
 

 

Fair remuneration of energy consumption flexibility 

using Shapley value 

Abstract. This paper proposes a new methodology for fair remuneration of con-

sumers participation in demand response events. With the increasing penetration 

of renewable energy sources with a high variability; the flexibility from the con-

sumers’ side becomes a crucial asset in power and energy systems. However, 

determining how to effectively remunerate consumers flexibility in a fair way is 

a challenging task. Current models tend to apply over-simplistic and non-realistic 

approaches which do not incentivize the participation of the required players. 

This paper proposes a novel methodology to remunerate consumers flexibility, 

in a fair way. The proposed model considers different aggregators, which manage 

the demand response requests within their coalition. After player provide their 

flexibility, the remuneration is calculated based on the flexibility amount pro-

vided by the players, the previous participation in demand response programs, 

the localization of the players, the type of consumer, the effort put in the provided 

flexibility amount, and the contribution to the stability of the coalition structure 

using the Shapley value. Results show that by assigning different weights to the 

distinct factors that compose the calculation formulation, players remuneration 

can be adapted to the needs and goals of both the players and the aggregators. 

Keywords: Demand Response, Fairness, Payoff allocation, Remuneration, 

Shapley Value. 

1 Introduction  

The increasing penetration of renewable energy sources is leading to major changes in 

power and energy systems all around the world [8]. The importance of consumers is 

increasing in this context, as they provide the potential to balance the variation of re-

newable-based generation through consumption flexibility.  

Consumption flexibility may come from multiple sources, such as industry consum-

ers, residential buildings, storage units, or electrical vehicles [18]. The different types 

of consumers or prosumers enable the system to reach consumption flexibility with 

different characteristics, e.g. in amount, location, duration and activation time; which 

makes the flexibility from different sources worth differently depending on the system 

needs.   

The consumption flexibility may be activated by different means, usually associated 

to demand response programs or events [13]. Although some changes in current elec-

tricity market models are already taking place, market models are still not able to ac-

commodate small-sized energy resources, and therefore, small consumers can only par-

ticipate in flexibility transactions through aggregators, which guarantee the minimum 

volume to enable the market participation.  
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While these aggregators are able to negotiate energy and/or flexibility, how they 

should distribute their incomes in order to effectively and fairly remunerate the con-

sumers that are providing the flexibility is a challenging task. Although some studies 

are being made (e.g. [2]), the definition of remuneration models for the participation in 

demand response programs is not sufficiently explored, and solutions are yet not ade-

quate.  

Lessons in this field can be learnt from artificial intelligence applications which have 

solved similar problems. An example is in [1] with the application of the Shapley value 

to divide the profit of a marketers group among them in the scope of a cooperation 

model among agents in the electricity market. The Shapley value defines how important 

is each player to the overall cooperation, and what payoff can the player reasonably 

expect. the optimal cost-sharing rule that optimizes the price of anarchy, followed by 

the price of stability, is precisely the Shapley value cost-sharing rule. See [6] for a sur-

vey of the subject. 

The Shapley value determines a payoff for each player based on the player's contri-

bution to the stability of the coalition structure; e.g. in what amount is the player re-

sponsible for determining the coalition structure. This, however, does not directly rep-

resent the payoff in terms of utility that each player should get as outcome of the game. 

Considering the specific setup of the problem considered in this work, players payoff 

is received in the form of a remuneratory monetary compensation for the sale of their 

consumption flexibility. This is a direct result of players available amount of flexibility, 

among other considered parameters. Hence, the Shapley value cannot be used as a di-

rect representation of the players payoff, but it can be considered as an influential factor 

in the payoff calculation, as means of rewarding players for their contribution to the 

stability of the coalitions structure. In this way, this paper proposes a remuneration def-

inition methodology that distributes the total amount of revenue that the players are 

entitled to as a whole, among the involved players. This remuneration calculation for-

mulation considers the monetary component that each player should receive from the 

sale of the flexibility amount, but also several other components that contribute to the 

quality of the provided service. In specific, the remuneration calculation considers: the 

flexibility amount, the previous participation in demand response programs, the locali-

zation of the player, the type of consumer (residential, industrial, etc.), the effort put in 

the provided flexibility amount, and the contribution to the stability of the coalition 

structure (Shapley value). Using the proposed remuneration calculation methodology, 

it is possible to remunerate the players involved in demand response events in a fair 

way, enabling the payment for their amount of provided flexibility, but also incentiviz-

ing important aspects for the system, such as the relevant type of consumer, the location 

in the network of the provided flexibility and the effort of the players, as well as their 

intrinsic contribution for the stability of the coalitions, which is essential for aggrega-

tors and operators to be able to define adequate programs directed to the specific groups. 

After this introductory section, section 2 presents a discussion on the relevant work 

related to the present paper. Section 3 provides the formulation and description of the 

proposed methodology and section 4 presents the results achieved from the application 

of the proposed model. Finally, section 5 wraps up the paper with the main conclusions 

from the presented work. 
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2 Related work 

Developments in game theoretic models have potentiated their application to several 

research fields, including power and energy systems, see e.g. [17] for an overview on 

game theoretic methods in this domain. Worth highlighting is the work presented in 

[12], in which a game-theoretical model for energy scheduling of demand side re-

sources is proposed. [3] presents an energy management model based on game theoretic 

assumptions, in [9] the optimization of the distribution system planning is performed 

using game theory, and in [15] a game theory-based strategy for electricity market par-

ticipation is proposed. Several electricity market-driven simulation systems based on 

game theory concepts have also been introduced; e.g. [19] introduces a simulation sys-

tem for energy storage devices management and operation. This problem is defined as 

a multi-player game, and Nash equilibrium is used to minimize the energy cost by re-

ducing the peak demand. The Short–medium Run Electricity Market Simulator 

(SREMS) [11] is game theory-based and is able to support scenario analysis in the 

short-medium term and to evaluate market power. 

One relevant, and often disregarded, aspect in this domain is the formation of coali-

tions between agents, so that they may improve their negotiation power and even for 

small players to gain access to market opportunities that are only accessible to large 

players. A recent and relevant review in coalition structure formation is provided in 

[16].  

Consumer and demand response aggregation models in power and energy systems 

are typically based on clustering approaches. E.g. in [14] consumers are aggregated 

using an optimization-based clustering approach, as facilitator to their participation in 

electricity markets. The model proposed in [2] aggregates consumers demand response 

participation using hierarchical clustering and fuzzy C-means. Several remuneration 

schemes are also experimented by combining different groups of players and their min-

imum, average and maximum prices. 

Remuneration models are also addressed in [4], which studies current remuneration 

models in electricity markets and demonstrated the need to extend the current electricity 

market design by additional remuneration mechanisms to reach imposed quotas of re-

newable generation and provide investment incentives for new firm capacity. The work 

presented in [21] considers the sensitivity of users to electricity prices to establish real-

time pricing models considering price-based demand response measures by formulating 

a real-time pricing sale scheme. On the other hand, [7] proposes two formulations of a 

game-theoretic market equilibrium models for capacity markets with distinctive fea-

tures. Moreover, the equilibrium models explicitly combine the capacity markets with 

markets for flexibility and indirect with remuneration for renewable energy sources. 

A game-theoretical model is also applied in [1] to define a cooperation model among 

agents in the electricity market. The Shapley value is used to divide the profit of the 

marketers group among them. The Shapley value is also used in [10] to support the 

decision-making process of a peer-to-peer trading mechanism. The proposed game the-

oretic approach delivers distributed energy management solutions for individuals in the 

trading process considering both optimality and fairness among prosumers when trad-

ing energy among each other. In [20] the Shapley value helps to quantify the marginal 
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contribution of each aggregator when dealing with incentives to electricity users to re-

duce demand in contingency situations.  

The existing applications of the Shapley value in power and energy related problems 

suggest that this value may be suitable to address the problem discussed in this work. 

The calculation of the individual remuneration of consumers when participating in de-

mand response events, through the distribution of the total revenue of the corresponding 

aggregator is presented in the following section. 

3 Proposed Methodology  

This section presents the proposed methodology for fair remuneration of flexibility 

provision, including the formulation used in this work. Fig. 1. presents the overview of 

the set up considered by the proposed work.  

 

Fig. 1. Flexibility procurement scheme by DSO 

As presented by Fig. 1, in cases of need from the system standpoint (e.g. contingency 

situations), the Distributed System Operator (DSO) requests consumption flexibility to 

one or several flexibility aggregators. The DSO will use this flexibility to solve issues 

in the distribution network, such as congestion management. This type of arrangement 

is proposed in a business model [5] of Dominoes project 1. Each flexibility aggregator 

has a number of customers, which may be consumers or prosumers, and uses the flexi-

bility from these customers in order to meet the requests from the DSO. After the cos-

tumers provide their flexibility, the DSO remunerates the aggregators for the provided 

flexibility, and the aggregators must share this income with the customers, in order to 

remunerate them for their services. Hence, Let N be a finite, non-empty set of customers 

{1, . . . , n}. Any subset C of N is called a coalition and is managed by an aggregator. 

The grand coalition is the set N of all players. A coalition structure over N is a collec-

tion of non-empty subsets CS = {C1, . . . , Ck} such that 

∪𝑗=1
𝑘 𝐶𝑗 = 𝑁 and 

𝐶𝑖 ∩ 𝐶𝑗 = ∅ for any i, j ∈ {1, . . . , k} such that i ≠ j. 

 
1  http://dominoesproject.eu/about/  

http://dominoesproject.eu/about/
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The proposed remuneration definition methodology distributes the total amount of 

revenue among the involved players. This remuneration calculation formulation con-

siders the monetary component that each player should receive from the sale of the 

flexibility amount, but also several other components that contribute to the quality of 

the provided service, namely: the flexibility amount, the previous participation in de-

mand response programs, the localization of the player, the type of consumer (residen-

tial, industrial, etc.), the effort put in the provided flexibility amount, and the contribu-

tion to the stability of the coalition structure (Shapley value). 

In equation (1), the aggregator renumeration is presented. In this case, it is consid-

ered that the DSO makes a request for flexibility to the aggregator. This request includes 

the price and amount of flexibility required by the DSO. 

𝑅𝑎𝑔𝑔 = 𝑃𝑟𝑖𝑐𝑒𝑎𝑔𝑔 × 𝐴𝑎𝑔𝑔 (1) 

where 𝑅𝑎𝑔𝑔 represents the aggregator renumeration in €, 𝑃𝑟𝑖𝑐𝑒𝑎𝑔𝑔 represent the price 

in €/kW that DSO will pay and 𝐴𝑎𝑔𝑔 is the flexibility amount provided by the aggrega-

tor agg.  

As shown by equation (2), for each aggregator, the sum of the amount of flexibility 

𝐴𝑖, in kW, provided by each customer 𝑖 is equal to the total amount of flexibility pro-

vided by the aggregator to the DSO. 

𝐴𝑎𝑔𝑔 =  ∑ 𝐴𝑖

𝑁

𝑖=1

 (2) 

Equation (3) represents the price 𝑃𝑟𝑖𝑐𝑒𝑖 that the aggregator will pay to each of its 

aggregates. The price represents 90% of the price the aggregator receives from the 

DSO, this represents the profit of 10% to the aggregator. 

𝑃𝑟𝑖𝑐𝑒𝑖 = 0,9 × 𝑃𝑟𝑖𝑐𝑒𝑎𝑔𝑔 (3) 

Equation (4) represents 𝑅𝑖
1, which is in the basis remuneration of player 𝑖, and is 

calculated by multiplying the amount of flexibility provided by customer i by the price 

payed by the aggregator to player i.  

𝑅𝑖
1 =  𝑃𝑟𝑖𝑐𝑒𝑖 × 𝐴𝑖 

(4) 

In (5) is defined the proposed remuneration model 𝑅𝑖
2. 

𝑅𝑖
2 =  𝑃𝑟𝑖𝑐𝑒𝑖 × (𝐴𝑖 ×

𝑣𝑖
1

∑ 𝑣1
) (5) 

The term 𝑅𝑖
2 represent the renumeration in € for player 𝑖 and 𝑣𝑖

1 represents a factor 

which influences the remuneration of each player. This factor is calculated from the 

attributes of each player, as explained as follows. The term ∑ 𝑣 correspond to the sum 

of all characteristic function values of all players.  

𝑣𝑖
1 =  ∑ 𝑤𝑗,𝑖

1 × 𝐴𝑡𝑖,𝑗
1

𝑁𝐴

𝑗=1

 (6) 

where 𝑤𝑗,𝑖
1  is the weight of attribute 𝑗 considering player 𝑖, 𝐴𝑡𝑗,𝑖

1  correspond to the value 

for attribute 𝑗 considering player 𝑖 and 𝑁𝐴 correspond to the total number of attributes.  
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𝐴𝑡1 = {𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑡𝑦𝑝𝑒,
𝑐𝑜𝑛𝑓𝑜𝑟𝑡 𝑎𝑓𝑓𝑒𝑐𝑡, 𝑆ℎ𝑎𝑝𝑙𝑒𝑦 𝑣𝑎𝑙𝑢𝑒 } 

(7) 

The 𝑣𝑖
1 factor is calculated considering the attributes of each player that should in-

fluence the remuneration of the players, either by incentivizing certain characteristics 

or penalizing them. The considered attributes are (i) the previous participation in de-

mand response programs, in order to benefit the players that contribute regularly to this 

type of programs, and thus incentivize players participation; (ii) the relevance of the 

location of each player, i.e. if the location of the customer is more or less beneficial to 

the system (if the reduction of consumption in the specific location contributes to ef-

fective power flow); (iii) the relevance of the type of facility, e.g. residential, commer-

cial, industrial; (iv) the effort placed by the customer in the flexibility provision, 

measures by the relative amount of flexibility provides in relation to the total amount 

of consumption of the player, in order to reward players that make bigger efforts (pro-

vide a larger percentage of relative flexibility); and (v) the contrition of the players to 

the stability of the coalitions, measured by the Shapley value.  

Equation (8) represents the preliminary characteristic function of player 𝑖, used to 

calculate the Shapley value, the term 𝑤𝑗,𝑖
2  represent the weight for attributes considering 

all attributes in 𝐴𝑡2 set. 

𝑣𝑖
2 =  ∑ 𝑤𝑗,𝑖

2 × 𝐴𝑡𝑖,𝑗
2

𝑁𝐴

𝑗=1

 (8) 

The 𝑣𝑖
2 factor is obtained considering the attributes of each player, except from the 

Shapley value. I.e. are considered the participation ratio, the location of each player, 

the type of facility and the comfort affect.  

𝐴𝑡2 = {𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑡𝑦𝑝𝑒, 𝑐𝑜𝑛𝑓𝑜𝑟𝑡 𝑎𝑓𝑓𝑒𝑐𝑡} (9) 

where, 𝐴𝑡𝑗,𝑖
2  correspond to the value for attribute 𝑗 considering player 𝑖.   

Equation (10) specifies the range of the attributes. All attributes are ranged in the 

interval [0,1]. The calculation of the relevance of the type of facility is performed ac-

cording to equation (11) 

𝐴𝑡𝑗,𝑖 = {
[0,1], 𝑖𝑓 𝑗 = 1,2,4
𝐷𝑐 , 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑗 = 3

 (10) 

The the relevance of the type of facility is calculated through the diversity DC among 

the players included in the same coalition C, considering their intrinsic characteristics. 

DC is calculated as in equation (11). 

𝐷𝐶 =
1

𝐺
∑ 𝑠𝜎𝑔

𝐶

𝐺

𝑔=1

 (11) 

𝑠𝜎𝑔
𝐶 =

𝜎𝑔
𝐶

(
𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛

2
)
 (12) 
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𝜎𝑔
𝐶 = √

1

𝑇𝐶

∑(𝑔𝑡 − 𝜇𝑔
𝐶)2

𝑇𝐶

𝑡=1

 (13) 

𝜇𝑔
𝐶 =

1

𝑇𝐶

∑ 𝑔𝑡

𝑇𝐶

𝑡=1

 (14) 

where G is the number of components that define the diversity of players in each 

coalition (e.g. volume of flexibility, type of consumer, price). Hence, DC calculates the 

average scaled standard deviation 𝑠𝜎𝑔
𝐶  in coalition C for all characteristics g in a way 

that 𝑠𝜎𝑔
𝐶  ∈ [0, 1]. For each characteristic g, 𝜎𝑔

𝐶considers the values associated to each 

member t of the coalition C. Firstly, the mean value 𝜇𝑔
𝐶 for each characteristic g in the 

coalition C is calculated as in (14); then we reach the mean deviation 𝜎𝑔
𝐶 of each value 

of characteristic g (from each player in coalition C) to the mean, as in (13). The standard 

deviation 𝜎𝑔
𝐶is scaled according to the maximum and minimum values of g, in order to 

get 𝑠𝜎𝑔
𝐶 , as showed in (12). Finally, the average between the 𝑠𝜎𝑔

𝐶  of all characteristics 

is calculated, giving us the value of DC, as in (11). 

The Shapley value is calculated according to equation (15).  It is one way to distrib-

ute the total gains to the players, assuming that they all collaborate. It is a "fair" distri-

bution in the sense that it is the only distribution with certain desirable properties listed 

below.  

𝜑𝑖(𝑣2) = ∑
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
(𝑣2(𝑆 ∪ {𝑖}) − 𝑣2(𝑆))

𝑆⊆𝑁\{𝑖} 
 (15) 

where N is the total number of players and the sum extends over all subsets 𝑆 of 𝑁 not 

containing player 𝑖. The formula can be interpreted as follows: imagine the coalition 

being formed one actor at a time, with each actor demanding their contribution 

𝑣2(𝑆 ∪ {𝑖}) − 𝑣2(𝑆) as a fair compensation, and then for each actor take the average 

of this contribution over the possible different permutations in which the coalition can 

be formed. 

4 Numerical results 

4.1 Specifications 

The setup of this case study is a set of 3 players, which are part of the same coalition. 

The aggregator in charge of managing this coalition receives a request from the DSO 

to provide an amount of flexibility in a certain period in time. Each of the players pro-

vides a specific volume of flexibility, and the aggregator uses the proposed approach to 

calculate the remuneration for each of the players. 

Table 1 shows the attributes characterization for all players. The amount is the flex-

ibility value that the player reports. The participation attribute is obtained from an anal-

ysis in the historical participation. Location value is obtained by the location of each 
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player in the distribution network. In the facility type value are included the character-

istic of each facility. The comfort affect value is related with quantity of load that each 

player is predisposed to cut, taking into account the total load that is consuming. 

Table 1. Attributes characterization for the three considered players  

Players  Amount Participation Location  Facility type Comfort affect   

A 0 0,5 0,5 0,5 0 

B 5 0,9 0,9 0,9 0,9 

C 10 0,3 0,3 0,3 0,3 

From Table 1 one can see that player A does not provide any flexibility. Player B 

and player C provide 5 and 10 kW respectively. Player C has a larger amount to sell, 

but player B has better attributes values. It is expected that the renumeration has into 

account all attributes and thus fairly remunerate player C, but also compensate player 

B for the good attributes. 

Table 2 presents the values of input for equation (6) in term 𝑤𝑗,𝑖
1 . The table considers 

four different scenarios. In each scenario for each player the sum of all attribute weight 

must be equal to 1. With the creation of scenarios, we try to study the influence of 

attributes weight in the final renumeration for each player. In specific, Scenario 1 pro-

vides a large weight to the amount, thus expecting to benefit players that provide larger 

volumes of flexibility regardless of their characteristics; Scenario 2 represents the op-

posite situation, by rewarding the other characteristics over the amount of flexibility; 

Scenario 3 considers a more balanced case; and Scenario 4 defines a higher weight for 

the stability of the coalitions over the remaining attributed. 

Table 2. Weight specification for all attributes  

Sce-

nario 

Play-

ers  

Amount Participa-

tion 

Loca-

tion  

Facility 

type 

Comfort af-

fect   

Shap-

ley  

1 

A 0,75 0,05 0,05 0,05 0,05 0,05 

B 0,75 0,05 0,05 0,05 0,05 0,05 

C 0,75 0,05 0,05 0,05 0,05 0,05 

2 

A 0,06 0,188 0,188 0,188 0,188 0,188 

B 0,06 0,188 0,188 0,188 0,188 0,188 

C 0,06 0,188 0,188 0,188 0,188 0,188 

3 

A 0,3 0,14 0,14 0,14 0,14 0,14 

B 0,3 0,14 0,14 0,14 0,14 0,14 

C 0,3 0,14 0,14 0,14 0,14 0,14 

4 

A 0,1 0,1 0,1 0,1 0,1 0,5 

B 0,1 0,1 0,1 0,1 0,1 0,5 

C 0,1 0,1 0,1 0,1 0,1 0,5 

For this case study, the price that the DSO pays to the aggregator for the flexibility 

is fixed in 0.04 €/kWh. With the application of equation (3) the price for each player is 

0.036 €/kWh. The flexibility request from the DSO to the aggregator is set at 15 kW.  
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4.2 Results  

Table 3 presents the value of the characteristic function for all possible coalitions. 

This function is needed for inputs in the calculation of Shapley value.  

Table 3. Values of characteristic function 

Scenario 𝑣1(𝐴)  𝑣1(𝐵) 𝑣1(𝐶) 𝑣1(𝐴𝐵) 𝑣1(𝐴𝐶)   𝑣1(𝐵𝐶) 𝑣1(𝐴𝐵𝐶) 

1 0 4,18 8,06 4,18 8,06 12,24 12,24 

2 0 1,146 0,882 1,146 0,882 2,028 2,028 

3 0 2,13 3,21 2,13 3,21 5,34 5,34 

4 0 2,13 3,21 2,13 3,21 5,34 5,34 

The values of characteristics function are obtained from application of equation (8). 

The 𝑤𝑗,𝑖
2  are based on values of Table 2 but the weight of Shapley value is removed, and 

the other weight is normalized in a scale of 0 to 1. In Table 4 are present the values of 

Shapley values obtained from the application of equation (15). 

Table 4. Shapley values  

Scenario Players  Shapley value  Relative Shapley value 

1 

A 1,293 0,106 

B 5,473 0,447 

C 5,473 0,447 

2 

A -0,088 0 

B 1,058 0,500 

C 1,058 0,500 

3 

A 0,360 0,067 

B 2,490 0,466 

C 2,490 0,466 

4 

A 0,360 0,067 

B 2,490 0,466 

C 2,490 0,466 

In Table 4 are present the results of Shapley value and relative Shapley value. The 

relative Shapley value is a normalization of Shapley value in [0, 1]. Analyzing Table 4, 

players B and C have, in all scenarios the same Shapley value; meaning that these play-

ers’ contribution to the stability of the coalition process is the same.  

Table 5 presents the values for the different renumerations approach, namely the 

basis remuneration, as in equation (4), in which the amount of flexibility is multiplied 

by the price; the proposed approach without considering the Shapley value, which is 

obtained using equation (5) but the term 𝑣𝑖
1 come from equation (8). The Shapley value 

renumeration is obtained using the relative Shapley value present in Table 4 multiplied 

with the price for flexibility present in equation (3). The proposed approach with Shap-

ley value renumeration is obtained using equation (5) and the values for 𝑣𝑖
1are obtained 

in equation (6). 
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Table 5. Results for the different renumerations approaches  

Scenario Players  Basis 
Proposed approach 

without Shapley value 

Shapley 

value 

Proposed approach 

with Shapley value 

1 

A 0 0 0,057 0 

B 0,180 0,184 0,241 0,185 

C 0,360 0,356 0,241 0,355 

2 

A 0 0 0 0 

B 0,180 0,305 0,270 0,291 

C 0,360 0,235 0,270 0,249 

3 

A 0 0 0,036 0 

B 0,180 0,215 0,252 0,211 

C 0,360 0,325 0,252 0,329 

4 

A 0 0 0,036 0 

B 0,180 0,215 0,252 0,241 

C 0,360 0,325 0,252 0,299 

Fig. 2 presents the values of Table 5 in order to facilitate the interpretation of the 

different forms of renumeration. ~ 

In Fig. 2 are present the four different types of renumeration. The four plots have in 

vertical axes the values of profit and in horizontal axes the different scenarios (1,2,3 

and 4), and for each scenario the respective three players. From Fig 2 a) it is visible that 

the basis remuneration is the same regardless of the scenario, with player C receiving 

twice the payoff of player B, since it provides twice the flexibility amount; and player 

A receiving nothing. Fig 2 b) shows that in Scenario 1, which defines a very large 

weight to the amount of flexibility, results are similar to the basis remuneration, simi-

larly to Fig 2. d). In Scenario 2, which defines a smaller weight for the flexibility 

amount against the other characteristics, player C is benefited, and has even a larger 

remuneration than player B even though it provides a smaller amount of flexibility. In 

Scenario 3, which considers a more balanced weight distribution, the remuneration dis-

tribution is more balanced as well between players B and C, with C being attributed a 

higher remuneration for its larger amount of flexibility, but player B being rewarded by 

its good characteristics. Finally, in Scenario 4, considering the Shapley value with 

larger weight; the remuneration values of both players are more balanced, since their 

Shapley value is the same, hence, since both contribute the same to the stability of the 

coalitions, they end up being more balanced.   

5 Conclusions  

This paper has proposed a methodology to enable a fair renumeration model. The 

proposed renumeration model considers different player attributes, the participation ra-

tio, the location of each player, the type of facility, the comfort affect and the value of 

Shapley. Results show that the remuneration can be defined taking into account the 

attributes of the players and their actual contribution in terms of flexibility amount and 
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stability. It is seen that considering only the Shapley values is not adequate to define a 

fair remuneration model, but considering the Shapley values as part of the remuneration 

model benefits the remuneration process. For future work it is suggested to explore this 

proposed methodology with the interaction between a greater number of players, con-

sidering also the physical limitations that the distribution network may present. 

a) b) 

  
c) d) 

  
Fig. 2. Different renumeration approaches, a) Basis renumeration, b) Proposed approach without 

Shapley value, c) Shapley value renumeration and d) Proposed approach with Shapley value  
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