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Abstract. This paper proposes an adaptation of the Q-Learning rein-
forcement learning algorithm, for the identification of the most probable
scenario that a player may face, under different contexts, when negoti-
ating bilateral contracts. For that purpose, the proposed methodology
is integrated in a Decision Support System that is capable to generate
several different scenarios for each negotiation context. With this com-
plement, the tool can also identify the most probable scenario for the
identified negotiation context. A realistic case study is conducted, based
on real contracts data, which confirms the learning capabilities of the
proposed methodology. It is possible to identify the most probable sce-
nario for each context over the learned period. Nonetheless, the identified
scenario might not always be the real negotiation scenario, given the vari-
able nature of such negotiations. However, this work greatly reduces the
frequency of such unexpected scenarios, contributing to a greater success
of the supported player over time.

Keywords: Automated Negotiation, Bilateral Contracts, Decision Sup-
port System, Electricity Markets, Reinforcement Learning Algorithm

1 Introduction

The world is constantly changing. Nowadays, these changes happens a lot faster
than before and the tendency is for this rate to keep increasing. This is mainly
due to the easier access to information and increased interaction and change of
knowledge between people. As the world always seeks equilibrium, when some-
thing changes, all other things will change too in order to re-establish the equi-
librium.

The Electricity Markets (EMs) are not any different. They have been con-
stantly changing to keep up with the society needs. However, sometimes the
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change takes too long to take place and when it happens, it requires more pro-
found changes. That is what happened to the EMs back in 2000 [1]. Those
changes allowed the sector liberalization, introducing free competition in its
various segments such as production, transportation and energy distribution.
Nowadays there is another key change in the EMs paradigm that needs to be
addressed, which is the increased use of energy from renewable sources. The
use of this source is being highly encouraged with the aim of adopting a more
sustainable growth (by reducing CO2 emissions), as well as archiving energy
independence [2]. The ”20-20-20” program [3], which has been introduced by
the European Union, is a good example of such encouragements. The mentioned
program sets ambitious energy goals to be met by 2020, contributing to the large
scale implementation of distributed generation.

While the evolution of EMs contributed to keep their stability and address
society needs, it also brought new challenges for the participating entities. The
restructuring of the sector introduced new entities with complex interactions
that increased its unpredictability. That unpredictability only got bigger with
the introduction of renewable energy sources, due to their intermittent nature.
Consequently, the participating entities face higher risks and a lot more variables,
increasing the importance and impact of decision-making. This way, the partic-
ipating entities in EMs need proper tools to keep up with the changes, increas-
ing their knowledge and improving their participation. The literature presents
several simulators with focus in modelling EMs [4]. However, they are mostly
focused on auction-based market models such as Day-ahead spot and Intra-day,
overlooking Bilateral Contracts model (negotiation between players). The pro-
cess of negotiation itself is a subject, common to several different domains, that
has been widely explored. A relevant review in automated negotiation identifies
the main phases of negotiation and exposes the features that are partially or
completely missing in current models [5]. One of the identified gaps is the poor
opponents analysis in the pre-negotiation phase, where the negotiator has to
define its objectives and the opponent(s) to trade with. In EMs domain, players
can establish bilateral contracts with several different players and the selection
of the right opponent(s), according to its objectives, can have a great impact
in the negotiation outcome. For this purpose, the negotiator needs to be able
to identify the most probable negotiation scenario that it can face, among all
the different scenarios that can occur in its current negotiation context. Each
scenario is composed by the expected prices that each opponent may offer for
each power amount.

To address the identified gap, this work presents a methodology, based on a
reinforcement learning algorithm (Q-Learning [6]), to determine the most prob-
able scenario that the supported player can face, in a future negotiation. The
methodology is integrated in a Decision Support System (DSS) for the pre-
negotiation of bilateral contracts, which is able to analyse the opponents and
generate multiple negotiation scenarios.
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2 Bilateral Contracts in Electricity Markets

The EMs are usually composed of several market types [7, 8], based on several
different models such as: day-ahead spot; intra-day, both usually auction based;
and bilateral contracts.

In the scope of EMs, bilateral contracts are long-term contracts established
between two entities, buyer and seller, for energy transaction, without the in-
volvement of a third entity. The transaction is usually carried out several weeks
or months after the contract is made [9] and usually has the following specifi-
cations: start and end dates and times; Price per hour (/MWh) and amount of
energy (MW), variable throughout the contract and, finally, a range of hours
relative to the delivery of the contract. Players can use customized long-term
contracts, trading ”over the counter” and electronic trading to conduct bilateral
transactions [10]. In MIBEL, there are four types of bilateral contracts: the first
type are Forward Contracts, that consist in energy exchange between a buyer
and a seller for a future date, for the price negotiated at that moment; the second
type are Future Contracts, which are similar to Forward Contracts except that
they are managed by a third party responsible for ensuring compliance with the
agreement; the third type are Option Contracts, that are similar to the Forward
and Future contracts with the difference that the two entities only guarantee
a buy/sell option; the last one are Contracts for Difference, that allows con-
cerned entities to protect themselves from the energy price change between the
agreement establishment date and the agreed exchange date.

With the exception of Contracts for Difference, this type of negotiation allows
players to control the price at which they will transact energy, in contrast to
what happens in spot markets, due to the proposals’ instability. In establishing
a Forward or Future contract, players are committing themselves to transact
energy for a given price at a future time, with the risk of making a transaction
at a lower price than the expected and lose competitive power. Option Contracts
or Contracts for Difference can avoid this risk. The first allows the player to
choose not to go through with the exchange while the second ensures that the
transaction is carried out at the market price. However, the first option also has
the risk of not guaranteeing whether or not the other party will exercise their
option to exchange and the second option does not allow better prices than
the market. This way, it is possible to understand the risk associated with the
negotiation of bilateral contracts and the need that players have of tools that
help them reduce this risk and even optimize their profits.

Automated Negotiation

The process of negotiation itself has been widely explored in the literature of
several different domains such as social psychology [11], economics and manage-
ment science [12], international relations [13] and artificial intelligence [14, 15].
The last one, artificial intelligence, is the most related area with the present work.
As this area itself is also very rich in research about the process of negotiation,
it has motivated the conduction of a very thorough review [5]. In the review, the
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authors present the state-of-art of the existing negotiation models and, as result
of their study, they are able to present the most common phases of automated ne-
gotiation for computational agents: (I) Preliminaries, (II) Pre-Negotiation, (III)
Actual Negotiation and (IV) Renegotiation. However, it is important to note
that the Preliminaries and Pre-Negotiation phases are often joined together as
the Preliminaries can be considered as part of the Pre-Negotiation phase. Despite
being a common phase, the Pre-Negotiation is often very simple, not exploring
its full potential. The last phase, Renegotiation, is also not present in all models,
as some do not allow the final agreement modification. This way, it is possible
to verify that the main focus of the existing models is the Actual Negotiation
phase. However, the other phases are also important and can have a great impact
in the negotiation process.

Decision Support Systems for the Negotiation of Bilateral Contracts

Some DSS for the negotiation of bilateral contracts can be found in the lit-
erature, such as Electric Market Complex Adaptive Systems (EMCAS) [16],
General Environment for Negotiation with Intelligent Multi-purpose Usage Sim-
ulation (GENIUS) [17], and Multi-Agent Negotiation and Risk Management in
Electricity Markets (MAN-REM) [18].

EMCAS [16] is a multi-agent simulator that aims to simulate various EMs
market models, including Bilateral Contracts. The tool considers the objectives
of all the participating players. The players can be either demand or genera-
tion company agents. The demand agents formulate their proposals and then
each generation agents decide the price for the amount of power they want to
sell. At last, the demand agent decides to accept or reject the generation agent
conditions.

GENIUS [17] is a multi-agent simulator with the main focus of facilitat-
ing and evaluating automated negotiators strategies. The tool main features
are: bilateral and multilateral negotiations; agent-to-agent and human-to-agent
negotiations; domain independent; negotiators performance analysis, including
comparison between results and optimal solution. The negotiation process fol-
lows three phases: Preparation, when the agents, protocol and domain of the
negotiation are defined; Negotiation, when the actual negotiation occurs; and
Post-negotiation, when the negotiation is analysed in detail.

MAN-REM [18] is a framework that combines small multi-agent EMs simula-
tors for the simulation of bilateral contracts. In the simulations, the framework
models two agents, besides the expected Seller and Buyer agents, which are:
the Trader agent, which distributes the energy; and the Market Operator agent,
which validates the contracts. The negotiation process follows three phases: Pre-
Negotiation phase, when the proposer agent defines its contract preferences and
its response to counter-offers; Actual Negotiation phase, when the Buyer and
Seller agents trade offers; and Post-Negotiation phase, when the two entities
reach an agreement.

The presented tools are mainly focused in the actual negotiation, being in ac-
cordance with the analysis of the previous subsection. Regarding Pre-Negotiation
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phase, EMCAS has a basic approach while the others explore it further, specially
GENIUS. However, these tools are not capable to address the identified gap of
poor opponents analysis in the Pre-Negotiation phase which does not allow the
identification of the most probable negotiation scenario.

3 Proposed Methodology

Reinforcement Learning Approach

This paper proposes the adaptation of Q-Learning [6], a reinforcement learning
algorithm, for the identification of the most probable negotiation scenario that
the supported player can face, under a certain context. A negotiation scenario is
composed by the expected prices that each opponent may offer for each power
amount.

The Q-Learning is a very popular reinforcement learning algorithm. The
concept of this algorithm is that an agent can take an action, from a set of
possible actions, in each state that it can be. The aim of the algorithm is to help
the agent identify the best action to take in each state. For that purpose, every
state-action pair have an Q value that represents the utility of taking that action
in that state. The agent will always choose the action with the highest Q value.
Being a reinforcement learning method, Q-Learning is able to update the Q value
of each state-action pair. Every time the agent repeats an action in a given state,
the Q value of that state-action pair gets a reward r. The algorithm contains
two variables related to the future learning: Learning Rate (α), which defines
the contribution of the reward to the previous Q value; and Discount Factor (γ),
which defines if the algorithm should only consider the current reward or look
forward for highest rewards in the future.

The proposed methodology is an adaptation of Q-Learning that, instead of
evaluating the best action for each state, evaluates the closest negotiation sce-
nario to the one that the player will face in reality, under a certain context. In
this adaptation, the agent is the supported player, the states are each different
context c, in which the player may trade, and the actions are each scenario s
that the player may face. The equation 1 presents the mapping performed by
the Q function.

Q : c× s→ U (1)

The U is the expected utility value, which represents how close the scenario
s is to the real negotiation scenario, that the supporter player may face under
context c. The utility value (Q value) of each context-scenario gets rewarded
once the information about the real scenario is available. This way, it is possible
to evaluate how close each scenario was to the real negotiation scenario. The
reward r is defined in Equation 2.

rs,c,t = 1− norm|RPc,t,a,p − EPs,c,t,a,p| (2)
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The RPc,t,a,p is the real price negotiated by opponent p, in contract c, at
the time t, for the amount of power a. The EPs,c,t,a,p is the price expected in
scenario s under context c for the same opponent, amount of power and time.
To simplify the analysis of each Q value, the r values are normalized, in a scale
between 0 and 1, to keep the Q value inside that interval. This way, the Q
value resulting from the Q(c, s) function, can be interpreted as the probability
of occurrence of the scenario s under context c. After the calculation of the
reward of a context-scenario pair, its current Q value gets updated by following
Equation 3.

Qt+1(ct, st) = Qt(ct, st) + α(ct, st)

× [rs,c,t + γUt(ct+1)−Qt(ct, st)]
(3)

The α is the learning rate, γ is the discount factor and Ut(ct+1) is the maxi-
mum utility expected in all of the scenarios of ct+1, as represented by Equation 4.

Ut(ct+1) = max
s
Q(ct+1, s) (4)

Every time the Q value of a context-scenario pair is updated, its value is
normalized, in a scale between 0 and 1, to represent the proximity of the given
scenario to the actual negotiation scenario, under the given context. This nor-
malization is represented in Equation 5.

Q′(c, s) =
Q(c, s)

max[Q(c, s)]
(5)

This way, the scenario of each context with the highest Q value will have the
value 1, after normalization, as it is the closest scenario to the actual negotiation
scenario under the same context.

The adapted Q Learning execution is presented in Algorithm 1.

Algorithm 1 Adapted Q-Learning Execution

initialize Q(c, s)← 0
repeat

wait for new event . (new established contract)
for all scenarios of current contract do

calculate reward . (equation 2)
update Q(c, s) . (equation 3)

end for
normalize Q(c, s) . (equation 5)

until stopping criteria

Decision Support System

The proposed methodology presents itself as a good solution for the determi-
nation of the most probable scenario that the supported player may face in a
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future negotiation. However, this methodology requires a tool that is capable to
detect different negotiation contexts and generate alternative negotiation scenar-
ios per context. The proposed methodology has been included in a DSS, whose
architecture is presented in Figure 1, which meets the identified prerequisites.

Fig. 1. Architecture of the DSS

As it can be seen in Figure 1, the DSS is composed by three main components:
Scenarios Definition, Possible Actions and Decision Process.

The Scenarios Definition is responsible for the generation of several alterna-
tive scenarios for each different context. A scenario is composed by the expected
price that each one of the possible opponents find acceptable for the negotia-
tion of different amounts of power (from the minimum negotiable amount to
the amount that the supported player wants to trade). The expected price is
obtained through forecasting, considering the historical data of the possible op-
ponents. However, it is not always possible to forecast all the power amounts as
the historical data might not have enough information about those quantities.
In this cases, an estimation is performed instead, based on the prices that were
possible to forecast. Each scenario uses a different forecast algorithm to make it
possible to generate different scenarios.

After the Scenarios Definition, the generation of all Possible Actions, that
the supported player can take, is performed. For this purpose, it is generated
all the possible distributions, of the desired power amount to trade, among all
the possible opponents. Each possible distribution is one action that the sup-
ported player can take. The actions can range from trading all the desired power
amount, with only one of the possible opponents, to trade with all of the possible
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opponents, an equally split amount. Then, to evaluate each action individually
and make it possible to select the best action of each scenario, the utility of each
action is calculated. The utility of each action takes into account how profitable
the action can be (taking into account the expected prices) and the reputation
of the involved opponents. The impact of each component depends on the risk
that the supported players is willing to face. The lower the impact of the repu-
tation component, the higher the risk. Each action has an utility value per each
possible scenario that the supported player can face under the current context.

The generation of all possible actions per each possible scenario creates the
need of a decision method that enables the selection of the best action that sup-
ported player can take. The third component, Decision Process, is responsible
for that final decision. For that matter, the system contains three different de-
cision methods: Optimistic, Pessimistic and Most Probable (made possible by
the proposed methodology). The optimistic method chooses the action with the
highest utility value among all the scenarios. On the other hand, the pessimistic
method, follows the mini-max game theory approach, where the selected action
is the one with the highest utility value of the scenario with the lowest global
utility (sum of the utility of all the actions of a scenario). At last, the contri-
bution of the proposed methodology to this DSS: the Most Probable decision
method, which selects the action with the highest utility, of the scenario that is
most probable to occur in reality.

As result of the simulation, the supported player obtains the opponent(s) to
trade with and how much power to trade with each one, considering the amount
of power that it wants to trade, the list of possible opponents, the risk that it is
willing to take and the preferred decision method.

4 Experimental Findings

This section presents a case study that has been conducted to test the proposed
methodology as well as the impact of its integration in the presented DSS. For
that purpose, the DSS will be run to aid the supported player in the scenario
presented in Table 1.

Table 1. Case Study Scenario

Power Amount 40
Transaction Type Purchase
Context Weekday
Possible Opponents 5
Reputation Calculation 50% Personal Opinion and 50% Social Opinion

Risk
50% (The economical and reputation components
have the same weight)

Decision Method Most Probable (Proposed Methodology)
Possible Actions 135 751
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The DSS provides, in this scenario, two different contexts: Weekday and
Weekend. For each context, the DSS will generate five different scenarios, pro-
vided by three different methods: Artificial Neural Network (ANN), Support
Vector Machine (SVM) and Average. The last two consider the last 1000 con-
tracts in their training while ANN has three different methods: ANN1 (500
contracts), ANN2 (1000 contracts) and ANN3 (1500 contracts).

This is a simple amount of scenarios that are capable to test the proposed
methodology without being too complex to analyse. However, the DSS is capable
to execute a much higher number of scenarios, which makes it possible to use
other forecasting techniques and test different configurations (as exemplified with
the ANN). Three different versions of the ANN algorithm will be used, where
the only difference is the amount of contracts used in its training.

Besides the presented DSS internal definitions for this case study (contexts
and scenario generation methods), there is also another very important defini-
tion: the historical data of the possible opponents. The data of the five possible
opponents could be generated and still be able to test which scenario is capable to
better represent the generated negotiation scenarios. However, the optimal test
can only be performed with real data. Therefore, a real dataset is used instead,
which contains executed physical bilateral contracts declared in the Spanish Sys-
tem Operator (SO)[19]. The dataset data ranges from 1 July 2007 to 31 October
2008 (16 months / 488 days) and each day contains 24 negotiation periods (one
per hour), in a total of 11 712 periods. The negotiations were performed by 132
different players (88 Buyers and 44 Sellers) which established 1 797 996 contracts.
The Table 2 presents a detailed overview of the dataset.
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Table 2. Dataset Overview

MIN AVG STDEV MAX

Contracts /
Period

128 157 17,78 180

Contracts /
Day

147 3 753 485,78 4 287

Contracts /
Player

2 27 244 58 653,22 288 160

Contracts /
Player /
Period

1 5 6,83 29

Power /
Period
/ Contract

1 69,04 6,25 3 575

Power /
Player
/ Contract

1 89,05 223,17 3 575

Power /
Period

7 718 10 813 1 346,38 14 128

Power / Day 8 210 258 405,89 34 317,46 316 801
Power /
Player

30 1 875 400,33 4 503 101,94 26 081 833

However, as it can be seen in Table 2, there is not information about con-
tract prices, because the dataset only contains the traded power amount. The
established price of a contract is a key information and the involved entities
avoid sharing it. The share of such information can negatively affect their future
negotiations. This way, there is the need to generate a price for each contract
present in the dataset.

To guarantee an increased realism, the contracts price are generated taking
into account the market price of the same negotiation period of the Spanish
Day-ahead Market [20]. Nevertheless, the contracts established in the same ne-
gotiation period, between different players, can not have the same price. It would
not make sense. Therefore, each player can have one of five different negotiation
profiles: Profile 1, in which the player defines a minimum price, based on the
market price, and keeps increasing it according to the power amount increase,
until reaching a maximum price; Profile 2, which is similar to Profile 1 but with
an higher minimum and lower maximum prices; Profile 3, which follows market
price; and Profiles 4 and 5 which are the reverse of Profiles 2 and 1, respectively,
in which the price keeps decreasing according to the decrease in the traded power
amount.

Besides the contracts price definition, the dataset also needs another comple-
ment, to make it possible to use the full capabilities of the DSS: the reputation
assessment. The DSS is capable of calculating the reputation of each opponent,
based on various components, but it requires the personal opinion of each player
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about the other players. Therefore, the personal opinions of each player have
been defined taking into account three components: personal experience with
the evaluated player; number of opponents that traded with that player; and
number of contracts established by the player. Then, there is also the need to
define groups of players, as the DSS uses that information in the social com-
ponent of its reputation assessment process. The players are divided into four
groups according to their average traded power amount.

After the analysis of the dataset, there is the need to select: (I) the period
of time that the proposed methodology will start learning; (II) the negotiation
period when the supported player will attempt to trade; (III) the five possible
opponents, which the supported player may trade with; and (IV) the supported
player. First, as the EM will consider the contexts Weekday and Weekend, a
good starting point is the most recent Sunday in the dataset. This way, the pro-
posed methodology can learn both contexts. It also allows the supported player
to attempt to negotiate on the next Tuesday, in the Weekday context, as speci-
fied in this case study. The last day of the dataset (31 October 2008) is a Friday,
therefore the chosen date is 26 October 2008, the previous Sunday. This way,
the proposed methodology will be able to learn during 48 negotiation periods,
evaluating more than 2000 contracts per context. Second, the negotiation pe-
riod of the supported player is the first period of 28 October 2008, the following
Tuesday. Third, the possible opponents selection is made by identifying the play-
ers with more contracts in the learning period and with power amounts ranging
from 1 to 40 (amount of power that supported player wants to trade). Therefore,
the following players are selected: Player 1 (Profile 2, Group 3); Player 2 (Profile
3, Group 4); Player 3 (Profile 1, Group 2); Player 4 (Profile 4, Group 4); and
Player 5 (Profile 3, Group 3).

At last, the selected player to support is a buyer that established contracts
with each one of the possible opponents in the learning period.

After the preparation of the case study, the DSS used the proposed method-
ology to learn what is the most probable scenario, during the selected period (26
and 27 October 2008). For that purpose, the proposed methodology is run with
a Learning Rate of 0.3, allowing a slow learning, and Discount Factor of 0.8,
favouring future rewards, considering the available amount of data. The final Q
values for each scenario under each context are presented in Table 3.

Table 3. Final results (Q) of the learning process

Context ANN1 ANN2 ANN3 SVM Average Contracts

Weekday 4,862 4,858 4,845 4,883 4,762 2 714
Weekend 4,902 4,876 4,713 4,801 4,585 2 671

As it can be observed in Table 3, the proposed methodology learned over
2 500 contracts for each context. At the end of the learning process, the most
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probable scenario in a Weekday is SVM and, in a Weekend, is ANN1. The results
shows that, in both contexts, the ANN results improve with the reduction of
the number of contracts considered in its training. The ANN1, which has the
lower number of contracts (500), presents better results than ANN2 (1000) and
even better than ANN3 (1500). However, ANN1 is slightly surpassed by SVM
(1000) in the Weekday. On the other hand, the ANN1 and ANN2 are better
than SVM in the Week, with an higher distance. The ANN proves to be a better
algorithm overall, when considering the same amount of contracts, and even
better with a lower number. The Average method presents the worst results in
both contexts, representing the great uncertainty present in the real negotiation
scenarios, where the players keep changing their behaviours. The Q values for
each scenario under each context are very close, ranging from 4.585 to 4.902,
which is caused by the converging nature of Q-Learning, over its iterations.

The Figure 2 and Figure 3 presents the normalized Q value of each sce-
nario under Weekday and Weekend contexts respectively, over all the analysed
contracts.

Fig. 2. The learning process for the Weekday context
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Fig. 3. The learning process for the Weekend context

The Figure 2 proves that SVM scenario is really dominant, being the scenario
with the maximum Q value during more contracts. However, it is not always the
most probable scenario. In fact, the SVM scenario were very far from reality in
the first 708 contracts, the period in which ANN1 dominated [102, 707], after the
initial success of the Average scenario [1, 101]. Then, the SVM scenario is only
surpassed by ANN1 [1314, 1516], and ANN2 [2122, 2425]. As seen in Table 3, the
success of each ANN method is measured by the amount of contracts considered.
The fewer the number of contracts, the better the results. The Average scenario
only had success in the beginning of the learning process, as it is a simple average,
which does not requires much learning to know its potential, contrary to the other
scenarios. Having seen the learning process of the Weekday context, it may be
interesting to see how it compares to a different context, which in this case is
the Weekend (Figure 3).

It is visible in Figure 3 that SVM scenario does not have as much success
as the one presented in the Weekday context. Nonetheless it still presents good
results, being the second most successful. The Table 3 shows that ANN1 finished
the learning process as the most probable scenario. However, it was not just a
momentary achievement since it was the most dominant scenario. The Average
scenario only had success in the first 200 contracts, like has been verified in the
Weekday context. The ANN2 only had a few successful periods but it is the most
regular scenario, after the ANN1.

After the learning process, the DSS is ready to provide the supported player
with the best action to take under the most probable scenario under Weekday
context (SVM). The Table 4 presents the best action of SVM scenario as well
as a comparison with the best action of the other scenarios.
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Table 4. Best Action per Scenario

Scenario Player 1 Player 2 Player 3 Player 4 Player 5
Total
Price

ANN1
1 37 1 1

1809,08
36,87 45,88 32,61 42,07

ANN2
38 1 1

2556,80
65,08 39,45 44,21

ANN3
1 39

2492,46
40,56 62,87

SVM
1 37 1 1

1935,06
40,60 49,03 35,34 44,88

Average
40

1199,01
29,98

It is possible to observe in Table 4 that the most probable scenario (SVM)
and the second most successful scenario (ANN1) identified the same best action,
with a slight price variance. The ANN1 presented a less expensive action (about
9% less). However, the less expensive action was identified by the Average sce-
nario while ANN2 and ANN3 present the most expensive ones. If the supported
player selected the Optimistic decision method, instead of the Most Probable,
the selected action would be the Average scenario one as it present the highest
utility (which in this case is the highest profit, as all the possible opponents have
similar reputations - about 0.62). On the other hand, if the Pessimistic decision
method were selected, the best Action would be the one of ANN3 scenario, as it
is the scenario with the lowest global utility (ANN3: 39 905.94; ANN2: 41 521.69;
ANN1: 52 674.94; SVM: 60 689.93; Average: 73 904.44).

The supported player could take three different actions depending on the
decision method but which one will be the closest to reality? Will SVM confirm
itself as the most probable? After learning the real results of the negotiation pe-
riod, for which supported player required decision support, an unexpected result
is observed. The Average scenario presented the lowest average error per con-
tract (Average: 9.31%; ANN1: 12.38%; ANN2: 16.55%; SVM: 18.30%; ANN3:
18.57%). Consequently, after learning from the real contracts, the ANN1 and
Average scenarios surpassed the Q value of SVM scenario (ANN1: 4.920; Aver-
age: 4.784; SVM: 4.780; ANN2: 4.777; ANN3: 4.767). The improvement of the
Average scenario shows that the participating players have been more regular,
being closer to their average behaviour. The ANN1 is once again the leading
scenario resultant of a slow, but constant, growing verified in the most recent
negotiation periods.

This case study scenario could not detect the most probable scenario for the
negotiation period in matter. However it could do it for most of the preceding
negotiation periods. The reason is that the chosen negotiation period coincided
with a turning point in the learning process. The ANN1 and Average scenarios
were slowly improving while SVM was slowly decaying. As seen in this case
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study, there is always room for the unexpected to happen but that is exactly
why the proposed methodology arose: to reduce the frequency of such situations
as much as possible.

5 Conclusion

Nowadays, the EMs are constantly facing new challenges which result in constant
changes and, consequently, an increased complexity for the involved entities.
There is a growing need of tools that are capable to ease the experience of those
entities, providing them with a better insight of what is going on as well as
supporting them in their decisions. Various tools have emerged in the literature
but they do not cover all of the current needs.

This paper identifies the lack of decision support for the pre-negotiation phase
of bilateral contracts negotiation in the EMs. Although there are some tools, as
analysed in this work, they do not address one of the key aspects of the pre-
negotiation phase: the possible opponents analysis. For that purpose, a DSS has
been developed which allows a good analysis of the possible opponents that the
supported player may trade with. However, with the use of such tool, another
problem arises: it is capable to generate various alternative negotiation scenarios
under different contexts but it does not know which one is the most probable to
occur in reality, under each context.

An adaptation of the Q-Learning algorithm is proposed to address that prob-
lem. Through its use, it is possible to learn through time, what is the most
probable scenario to occur under a given context. The methodology confronts
the generated scenarios with the real negotiation scenarios, being able to update
their probability of occurrence.

By executing the proposed methodology in the presented case study, it can
be concluded that it fulfils its purpose. By analysing real contracts under two
different contexts (Weekday and Weekend), it was capable to determine which
of the five scenarios had the highest probability of occurrence for each context,
over the simulated period. The most probable scenario for each context kept
changing over time and the scenarios had different results according to the con-
text in which they were inserted. This way, it is possible to verify the importance
of the presented methodology. There is not a scenario that will be always the
most probable and it will also always depend on the context. The only way to
guarantee a good selection is to keep learning through time, taking into account
previous information without underestimating the new information.
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