layers and max-pooling layers in order to reduce the image size across 

the network. 

The activation function used in the network is ReLU, with the exception of the output layer that 

uses Softmax and some layers in the Inception-ResNet modules that do not use activation 

function. 

Keras' implementation for Inception-Resnet V2 varies from that described in the original paper. 

It uses twice the Inception-Resnet blocks and the Stem also has some changes in the number 

and layout of its layers. More can be found in the implementation at (Chollet, 2017). 
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Figure 8 – Inception-ResNet V2 architecture. Source: (Szegedy et al., 2016) 

2.7 Datasets 

2.7.1 KDEF 

Karolinska Directed Emotional Faces (KDEF) is a dataset created in 1998 by the Karolinska 

Institute, bringing together 4900 images of seven human facial expressions (Lundqvist et al., 

1998). 

Seventy amateur actors participated in the study, 35 females and 35 males, all between 20 and 

30 years old. None of the subjects had glasses, beards, moustaches, earrings, or makeup. 

The seven facial expressions of emotion represented during the photo sessions were, anger, 

disgust, fear, happiness, neutral, sadness and surprise. Before the photo session, all the actors 

trained the seven facial expressions that they later mimic during the session. Therefore, this 

dataset consists of posed, non-spontaneous facial expressions. 
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The images were captured in a controlled environment, where the luminosity, distance and 

orientation of the subjects were controlled. The photos were taken from 5 different angles: full 

left profile, half left profile, straight, half right profile, full right profile. After the actor 

represented all seven expressions, thus completing the first series, the process was repeated to 

capture the second series. For each emotion, were collected ten images per actor. 

The images are 562 * 762 pixels in size. 

2.7.1.1 KDEF adapted to the problem 

Given the purpose of this project, which will use the user's computer webcam to obtain their 

facial expressions, it was decided to use only the half-left profile, straight, and half right profile 

images to train the neural network. The first reason was that the full left profile and full right 

profile contain little information about facial expressions, which can hinder learning for the 

neural network. Furthermore, by default, the webcams will be pointing the user's face from the 

front, capturing mainly the straight and half profiles. 

In other words, of the 4900 images, only 2940 were used, 420 for each emotion. 

In the pre-processing phase, the images were cut around the face, to remove part of the 

background, so that it did not contribute with noise to the learning phase. Finally, the images 

were all scaled to 299 by 299 pixels. 

In Figure 9 can be seen three examples for each of the emotions along the columns and each of 

the three poses along the lines. 

 

Figure 9 – Representation of facial expressions present in the KDEF dataset.  

The first column represents the emotion anger, with the subject F25. The second column, 

disgust with subject M13. The third column, fear with subject F07. The fourth column, 

happiness with subject M11. The fifth column, neutral with the subject F30. Sixth column, 

sadness with the subject M32. The seventh column, surprise with subject F26. 

The first line represents the straight pose, the second line represents the half left profile and 

the third the half right profile. 
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2.7.2 CK+ 

The CK+ dataset is the result of an extension to the CK created in 2000 by Cohn and Kanade that 

aimed to promote research into automatically detecting individual facial expressions (Lucey et 

al., 2010). They collected sequences of images from a neutral facial expression to the apex of 

one of seven emotions (anger, contempt, disgust, fear, happiness, sadness, and surprise). The 

image collection process involved 210 adults, between 18 and 50 years old, 69% female, 81% 

Euro-American, 13% Afro-American, and 6% of other groups. 

The collected images were later classified with one of the seven emotions. The final image of 

every sequence that represented the emotions apex was encoded in AUs based on the FACS. 

However, after a selection process, only 327 sequences from the 593 made it to the dataset. 

The number of sequences present for each emotion can be found in Table 1. 

Table 1 – Number of sequences per emotion on CK+ dataset. 

EMOTION Nº of sequences 

Anger 45 

Contempt 18 

Disgust 59 

Fear 25 

Happiness 69 

Sadness 28 

Surprise 83 

 

The collected images had a size of 640x490 or 640x480 pixels with 8-bit grey-scale or 24-bit 

colour values. 

Despite the above, the author of the document was unable to obtain the full version of the 

dataset, as the website indicated in the original paper (Lucey et al., 2010) to request the dataset 

is no longer available. Therefore, an unofficial version (Shawon, 2018) was obtained from the 

Kaggle platform where it contains only three images per sequence, in a total of 981 images, in 

black and white with a size of 48 by 48 pixels. 

However, CK+ presents a significant difference in comparison to the KDEF dataset. The CK+ does 

not contain images for the neutral emotion and contains a different facial expression, contempt. 

In order to use the dataset, all contempt facial expression images were removed, reducing the 

dataset to 927 images. The dataset continued without images of the neutral facial expression. 
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Finally, all images were cropped around the face and resized to 299 x 299 pixels. 

In Figure 10 is possible to see an example for the six facial expressions used. 

 

Figure 10 – Representation of facial expressions used from the CK+ dataset. 

From left to right, subject s55 with an angry facial expression, s74 with disgust, s132 with fear, 

s125 with happiness, s113 with sadness, and s130 with surprise. (©Jeffrey Cohn) 

2.7.3 Net Images 

Since the neural networks were trained with a dataset in a controlled environment and in which 

the population is mostly homogeneous, the author of the document decided to create a small 

set of images obtained from the internet for the seven emotions learned by the CNN. 

The purpose of this small dataset is to get an idea of the extent to which the models generalized 

its learning to the emotions and did not adjust itself too much (overfitted) to the environment 

(setup) of the KDEF dataset. 

Were collected twenty images for each emotion, for a total of 140 images. These come from 

searches on two search engines (Google and DuckDuckGo) and free stock images sites 

(unsplash.com; pexels.com; shutterstock.com; freepik.com). Searches were done using the 

expression "human <emotion> face", where <emotion> was replaced by the name of the 

respective emotion. For example, "human happy face". 

Then, were selected images where the face was visible, and the emotion was unmistakably 

present. We tried to obtain very heterogeneous images, from people of different ages, different 

races, with and without a beard (same for glasses). Were avoided, images with watermarks, 

with visible image edition and in which the facial expression could be interpreted as a mix of 

emotions, as mentioned in the book Unmasking the face by Ekman and Friesen (Ekman & 

Friesen, 2003). 

Once the images were collected, they were then cut around the face and resized to 299 x 299 

pixels. 

In Figure 11 is displayed one example for each emotion present in the Net Image dataset. 
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Figure 11 – Representation of facial expressions present in the Net Images dataset. 

From left to right, anger, disgust, fear, happiness, neutral, sadness, surprise.  

2.8 Training, Validation and Test Sets 

Before evaluating any model, it is necessary to ensure that the original dataset has been 

correctly divided into three sets: training, validation, and test. The training set will be used to 

train the model, after that the model will be evaluated in the validation set at the end of each 

epoch. Finally, once the model training is completed, it is tested in the test set to see if it has 

generalized enough or overfitted to the training data, validation data, or both. 

Information leaks may occur during the training process, after observing the model's 

performance on the validation data, and by changing the model's hyperparameters, some 

information about the validation data leaks into the model. 

Given that these changes based on the validation set can be considered as a form of learning, 

there is a risk that at the end of many of these iterations, the model starts to overfit to the 

validation data. 

Therefore, as a way of assessing the model's performance more reliably on information never 

seen before, is created a test set that will only be used to evaluate the model's performance 

once fully tuned based on the validation data. 

There are two main ways to divide data into these three sets: hold-out validation and K-fold 

validation. 

2.8.1 Hold-Out Validation 

Of the two, this method is the simplest and consists only of randomly separating the complete 

dataset into the three sets, training, validation, and testing. Commonly, the validation set and 

the test set are the smallest sets, with training being the largest, preferably with more than half 

of the data. The proportions will have to be decided based on the existing data type, distribution, 

and size of the dataset. It is necessary to reserve sufficient data for testing and validation that 

are statistically representative of the entire data. Moreover, at the same time, it is intended to 

have the most amount of data possible for training so that the model generalizes better. 

In situations where the amount of data is reduced, these two factors can be conflicting, and as 

such, K-fold validation will be of a better use for solving the problem. In the other hand, in 

computational terms, the hold-out method is less expensive than K-fold validation. 
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2.8.2 K-Fold Validation 

K-Fold Validation is the method most commonly used in machine learning, as this gives more 

reliable measurements, even with little data.  

First, a test set is randomly separated and, again, its size will have to be weighted based on the 

dataset at hand. This will later be used to evaluate the model at the end of the K-Fold Validation 

process, precisely for the reasons explained above in "information leaks".  

After the test set is separated, the remaining data will be used both as training data and 

validation data. That is, these data will be randomly divided into K folds, and K-1 folds will be 

used as training data and one fold as validation data. At the end of the training, the fold used 

for validation will be used for training in the next iteration, and a new fold will be the validation 

fold. In this way, all folds will be used as validation data precisely one time. This process will 

repeat for K times and in the end, calculated the mean of the validation score of all iterations. 

The functioning of K-Fold validation can be easily understood from the figure. 

 

Figure 12 – K-Fold Validation overview. Source: (scikit-learn team, 2020) 

In this method, there is a crucial value to define, the value of K. K will indicate how many 

portions of equal size will the dataset be divided (after reserving the test set). This value will 

have to be decided, in the same way as the size of the test set is chosen. Evaluate the existing 

data type, distribution, and size of the dataset. 

There are some evaluation methods in which the K value is fixed or predetermined. As in the 

Leave-one-out Cross-Validation in which the validation set will only contain one example, and 

therefore the dataset will have to be divided into as many folds as there are instances. 

However, when this method is applied to deep learning, it is hugely computationally and time 

expensive. For each split that can be seen in the image, it is necessary to train the model for n 

epochs which in some cases can take hours or even days. In other words, it would be necessary 
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to multiply these hours by the number of K folds, and every time changes are made to the 

hyperparameters it would be required to re-train the network for n epochs * k folds. 

2.9 Tensorflow and Keras 

Currently, the most used platforms for building neural networks are TensorFlow and Keras 

(Piatetsky, 2019). TensorFlow is a machine learning engine, that was created by a team from 

Google, called Google Brain. The first version of TensorFlow was launched in 2015 and at the 

date of this document is already in version 2.3.0. 

Keras is a high-level API for TensorFlow that aims to facilitate the resolution of machine learning 

problems. Keras was initially created by François Chollet to offer a library capable of providing 

users with a development platform independent of the machine learning engine working as a 

backend (Good News, Tensorflow Chooses Keras! · Issue #5050 · Keras-Team/Keras, 2017). In 

addition to TensorFlow, were supported Microsoft Cognitive Toolkit, R, and Theano. 

However, the version 2.2.5 of Keras was the last to support multi-backend, and since that 

version, Keras is only embedded in TensorFlow library (keras-team/keras, 2015/2020). 

2.9.1 Google Colab 

Google Colaboratory or "Colab" for short, is an online platform that allows the execution of 

python code directly in the browser, free of charge, with access to GPU and TPU processing 

without the need for configurations. Not only executes python code but it currently supports 

the latest version of TensorFlow. 

In addition to the free version, there is also a paid version that allows access to more powerful 

GPU and TPU, the possibility of longer runs, as well as access to machines with twice the CPUs, 

memory, and disk space. 

For the realization of this project, was used the free version that allowed access to Nvidia K80s 

GPUs, 12 GB of RAM, 68 GB of disk space and runs of up to 12 hours. 

2.10  Existing Solutions 

Automatic stress detection has been studied for many years. From some intrusive approaches, 

such as saliva or blood tests, heart activity, body temperature, Electroencephalography, 

galvanic skin response. To less intrusive approaches, with the collection of images. 

In this section, will be analysed only non-intrusive solutions, using videos of people performing 

stressful tasks. From these videos, several features are then extracted and then used to create 

classifying models. 
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In the end, will be made a conclusion, summarising a comparison between the solutions. 

2.10.1 Detecting Emotional Stress From Facial Expressions For Driving Safety 

This study (Gao et al., 2014) was carried out in 2014 by researchers from the École 

Polytechnique Fédérale in Lausanne, Switzerland, whose main objective is the detection of 

stress while driving from images collected by a camera mounted inside the dashboard. 

It should be noted that this study, assumes it is in the presence of stress if anger and disgust are 

detected above a specific time limit. 

2.10.1.1 Data 

The researchers themselves collected the images used. Using a near-infrared (NIR) camera, 

which captured at 25 frames per second (fps) and with a resolution of 1280 x 1024 pixels. This 

resulted in two sets of images, “Set1” and “Set2”. 

The “Set1” was recorded inside an office, where the camera was positioned on a table and 

oriented horizontally with the subject’s face. None of the subjects was a professional actor, and 

a total of 21 were filmed. 

In “Set2”, the images were collected inside a car, with the camera mounted inside the 

dashboard, behind the steering wheel. The camera was with a slightly up-tilted view-angle 

towards the driver’s face. A schematic of the camera setup can be seen in Figure 13. In this set, 

only 12 of the previous subjects were filmed. 

In both sets, the subjects were asked to express the expression of stress for 1 minute. 

 

Figure 13 - The camera setup inside the car. On the left, inside the dashboard, the green block 

represents the NIR-camera, and the red arrows the viewing angle. Source: (Gao et al., 2014) 
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2.10.1.2 Implementation 

The process consists of collecting the driver’s images, perform face detection and face tracking, 

followed by the feature extraction, emotional detection and stress classification. 

In the Face Detection step, it was implemented with Viola & Jones algorithm (Viola & Jones, 

2004), and the face tracking with Supervised Descent Method (SDM). The SDM was configured 

to track 49 facial landmarks. 

Two approaches were proposed for the feature extraction:  

• The first approach treats the image in a holistic way. From the coordinates of the eyes, 

the images were centred and normalized. Finally, is applied an algorithm to extract local 

descriptors using block-based discrete cosine transform (Ekenel & Stiefelhagen, 2005); 

• The second approach, extracted the local descriptors around the tracked facial 

landmarks, using scale-invariant feature transform (Chu et al., 2013). The images were 

centred and normalized with a 3D Cylindrical Head Model (Xiao et al., 2003). 

 

For the recognition of emotions, they implemented a classifier with SVM, which was tuned with 

5-fold cross-validation. They used two public data sets of facial expressions, the FACES (Ebner 

et al., 2010) and the Radboud (Langner et al., 2010). An extra classifier was created for each 

subject. These additional classifiers were trained like the others, but with the addition of images 

of the subjects' own facial expressions. 

Finally, in the step of determining the presence of stress, was used the classifier described in 

the previous paragraph. If it detected the presence of disgust and anger emotions above a 

certain percentage of the frames analysed, then it is classified that the driver is under stress. 

2.10.1.3 Results 

Of the approaches performed, the one that obtained the best results was the second; however, 

with the use of the emotion classifier adapted to the subject with his own facial expressions. 

With an accuracy of 90.5% (F-measure: 0.871, recall: 0.860, precision: 0.882) for “Set1” and 85% 

(F-measure: 0.815, recall: 0.735, precision: 0.914) for “Set2”. 

2.10.2 Automatic human stress detection based on webcam photoplethysmographic 

signals 

Conducted by researchers at the University of Lorraine, France, in 2015, this study (Maaoui et 

al., 2015) aimed to develop a system capable of detecting stress from a computer's webcam 

using rPPG signals. 

2.10.2.1 Data 

To carry out the study, the researchers used images collected in a previous study (Bousefsaf et 

al., 2013), where 12 students from their laboratory participated. The sessions consisted of 

successions of relaxing videos and Stroop colour word tests to induce stress in the subject. 
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The images were collected with a conventional webcam at a resolution of 320 x 240 pixels and 

a frequency of 30 frames per second (fps). 

2.10.2.2 Implementation 

The first step was the automatic face detection, using a cascade of boosted classifier on each 

frame, based on (Viola & Jones, 2001). 

Then a skin detection was performed to extract the skin pixels, where it is possible to obtain 

the PPG signals. They changed the colour space of the images from RGB to L * u * v * to help 

reduce fluctuations due to light variations. The u * component was then extracted, as it is the 

most important for rPPG signals. Finally, the PPG signals were converted into a sinusoidal wave, 

which represents the heart rate (HR). 

Seven features were extracted from this wave: mean value of HR signal, standard deviation of 

the HR, first derivative of HR, root mean square of the successive differences, low-frequency 

band, high-frequency band and the ratio between low and high-frequency band. 

In order to distinguish stress states from relax states, were used two classification algorithms: 

SVM with RBF kernel and Linear Discriminant Analysis (LDA). 

2.10.2.3 Results 

The SVM with RBF kernel was the algorithm that obtained the best results, with 94.40% 

accuracy, against 91.10% of the LDA 

2.10.3 Stress and anxiety detection using facial cues from videos 

A group of Greek researchers developed a system (Giannakakis et al., 2016) capable of detecting 

stress/anxiety emotional states through video-recorded facial cues. In addition to detecting 

stress, their work also includes detection of anxiety. According to them, the manifestation of 

these states is identical. 

2.10.3.1 Data 

For the collection of images, the researchers created an experimental procedure capable of 

inducing affective states (neutral, relaxed and stressed/anxious). This procedure consisted of 

four phases. Each phase aims to expose the subject to different types of stressors. The first 

phase is a social exposure, the second an emotional recall, the third stressful images and mental 

tasks, such as the Stroop test, and the fourth stressful videos. 

From this procedure, where participated 23 adults, were obtained 276 videos at 50 fps and with 

a resolution of 526 x 696 pixels. 

2.10.3.2 Implementation 

They started by improving the contrast of the images with histogram equalization, followed by 

the application of the Active Appearance Models algorithm for the detection of the face and its 

landmarks. 
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The features were extracted using Active Appearance Models, Optical Flow, and rPPG. The AAM 

was used to obtain eye and head movements, the Optical Flow for mouth activities, and the 

rPPG for heart rate. 

After the most relevant features were prepared and selected, were applied and tested the K-

NN, Generalized Likelihood Ratio, SVM, Naïve Bayes and AdaBoost algorithms to create the 

stress/anxiety classifier. 

The various classifiers created were adjusted and tested with 10-fold cross-validation. 

2.10.3.3 Results 

In the end, the best classification accuracy, of 91.68%, was obtained with AdaBoost for the 

phase of social exposure. However, the algorithm that achieved the best average accuracy over 

the four phases was K-NN with 87.72%, followed by AdaBoost with 85.95%. 

2.10.4 Towards Independent Stress Detection: a Dependent Model using Facial 

Action Units 

This study (Viegas et al., 2018) published in 2018, describes the proposal for a system capable 

of detecting signs of stress based on Facial Action Units of videos collected in a previous study 

(Maxion & Lau, 2018) that aimed to determine the differences between neutral and stressed 

typing. 

2.10.4.1 Data 

Five people participated in the data collection, which resulted in 5 hours of video at 30 fps and 

1920 x 1080 pixels resolution. 

The experimental protocol used to collect the images consisted of 30 minutes of rest, for the 

subject to enter a neutral state, then the subject provided a neutral typing sample. Once 

completed, the subject was submitted to a 15-minute stressor task. After that, he was asked to 

provide a stress typing sample. Image collection ended with a rest period to return to a neutral 

state and provide a final neutral typing sample. 

2.10.4.2 Implementation 

Since the objective of the study was the detection of stress only from facial Action Units, they 

used the OpenFace toolbox (Baltrušaitis et al., 2016) for the extraction of 17 different Action 

Units. 

After analysing the data obtained from the videos, they defined three different classification 

problems. The first, a six-class problem, one for each phase of the experimental protocol. The 

second, a four-class problem, considering all phases of writing to be the same class. And a binary 

classification problem distinguishing between stress phases and non-stress phases. 

Once the classification problems were defined, were used the Random Forest, LDA, Gaussian 

Naïve Bayes and Decision Tree algorithms to implement the classifiers. For the implementation 
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of the classifiers, were taken two approaches, one applying a leave-one-subject-out approach 

to obtain a person independent model and five other classifiers using 5-fold cross-validation to 

obtain a person dependent model for each subject. 

2.10.4.3 Results 

Regardless of the approach, the Random Forest was the best algorithm. For the person 

independent classification, were obtained 41%, 49% and 75% of accuracy for the problems of 

six-classes, four-classes and two-classes respectively. For the person dependent classifiers were 

obtained 83%, 83% and 93%. 

2.10.5 Comparative Analysis 

Of the four cases analysed, all of them needed to create an experimental procedure where 

subjects are stress-induced, and are collected videos. For, as mentioned by Viegas et al., doesn’t 

seem to exist any dataset publicly available with videos of people during stress states. The 

videos can be summarised qualitatively and quantitatively through Table 2. 

Table 2 – Comparative table of videos used in each solution 

 FPS Resolution Number of 
Subjects 

Number of 
videos 

Minutes of 
vídeo 

(Gao et al., 2014) 25 1280 x 1024 21 33 33 

(Maaoui et al., 2015) 30 320 x 240 12 n/a n/a 

(Giannakakis et al., 2016) 50 526 x 696 23 276 333 

(Viegas et al., 2018) 30 1920 x 1080 5 5 300 

 

Except for the last, all used Viola & Jones algorithm (Viola & Jones, 2004, 2001) for face 

detection. Other pre-processing techniques used were 3D Cylindric Head Model for pose 

normalization, Histogram Equalization for contrast enhancement and colour space change from 

RGB to L * u * v * to reduce fluctuations due to light variations. 

About the features used, each followed a different approach. In Gao et al. (2.10.1) collected 

local descriptors with SIFT; In Maaoui et al. (2.10.2) used only the heart activity, extracted with 

rPPG; In Viegas et al. (2.10.4) the facial Action Units was the only feature used, extracted with 

the OpenFace toolbox. The Giannakakis et al. (2.10.3) was the study with the biggest number 

of features, with eye and head movements extracted with AAM, mouth activity with Optical 

Flow and heart rate with rPPG. 

For the detection of stress, all opted to implement a classifier. The different algorithm used was 

SVM, LDA, K-NN, Generalized Likelihood Ratio, Naïve Bayes, AdaBoost, Random Forest and 

Decision Trees. 

Each study had different results with different algorithms; on Table 3 it is presented the best 

accuracy obtained with each solution. 
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Table 3 – Comparative table for the accuracy obtained in each of the studies.1 

 Best Accuracy Used Algorithm 

Gao et al. (2.10.1) 90.50% SVM 

Maaoui et al. (2.10.2) 94.40% SVM 

Giannakakis et al. (2.10.3) 91.68% / 87.72% AdaBoost / K-NN 

Viegas et al. (2.10.4) 93.00% Random Forest 

 
1 In the line Giannakakis et al. the first accuracy refers to the best value for the best of the phases and 
the second is the average accuracy of all phases. 
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3 Solution Design 

The system to be developed will have only one use case. Detect and notify the user that he 

shows signs of stress. 

The program will run in the background, monitoring the user's facial expressions, and when the 

program determines that the user is showing signs of stress, the program will notify the user of 

that fact. 

For the construction of such a system, it was proposed to create four modules, as can be seen 

in Figure 14. 

 

Figure 14 – Overview of the modules composing the stress detection system. 

The operation of the envisioned modules can be described by the following sequence diagram, 

shown in Figure 15. 
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Figure 15 – Sequence diagram of system operation. 

3.1 Image Acquisition Module 

The first module is responsible for the image acquisition through the webcam of the computer. 

This module collects real-time footages of the user's face and periodically extracts a frame to 

send to the next module. It was decided only to collect frames periodically, first so as not to 

overload the processor and second because with an adequate frequency it is still possible to 

capture all the facial expressions represented by the user, even if they are very brief. The 

interval between each extraction will be given by a parameter, that will also determine the 

frequency of the classifications. 

For the implementation of this module, was used the open-source computer vision library, 

OpenCV. 

3.2 Face Detection Module 

Once the frame is collected, it is processed by the OpenCV class, CascadeClassifier, which, using 

a Haar-like feature selection technique, will detect the face and return the coordinates of the 

face in the frame. 
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From these coordinates, the face is cut and resized to 299 by 299 pixels. Then, the image is 

normalized, by dividing the value of all pixels by 255 so that all have values between 0 and 1. 

Similar to the images used to create the classification model. 

3.3 Emotion Classification Module 

The normalized face image is then provided to the classification model that returns a list of 

seven probability scores, one for each emotion. These probability scores indicate the likelihood 

that the image represents the respective facial expression. These values are due to the 

activation function Softmax of the last neural net layer that translates the output into 

probabilities, and the sum of the output will always be 1. 

At the end of this module, the emotion with the highest probability is then selected and given 

as input to the next module, stress assessment. 

3.4 Stress Assessment Module 

Whenever the model makes a classification, it will be recorded by the stress assessment module, 

that in turn will only distinguish between non-stressful or stressful emotions—being the anger, 

disgust and fear the stressful emotions, as documented in section 2.3. 

This record will only take effect within a time window, being the size of that window 

parameterizable. For example, if we define this window as only 30 seconds, the assessment for 

the presence of signs of stress will be made only with the classifications from the last 30 seconds. 

The number of classifications within a 30 seconds window, will be dependent on the parameter 

indicated in the image acquisition module, that will determine the time interval between each 

frame extraction, and consequently each classification. 

The distinction between a non-stressful or a stressful situation will be made based on a 

threshold. This threshold is the last module parameter that will indicate the percentage of 

stressful emotion needed to determine that the user shows signs of stress. For example, if the 

time window is 30 seconds and the threshold is 75%, it means that if in the last 30 seconds 75% 

or more of the classifications are for stressful emotions, then will be determined that the user 

shows signs of stress. 

Once the module determines that the user shows signs of stress, it will be displayed a 

notification alerting for that fact. 

In the Figure 16 can be seen an example of the notification. 
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Figure 16 – Notification that will be displayed to the user in case of signs of stress. 
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4 Experimentation 

For this project, was follow the CRISP-DM methodology, it provides guidelines for data mining 

and machine learning process in general, breaking it down into six phases, as shown in Figure 

1. 

It started with a Bussiness Understanding process where was comprehended what stress was 

and how it relates to facial expressions. After making this association, were collected datasets 

classified with the seven universal facial expressions, and made the necessary changes. Once 

the data was prepared, were constructed and fine-tuned models for classifying facial 

expressions. These models were then evaluated in the various datasets collected, and the best 

was then integrated into the final system. 

4.1 Business and Data Understanding 

As presented in the chapter "Facial Expressions of Stress" (2.3), there is a direct correlation 

between some facial expressions and stressful situations. As presented in the study (Lerner et 

al., 2007), in situations of stress, subjects presented three facial expressions, here called 

stressful emotions or negative emotions — fear, anger, and disgust. 

Given this relationship, there were two possibilities. Address the problem with data classified 

as stress or non-stress (preferable approach), or with data classified in the seven facial 

expressions. Unfortunately, datasets classified directly as stress or non-stress are not easily 

available, and the dataset from (Dinges et al., 2005) was requested but the request was not 

answered. Therefore, was followed the second approach and was requested the KDEF dataset. 

KDEF is a dataset classified into the seven universal emotions, described in more detail in 

section 2.7.1. Although complete and well uniformed, KDEF is a very homogeneous dataset, 

where the subjects are all of the same age group, same race, without any facial modification 

such as glasses or beard, and the images were all captured in a controlled environment. 
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As such, in order to counteract this homogeneity, it was decided to obtain the CK + and the Net 

Images datasets, in order to evaluate the created models with more heterogeneous data. 

With the use of these two datasets, it is expected to obtain a more realistic assessment of the 

models and hopefully closer to the real world. 

4.2 Data Preparation 

Before using any of the three datasets, they went through pre-processing. This pre-processing 

included cropping the images around the face and resizing the result to 299 by 299 pixels. 

As for the evaluation method to be used, was chosen Hold-Out instead of K-Fold due to the 

time and processing capacity required for the latter. Since were going to be tested three pre-

trained neural networks and for each of them it would be necessary to fine-tune 

hyperparameters and change the number of layers to be trained, given the equipment and time 

available, it was decided to use Hold-Out. 

NetImages and CK + remained in a single set. However, the KDEF that was used to train the 

models had to be partitioned into three sets, since was used the hold-out method. It was 

divided into 80% for training data, 10% for validation data and the remaining 10% for test data. 

For the partitioning of the KDEF dataset, was taken into account what was presented in the 

work (Viegas et al., 2018), where neural networks showed an ability to adapt to people's faces, 

or even to the way they express their emotions. Therefore, for the separation of this dataset in 

training, validation and test data, subjects were always taken into account. That is, the divisions 

were made in such a way that images of a specific person only existed in one of the sets. 

Since the subjects are catalogued with codes, they were randomly selected for one of the 

subsets. In this way, when the model is tested with data never seen before, it will be evaluated, 

not only with different images but with different persons. 

Another aspect taken into account during the data preparation process, was the size of the 

KDEF dataset. There is not a large amount of data, so, during the training process was also 

applied data augmentation to the training images. 

This data augmentation consisted of: 

• Rotations up to 20 degrees; 

• 10% and 15% translations for width and height, respectively; 

• Brightness changes between 0.2 and 1 (where 0 would mean a wholly darkened image, 

1 the original image's brightness, and values greater than 1 extra brightness until the image 

turns white.); 

• Zoom-out up to 10% and zoom-in up to 20%; 
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• Horizontal flips. 

In the data augmentation process, no modifications were made to the images in the validation 

or test set, as suggested by F. Chollet in his book (Chollet & Allaire, 2018c). 

4.3 Modelling 

The first step taken in creating the models was the definition of classifiers architecture. Were 

tried two different approaches, one classifier based on a global average pooling layer and a 

second with a convolution layer. The two architectures can be seen in Figure 17. 

 

Figure 17 – Classifier architecture of the two tried approaches. 

For the Global Average Pooling approach, was used only a GAP layer together with a fully 

connected layer with seven neurons and softmax as the activation function. Since this layer only 

returns the average of all pixels for each of the filters, there are no hyperparameters to define. 

The second approach is made up of the convolution layer, followed by a flatten layer, that 

reshapes all the filters in a single array of one dimension, a 50% dropout to reduce overfitting 

along with two fully connected layers. The activation function ReLU composes the first fully 

connected layer and the last, which serves as the output layer, uses a Softmax function with 

seven neurons. For this approach, there are a set of hyperparameters that need to be selected. 

Therefore, were trained a set of different classifiers in order to select the most suitable values. 
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Essentially, we tried to determine the best value for the number of filters in the convolution 

layer and the number of neurons for the penultimate densely connected layer. 

Giving four different configurations: 

• Configuration A: 64 filters with 256 neurons; 

• Configuration B: 64 filters with 512 neurons; 

• Configuration C: 128 filters with 256 neurons; 

• Configuration D: 128 filters with 512 neurons; 

In order to understand the best configuration for each of the pre-trained networks, were tested 

the four configurations with each one of them. 

For the training of these classifiers, it was necessary to select an optimizer. Initially, was tried 

the optimizer Adam, however, sporadically, he lost what he had learned so far and dropped to 

high loss values. Therefore, it was decided to use the Mini-batch Gradient Descent, which 

corresponds to Keras' SGD, with a momentum of 0.9 and Nesterov Accelerated Gradient active. 

Below are the graphs with the validation accuracy of each model for each configuration. 

 

Figure 18 – Validation accuracy of the VGG16 for each of the configurations. 
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Figure 19 – Validation accuracy of the VGG19 for each of the configurations. 

 

 

Figure 20 – Validation accuracy of the Inception-ResNet V2 for each of the configurations. 

As can be seen, for VGG networks, the configurations with more filters were those that 

presented the highest performance, being the opposite for the Inception ResNet V2, where the 

configurations with 64 filters, although small, showed some advantage. 

The number of neurons does not appear to be such a significant factor for performance, with 

only variations in the order of 3%. 

Given the results obtained, were then selected the configurations with the best validation 

accuracy for the fine-tuning process of the final models. 
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The settings to be used for each of the pre-trained networks will be the following ones: 

Table 4 – Selected configurations for each of the pre-trained networks. 

Pre-trained network Configuration 

VGG16 C 

VGG19 D 

Inception ResNet V2 B 

 

Once the best hyperparameters for the classifiers have been selected, it is then possible to 

proceed to fine-tuning the models that may become part of the final application. 

For the fine-tuning process, it is necessary to determine the number of layers of each pre-

trained network to train. To support this decision were taken into account the architecture of 

the pre-trained networks and the approaches described in fine-tuning section (2.5.9). 

The first factor to consider was the similarity between the source domain, ILSVRC, and the 

target domain, KDEF. Although the ILSVRC presents images for more than 1000 different classes, 

none of them refers to people or their facial expressions. Therefore, it will be necessary to 

consider the two domains as non similar, justifying the use of fine-tuning. 

Regarding the size of the target domain's dataset, we will have to consider KDEF as a reduced 

dataset, so it is necessary to fine-tune the majority of the pre-trained network's layers. 

Since both networks are structured in blocks, the division of the layers to train followed that 

structure. For the VGG, were enabled the last three convolution blocks, conv5, conv4, and 

conv3. For the Inception-ResNet V2, were enabled the Inception-resnet-C, Reduction-B, and 

Inception-resnet-B. 

Once the number of layers to apply fine-tuning was determined, the networks were trained 

with the best configurations of the convolution layer approach and for the approach with global 

average pooling layer. 

4.4 Evaluation 

After having trained and tuned the models for the best possible result in the validation data, it 

is then necessary to assess their performance. For this, will be used the test data from the KDEF 

dataset, as well as the CK + and NetImages. 

Ideally, it is pursued the model that presents the best result in both three sets. However, if none 

of the models has that clear advantage, will be selected the one with the higher performances 

summation in the three datasets. 

In this phase, it will be evaluated six models—three models with a classifier with a convolutional 

layer and another three with a GAP layer classifier. 
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In order to abbreviate the names of the models, will be used the following designations: 

• VGG16: Corresponds to the pre-trained network VGG16, with the convolutional layer 

classifier, following the configuration C; 

• VGG19: Corresponds to the pre-trained network VGG19, with the convolutional layer 

classifier, following the configuration D; 

• IRNV2: Corresponds to the pre-trained network Inception-ResNet V2, with the 

convolutional layer classifier, following the configuration B; 

• VGG16 GAP: Corresponds to the pre-trained network VGG16, with the global average 

pooling layer classifier; 

• VGG19 GAP: Corresponds to the pre-trained network VGG19, with the global average 

pooling layer classifier; 

• IRNV2 GAP: Corresponds to the pre-trained network Inception-ResNet V2, with the 

global average pooling layer classifier; 

4.4.1 Metrics, Indicators and Sources of Information 

To evaluate the performance of these six models created will be used confusion matrices. These 

allow the representation, in a simple but complete manner, of the classifications made by the 

models. Once in possession of this source of information, it is then possible to extract several 

metrics to evaluate the models. The most commonly used metrics are accuracy (2), precision 

(3), recall (4), and F1 score (5). 

However, even though during the training of neural networks, was used accuracy to evaluate 

the models, this was only possible, because they were trained and validated with a balanced 

dataset, KDEF. That is, for each class, there is the same number of instances. However, in this 

evaluation phase of the final models, will be used an unbalanced dataset, the CK +. 

Thus, it is necessary to use an alternative metric, capable of evaluating both the results of 

balanced datasets (KDEF and Net Images), as well as unbalanced (CK +). 

For this, was selected the metric Mathew Correlation Coefficient (MCC) (6), where it is 

recommended in (Chicco & Jurman, 2020; Jurman et al., 2012). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

 
(2) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 
(3) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 
(4) 

 
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 
(5) 
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The MCC returns values between -1 and 1. Where a coefficient of 1 represents a perfect 

prediction, 0 an average random prediction and -1 a perfect inverse prediction. 

4.4.2 Muticlass Evaluation 

The models were created for a multiclass classification, where, except the CK + dataset, any of 

the classes is equally probable. For the evaluation of these models, were generated confusion 

matrices for each combination of the models with the three datasets. However, this makes a 

total of eighteen different confusion matrices. In order to abbreviate the document, for each 

dataset, will be presented a graph with the accuracy and MCC of the six models. All the 

confusion matrices and tables with metrics by facial expression will be present in Appendix A. 

 

Figure 21 – KDEF Test Data multiclass evaluation. 
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𝑀𝐶𝐶 =  

𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

 
(6) 
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Figure 22 – Net Images multiclass evaluation. 

 

Figure 23 – CK+ multiclass evaluation. 

From the data collected, it is now necessary to determine which model performed the best. As 

referred previously, it is pursued the model that presents the best result in both three sets. 

However, that case did not occur. Therefore, it will be calculated the sum of the models MCCs. 

The model that presents the higher value is the one with the best performance across all 

datasets. 
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Table 5 – Calculations for the best model in a multiclass evaluation. 

Models KDEF MCC Net Images MCC CK+ MCC Sum 

VGG16 0.901 0.5469 0.4382 1.8861 

VGG19 0.901 0.486 0.4724 1.8594 

IRNV2 0.9131 0.4982 0.3138 1.7251 

VGG16 GAP 0.8976 0.4417 0.2886 1.6279 

VGG19 GAP 0.9172 0.3879 0.4141 1.7192 

IRNV2 GAP 0.893 0.3981 0.3807 1.6718 

 

As can be seen in Table 5, the VGG16 was the model that showed the higher sum, it can then 

be concluded that this is the best model at classifying facial expressions. 

In order to demonstrate the VGG16 multiclass classification performance in more detail, are 

shown in Figure 24, Figure 25, and Figure 26, the model confusion matrices for each of the 

datasets. Are also presented the Table 6, Table 7, and Table 8, with the metrics, precision, recall, 

and f1 score for each facial expression, together with the weighted average for each of those 

metrics. 

 

Figure 24 – Confusion matrix of the VGG16 model for the KDEF test data. 
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Table 6 – Metrics of the VGG16 model for the KDEF tet data. 

 Precision Recall F1 Score Support 

Anger 0.8667 0.9286 0.8966 42 

Disgust 0.814 0.8333 0.8235 42 

Fear 0.8605 0.8810 0.8706 42 

Happiness 1.0000 1.0000 1.0000 42 

Neutral 0.9545 1.0000 0.9767 42 

Sadness 0.9487 0.8810 0.9136 42 

Surprise 0.9737 0.8810 0.9250 42 

Weighted 
Average 

0.9169 0.9150 0.9151 294 

 

 

Figure 25 – Confusion matrix of the VGG16 model for the Net Images dataset. 

 

Table 7 – Metrics of the VGG16 model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Anger 0.3077 0.8000 0.4444 20 

Disgust 0.6250 0.5000 0.5556 20 

Fear 0.5455 0.6000 0.5714 20 

Happiness 0.9375 0.7500 0.8333 20 

Neutral 0.8000 0.4000 0.5333 20 

Sadness 1.0000 0.4000 0.5714 20 

Surprise 0.8750 0.7000 0.7778 20 

Weighted 
Average 

0.7272 0.5929 0.6125 140 
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Figure 26 – Confusion matrix of the VGG16 model for the CK+ dataset. 

 

Table 8 – Metrics of the VGG16 model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Anger 0.5565 0.4741 0.5120 135 

Disgust 0.3904 0.9661 0.5561 177 

Fear 0.2529 0.2933 0.2716 75 

Happiness 0.9114 0.3478 0.5035 207 

Neutral 0.0000 0.0000 0.0000 0 

Sadness 0.6000 0.2143 0.3158 84 

Surprise 0.8609 0.5221 0.6500 249 

Weighted 
Average 

0.6652 0.5146 0.5184 927 

4.4.3 Binary Evaluation 

However, the performance of this facial expression classification model does not directly 

represent the performance of the final system itself. This is because the final system addresses 

a binary classification problem, distinguishing between non-stressful and stressful emotions. As 

such, we will have to verify how these models perform in distinguishing between these two 

types of emotions. Even there, we will have to take into account that this is an approximation 

to reality with a relationship between facial expressions and stress, and the real performance 

of the final product may vary even more. 

For this binary evaluation, were translated the model classifications into non-stressful and 

stressful and again, were created the confusion matrices. 
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As in the previous section, will be exhibit three graphs with the accuracy and MCC, with the 

addition of the precision, recall and f1 score for the six models. 

All the confusion matrices and tables with metrics by stress and non-stres will be present in 

Appendix B. 

 

 

Figure 27 – KDEF Test Data binary evaluation. 

 

Figure 28 – Net Images binary evaluation. 
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Figure 29 – CK+ binary evaluation. 

Again, no model presented a superior advantage over all the others in the three datasets, so it 

will be necessary to calculate the sum of the models MCCs. 

Table 9 – Calculations for the best model in a binary evaluation. 

Models KDEF MCC Net Images MCC CK+ MCC Sum 

VGG16 0.8969 0.5551 0.4250 1.8770 

VGG19 0.9031 0.4829 0.4896 1.8756 

IRNV2 0.9237 0.3945 0.2973 1.6155 

VGG16 GAP 0.9035 0.3877 0.3548 1.6460 

VGG19 GAP 0.9306 0.3934 0.3960 1.7200 

IRNV2 GAP 0.8892 0.3560 0.4130 1.6582 

 

As can be seen in Table 9, the VGG16 was the model that presented the higher sum for the 

binary classification. However, the difference with the VGG19 is relatively small, and it is 

justified to untie these two models. Since it is intended to detect the maximum possible 

stressful emotions, that is, maximize the True Positives, it is then necessary to look at the recall 

values of VGG16 and VGG19. 

 

Table 10 – Comparison of the VGG16 and VGG19 binary recall. 

Models KDEF recall Net Images recall CK+ recall Sum 

VGG16 0.9603 0.9500 0.9225 2.8328 

VGG19 0,9524 0.8000 0.7545 2.5069 

 

As can be seen in Table 10, the VGG16 model is the one with the highest recall sum in the three 

datasets, and as such, it is the one that maximizes the true positives. 
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Therefore, it can be concluded that the VGG16, with the convolutional layer classifier, is the 

best candidate for the stress detection program. 

In the Figure 30, Figure 31, and Figure 32, are displayed the VGG16's binary confusion matrices 

for each of the datasets, together with the Table 11, Table 12, and Table 13 with the metrics 

precision, recall and f1 score. 

 

Figure 30 – Binary confusion matrix of the VGG16 model for the KDEF test data. 

 

Table 11 – Metrics from the binary classification of the VGG16 model for the KDEF test data. 

 Precision Recall F1 Score Support 

Stress 0.9237 0.9603 0.9416 126 

Not stress 0.9693 0.9405 0.9547 168 

Weighted 
Average 

0.9498 0.9490 0.9491 294 
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Figure 31 – Binary confusion matrix of the VGG16 model for the Net Images dataset. 

 

Table 12 – Metrics from the binary classification of the VGG16 model for the Net Images 

dataset. 

 Precision Recall F1 Score Support 

Stress 0.6333 0.9500 0.7600 60 

Not stress 0.9400 0.5875 0.7231 80 

Weighted 
Average 

0.8086 0.7429 0.7389 140 

 

 

Figure 32 – Binary confusion matrix of the VGG16 model for the CK+ dataset. 
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Table 13 – Metrics from the binary classification of the VGG16 model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Stress 0.5578 0.9225 0.6952 387 

Not stress 0.8955 0.4759 0.6215 540 

Weighted 
Average 

0.7545 0.6624 0.6523 927 
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5 Conclusion 

In this chapter, are presented the conclusions about the project developed, namely the 

objectives achieved, the limitations found and the improvements that can be made in the future. 

5.1 Achieved Goals 

This project aimed to develop a system capable of detecting signs of stress from facial 

expressions. 

The developed solution allows to capture real-time images of the user's face and, using a facial 

expression classifier, assess whether or not the user presents signs of stress. If so, it allows 

notifying the user of this fact. 

Thus having been achieved the main objective of the project. However, the developed system 

has some limitations that can be mitigated with some future works. 

5.2 Limitations 

The work developed was based on some associations and adaptations in order to overcome 

some limitations. 

The main limitations are the lack of a dataset directly classified as stress or non-stress. Due to 

the lack of such dataset, the system was developed based on a relationship between facial 

expressions and stress, in which the frequency of certain facial expressions determines the 

presence of signs of stress. 

Despite this adaptation, the final system was not evaluated systematically for the classification 

of stress signs. It is therefore not possible to determine this capacity with complete certainty. 
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Another limitation was the small size and homogeneity of the dataset used for training the 

models. 

5.3 Future Work 

In the perspective of the document's author, this project has two paths to follow to combat the 

first limitation presented above. Continue with the association between facial expressions and 

stress, and in partnership with experts, experiment inducing volunteers into stressful situations 

and validate if the system correctly classifies those stressful situations. Or, obtain a dataset 

classified as stress or not-stress and develop a new classification model for that new dataset. 

For the second limitation, could be obtained other datasets, more heterogeneous and join with 

the already existing KDEF in order to create a larger dataset with more variation factors so that 

the model generalizes better for the recognition of facial expressions. 

One possible increment to the project would be the migration of the classification module to a 

server, therefore being able to take advantage of centralized processing with graphics cards. In 

this way, the system would have a lesser impact on the users' computer, leaving them only with 

tasks to capture the images and send them to the server to be classified. 

However, this increment would have to consider the possible load of the network with the 

constant sending of images, and the possibility of this feed being intercepted or hijacked and 

thus expose the user's privacy to the internet. 
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Appendix A – Multiclass evaluation 

 

VGG 16 multiclass evaluation 

 

Figure 33 – Multiclass confusion matrix of the VGG16 model for the KDEF test data. 

 

Table 14 – Multiclass metrics of the VGG16 model for the KDEF test data. 

 Precision Recall F1 Score Support 

Anger 0.8667 0.9286 0.8966 42 

Disgust 0.814 0.8333 0.8235 42 

Fear 0.8605 0.8810 0.8706 42 

Happiness 1.0000 1.0000 1.0000 42 

Neutral 0.9545 1.0000 0.9767 42 

Sadness 0.9487 0.8810 0.9136 42 

Surprise 0.9737 0.8810 0.9250 42 

Weighted 
Average 

0.9169 0.9150 0.9151 294 
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Figure 34 – Multiclass confusion matrix of the VGG16 model for the Net Images dataset. 

 

Table 15 – Multiclass metrics of the VGG16 model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Anger 0.3077 0.8000 0.4444 20 

Disgust 0.6250 0.5000 0.5556 20 

Fear 0.5455 0.6000 0.5714 20 

Happiness 0.9375 0.7500 0.8333 20 

Neutral 0.8000 0.4000 0.5333 20 

Sadness 1.0000 0.4000 0.5714 20 

Surprise 0.8750 0.7000 0.7778 20 

Weighted 
Average 

0.7272 0.5929 0.6125 140 
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Figure 35 – Multiclass confusion matrix of the VGG16 model for the CK+ dataset. 

 

Table 16 – Multiclass metrics of the VGG16 model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Anger 0.5565 0.4741 0.5120 135 

Disgust 0.3904 0.9661 0.5561 177 

Fear 0.2529 0.2933 0.2716 75 

Happiness 0.9114 0.3478 0.5035 207 

Neutral 0.0000 0.0000 0.0000 0 

Sadness 0.6000 0.2143 0.3158 84 

Surprise 0.8609 0.5221 0.6500 249 

Weighted 
Average 

0.6652 0.5146 0.5184 927 
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VGG 19 multiclass evaluation 

 

Figure 36 – Multiclass confusion matrix of the VGG19 model for the KDEF test data. 

 

Table 17 – Multiclass metrics of the VGG19 model for the KDEF test data. 

 Precision Recall F1 Score Support 

Anger 0.8864 0.9286 0.9070 42 

Disgust 0.8500 0.8095 0.8293 42 

Fear 0.8636 0.9048 0.8837 42 

Happiness 1.0000 1.0000 1.0000 42 

Neutral 0.9756 0.9524 0.9639 42 

Sadness 0.8444 0.9048 0.8736 42 

Surprise 1.0000 0.9048 0.9500 42 

Weighted 
Average 

0.9172 0.9150 0.9153 294 
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Figure 37 – Multiclass confusion matrix of the VGG19 model for the Net Images dataset. 

 

Table 18 – Multiclass metrics of the VGG19 model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Anger 0.3488 0.7500 0.4762 20 

Disgust 0.8889 0.4000 0.5517 20 

Fear 0.5238 0.5500 0.5366 20 

Happiness 0.6842 0.6500 0.6667 20 

Neutral 0.6364 0.3500 0.4516 20 

Sadness 0.6250 0.5000 0.5556 20 

Surprise 0.6190 0.6500 0.6341 20 

Weighted 
Average 

0.6180 0.5500 0.5532 140 
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Figure 38 – Multiclass confusion matrix of the VGG19 model for the CK+ dataset. 

 

Table 19 – Multiclass metrics of the VGG19 model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Anger 0.4138 0.5333 0.4660 135 

Disgust 0.7059 0.5424 0.6134 177 

Fear 0.1721 0.2800 0.2132 75 

Happiness 0.8905 0.8647 0.8775 207 

Neutral 0.0000 0.0000 0.0000 0 

Sadness 0.5106 0.5714 0.5393 84 

Surprise 0.8866 0.3454 0.4971 249 

Weighted 
Average 

0.6922 0.5415 0.5806 927 
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Inception-ResNet V2 multiclass evaluation 

 

Figure 39 – Multiclass confusion matrix of the Inception-ResNet V2 model for the KDEF test data. 

 

Table 20 – Multiclass metrics of the Inception-ResNet V2 model for the KDEF test data. 

 Precision Recall F1 Score Support 

Anger 0.8333 0.9524 0.8889 42 

Disgust 0.8780 0.8571 0.8675 42 

Fear 0.9211 0.8333 0.8750 42 

Happiness 1.0000 0.9762 0.9880 42 

Neutral 1.0000 0.9762 0.9880 42 

Sadness 0.8636 0.9048 0.8837 42 

Surprise 1.0000 0.9762 0.9880 42 

Weighted 
Average 

0.9280 0.9252 0.9256 294 
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Figure 40 – Multiclass confusion matrix of the Inception-ResNet V2 model for the Net Images 

dataset. 

 

Table 21 – Multiclass metrics of the Inception-ResNet V2 model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Anger 0.4444 0.6000 0.5106 20 

Disgust 0.4242 0.7000 0.5283 20 

Fear 0.5652 0.6500 0.6047 20 

Happiness 0.9000 0.4500 0.6000 20 

Neutral 0.8000 0.4000 0.5333 20 

Sadness 0.4500 0.4500 0.4500 20 

Surprise 0.8235 0.7000 0.7568 20 

Weighted 
Average 

0.6296 0.5643 0.5691 140 
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Figure 41 – Multiclass confusion matrix of the Inception-ResNet V2 model for the CK+ dataset. 

 

Table 22 – Multiclass metrics of the Inception-ResNet V2 model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Anger 0.5152 0.1259 0.2024 135 

Disgust 0.3333 0.9661 0.4957 177 

Fear 0.1504 0.4533 0.2259 75 

Happiness 1.0000 0.0242 0.0472 207 

Neutral 0.0000 0.0000 0.0000 0 

Sadness 0.5789 0.2619 0.3607 84 

Surprise 0.9911 0.4458 0.6150 249 

Weighted 
Average 

0.6928 0.3884 0.3508 927 

 

 

  



74 
 

VGG16 GAP multiclass evaluation 

 

Figure 42 – Multiclass confusion matrix of the VGG16 GAP model for the KDEF test data. 

 

Table 23 – Multiclass metrics of the VGG16 GAP model for the KDEF test data. 

 Precision Recall F1 Score Support 

Anger 0.7843 0.9524 0.8602 42 

Disgust 0.8462 0.7857 0.8148 42 

Fear 0.9000 0.8571 0.8780 42 

Happiness 1.0000 1.0000 1.0000 42 

Neutral 0.9767 1.0000 0.9882 42 

Sadness 0.9167 0.7857 0.8462 42 

Surprise 0.9767 1.0000 0.9882 42 

Weighted 
Average 

0.9144 0.9116 0.9108 294 
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Figure 43 – Multiclass confusion matrix of the VGG16 GAP model for the Net Images dataset. 

 

Table 24 – Multiclass metrics of the VGG16 GAP model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Anger 0.3158 0.6000 0.4138 20 

Disgust 0.3333 0.3000 0.3158 20 

Fear 0.5385 0.3500 0.4242 20 

Happiness 0.6800 0.8500 0.7556 20 

Neutral 0.8125 0.6500 0.7222 20 

Sadness 0.5000 0.1500 0.2308 20 

Surprise 0.5833 0.7000 0.6364 20 

Weighted 
Average 

0.5376 0.5143 0.4998 140 
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Figure 44 – Multiclass confusion matrix of the VGG16 GAP model for the CK+ dataset. 

 

Table 25 – Multiclass metrics of the VGG16 GAP model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Anger 0.3277 0.5704 0.4162 135 

Disgust 0.4891 0.7627 0.5960 177 

Fear 0.0000 0.0000 0.0000 75 

Happiness 0.6105 0.2802 0.3841 207 

Neutral 0.0000 0.0000 0.0000 0 

Sadness 0.3125 0.2381 0.2703 84 

Surprise 1.0000 0.1968 0.3289 249 

Weighted 
Average 

0.5744 0.3657 0.3730 927 
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VGG19 GAP multiclass evaluation 

 

Figure 45 – Multiclass confusion matrix of the VGG19 GAP model for the KDEF test data. 

 

Table 26 – Multiclass metrics of the VGG19 GAP model for the KDEF test data. 

 Precision Recall F1 Score Support 

Anger 0.8333 0.9524 0.8889 42 

Disgust 0.9429 0.7857 0.8571 42 

Fear 0.8605 0.8810 0.8706 42 

Happiness 1.0000 1.0000 1.0000 42 

Neutral 0.9545 1.0000 0.9767 42 

Sadness 0.9268 0.9048 0.9157 42 

Surprise 1.0000 0.9762 0.9880 42 

Weighted 
Average 

0.9311 0.9286 0.9281 294 
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Figure 46 – Multiclass confusion matrix of the VGG19 GAP model for the Net Images dataset. 

 

Table 27 – Multiclass metrics of the VGG19 GAP model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Anger 0.3000 0.6000 0.4000 20 

Disgust 0.3462 0.4500 0.3913 20 

Fear 0.4800 0.6000 0.5333 20 

Happiness 0.7368 0.7000 0.7179 20 

Neutral 1.0000 0.1000 0.1818 20 

Sadness 1.0000 0.1500 0.2609 20 

Surprise 0.5200 0.6500 0.5778 20 

Weighted 
Average 

0.6261 0.4643 0.4376 140 
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Figure 47 – Multiclass confusion matrix of the VGG19 GAP model for the CK+ dataset. 

 

Table 28 – Multiclass metrics of the VGG19 GAP model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Anger 0.3425 0.5556 0.4237 135 

Disgust 0.4565 0.7119 0.5563 177 

Fear 0.2892 0.3200 0.3038 75 

Happiness 0.7154 0.4251 0.5333 207 

Neutral 0.0000 0.0000 0.0000 0 

Sadness 0.6452 0.2381 0.3478 84 

Surprise 0.9379 0.5462 0.6904 249 

Weighted 
Average 

0.6306 0.5059 0.5286 927 
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Inception-ResNet V2 GAP multi class evaluation 

 

Figure 48 – Multiclass confusion matrix of the Inception-ResNet V2 GAP model for the KDEF 

test data. 

 

Table 29 – Multiclass metrics of the Inception-ResNet V2 GAP model for the KDEF test data. 

 Precision Recall F1 Score Support 

Anger 0.8636 0.9048 0.8837 42 

Disgust 0.8333 0.8333 0.8333 42 

Fear 0.8571 0.8571 0.8571 42 

Happiness 1.0000 1.0000 1.0000 42 

Neutral 0.9545 1.0000 0.9767 42 

Sadness 0.8462 0.7857 0.8148 42 

Surprise 1.0000 0.9762 0.9880 42 

Weighted 
Average 

0.9078 0.9082 0.9077 294 
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Figure 49 – Multiclass confusion matrix of the Inception-ResNet V2 GAP model for the Net 

Images dataset. 

 

Table 30 – Multiclass metrics of the Inception-ResNet V2 GAP model for the Net Images 

dataset. 

 Precision Recall F1 Score Support 

Anger 0.4000 0.5000 0.4444 20 

Disgust 0.3636 0.8000 0.5000 20 

Fear 0.3226 0.5000 0.3922 20 

Happiness 0.7222 0.6500 0.6842 20 

Neutral 0.7500 0.1500 0.2500 20 

Sadness 0.8889 0.4000 0.5517 20 

Surprise 0.6667 0.3000 0.4138 20 

Weighted 
Average 

0.5877 0.4714 0.4623 140 
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Figure 50 – Multiclass confusion matrix of the Inception-ResNet V2 GAP model for the CK+ 

dataset. 

 

Table 31 – Multiclass metrics of the Inception-ResNet V2 GAP model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Anger 0.8750 0.0519 0.0979 135 

Disgust 0.3755 0.9718 0.5417 177 

Fear 0.2045 0.7200 0.3186 75 

Happiness 0.0000 0.0000 0.0000 207 

Neutral 0.0000 0.0000 0.0000 0 

Sadness 0.5625 0.1071 0.1800 84 

Surprise 0.9392 0.6827 0.7907 249 

Weighted 
Average 

0.5189 0.4444 0.3722 927 
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Appendix B – Binary evaluation 

 

VGG16 binary evaluation 

 

Figure 51 – Binary confusion matrix of the VGG16 model for the KDEF test data. 

 

Table 32 – Binary metrics of the VGG16 model for the KDEF test data. 

 Precision Recall F1 Score Support 

Stress 0.9237 0.9603 0.9416 126 

Not stress 0.9693 0.9405 0.9547 168 

Weighted 
Average 

0.9498 0.9490 0.9491 294 
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Figure 52 – Binary confusion matrix of the VGG16 model for the Net Images dataset. 

 

Table 33 – Binary metrics of the VGG16 model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Stress 0.6333 0.9500 0.7600 60 

Not stress 0.9400 0.5875 0.7231 80 

Weighted 
Average 

0.8086 0.7429 0.7389 140 
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Figure 53 – Binary confusion matrix of the VGG16 model for the CK+ dataset. 

 

Table 34 – Binary metrics of the VGG16 model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Stress 0.5578 0.9225 0.6952 387 

Not stress 0.8955 0.4759 0.6215 540 

Weighted 
Average 

0.7545 0.6624 0.6523 927 
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VGG19 binary evaluation 

 

Figure 54 – Binary confusion matrix of the VGG19 model for the KDEF test data. 

 

Table 35 – Binary metrics of the VGG19 model for the KDEF test data. 

 Precision Recall F1 Score Support 

Stress 0.9375 0.9524 0.9449 126 

Not stress 0.9639 0.9524 0.9581 168 

Weighted 
Average 

0.9526 0.9524 0.9524 294 
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Figure 55 – Binary confusion matrix of the VGG19 model for the Net Images dataset. 

 

Table 36 – Binary metrics of the VGG19 model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Stress 0.6575 0.8000 0.7218 60 

Not stress 0.8209 0.6875 0.7483 80 

Weighted 
Average 

0.7509 0.7357 0.7369 140 

 

 

 



88 
 

 

Figure 56 – Binary confusion matrix of the VGG19 model for the CK+ dataset. 

 

Table 37 – Binary metrics of the VGG19 model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Stress 0.6759 0.7545 0.7131 387 

Not stress 0.8081 0.7407 0.7729 540 

Weighted 
Average 

0.7529 0.7465 0.7479 927 
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Inception-ResNetV2 binary evaluation 

 

Figure 57 – Binary confusion matrix of the Inception-ResNet V2 model for the KDEF test data. 

 

Table 38 – Binary metrics of the Inception-ResNet V2 model for the KDEF test data. 

 Precision Recall F1 Score Support 

Stress 0.9528 0.9603 0.9565 126 

Not stress 0.9701 0.9643 0.9672 168 

Weighted 
Average 

0.9626 0.9626 0.9626 294 
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Figure 58 – Binary confusion matrix of the Inception-ResNet V2 model for the Net Images 

dataset. 

 

Table 39 – Binary metrics of the Inception-ResNet V2 model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Stress 0.5904 0.8167 0.6853 60 

Not stress 0.8070 0.5750 0.6715 80 

Weighted 
Average 

0.7142 0.6786 0.6774 140 
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Figure 59 – Binary confusion matrix of the Inception-ResNet V2 model for the CK+ dataset. 

 

Table 40 – Binary metrics of the Inception-ResNet V2 model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Stress 0.4832 0.9638 0.6437 387 

Not stress 0.9103 0.2625 0.4075 540 

Weighted 
Average 

0.7321 0.5550 0.5060 927 
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VGG16 GAP binary evaluation 

 

Figure 60 – Binary confusion matrix of the VGG16 GAP model for the KDEF test data. 

 

Table 41 – Binary metrics of the VGG16 GAP model for the KDEF test data. 

 Precision Recall F1 Score Support 

Stress 0.9308 0.9603 0.9453 126 

Not stress 0.9695 0.9464 0.9578 168 

Weighted 
Average 

0.9529 0.9524 0.9525 294 
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Figure 61 – Binary confusion matrix of the VGG16 GAP model for the Net Images dataset. 

 

Table 42 – Binary metrics of the VGG16 GAP model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Stress 0.6232 0.7167 0.6667 60 

Not stress 0.7606 0.6750 0.7152 80 

Weighted 
Average 

0.7017 0.6929 0.6944 140 
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Figure 62 – Binary confusion matrix of the VGG16 GAP model for the CK+ dataset. 

 

Table 43 – Binary metrics of the VGG16 GAP model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Stress 0.5753 0.7597 0.6548 387 

Not stress 0.7764 0.5981 0.6757 540 

Weighted 
Average 

0.6925 0.6656 0.6670 927 
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VGG19 GAP binary evaluation 

 

Figure 63 – Binary confusion matrix of the VGG19 GAP model for the KDEF test data. 

 

Table 44 – Binary metrics of the VGG19 GAP model for the KDEF test data. 

 Precision Recall F1 Score Support 

Stress 0.9603 0.9603 0.9603 126 

Not stress 0.9702 0.9702 0.9702 168 

Weighted 
Average 

0.9660 0.9660 0.9660 294 
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Figure 64 – Binary confusion matrix of the VGG19 GAP model for the Net Images dataset. 

 

Table 45 – Binary metrics of the VGG19 GAP model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Stress 0.5714 0.8667 0.6887 60 

Not stress 0.8367 0.5125 0.6357 80 

Weighted 
Average 

0.7230 0.6643 0.6584 140 
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Figure 65 – Binary confusion matrix of the VGG19 GAP model for the CK+ dataset. 

 

Table 46 – Binary metrics of the VGG19 GAP model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Stress 0.5692 0.8501 0.6819 387 

Not stress 0.8338 0.5389 0.6547 540 

Weighted 
Average 

0.7233 0.6688 0.6660 927 
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Inception-ResNet V2 GAP binary evaluation 

 

Figure 66 – Binary confusion matrix of the Inception-ResNet V2 GAP model for the KDEF test 

data. 

 

Table 47 – Binary metrics of the Inception-ResNet V2 GAP model for the KDEF test data. 

 Precision Recall F1 Score Support 

Stress 0.9297 0.9444 0.9370 126 

Not stress 0.9578 0.9464 0.9521 168 

Weighted 
Average 

0.9458 0.9456 0.9456 294 
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Figure 67 – Binary confusion matrix of the Inception-ResNet V2 GAP model for the Net Images 

dataset. 

 

Table 48 – Binary metrics of the Inception-ResNet V2 GAP model for the Net Images dataset. 

 Precision Recall F1 Score Support 

Stress 0.5400 0.9000 0.6750 60 

Not stress 0.8500 0.4250 0.5667 80 

Weighted 
Average 

0.7171 0.6286 0.6131 140 

 

 

 



100 
 

 

Figure 68 – Binary confusion matrix of the Inception-ResNet V2 GAP model for the CK+ dataset. 

 

Table 49 – Binary metrics of the Inception-ResNet V2 GAP model for the CK+ dataset. 

 Precision Recall F1 Score Support 

Stress 0.5233 0.9871 0.6840 387 

Not stress 0.9747 0.3567 0.5223 540 

Weighted 
Average 

0.7865 0.6196 0.5897 927 

 

 

 

 


