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Abstract — The evolution of electricity markets towards local 

energy trading models, including peer-to-peer transactions, is 

bringing by multiple challenges for the involved players. In 

particular, small consumers, prosumers and generators, with no 

experience on participating in competitive energy markets, are 

not prepared for facing such an environment. This paper 

addresses this problem by proposing a decision support solution 

for small players negotiations in local transactions. The 

collaborative reinforcement learning concept is applied to 

combine different learning processes and reached an enhanced 

final decision for players actions in bilateral negotiations. The 

reinforcement learning process is based on the application of the 

Q-Learning algorithm; and the continuous combination of the 

different learning results applies and compares several 

collaborative learning algorithms, namely BEST-Q, Average 

(AVE)-Q; Particle Swarm Optimization (PSO)-Q, and Weighted 

Strategy Sharing (WSS)-Q and uses a model to aggregate these 

results. Results show that the collaborative learning process 

enables players’ to correctly identify the negotiation strategy to 

apply in each moment, context and against each opponent.   

Index Terms— Collaborative reinforcement learning, Electricity 

Markets, Energy Contracts, Negotiation Strategies, Q-Learning 

I. INTRODUCTION 

Local electricity markets are quickly evolving into a reality 
[1]. This brings multiple challenges for market players, 
especially small consumers and generators, which are 
unexperienced in active market participation. Hence, reaching 
good agreements is an arduous task. In order to overcome this 
problem, it is necessary to provide players with decision 
support in order to help players applying negotiation strategies 
and tactics; and enable their adaptive behavior depending on the 
contexts and opponents [2]. Multiple alternative negotiation 
strategies can be found in the literature, such as the application 
of game theoretical models [3], assessing risk management [4], 
and using machine learning models to forecast market prices 
and optimize the proposed bids[5]. However, current models 
are not capable of adapting to different market circumstances 
and negotiating contexts, as they are limited to specific market 
scenarios and are not integrated in actual market simulation or 
decision support systems. Thereby current approaches are not 
able to provide market players with the means to change their 

behaviour in a real market environment, and therefore pursuit 
the achievement of the best possible outcomes.  

This paper contributes to overcoming these problems by 
proposing a solution for decision support of market players in 
bilateral energy contracts negotiations. The collaborative 
reinforcement learning concept is used to combine the learning 
process of different negotiation strategies. The diverse learning 
sources are the learning processes of several agents, which learn 
the same problem under different perspectives (using different 
utility or results assessment functions). By combining the 
different independent learning processes, it is possible to gather 
the diverse knowledge and reach a final decision on the most 
suitable negotiation strategy to be applied. The reinforcement 
learning process is based on the application of the Q-Learning 
algorithm [6]; and the continuous combination of the different 
learning results applies and compares several collaborative 
learning algorithms, namely BEST-Q, Average (AVE)-Q; 
Particle Swarm Optimization (PSO)-Q, and Weighted Strategy 
Sharing (WSS)-Q [7]. Additionally a model that uses the 
aggregated results of these algorithms is presented. 

Results show that the collaborative learning process enables 
players’ to correctly identify the best (a-priori identified) 
negotiation strategy to apply in each moment, context and 
against each opponent. Moreover, the different algorithms 
enable the adaptation according to needs of each learning 
process, i.e. faster, yet not so solid, convergence; or slower 
convergence, but with higher guarantees of success. 

The remaining of the paper is organized as follows. Section 
II presents the proposed methodology, section III presents the 
case study that validates the proposed model. Finally, section V 
presents the conclusions of the work. 

II. PROPOSED METHODOLOGY  

The approach proposed in this paper concerns the 
combination of the learning process of different agents through 
collaborative learning. The different agents learn the same 
problem under different perspectives, using different utility or 
results assessment functions, which result from their own 
perspective when analysing the problem and the corresponding 
context. Despite the independent learning processes, all agents 
use Q-Learning as the reinforcement learning algorithm for this 
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problem. The combination of the different learning process is 
then applied through several collaborative learning algorithms, 
namely BEST-Q, AVE-Q; PSO-Q, and WSS-Q [7]. Also, a 
strategy that aggregates the learning process from these 
algorithms is also presented.  

A. Q-Learning 

Q-Learning is a very popular reinforcement learning 
method. It is an algorithm that allows the autonomous 
establishment of an interactive action policy. It is demonstrated 
that the Q-Learning algorithm converges to the optimal 
proceeding when the learning state-action pairs Q is represented 
in a table containing the full information of each pair value [8]. 
The basic concept behind Q-Learning is that the learning 
algorithm is able to learn a function of optimal evaluation over 
the whole space of state-actio- pairs s x a. This evaluation thus 
defines the confidence value Q that each action a can represent 
the state s. The Q function performs the mapping as in (1). 

𝑄: 𝑠 𝑥 𝑎 → 𝑈 (1)  

where U is the expected utility value when selecting action 
a in state s. As long as the state does not omit relevant 
information, nor introduce new information, once the optimal 
function Q is learned, the decision method will know precisely 
which action results on the higher future reward under each 
state. The reward r is attributed to each pair action-state in each 
iteration, representing the quality of this pair, and allows the 
confidence value Q to be updated after each observation. r is 
defined as in (2). 

𝑟𝑎,𝑠,𝑡 =  1 − 𝑛𝑜𝑟𝑚|𝑅𝑃𝑎,𝑠,𝑡,𝑜,𝑝 − 𝐸𝑃𝑎,𝑠,𝑡,𝑜,𝑝| (2)  

where RPa,s,t,o,p represents the real price that has been 
established in a contract with an opponent o, in state s, in time 
t, referring to an amount of power p; and EP a,s,t,o,p is the 
estimation price of scenario that corresponds to the same player, 
amount of power and state in time t. All r values are normalized 
in a scale from 0 to 1, in order to allow the Q(s, a) function to 
remain under these values, so that the confidence values Q can 
be easily assumed as probabilities of scenario occurrence under 
a context. Q(s, a) is learned through by try an error, being 
updated every time a new observation (new contract 
establishment) becomes available, following equation (3).     

 𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑠,𝑎,𝑡 +

𝛾𝑈𝑡(𝑎𝑡+1) − 𝑄𝑡(𝑠𝑡 , 𝑎𝑡)] 
(3)  

where  is the learning rate;  is the discount factor; and 
Ut (4) is the utility resulting from action a under state s, obtained 
using the Q function learned so far. 

𝑈𝑡(𝑠𝑡+1) = max
𝑎

𝑄(𝑠𝑡+1, 𝑎) (4)  

The Q Learning algorithm is executed as follows: 

• For each a and s, initialize Q(s, a) = 0; 

• Observe new event; 

• Repeat until the stopping criterion is satisfied: 

o Select the action that presents the higher Q for 
the current state;  

o Receive reward ra,s,t; 

o Update Q(s, a);  

o Observe new state s’; 

o s  s'. 

As the visiting of all action-state pairs tends to infinite, the 
method guarantees a generation of an estimative of Qt which 
converges to the value of Q. In fact, the actions policy 
converges to the optimal policy in a finite time, however 
slowly. In order to accelerate the convergence process, not only 
the Q value of the chosen action is updated, but also that of all 
scenarios, since the r regarding all alternative scenarios can be 
computed by comparing the estimated prices by each action and 
the actual values that have been verified in a new contract 
agreement. After each updating process, all Q values are 
normalized, as in equation (5), so that they are always kept in a 
scale from 0 to 1, thus facilitating the interpretation as the 
probability of each action in correctly representing the 
negotiation reality. 

𝑄′(𝑠, 𝑎) =
𝑄(𝑠, 𝑎)

max [𝑄(𝑠, 𝑎)]
 (5)  

B. Collaborative learning approaches 

1) BEST-Q 
The BEST-Q algorithm selects, for each state-action pair, 

the best value (Q-value) from all tables (Q-tables) of all agents, 
as in (6). Then each agent updates its individual Q-table 
accordingly. 

𝑄𝑖(𝑠,𝑎)←𝑄𝑏𝑒𝑠𝑡(𝑠,𝑎), ∀𝑖,𝑠,a (6)  

where i is the agent.  

The disadvantage of this approach is that optimum values 
(Q-values) are not found because the values (Q-values) become 
equal after each update. However, the BEST-Q algorithm can 
achieve good long-term simulation policy. 

The BEST-Q algorithm uses as assumption the best 
confidence value for each state-action pair according to all the 
data of the agents present in the environment. Each agent 
updates its Q-table by updating the pairs with the best values 
obtained previously. 

2) AVE-Q 
The AVE-Q algorithm is similar to the BEST-Q except that 

each agent updates its Q-values with the average of its current 
value and the best value (Q-value) for each state-action from 
the tables (Q-tables) of all agents, as presented in (7) 

𝑄𝑖(𝑠, 𝑎) ←
𝑄𝑏𝑒𝑠𝑡(𝑠, 𝑎) + 𝑄𝑖(𝑠, 𝑎)

2
, ∀ 𝑖, 𝑠, 𝑎 (7)  

The main disadvantage of the AVE-Q algorithm is that it 
does not eliminate the bad values (Q-values) in the interaction 
stage. The AVE-Q algorithm is very similar to the BEST-Q 
algorithms except for updating the agent. It uses as assumption 
the best value of confidence for each state-action pair according 
to all the data of the agents present in the environment and its 
current value of learning, so the table of the agent is updated 
through the average of these two values. Each agent updates its 
Q-table by updating the pairs with the previous values. 

 



 

 

3) PSO-Q 
Multi-agent optimization known as Particle Swarm 

Optimization (PSO), is part of the swarm intelligence 
methodologies and techniques. This algorithm was inspired by 
the rules of alignment and cohesion of the flocks of birds, and 
its particularity is represented by the transmission and sharing 
of information [9]. 

Each agent is initialized with a set of possible random 
solutions and the optimal solution is searched for in each 
generation. The movement of each agent is influenced by the 
global optimum and personal memory, with each agent having 
the ability to adapt its speed that directs its movement and 
remembers the best position found to date [10]. This movement 
follows the following four rules: 

• Separation: there must be a separation between each 
agent, to avoid collisions. 

• Alignment: it is necessary that each agent follows the 
same direction of neighboring particles. 

• Cohesion: it is necessary that each agent follows the 
same position of neighboring particles. 

• Deviation: in the encounter of an obstacle, it is 
necessary that the agent is able to deviate. 

The PSO-Q algorithm uses PSO to find the near-optimal 
solution. PSO is an optimization method that repeatedly 
improves the candidate solution accordingly to with the 
qualitative measure. PSO solves decision problems that have 
multiple decision variables. In the PSO-Q algorithm the best 
values (Q-values) of each agent and the best global values (Q-
values) of all agents are used by each agent to update its Q-
table, as in (8) according to a velocity function Vi (9) that 
determines the movement of the particles involved in the search 
process. 

𝑄𝑖(𝑠, 𝑎) ← 𝑄𝑖(𝑠, 𝑎) + 𝑉𝑖(𝑠, 𝑎), ∀ 𝑖, 𝑠, 𝑎 (8)  

𝑉𝑖(𝑠, 𝑎) = 𝑊𝑉𝑖(𝑠, 𝑎) + 𝐶1𝑅1[𝑃𝑖(𝑠, 𝑎) − 𝑄𝑖(𝑠, 𝑎)]  
+ 𝐶2𝑅2[𝐺(𝑠, 𝑎) − 𝑄𝑖(𝑠, 𝑎)] 

(9)  

where W is the inertia component, which defines the degree 
in which the movement will stay closer to the previous position; 
Pi(s,a) is the best Q-value of agent i for the pair s x a, G(s,a) is 
the best global solution for the s x a pair, C1 and C2 are weight 
components that determine the degree in which the new 
position will tend to the personal and global best, respectively; 
and R1 and R2 are random values ranging [0, 1].  

In the PSO-Q, the reinforcement learning problem is 
modeled as an optimization problem in which the candidate 
solutions are the values (Q-values of the table), and the 
qualitative measure is the Q-function. In the PSO-Q algorithm, 
the best values (Q-values) of each agent and the best overall 
value of all agents are used for each agent to update its Q-table. 

4) WSS-Q 
In the WSS (Weighted Strategy-Sharing) method, it is 

assumed that homogeneous Q-Learning agents learn in some 
distinct environments, so their actions do not alter the 
environment of other agents and no hidden state is produced. 

Agents learn in two ways: individual learning mode and 
cooperative learning mode. First, all agents are in the individual 
learning mode. The agent performs several learning attempts. 
Each learning attempt starts from a random state and ends when 
the agent reaches the goal. After a specified number of 
individual attempts, all agents switch to cooperative learning 
mode. In the collaborative mode, each agent delegates a weight 
to the other agents according to their expertise (trust value). 
Then, each agent updates through a weighted average with the 
values of the other tables resulting in a new table. 

Using the WSS-Q algorithm, each agent assumes a weight 
for the tables of the other agents based on the relative skill of 
each agent. Subsequently, each agent uses the weighted average 
of all values of tables (Q-tables) to update its own table (10). 

𝑄𝑖(𝑠, 𝑎) ← ∑[𝑊𝑖,𝑗𝑄𝑗(𝑠, 𝑎)]

𝑛

𝑗=1

 , ∀ 𝑖, 𝑠, 𝑎 (10)  

where Wij is the weight that agent i takes on the skill of agent j. 

5) Algorithms aggregation  
The collaborative Q-learning algorithms BEST-Q, AVE-Q, 
PSO-Q and WSS demonstrate different behaviors based on 
their sharing strategy. These observations motivated the 
combination of the sharing strategies in a single strategy to 
reduce the variability in performance for different problems. 
The Q-learning algorithm that uses this strategy is referred to as 
average aggregation Q-learning. In average aggregation Q-
learning, each agent updates its Q-values by averaging the Q-
values of each of the BEST-Q, AVE-Q, PSO-Q and WSS 
algorithms for each state action, according to (11), where i is 
the agent identifier and 4 is the number of strategies. 

𝑄𝑖(𝑠, 𝑎)

=
𝑄𝐵𝐸𝑆𝑇−𝑄(𝑠, 𝑎) + 𝑄𝐴𝑉𝐸−𝑄(𝑠, 𝑎) + 𝑄𝑃𝑆𝑂−𝑄(𝑠, 𝑎) + 𝑄𝑊𝑆𝑆(𝑠, 𝑎)

4
 

(11)  

III. CASE STUDY  

A. Specifications 

This case study considers 4 independent agents, which learn 
the same problem from different perspectives. In summary, 
each agent needs to learn which, from 10 distinct actions, is the 
best one; in which each action refers to the choice on a 
negotiation strategy to be applied against an opponent in a 
bilateral negotiation. Table I shows the a-priori defined best 
actions from each agent’s perspective. 

Table 1 Best a-priori actions for each agent 

Agent id 1 2 3 4 

Best actions # 10 10, 2 8, 2 8 

From Table 1 it is visible that the best overall actions 
accordingly to the perspective of the 4 agents are actions 2, 8 
and 10. The number of Q-Learning episodes to perform has the 
value 200 being that each episode is composed of 1000 
repetitions of the Q-Learning steps. The sharing of information 
between agents in done at every 10 episodes. All agents initially 
start in episode 1. The parameterization for Q-Learning is: the 
discount factor is 0.9 for a slower exploration and a learning 
rate of 0.01. 



 

 

B. Results 

Figure 1, 2, 3, 4 and 5 present the evolution of the Q-values 
of each action, from each agent’s perspective, throughout all the 
episodes, when using the BEST-Q, AVE-Q, PSO-Q, WSS-Q 
and average aggregation Q-learning algorithms, respectively. 

From Figure 1 is can be seen that the agents present partially 
identical graphs because they use the best values of the other 
agents. The BEST-Q algorithm reaches a relative convergence 
at around 360 iterations. From Figure 2 one can see that the 
AVE-Q algorithm in the first iterations presents a marked 
increase in values for the actions with greater reinforcement. 
The algorithm reaches a balance from the 160 iterations. It is 
concluded that AVE-Q reaches a quicker convergence that 
BEST-Q on the best actions. 

From Figure 3 it is visible that PSO-Q in the first iterations 
presents a marked increase in values for the actions with greater 
reinforcement. The algorithm reaches a balance from the 160 
iterations. Although with the increase in the number of 
iterations another action stands out; i.e. the algorithm allows to 
explore other possibilities and make a management of learning 
with exploration and experience. In comparison with the 
previous algorithms this algorithm achieves a fast equilibrium 
allowing for the search of new emergent good actions. From 
Figure 4, one can see that the WSS algorithm presents 
variations along the number of iterations. This algorithm limits 
the choice in only 3 actions for the proposed problem (2, 8 and 
10 as a-priori identified). In comparison with the previous 
algorithms this one identifies the best actions, but it does not 
demonstrate a clear convergence, like the other algorithms. 

From Figure 5 it is visible that the average aggregation enables 
identifying the best actions, and converging quite quickly, 
benefiting from the results of the algorithms that present a fast 
convergence. However, the algorithm still enables the 
refinement of the learning process by incorporating the 
stochasticity of WSS, and thus keep adapting to any new 
occurrences throughout the iterations. 

IV. CONCLUSION  

This paper has presented the application of five 
collaborative reinforcement learning algorithms (BEST-Q, 
AVE-Q, PSO-Q and WSS-Q and average aggregation) to the 
problem of identifying the best action (negotiation strategy) that 
is learned independently by several different agents, with 
different perspectives.  

Results show that with BEST-Q all agents converge to the 
same Q-Tables, which prevents them from adding their 
independent perspective on the problem; nevertheless, the best 
actions are identified, among others that also present good 
potential. AVE-Q converges quickly to the best actions. PSO-
Q also converges quickly, but enables for the future 
identification of other emerging good actions, due to the 
stochastic nature. WSS-Q presents a great variation throughout 
the entire set of episodes, but it is the only one that enables 
identifying the exact 3 a-priori best actions, while the 3 other 
algorithms identify these 3 but also add some other relatively 
good actions into the mix. Average aggregation has enabled a 
fast convergence but with still some room for exploration, by 
incorporating the perspectives of the different algorithms. 

 

Figure 1. Evolution Q-Values for BEST-Q 

 

Figure 2. Evolution Q-Values for AVE-Q 



 

 

 

Figure 3. Evolution Q-Values for PSO-Q 

 

Figure 4. Evolution Q-Values for WSS-Q 

 

Figure 5. Evolution Q-Values for average aggregation Q-learning 
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