
Integração automatizada de informação de
horários de transportes

JOÃO BAPTISTA MONTEIRO WESTERBERG
Outubro de 2020

Automated integration of transport
timetable information

João Westerberg

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Computer
Engineering, Specialisation Area of Software Engineering

Supervisor: Jorge Santos

Evaluation Committee:
President:
José Reis Tavares

Members:
Nuno Filipe Malheiro

Porto, October 15, 2020

iii

Abstract

The ever-growing Web contains a large amount of data. This large amount of data is useful
when combined with applications that can refine it and use it to improve its users’ lives.
However, using the data available is not an easy task since most of the information is not
represented in machine-friendly formats.

Instead, this information is represented in formats ideal for human users, resulting in an
additional effort for having machines interpreting, extracting, and integrating it, while at the
same time ensuring the consistency of information from different sources.

In this project, a solution using an ontology-based integration combined with web robots’
extraction automates the process required for updating information regarding schedules of
public transports. An already existing application receives that information and uses it to
calculate efficient routes for commuters.

The proposed solution can extract information from multiple online sources and transform
it into different formats. It can extract and transform the information from PDFs and
HTML. The system provides a web service for the exportation of these formats by a route
optimization system.

This document contains the detailed process of the design and construction of the integration
system. It describes the alternatives and selections that lead to the application created.
Lastly, it evaluates the solution by performing extraction from several sources relevant to
the project’s domain.

Keywords: Information Retrieval, Web crawling, Information Integration, Ontology, PDF
extraction

v

Contents

List of Figures ix

List of Tables xi

List of Rules xiii

List of Acronyms xv

1 Introduction 1
1.1 Introduction . 1
1.2 Context . 1
1.3 Problem . 2
1.4 Objectives . 4
1.5 Document Structure . 4

2 Project Value Analysis 7
2.1 The innovation process . 7
2.2 Value definition . 9
2.3 Value proposition . 9

2.3.1 Jobs . 9
2.3.2 Pains . 10
2.3.3 Gains . 10
2.3.4 Products and Services . 10
2.3.5 Pain relievers . 10
2.3.6 Gain creators . 10

2.4 Canvas Model . 11

3 State of art 13
3.1 Information extraction . 13

3.1.1 Wrapper based information extraction 15
3.2 Ontology . 15

3.2.1 Concept model-based information extraction 17
3.3 Data integration and information integration 17
3.4 Integration and transformation of ontologies 18

3.4.1 Ontology integration . 18
3.4.2 Ontology merging . 19
3.4.3 Ontology mapping . 20

3.5 Technologies . 20
3.5.1 Web crawling and information retrieval 20
3.5.2 Beautiful Soup . 21
3.5.3 Scrapy . 21
3.5.4 Regex . 22

vi

3.5.5 XPath . 22
3.5.6 Portia . 23
3.5.7 Semantic web stack . 23

3.6 PDF Extraction . 26

4 Selection of technologies and solutions 29
4.1 Selection for information retrieval . 29
4.2 Selection for data and information integration 30

5 Analysis and Design 31
5.1 System requirements analysis . 31
5.2 High-Level design alternatives . 32
5.3 Event driven communication . 34
5.4 Ontology design . 36
5.5 Proposed design selection . 39

5.5.1 Spiders Project low-level design 41
5.5.2 Job Scheduler low level design . 42
5.5.3 TimeTables Backend low level design 42
5.5.4 Solution deployment . 44

5.6 Excalibur design for PDFs’ information extraction 46

6 Implementation 49
6.1 Spider project implementation . 49

6.1.1 URL Extractor . 50
6.1.2 Single Timetable per page . 52
6.1.3 Multiple Timetables per page . 53

6.2 Event mediation with job scheduler . 55
6.3 Implemented ontologies . 57
6.4 Backend service . 63

6.4.1 Backend information extraction 64
6.4.2 Information persistence and external information requests 67
6.4.3 Ontology alignment and Backend API 69

6.5 PDF extraction . 70
6.6 Putting everything together with asynchronous communication 72

7 Evaluation of the solution 73
7.1 Information retrieval criteria . 73
7.2 Ontology criteria . 73
7.3 Evaluation methodology . 75

7.3.1 Evaluating quality and resource cost 75
7.4 Experimentation scenarios . 76

7.4.1 Create OPT files from HTML files automatically 76
7.4.2 Create OPT files from PDF files automatically 77
7.4.3 Create OPT files manually . 78
7.4.4 Agencies and sources selection . 79

7.5 Evaluation results and discussion . 79

8 Conclusions and future work 87
8.1 Revisiting the objectives of the project . 87

vii

Bibliography 89

A Operator websites 93

B Service thesaurus 95

ix

List of Figures

1.1 Distribution of operators by method of timetable presentation 3

2.1 Proposed FAST diagram . 8
2.2 Proposed FAST diagram . 8
2.3 Proposed canvas model . 11

3.1 Knowledge pyramid . 14
3.2 Ontology types hierarchy . 17
3.3 Ontology integration . 19
3.4 Ontology merging . 19
3.5 Ontology mapping . 20
3.6 Standard Scrapy project directory structure 22
3.7 Semantic Web architecture stack . 24

5.1 System’s Use Cases . 31
5.2 Activity diagram for high-level view of action in the integration process . . 32
5.3 High-level, coarse-grained component diagram for multiple spiders 32
5.4 Example of a sequence diagram using different types of spiders 33
5.5 High-level component diagram for alternative using a spider project and a

caching database . 34
5.6 Component diagram for alternative using a message bus in the spider project 35
5.7 High-level component diagram for alternative using a message broker and

multiple Backend services . 36
5.8 Domain model for the OPT import files 37
5.9 Domain model of the General Transit Feed Specification (GTFS) format . 38
5.10 Mapping pipeline showing the ontologies involved in the format conversion

process . 39
5.11 High level implementation / development view of proposed solution’s system 40
5.12 Low level logical view of Spider Project 41
5.13 Spider and pipeline execution sequence in Spider Project 41
5.14 Low level logical view of Job Scheduler . 42
5.15 Low level logical view of Timetables Backend 43
5.16 Process of creating and persisting timetables 43
5.17 Mining Algorithm concrete implementations with separation of concerns . . 44
5.18 Low level logical view of Timetables Backend 44
5.19 Deployment view of the solution in a single device 45
5.20 Deployment view of the solution distributed in several devices 46
5.21 Deployment view of the solution distributed in several devices 46
5.22 Deployment view of the solution distributed in several devices 47
5.23 Deployment view of the solution distributed in several devices 47

6.1 Example of multiple timetables per page 53

x

6.2 Properties for multiple timetables spider example 54
6.3 Example of online timetable with concepts identified 58
6.4 Table related OWL classes and properties 58
6.5 Example of online timetable with stops grouped in a row 60
6.6 Example of online timetable with trips and index representation 63
6.7 Example of ambiguity in stops’ names . 68
6.8 RabbitMQ exchanges and queues routing 72

7.1 Time in seconds for step in automated extraction of ETG 80
7.2 Time in seconds for step in automated extraction of AVPacense 81
7.3 Time in seconds for step in automated extraction of AVMinho 82
7.4 Time in seconds for step in automated extraction of rodonorte 84

xi

List of Tables

3.1 Comparison between Camelot and Tabula 26

5.1 Components for an alternative using a message broker and multiple Backend
services and description . 36

6.1 URL Extractor Attributes . 50
6.2 Spider attributes . 52
6.3 Spider attributes . 53
6.4 Inverse properties of timetable ontology 59
6.5 Domain concepts from GTFS format . 59
6.6 Regular expressions for identifying table items 65

7.1 Steps for automatic generation of OPT files from HTML 77
7.2 Steps for automatic generation of OPT files from PDFs 78
7.3 Steps for manual generation of OPT files 78
7.4 Timetable selected for evaluation . 79
7.5 Steps’ time for automated extraction and manual extraction of Gondo-

marense timetable. 79
7.6 Timetable selected for evaluation . 80
7.7 Steps’ time for automated extraction and manual extraction of Avpacense

timetable. 81
7.8 Timetable selected for evaluation . 81
7.9 Steps’ time for automated extraction and manual extraction of AVMinho

timetable. 82
7.10 Timetable selected for evaluation . 82
7.11 Steps’ time for automated extraction and manual extraction of Rodonorte

timetable. 83
7.12 Timetable selected for evaluation . 84

8.1 Objectives and completion level . 88

A.1 Operator websites with respective method of timetable information 93

xiii

List of Rules

3.1 SWRL generic rule . 25
3.2 Rule for hasUncle . 26

6.1 Rule for defining the orientation of a table’s trips 61
6.2 Rule for defining trips individuals with negation 61
6.3 Rule for defining trips individuals . 61
6.4 Rule for inferring hasTrip property . 62
6.5 Rule for defining stopSequence if trip is a row 63
6.6 Rule for defining stopSequence if trip is a column 63

xv

List of Acronyms

DIKW Data, Information, Knowledge, Wisdom.
DTO Data Transfer Object.

EDOAL Expressive and Declarative Ontology Align-
ment Language.

ETL Extract Transform Load.

FAST Function Analysis System Technique.

GTFS General Transit Feed Specification.

IE Information Extraction.
IR Information retrieval.

NLP Natural Language Processing.

OS Operating system.

QFD Quality Function Deployment.

RIF Rule Interchange Format.

SMTP Simple Mail Transfer Protocol.
SWRL Semantic Web Rule Language.

URI Uniform Resource Identificator.
URL Uniform Resource Locator.

W3C World Wide Web Consortium.

1

Chapter 1

Introduction

1.1 Introduction

In a time when society views public transportation as a cost-effective and eco-friendly medium
of dislocation (Hong et al. 2016), there are opportunities for solutions that focus on the
publication of relevant information to the topic.

Different categories of solutions focus on the publication of relevant information, such as
real-time transport tracking, price optimization, topological map generation, or route opti-
mization. Most of these solutions have in common the prerequisite of information about
the schedules available in timetables.

For developing a solution to publicize information about timetable information or route
optimization, it is essential to understand the business of public transportation and the
decisions that improve the efficiency of the services offered. The transports timetable’s
information is in constant change, and, as a response to that environment, the system
needs a mechanism to handle the changes, maintaining access to precise and up-to-date
information. However, it is critical to address and resolve some concerns for the development
of such a system.

From a user perspective, the benefits of using a unique information service are not only to
have access to accurate information but also to search a mixed group of transport providers
resulting in the freedom of not being restricted to a specific provider or a single medium of
transportation.

When developing an information distribution system, considering the user necessities is es-
sential to integrate the data from the various providers into a standard format.

1.2 Context

The project described in the present document is the result of a collaborative effort with
OPT 1. This organization develops projects in the field of transports management and
optimization. One of those projects is a tool for performing an algorithmic generation of
optimized schedules to providers. This particular tool contains an export functionality that
allows the integration of the generated timetables with the OPT internal system, allowing
for other company tools to use that information.

1OPT website available at http://www.opt.pt/

2 Chapter 1. Introduction

However, some public transportation providers prefer to manually design the timetables
instead of using a tool-assisted system or use a different tool. The information about the
schedules of those providers’ vehicles is essential for other projects developed by OPT, for
example, a mobile application designated "Move.Me" that performs route optimization2.

The company manually verifies if the information available on the web was updated to address
this necessity of information and provide better services for its users. This information is
usually available on the websites of the providers that use an alternative to their software.
To remove the effort of this periodic task of verification, OPT wants to develop a system to
automatically detect changes and integrate the information available online on the providers’
website.

1.3 Problem

To maximize its vehicles usage and drivers’ efficiency, each public transportation company has
adopted different approaches when defining the vehicles’ route and the respective timetable.
The result is a complex set of rules and domain concepts that can vary depending on
operation conditions, time of the year, and transportation medium. This ambiguity leads to
an increase in the difficulty of the data integration phase.

Furthermore, most of the timetable information provided by those transport companies is
only available on their respective websites, where it is portrayed in a non-machine friendly
manner since the target audience is human users. Such information is then typically displayed
using an HTML table or a PDF file.

The nonexistence of APIs or machine convenient formats such as RDF, CSV, JSON, or
XML, results in an inefficient process for updating the information distribution system. In
extreme cases, the team in charge of the system must update the information after detecting
the changes manually. This process is also prone to human error, and without a service that
can detect the changes to the website information, the updating speed might not be up to
the user’s standards. If a user of a transports information application misses a train due to
outdated information, he could change to a competitor application in the time that takes
the next vehicle to arrive.

Since one of the predicaments when developing this type of solution is that the available
data is typically not machine friendly, there is also an issue when trying to infer metadata
from the available information formats.

It is impossible to infer the metadata of a given data set and guarantee its accuracy in
some cases. A possible solution is the development of a tool to assist the process of data
extraction. This approach can still be an improvement when comparing it to manually
updating since it reduces the resources needed to integrate the information from the various
sources into a centralized system.

The main benefit of this improvement is that once the mapping rules are defined, as long
as there are no future changes in the data structure, updates to the data will automatically
integrate with the information distribution system. However, before the phase of integration,
there must be a task of information extraction.

2Route Optimization App available at https://play.google.com/store/apps/details?id=com.
moveme

1.3. Problem 3

There is a wide variety of tools and techniques that specialize in extracting information from
semi-structured web-pages. To take advantage of the useful information existent on the
wide web is common the development of procedures designated by wrappers or web scrapers
that have the functionality of extracting a particular web resource’s content (Kushmerick,
Weld, and Doorenbos 1997).

Besides the problems and processes already presented, the solution changes depending on
the geographical and social-economical environment for which it will operate. In the Euro-
pean panorama, there are already well-defined standardized data formats to represent public
transport information. As an example, the DatexII surges as a response for exchanging traf-
fic information and traffic data in a standardized way, and promises to be a foundation for
communication protocols in self-driving cars (ICEACSA-TEKIA 2019).

This project targets the Portuguese public transportation’s environment, more specifically
the operators in Portugal’s capital (Lisbon) and the northern region of Portugal. By selecting
a broad set of websites in this case study, it was possible to document and understand the
different presentation methods used by operators.

It is essential to mention that the patterns identified in this group of operators can differ de-
pending on several factors, such as the operators’ team’s technical programming knowledge
or the budget for the website development.

Using the analysis of the 25 operators and websites presented in appendix A, the graph
shown in figure 1.1 represents the distribution per presentation method.

Figure 1.1: Distribution of operators by method of timetable presentation

The total number of results is superior to the number of operators because some operators
have more than one method for presenting their schedules.

Its easily notable that the most popular method of presentation is PDFs, followed by HTML
and General Transit Feed Specification (GTFS) files. From the selected operators, only 1
had a working API and another a Flash application, both represented in the "other" group.

A few of the operators use GTFS, a google maintained data format to represent public
transportation timetable and location coordinates (Google 2019). The operators presenting
the data using this format are all located in Lisbon, as a result of a project name "Open
Data Lisbon," which provides well-formatted and open data in several fields of management
(for instance, education, environment, mobility) (OpenLisbon 2018).

4 Chapter 1. Introduction

1.4 Objectives

Considering the problem presented, the main objectives of the project described in this
document can be divided in :

• Detect updates in the information sources.

• Perform information retrieval from the websites/files when changes are detected.

• Define input/output formats and respective mapping rules.

• Guarantee the consistency of information retrieved from multiple sources, allowing
inference and querying of information from transports with different transport providers

• Provide an interface to access and export the converted information.

The solution proposed to solve this problem is a set of software artifacts capable of automat-
ing the process of information retrieval and information integration. This solution handles
information retrieval by applying web crawling and web parsing techniques to the providers’
website combined with ontology-based information integration.

The following research questions can be formulated:

• What is an automated way to retrieve and integrate the schedules displayed in the
timetables?

• How is the quality of the results generated by this automated approach?

• How does the proposed solution compare with the manual approach?

With these questions in mind, the following optimizing hypothesis or enhancement hypothesis
is proposed:

An ontology-based system using web crawling and scraping can automate information re-
trieval and integration, reducing the resources necessary while retaining the information’s
quality if compared to a manual extraction and integration process.

1.5 Document Structure

This document is divided into the following chapters: Introduction, Project Value Analysis,
State of the art, Selection of technologies and solutions, Design, Evaluation of the solution.

In the first and current chapter, Introduction, the contextual framework of the project is
present. It is in this chapter that the problem and objectives of the project are specified.

The following chapter, the project value analysis, presents the project as a product, analyzing
the value of its features and functionalities for the costumers and stakeholders.

In the third chapter, state of the art, different approaches are studied and summarized from
books, articles, surveys, and technical papers describing solutions to similar problems. This
chapter also compiles the information on technologies to apply in the solution.

The fourth chapter, the Selection of technologies and solutions, compares the specificities
and characteristics of the technologies identified in the previous chapter, and selects the
ones suitable for the solution development.

1.5. Document Structure 5

The Design chapter contains the technical details for the system’s architecture. This chapter
represents several high-level architectural alternatives, displaying the design pattern resultant
from a software engineering methodology. Furthermore, it provides the detailed design of
the proposed solution that was selected.

The sixth chapter, titled Implementation, describes the process for the solution’s codification
alongside implementation details, algorithms, and code snippets.

In the "Evaluation of the solution" chapter, the methodologies, criteria, metrics, and mea-
surements to evaluate the solution are described.

The final chapter presents the document’s conclusion, mentioning the development’s con-
straints and future work suggestions.

7

Chapter 2

Project Value Analysis

This chapter presents the value analysis of the project. It defines the process for creating,
and explores the advantages and disadvantages of the solution proposed from the point of
view of the clients.

2.1 The innovation process

When developing a new product, whether it is a physical product, an alternative process,
or a straightforward service, the organization or individual must use a systematic process to
assess the benefits of the product’s features.

By applying a systematic process, it becomes possible to ensure that the features’ cost is
not higher than the cost necessary to carry out its functions. In other words, by using a
process to analyze the product’s value, it is possible to guarantee that the value is positive.

Considering that the project is being developed in cooperation with a company (OPT), it is
expected that the initial steps for an idea generation were addressed. More specifically, the
opportunity identification and opportunity analysis.

At the time, the company has over 25 years of experience in the market of public trans-
portation, and alongside the techniques of market research and technology trend analysis.

By understanding the external factors and opportunities, it is possible to initiate the genesis
of ideas. Most of these ideas and their consequential selection result from processes such
as brainstorming sessions.

It is then possible to use a systematic approach to value analysis. There exist several mod-
els, protocols, and techniques, but an example is the Function Analysis System Technique
(FAST), used to identify functions and accurately define the problem. According to Borza
(2011), FAST Diagrams provide a graphical representation of how functions are linked and
work together in a system to deliver the intended results.

In the figure 2.1, a possible FAST diagram for the element of concept definition, proposes
the higher function of improving the quality of the services offered by OPT by increasing the
offer of accurate information available in their system. The low order function is to detect
the changes in the data sources.

8 Chapter 2. Project Value Analysis

Figure 2.1: Proposed FAST diagram

FAST can also be used in conjunction with a different technique Quality Function Deploy-
ment (QFD), which allows determining the importance of each mechanism, or in this case,
each software component, by using a Value Analysis Matrix. As such, the matrix in figure
2.2 represents the importance of each mechanism considering the relevant functions defined
in the FAST diagram.

Figure 2.2: Proposed FAST diagram

The analysis suggests that web robots, integrators, and format parsers are the system’s
most relevant components.

2.2. Value definition 9

2.2 Value definition

Value creation can be defined as a trade-off between benefits and sacrifices perceived by
customers (Walters and Lancaster 2000). Since the primary purpose of this project is
to increase the offer and quality of products/services already present in the organization
and reduce the effort of processes used by the organization, the customer segments of this
solution can be defined as the final users of the organization’s tools and the own organization.

For the end-users of the organization’s products/tools, this project does not provide any
sacrifices. However, it provides value by having the benefits of a higher quality of routes,
resultant in an increase in the information in the system, and a faster process for updating
information.

However, for the organization and the organization’s affiliates, the solution presents the
sacrifices of increasing the number of projects that require maintenance in their platform
environment, increasing the maintenance costs and effort. Contrasting these sacrifices, the
product has the benefit of reducing the time required for the integration process, increasing
the quality and value of their products, and consequently improving the company’s image
and their products/services.

It is then possible to define the perceived value of the product for each of its customer
segments. For the end-users of the OPT products, the solution created has a null perceived
value. For these users, the solution’s existence is not known, and they can only notice a
quality increase in the services they already use. For the organization, the solution provides
an increase of information available in their system and an improvement for their credibility
and trust.

2.3 Value proposition

When defining a solution or product, it is essential to look at what the consumers need and
what can be additionally offered. A value proposition is ideal for defining these two concepts.

The value proposition is constituted by costumer profile (jobs, pains, and gains), along-
side the value map (products and services and their pain relievers and the gain creators)
(Osterwalder et al. 2014).

The customer profile section of the value proposition focuses on what the costumers have
to do, their jobs, the difficulties they find when executing their tasks, and what can be done
to improve the lives of these costumers.

The value map puts the business side of the equation in the spotlight. Its analyses are on
what are the products and services offered to the costumers, how these products ease the
customer pains, and how the gains the consumer would appreciate to have or be surprised
by the existence of can be created.

2.3.1 Jobs

The two very distinct types of customers identified have different tasks and necessities, so
for each user type is necessary to specify to which job they are assigned.

10 Chapter 2. Project Value Analysis

The organization and its elements have the jobs of verifying if the timetables’ information
was changed, update the information on their services, and support the information of new
providers.

Since the end-user of the organization systems is not aware of the existence of this internal
solution, having a null perceived value, it is possible to delegate their necessity of quality in-
formation to the organization. Thus, the organization also has the job of providing its clients
with accurate and diverse information regarding public transportation services’ timetables.

2.3.2 Pains

The pains of the organization are that the tasks necessary for integrating this information
are time-consuming and costly. Also, a dissatisfied client results in additional effort handling
complaints and a reduction in the organization’s image.

2.3.3 Gains

Considering the organization’s participation in the development of the solution, it becomes
difficult to identify its gains. The solution’s functionalities are the result of a collaborated
effort, and as such, the majority of those are designed to attenuate the pains. However, a
possible gain could be having a single view of the providers’ information not associated with
them. By versioning that data/information, it would now be possible to create a history or
timeline, where before that information would be lost once replaced by the providers.

2.3.4 Products and Services

As previously mentioned, the product is a software component that enables automatic ex-
traction of information about timetables of public transportation schedules from websites
and integrates it into standard formats.

2.3.5 Pain relievers

By automating the job of detecting and transforming the changes in timetables, part of
the effort and cost is reduced. Since this new information also increases the quality of the
company products, the number of complaints should be lower, and the organization’s image
should improve in the view of their clients.

2.3.6 Gain creators

If the system provides a tool for visualizing the information before exportation, the infor-
mation that previously was scattered on the web will be available in a single place under
the same view. Since the information is now integrated into the organization’s system, that
information can be versioned and accessed, even when it becomes unavailable on the original
website.

2.4. Canvas Model 11

2.4 Canvas Model

The canvas model is a simple but essential management tool to visually represent a business
model. It accomplishes to answer the questions about the business customers, partners,
resources, and activities such as "Who are our clients?", "What do our clients want?" or
"How will the clients be reached?"

This is achieved by summarizing the key aspects of that business model and representing it
by using an infographic.

In this project, the canvas model can be applied. However, it is important to mention that
although the project creates value for the company using it, it will only create value indirectly
for the end-users by improving the quality of the systems that they already use.

The canvas model represented in figure 2.3 was created considering the customer segment
as the company to which the product was created. As such, the customer relationships are
techniques used for a co-creation environment.

Since the benefits that this project offers for the company are reducing the time required for
the integration process, increasing the quality and value of their products, and consequently
improving their products’ image, there is no direct revenue stream for this product. Although
there is no direct monetary retribution, the product is capable of reducing the human effort
required by the task, and therefore should reduce the monetary amount spend on human
labor.

Figure 2.3: Proposed canvas model

It would be possible to create a canvas for the value propositions of the end-users customer
segments. This canvas would remain the same in the backstage (Key Partners, Key Activi-
ties, Key Resources, and Cost Structure), while in the front stage, the customer relationships
and channels would reflect the OPT’s already existing channels.

13

Chapter 3

State of art

In this chapter, it is documented the current approaches to resolve the concerns addressed
in the problem section of the document and existing technologies that can be applied in the
development of the solution. It presents an overview of the state of the art for information
extraction and information integration, with special focus on ontology-based approaches.

3.1 Information extraction

When dealing with information managing systems it is important to have a clear definition
and distinction between data, information, and knowledge. These three concepts are studied
in the philosophical field of epistemology, however, as a consequence of their use in computer
science, there are several interpretations and definitions of data, information, and knowledge
which results in inconsistencies and often conflicting results (Chen et al. 2008).

Donald Kraft provides a succinct, easy to understand and relevant definition. He defines
that Data are atomic facts, basic elements of “truth,” without interpretation or greater
context. Information is a set of facts with processing capability added, such as context,
relationships to other facts about the same or related objects, implying increased usefulness.
The information provides meaning to data. Knowledge is information with more context and
understanding, perhaps with the addition of rules to extend definitions and allow inference
(Zins 2007).

A complementary definition of knowledge is given by Donald Hawkins where he states that
knowledge "emerges from analysis, reflection upon, and synthesis of information" (Zins
2007)

Ackoff (1989) proposed this concept of continuous refinement and processing of the previous
result, this idea can be visualized using the pyramid represented in the figure 3.1 and is usually
referred as knowledge pyramid/hierarchy or Data, Information, Knowledge, Wisdom (DIKW)
pyramid/hierarchy. The concept of wisdom goes beyond the concept of knowledge, and it
allows not only to infer facts but also to make predictions and decisions to improve the
effectiveness of a process (Ackoff 1989).

14 Chapter 3. State of art

Figure 3.1: Knowledge pyramid

The desired system has to perform information extraction from different data sources. As
such, one of the main components in this solution is a set of tools to extract the desired
data.

Information Extraction (IE) is a term that has come to be applied to the activity of auto-
matically extracting configurable sorts of information from an input text (Gaizauskas and
Wilks 1998).

The techniques used for information extraction are dependent on the type of data source.
As previously identified, the majority of timetable information is available at the providers’
website as an HTML document or as downloadable PDF files. This creates the need to
access those web pages and extract the available documents.

The process of extracting data from the web is typically referred to as web scraping and
it is used in combination with the techniques of web crawling. In web crawling a set of
web robots (also known spiders) traverse the web indexing new web pages and downloading
meaningful documents (Mitchell 2018).

According to Gudivada et al. (1997) the web crawling process can be divided into three
different approaches for web traversal:

• Providing a seed Uniform Resource Locator (URL) (also known as base URL), and
find new URLs recursively in a breadth-first or depth-first fashion.

• Start with a set of URLs based on a Web site’s popularity and searching recursively.

• Partitioning the Web space based on Internet names or country codes and assigning
one or more robots to explore the space exhaustively.

The process of web crawling is better defined as a technique of Information retrieval (IR)
(Gudivada et al. 1997; Inkpen 2007), rather than IE. Since the main objective of the spiders
is only to collect documents, it is necessary to parse the collected documents to obtain the
desired information.

Information Retrieval can be co-related to the knowledge pyramid 3.1 where the facts in the
unstructured data and documents accessed by the spiders will be converted to information

3.2. Ontology 15

after the parsing process. This process will add context to the data and, most importantly,
add usefulness to the facts.

Considering the possibilities that arise from making use of the web and its vastness, it should
be no surprise that the topic of how to extract user-interested information automatically or
semi-automatically has become a research topic from researchers worldwide (Wei-Guo et al.
2010).

The current information extraction approaches can be divided into the categories of wrapper
based information extraction or concept model-based information extraction methods (Wei-
Guo et al. 2010).

3.1.1 Wrapper based information extraction

A wrapper is a software artifact, designed to extract content from a particular information
source. In a Web context a wrapper is a set of extraction rules suitable to extract information
from a website (Flesca et al. 2004).

Wrapper generation can be accomplished manually or automatically (Nekvasil 2007). There
is also the possibility of using a semi-automatic approach (Flesca et al. 2004).

When generating a wrapper manually, it is necessary to have a good knowledge in the domain
of the information to extract and the structure of the document with that information.
However there are some reasons why this is undesirable. Besides the high level of expertise
required, the process of writing rules is tedious and time-consuming (Muslea, Minton, and
Knoblock 1999). Another disadvantage of manually generated wrappers is the lack of ability
to adapt to document format changes.

As an alternative, it is possible to generate wrappers in a semi-automatic or automatic
fashion.

The automatic generation of wrappers is usually referred to as wrapper induction (Kushmer-
ick, Weld, and Doorenbos 1997). This generation can be done by training machine learning
models using sample web pages containing data similar to the desired. Another option less
documented is to interpret a user query, transforming it to the required set of rules using
them for extracting the information (Wei-Guo et al. 2010). The wrappers generated by this
approach have the main disadvantage of performing worst when compared to hand-written
wrappers (Flesca et al. 2004).

3.2 Ontology

The concept of Ontology stems from the philosophical field of metaphysics where it focuses
on the nature of being as the topic of study. A good definition comes from Heidegger (1967)
presented in his book Being and Time: "The task of ontology is to explain Being itself and
to make the Being of entities stand out in full relief".

In the computer science field, ontologies take a broader view, being applied to a domain,
and not only focusing on the Being of the entities but also the relationships between them.
The concept Ontology from Philosophy is usually distinguish in writing, from the one used
in the field of computer science/knowledge engineering, by being capitalized.

16 Chapter 3. State of art

Although there is no formal consensus on the meaning of ontology, the most accepted
definition in computer science communities is that "An ontology is a specification of a
conceptualization" as described by Gruber (1993). As Gruber states, an ontology is a
description of the concepts and relationships that can exist for an agent or a community of
agents.

As stated by Chandrasekaran, Josephson, and Benjamins (1999), the importance of analyzing
the ontologies of a given system’s domain is that an ontology allows the clarification of
the structure represented by the knowledge existent in that system. "Given a domain,
its ontology forms the heart of any system of knowledge representation for that domain.
Without ontologies, or the conceptualizations that underlie knowledge, there cannot be a
vocabulary for representing knowledge" (Chandrasekaran, Josephson, and Benjamins 1999).

In a practical sense, a solution’s metadata is a part of that system’s ontology since it repre-
sents its data structure, therefore specifying a narrow view of the concepts and relationships
present in that system’s domain.

Another difference from the characteristics of an ontology in computer science when com-
pared to Philosophy is that the ontology used to define a given entity, changes depending on
the aspects of reality selected to be represented in the encoding process (Chandrasekaran,
Josephson, and Benjamins 1999).

The objective of an ontology in computer science, is not to define the concepts as they are in
reality, but to define those concepts under the lens of a specific context. For example, in the
domain of vehicles, we would focus on particular aspects of reality if we were developing the
ontology for choosing an appropriate route, and focus on different aspects when developing
an ontology for an insurance company.

Therefore when creating an ontology it is important to not only understand the concepts to
be depicted but also take into account the desired context and the important characteristics
of the domain’s concepts under in that scope.

Authors have classified ontology’s on their levels of generality and the purpose of that
ontology. A categorization of the different types of ontologies with a succinct definition is
given by Staab and Studer (2010), where the following categories are identified (cf. Guarino
1997; Stephan, Pascal, and Andreas 2007; Van Heijst, Schreiber, and Wielinga 1997):

• Top-level ontologies or foundational ontologies, capture general concepts that are
domain-independent. This type of ontology specifies the conceptualization of com-
monsense knowledge such as space or time.

• Domain ontologies specify concepts and relations that are relevant for a specific do-
main.

• Task ontologies describe concepts that are specific for a task or activity.

• Application ontologies have the lowest level of abstraction and combine domain and
task ontologies, extending them with more refined domain and task specific concepts
and relations. The concepts specified must have the necessary detail to achieve the
requirements of the application that will use the ontology.

As mentioned some concepts specified in lower level ontologies can be a specialization of
a concept specified in an ontology of a higher level. As an example the concept. This

3.3. Data integration and information integration 17

hierarchical behavior is presented in figure 3.2 created by Guarino (1998) where the arrows
represent specialization relationships .

Figure 3.2: Ontology types hierarchy

By applying ontologies in the solution of the timetable problems it is possible to specify some
of the complex business rules. These complex rules are presented on the website, alongside
the timetable information, as an observation text in Natural Language. This rules can include
restrictions on the schedules such as "The schedules are not in service on holidays except if
it is a Sunday. If the holiday is on Mondays, they do not take place on the previous Sunday,
thus moving to that day." 1

3.2.1 Concept model-based information extraction

An alternative to using wrappers for information retrieval is to extract the information using
concept models.

This type of information extraction is preferred to use for unstructured text and to apply in
Natural Language Processing (NLP). The model is typically defined by the domain lexical
knowledge, extraction rules, and an ontology (Maedche, Neumann, and Staab 2003).

The result is usually information of concepts defined on the ontology, and optionally an
updated version ontology with some new concepts mined in the text analysis process (Wei-
Guo et al. 2010).

3.3 Data integration and information integration

Data integration is the problem of combining data residing at different sources, and providing
the user with a unified view of these data (Lenzerini 2002).

1retrieved and translated from http://www.avminho.pt/horarios

18 Chapter 3. State of art

According to White (2005) the techniques existent for data integration in the enterprise
environment can primarily be divided in:

• Data consolidation, a technique where several data sources are converted or con-
solidated into a single database. This process is usually executed using an Extract
Transform Load (ETL) tool.

• Data federation, a technique where the data sources are displayed using a virtual view.
The data is not locally saved being fetched from the data source when the visualization
is required. It is adequate to use in highly volatile data, or when the data is difficult
to consolidate.

• Data propagation, appropriate for when the enterprise has control of the data sources,
using event-driven propagation allowing to integrate distributed database using asyn-
chronous communication or by using a shared database / shared files.

Considering that information is just processed data with added usefulness, the same tech-
niques can be used for information integration as long as such usefulness is not lost in the
process.

For an ontology-driven system, since the information/knowledge is structured by a specified
format represented as an artifact and a set of rules, it is good practice to use ontology
integration and transformation to handle metadata changes and necessary conversions.

3.4 Integration and transformation of ontologies

After Berners-Lee, Hendler, and Lassila (2001) presented at the beginning of the twenty-
first century their idea for the semantic web or web 3.0, a World Wide Web where the
information would be categorized and easily understandable by software as a result of web
pages enriched with embedded semantics in machine-friendly formats, a large number of
ontologies surged in a wide variety of field, generating new challenges and opportunities
including the integration of different ontologies and knowledge bases.

The topic of ontology integration is vastly studied, giving origin to several definitions with
different meanings in the ontology engineering field. Some authors have differentiated the
several types of transformation of ontologies (cf. Choi, Song, and Han 2006; N. F. Noy
2004; Pinto, Gomez-Perez, and Martins 1999).

3.4.1 Ontology integration

The ontology integration process consists of the construction of an ontology by reusing a
part, or the integrity, of other ontologies. The source ontologies can have different domains
that are reused by composing them into a new ontology.

3.4. Integration and transformation of ontologies 19

Figure 3.3: Ontology integration

In exceptional cases a whole ontology can be built just from assembling other ontologies,
however, in the majority of cases of ontology integration, the new ontology has to specialize
the concepts provided by the source ontologies. As an example, this process can be used to
create application ontologies from domain and task ontologies.

3.4.2 Ontology merging

In ontology merging, two or more ontologies of the same knowledge domains are integrated,
creating a new ontology that represents the unification of these ontologies. The ontol-
ogy merging process differentiates from the process of ontology integration by unifying the
knowledge of several ontologies of the same domain in to a single one.

Figure 3.4: Ontology merging

20 Chapter 3. State of art

3.4.3 Ontology mapping

Since ontologies are only a perception of reality, being a context-dependent projection,
different ontologies can be used to represent the same knowledge.

Ontology mapping is the process whereby two ontologies are semantically related at the
conceptual level and the source ontology instances are transformed into target ontology
entities according to those semantic relations (Silva and Rocha 2003).

This is achieved by defining, either manually or automatically, the rules that allow relating
two or more ontologies. This task is usually referred to as ontology alignment, a process that
achieves consistency between the ontologies while keeping them separate. This is achieved
by creating links between the original ontologies.

Figure 3.5: Ontology mapping

An advantage of using this type of integration, when compared with the ones previously men-
tioned, is that by allowing the preservation of the heterogeneity of the different specifications
of the same domain (Santos 2008).

Some case studies in ontology mapping propose the creation of semantic bridges between
ontologies allowing the conversion of data to different data structures without damaging the
original information (Silva 2004).

3.5 Technologies

Knowing the approaches to solve the problem is not enough. To apply them, it is important
to find, study and select relevant technologies and tools to use in the solution’s development.

3.5.1 Web crawling and information retrieval

Starting with the technologies found for web crawling and information retrieval, the majority
of tools found were built for development in the python programming language. This pref-
erence for the python programming language could be attributed to it being prepackaged

3.5. Technologies 21

with a handful of general-purpose libraries and a well-established library environment (e.g.
NumPy library) for data science processes (Oliphant 2007), which usually require data sets
that can be obtained using information retrieval.

For the task of web crawling and information retrieval, the developer has some options when
it comes to the selection of the technologies to use within the python library environment.

3.5.2 Beautiful Soup

One approach for web crawling and information retrieval is to use two separate libraries, one
responsible for the HTTP requests handling and a different library for the parsing of the
collected documents.

When using this approach, the most common technological selection is to use a simple re-
quest handling library (e.g. python-requests 2) and Beautiful Soup, a python library designed
to extract data from HTML and XML files. Its approach to parsing is to format the HTML
by fixing messy sections and simplifying it by presenting it as a traversable python object
which represents the original XML (Mitchell 2018).

The spiders created using this approach work as python scripts. This allows them to be run
in a stand-alone manner using a standard command line.

3.5.3 Scrapy

A different approach is to use a full-fledged framework designed for the task of web crawl-
ing/web scraping. Scrapy is an open source and collaborative framework for extracting the
data you need from websites. It encourages the usage of good programming practices, such
as code re-usage by using a specified project structure (3.6) that supports the addition of
middleware code.

In the "items.py" the developer adds the Items, objects representing the structure of the
scraping output, to be returned after the extraction of information by the spiders. It is
possible to define different pipelines, that will be used depending on the type of the Item
returned.

As previously mentioned, it is possible to add middleware code, that is executed when using
the downloading pipeline and the spider processing pipeline. This allows modifying a request
and response, for example, to add/remove headers to every request before sending.3

2Detailed information and documentation can be found at https://github.com/psf/requests
3More information on the Scrapy architecture can be found at https://docs.scrapy.org/en/latest/

topics/architecture.html

22 Chapter 3. State of art

Figure 3.6: Standard Scrapy project directory structure

The main advantage of using Scrapy is that it eases the process of web crawling by han-
dling URL collecting/extraction, evaluating the identified URLs as external or internal and
selecting the next web page to scrape (Mitchell 2018).

When writing extraction rules, the Scrapy frameworks uses a python library named parsel4

that allows to define Selectors specified either by XPath or CSS expressions.

Regarding deployment, the spiders created using Scrapy can be run in a single or group
fashion. There are platforms specialized for deploying Scrapy projects in the cloud5, allowing
the automation/scheduling of crawling actions and providing options to visualize and save
the extracted data and links.

3.5.4 Regex

Regex or regular expressions can be used alongside both approaches and it is key to a
powerful, flexible and efficient text processing. Regular expressions present a set of general
pattern notation6, allowing to describe and parse text using a pattern matching technique
(Friedl 2006).

Regular expressions are supported in different programming languages, including the python
standard library re 7 , making its usage a good alternative for defining extraction rules.

3.5.5 XPath

XPath is one of the possible ways to access specific parts of a DOM tree when using Scrapy.
In contrast with using CSS expressions, XPath allows the manipulations of Node Axes,

4Parsel documentation available at: https://parsel.readthedocs.io/en/latest/
5Scrapy cloud service available at https://scrapinghub.com/scrapy-cloud
6A regular expressions’ cheat sheet can be found at https://regexr.com or in Friedl 2006
7Detailed information and documentation can be found at https://docs.python.org/3/library/re.

html

3.5. Technologies 23

making it easy to navigate the Tree and easily accessing the relationships of the nodes (e.g.
children, parent, siblings).

More specifically, XPath is query language specialized for XML documents, allowing it to
address parts of those documents, while also providing basic facilities for manipulation of
strings, numbers, and booleans. It works by using a compact, non-XML syntax to facilitate
allowing to navigating through the hierarchical structure, which is similar to the path notation
used in URLs (Clark, DeRose, et al. 1999).

3.5.6 Portia

Portia is a tool that allows to visually scrape websites. By using Portia is possible to annotate
a web page to identify the data to extract, and with the knowledge of those annotations,
Portia will attempt to scrape data from similar pages.

It provides a user interface with an embedded browser, and it allows the manual selection
of the type of HTML fields to be scraped by click. By default, Portia crawls by following all
in-domain URLs, but it works on a basis of configuration, where constraints can be specified.

Portia can be define as a wrapper induction tool, where the output of a crawling and a
scraping configuration is an executable spider which uses the Scrapy framework.

3.5.7 Semantic web stack

The Semantic Web was created to extend the potency of the web from merely sharing
documents via HTML to sharing data by enabling links as Uniform Resource Identificator
(URI). This allows linked data to be shared effectively by wider communities and provides
an opportunity for that data to be processed automatically by robotic tools (Hoyland et
al. 2014). Presented in the figure 3.7 is the architectural and technological stack for the
semantic web, provided and maintained by the World Wide Web Consortium (W3C), based
in the original definition described by Berners-Lee (2000) and retrieved from Hoyland et al.
(2014).

Understanding the group of technologies and concepts presented in the Semantic Web
architecture is key to develop an ontology-based solution to a web-driven problem. The
technologies and concepts presented are considered the standard for solving such problems
and promise to work as the foundation of the idea of the semantic web.

24 Chapter 3. State of art

Figure 3.7: Semantic Web architecture stack

The first layer consists of URIs and the Unicode character set. These tools are present on
the web most users currently use, where it is used to represent resources and text. Unicode
is the standard for encoding character sets worldwide. It allows that all human languages
and most symbols (from emoticons to Egyptian hieroglyphs) can be used on the web using
one standardized form. A URI is simply a string of characters used to identify a name or
resources on the internet.

The syntax layer consists of technologies to encode and distribute documents over the web,
where XML or Turtle are the viable options. XML is the standard for encoding documents
and for defining a syntax for knowledge encoding within the Semantic Web. In the context
of the Semantic Web, Turtle has the same purpose as XML allowing it to textually represent
an RDF Graph.

RDF is the standard model for data interchange on the Semantic Web. RDF is designed to
represent information in a minimally constraining and flexible way. It was originally designed
for describing Web resources such as Web pages. However, RDF resources may be physical
objects, abstract concepts, in fact anything that has identity. Thus, RDF defines a language
for describing just about anything (Brian McBride 2004).

It can be used in isolated applications, usually for simplifying the definition of the format
of resources, but RDF’s generality offers greater value for sharing data (Klyne, Carroll, and
B McBride 2004).

As an evolution of RDF, RDFS or RDF Schema 8 can be used in the Taxonomy layer. RDF
8RDFS properties can be found at https://www.w3.org/TR/rdf-schema

3.5. Technologies 25

Schema adds a mechanism to describe taxonomies of classes and properties. It distinguishes
between a class and that class’ instances (Brickley, Guha, and Brian McBride 2014).

The W3C OWL is a Semantic Web language designed to represent rich and complex knowl-
edge about things, groups of things, and relations between things. As mentioned by McGuin-
ness, Van Harmelen, et al. (2004) the OWL is designed for use by applications that need to
process the content of information instead of just presenting information to humans. OWL
facilitates greater machine interpretability of Web content than that supported by XML,
RDF, and RDF Schema by providing additional vocabulary along with a formal semantics.

The ontologies created with OWL are used to define knowledge bases which contain the
following parts :

• Abox - Assertion axioms (e.g., instances)

• Tbox - Terminology axioms (e.g., classes)

• Rbox - Role hierarchy axioms (e.g., property chains)

In the query layer, SPARQL allows querying RDF. A SPARQL query can also be executed
on any database that can be viewed as RDF via middleware. For example, a relational
database can be queried with SPARQL by using a Relational Database to RDF mapping
software. However, SPARQL is more than just a simple query language. It is also an HTTP-
based transport protocol, where any SPARQL endpoint can be accessed via a standardized
transport layer. This allows the making of queries that can access multiple data stores9.

On the rules layer of the architecture, the technologies defined to support the semantic web
are RIF (Rule Interchange Format) and Semantic Web Rule Language (SWRL) . SWRL is
a rule language which was designed as an extension to OWL and Rule Interchange Format
(RIF) was designed as an interchange format for exchanging rules between rule systems,
such as those that implement SWRL. An OWL ontology, in the abstract syntax, contains a
sequence of axioms and facts where axioms may be of various kinds, e.g., "subClass" axioms
or "equivalentClass" axioms. The main purpose of SWRL is to extend this with rule axioms
using the syntax defined in the generic formula presented in the SWRL Rule 3.1, where p is
a predicate symbol and var1, . . . varn are the arguments of the expression (Braga 2013).

p(?var1, ...varn) ∧ ...p(?var1, ...varn)→ p(?var1, ...varn) ∧ p(?var1, ...varn)

Rule 3.1: SWRL generic rule

It provides simple function to manipulate data properties such as "swrlb: multiply" or "swrlb:
stringConcat" and allows to handle the knowledge using first order logic with the objective of
asserting new individuals or their properties. To improve the compression of this document
and add separation between the logic rules created and the technologies used, first order logic
notation is used for representing SWRL rules. A concrete simple example of a SWRL rule
would be to assert that the combination of the hasParent and hasBrother properties implies
the hasUncle property (Horrocks et al. 2004) as showned in swrl rule 3.2, now presented
with first order logic notation.

9The fundamentals of SPARQL queries can be found at https://www.ontotext.com/knowledgehub/
fundamentals/what-is-sparql/

26 Chapter 3. State of art

∀x, y , z : hasParent(x, y) ∧ hasBrother(y , z)→ hasUncle(x, z) ∧ i sUncle(z, T rue)

Rule 3.2: Rule for hasUncle

Since OWL operates on an open world assumption, the definition of rules and axioms are
important to assert the ontologies consistency, since inconsistencies can be detected by
using a reasoner.

Cryptography, Unifying Logic, Trust and Proof layers are just the concepts to work as
foundation for the semantic web reliability, accuracy and trustworthiness (Braga 2013).

3.6 PDF Extraction

As previously demonstrated in chapter 1.3, the majority of operators use PDF files to rep-
resent their timetables.

A solution to address the extraction of information from timetable would not be complete
without proving a solution to that representational format.

Developing a solution or technique to handle PDF extraction would be a time consuming
task. An easier alternative is to use a open source software program, and tailor it to the
domain of public transportation and transport timetables.

Various approaches have been put forward to solve this issue. If the focus is shift at the
extraction of tabulated data, the most relevant solutions are Tabula (Aristarán et al. 2018)
and Camelot (Mehta 2020). Both programs are executable via a terminal, but also provide
a web application that allows support to the PDF extraction.

A comparison between both application is presented in table 3.1

Table 3.1: Comparison between Camelot and Tabula

Tabula Camelot / Excal-
ibur

Has a Graphic User Interface Yes Yes (named Excal-
ibur)

Programming Language Java, JRuby Python,
Javascript

License MIT MIT
Has an API to receive external PDFs No No
Requires additional software No Yes (Ghostscript)
Extraction algorithm Lattice and

stream
Lattice and
stream

Last version release date 4 June 2018
(v1.2.1 release)

17 July 2020
(v0.4.3 for excal-
ibur)

3.6. PDF Extraction 27

Source code url https:
//github.
com/tabulapdf/
tabula

https:
//github.com/
camelot-dev/
excalibur

Both programs use two separate extraction methods, lattice and stream. In lattice the
algorithm identifies the lines that form the table structure. In stream the spacing between
the text is analysed to form the column and rows of the table (Aristarán et al. 2018) (Mehta
2020). Stream is more versatile than lattice since it can be executed in tables that contain
lines and table which do not10.

As a side note, there is also a simple Python wrapper implementation of Tabula, however it
does not work as a Graphic User Interface, but as a python library only offering support to
the tabula core.

10A comparison between the algorithms of both solutions can be found at https://github.com/
camelot-dev/camelot/wiki/Comparison-with-other-PDF-Table-Extraction-libraries-and-tools

29

Chapter 4

Selection of technologies and
solutions

In this chapter, the information retrieval and information integration technologies and ap-
proaches identified in the State of the art are compared and selected.

4.1 Selection for information retrieval

Starting with information retrieval, the approaches identified were concept model-based
extraction and wrapper based extraction. The first one is mostly used for Natural Language
Processing and, as such, is not a good alternative for retrieval where the text is scattered in
several web pages. The alternative is using wrappers, which can be hand-written or created
by using wrapper induction. The technologies identified for creating hand-written wrappers
were using Beautiful Soup or Scrapy, and Portia for wrapper induction. To ensure the value
of this solution, it is necessary to guarantee the output information’s quality and credibility.
Since wrappers generated by induction perform worst compared to hand-written wrappers,
Portia is less viable than the other options for this specific problem.

The choice between Scrappy and Beautiful Soup depends on the complexity of the crawling
and scraping problem. Considering the number of websites to extract and the diversity of the
documents and information, a Scrapy project will help the code maintainability, extensibility,
and reusability. Since the wrappers created using either alternative use the same rule and
query technologies (XPath, CSS selectors, Regex), a wrapper created using Beautiful Soup
can be implemented in Scrapy and have an extraction with the same accuracy. Differences
can occur in metrics like execution time, but considering the requirements of the solution,
those have a low to none impact in the selection and are highly dependent on request and
response times and, therefore, it is dependent on the network connection’s velocity and
stability at the time of execution.

Nevertheless, considering that both approaches are viable, two different prototypes can be
created and evaluated using metrics relevant to the execution environment, such as memory
usage, while also considering the difficulty of creating wrappers in each technology with
effort estimation.

Although concept model-based extraction cannot be applied in this solution, ontologies can
and should be used. The proposed approach is to extract the information using either Beau-
tiful Soup or Scrapy, downloading any PDF files found and storing the information in a

30 Chapter 4. Selection of technologies and solutions

temporary format that can be processed to dynamically generate the ontology’s individual-
s/instances.

Regarding the extraction of PDF data/information, since the objective is to create a proto-
type tool capable of extracting the tabulated data while at the same time adding information
related to the transportation business, the program selected as a codebase must be simple
and fast to modify.

The tailored version will only be usable on a subset of the operators. As such, the PDF
extractor should work as a proof of concept for this type of representation formats.

With this in mind, the Camelot / Excalibur was selected as it offers the advantages of having
the technological stack as the other components and having a simpler architecture, making
it simpler and faster to modify. In contrast, Tabula lacks documentation, and changes to
the code base can be time-consuming, as mentioned in recent criticisms on Tabula, which
are summarized in Rosén (2019).

4.2 Selection for data and information integration

From the types of data integration identified (data consolidation, data federation, and data
propagation), the proposed approach to solve the problem at hand uses data consolidation
combined with techniques used in data federation. Considering there is interest to preserve
versions of the information, data federation can be removed from the viable approaches,
since it only creates a virtual view without persisting the data.

The proposed solution would be using the event-driven part of data propagation to initiate
a data consolidation process. However, the event-driven technique used in data propagation
is designed to be used when the developer has control over the data source and can fire
the events on updates. In this process, the push approach of firing events would have to be
replaced by a periodic pull operation, where the system verifies if updates have occurred on
the external data sources (providers websites).

The tasks of data consolidation presented in the ETL (extract, transform, load) tools would
be equivalent to extracting using wrappers, transforming using ontologies defined in OWL
/ RDFS and ontology mapping, and the loading is equivalent to storing the python object-
s/ontologies in a database, RDF store or data warehouse.

31

Chapter 5

Analysis and Design

This chapter of the document contains the analysis of the solution’s requirements and the
descriptions of the solution’s design alternatives.

5.1 System requirements analysis

With the public transportation operators selected, the websites to search for the information
are already defined. It is then necessary to design a system that can extract that data and
transform it into information understood by the system. The use case diagram presented in
figure 5.1 represents two actors, where each one executes a different set of use cases. The
first actor is the system itself, responsible for the scraping, crawling, parsing, and applying
data mappings. The other is the end-user, which requires information for its end system and
wants to consult the information extracted from the websites and export it using standard
formats.

Figure 5.1: System’s Use Cases

The system’s operation can be described as a single pipeline, where each execution will
integrate the information contained in the websites. The operations in this pipeline follow
the logic represented in the activity diagram represented in the figure 5.2, and are initiated
by a scheduled task that verifies if the timetables were updated.

32 Chapter 5. Analysis and Design

Figure 5.2: Activity diagram for high-level view of action in the integration
process

5.2 High-Level design alternatives

Before starting to declare and organize the system’s components, it is essential to under-
stand and define the term spider. Spider is just a different name for web crawlers, small
software artifacts to search and crawl the web. As previously mentioned, there are differ-
ent approaches when using developing a project with manually created spiders to crawl web
pages. The first one is to create individual spiders; each is self-contain or standalone and
works in a script-like fashion. Their purpose is to access a website and crawl it while recov-
ering any crucial data. For this first approach, an example of a component diagram with a
coarse-grained can be found in figure 5.3.

Figure 5.3: High-level, coarse-grained component diagram for multiple spiders

5.2. High-Level design alternatives 33

Besides the spiders, the diagram also suggests a possibility to the components that give a
response to the user-related requirements using a client-server architecture. This approach
structures the components using patterns to enforce that the database is only accessible by
the "BackEnd" component. This approach results in a higher cohesion and the reduction
of the coupling between the database and the other components.

The previous diagram only shows two spiders; however, the number of spiders required is a
lot higher in the problem’s solution. The solution requires different types of spider, such as
:

• Spiders to verify if the website was changed, by verifying values like the last updated.

• Spiders to locate tables and scrape the information.

• Spiders to download the relevant PDFs.

.

It is vital to consider that some providers only change the timetable information seasonally,
for instance, semesterly or per trimester and that the scheduling of the spiders can be
variable. Having a set of spiders to verify if the website was changed allows reducing the
number of times where the scraping is required, reducing bandwidth usage, improving the
speed of the operation, and the spiders’ politeness. An example of this process’s sequence
of actions can be found in the diagram in figure 5.4.

Figure 5.4: Example of a sequence diagram using different types of spiders

This high number of spiders reinforces the necessity to use a client-server architecture and
exposes some issues with the first alternative. The most noticeable is that there is no
code reusage from spider to spider. The lack of code reusage introduces complications in
the maintenance process, where for example, a change to the Parsing API location would
require changes to every spider due to code duplication. As beautifully put by Hunt and
Thomas (1999), "every piece of knowledge must have a single, unambiguous, authoritative
representation within a system".

A possible solution to resolve this is to create a single project containing every spider, re-
moving the self-contained property by introducing dependency with shared code. A scraping
framework can be used to achieve this, further enforcing the usage of good programming
practices and design patterns. Having a single project to work allows us to accelerate the

34 Chapter 5. Analysis and Design

process of creating a new spider and allows the simplification of communication with other
components of the solution.

Another possible optimization is to remove the need for the "SpidersToVerifyUpdates" (fig-
ure 5.4) to communicate with the "BackEnd" component to inform the results of execution
and instead replace it for a caching database (e.g., Redis1). An alternative that combines the
commons component for the spiders and a Caching Database is represented in the diagram
in the figure 5.5.

Figure 5.5: High-level component diagram for alternative using a spider
project and a caching database

5.3 Event driven communication

So far, the design alternatives present an issue when it comes to defining the order of
execution between spiders. As an example, the process where the execution of a "Spi-
derToScrapeTimetable" is explicitly triggered when "SpiderToVerifyUpdates" identifies an
update, introduces dependencies that can be difficult manage with the growth of the number
of spiders.

As a response to this issue, an event-driven approach implementing a publisher/subscriber
pattern using a message bus was designed in the diagram represented in the figure 5.6. When
using a publisher/subscriber pattern, the responsibility of continuing the flow of execution
becomes independent from the publisher becoming decoupled in both time and space from
the subscribers (Eugster et al. 2003). As a result, the open/closed principle is applied, and
an addition of a new spider to the system does not require to change previously created
spiders to add logic for the sequence of executions.

1More information about Redis and documentation can be found at https://redis.io/documentation

5.3. Event driven communication 35

Figure 5.6: Component diagram for alternative using a message bus in the
spider project

This event-driven approach can be taken to an extreme by designing an alternative with a
messaging approach for asynchronous communication.

The alternatives presented so far use a synchronous technique for communicating between
the system components. Some operations, such as the spiders’ requests to the webserver
containing the pages, need to be executed synchronously. However, the communication
between the spiders and the Backend can be done asynchronously.

A way to achieve this is by replacing the message bus internal to the spiders’ project for an
external message broker. This can not only reduce the dependencies that result from the
spiders’ scheduling but also remove the need to design an API for parsing. By introducing
a message broker, it is possible to divide the "BackEnd" component in different services,
allowing for flexibility in the technology selection, increasing the components’ cohesion, and
reducing their coupling.

For example, a service responsible for handling the execution of ontology mapping can be
developed in a language with better support for the Web Ontology Language (OWL) and
a different language for creating the user’s service to export timetables. By dividing the
server-side into several components, it is also introduced some modularity to the system.
The dependency between these two functionalities becomes weakened, and the service to
export timetables can unknowingly receive data from different publishers. This applies from
a high-level perspective, the open/closed principle, and the single responsibility principle.

Considering the nature of the domain and the application’s functionalities, a microservice
approach using decomposition by sub-domain would not present benefits, since the user
operations require the information to be accessed as a whole. However, a decomposition by
business capabilities is a viable approach, resulting in something similar to the architecture
represented in the figure 5.7 and in the table 5.1

36 Chapter 5. Analysis and Design

Figure 5.7: High-level component diagram for alternative using a message
broker and multiple Backend services

Table 5.1: Components for an alternative using a message broker and multiple
Backend services and description

Component Name Brief Component Description
Ontology Parser Transforms the events received from the spiders about the

scrapings into ontologies representing the information in
each export format

RDF Store Option database if ontology persistence is beneficial. Can be
used to keep a history of the several versions of the timeta-
bles

PDF parser Performs PDF mining from tables with embedded text. Uses
the Operating system (OS) File System.

Notification Service A service to notify the users. Depending on the preferred
channel of notification can use different external APIs. In
the representation, it uses an Simple Mail Transfer Protocol
(SMTP) Server for email notification as an example.

Timetable Exporter Allows the user to view the timetables extracted and export
the information according to several formats

The main advantage of using a microservice approach is the improved scalability/elasticity of
the system. These characteristics are essential to high demand systems where its reliability
is essential and may be beneficial to achieve, even at the price of losing performance per
instance due to an increase in network bandwidth overhead. The main disadvantage of this
alternative results from the fact that using a message broker introduces a single point of
failure to the application and the possibility of message loss. This issue can be resolved
by scaling the application by deploying several instances of the message broker or applying
reliability patterns (e.g., sending an acknowledgment of message received).

5.4 Ontology design

To achieve the system’s primary objective, the information extracted could be represented
as an ontology referent to each data structure, allowing the extraction of information from

5.4. Ontology design 37

several sources and conversion into different exportable data structures. Although the use of
an ontology is more complicated than a typical ETL approach, this could be useful consid-
ering the complexity of the data. Besides the timetable information, it is also important to
acquire the observations text that typically represents an exception to the regular schedule
presented in the timetable.

Not only the input information is complex, but the different output formats also contain
different vocabulary and concepts. One of the output format desired is the one already
supported for importation in the OPT system environment, a set of CSV files with the
structure represented in the figure 5.8.

Figure 5.8: Domain model for the OPT import files

A different output format interesting for the field of timetable declaration is the GTFS
format, which is specified in the figure 5.9 (Mouncif and Boulmakoul 2014).

38 Chapter 5. Analysis and Design

Figure 5.9: Domain model of the GTFS format

Considering the necessity to map data from multiple sources formats to different ontol-
ogy formats, it is advantageous to create an intermediate ontology that can be used as a
canonical format and function as a bridge to facilitate the mapping process and the data to
knowledge conversion.

This process’s components are illustrated in figure 5.10, in which the Web resources’ data is
extracted and mapped onto the intermediate/bridge ontology’s ABox, and further mapped
into the file representation ontologies.

This approach reduces the number of mappings required for adding a new web resource.
Adding a new Web resource only requires a mapping to the intermediate ontology. The
same happens when adding a new representation.

5.5. Proposed design selection 39

Timetable Web
resources

Bridge
ontology

File representation
ontologies

Target file
formats

Figure 5.10: Mapping pipeline showing the ontologies involved in the format
conversion process

5.5 Proposed design selection

The proposed architecture embodies the following key design principles or design guidelines:

Loose coupling - By creating well-defined interfaces between the different components, it
becomes possible to protect each component from external changes. Any changes on one
side do not affect the other as long as the interface remained stable.

Language independence - The system uses web services and messaging channels to establish
communication between the different components. Both techniques are standard practice in
the industry, and a wide array of languages provides implementations. Using these techniques
allows for the addition of new components or tailored projects without having to be restricted
to the other components language (Mak 2007).

Modularity - An advantage of a loose coupling system is that the components can be replaced
with an alternative implementation. A well designed modular system not only allows the
interchangeability of its parts but also allows for its components to be used in other systems,
improving the overall system’s reusability.

Reusability - The system ensures reusability through different ways for each component.
For instance, the web scraping service provides a set of configurable web scrapers/ spiders.
Configuration allows reusing the same spider for different websites of different providers by
simply changing a few initial variables. Not only is there an abstraction of the informa-
tion’s source, but there is also an abstraction of the information’s domain. This means
that, hypothetically, the scraping component can extract information outside of the pub-
lic transportation domain, as long as it is configured and executed with the correct initial
parameters.

Extensibility - An extensible system allows the addition of new functionalities and assures
the reduction of the required to implement the new functionality. One of the main design
choices that improve this system extensibility is polymorphism and dependence injection.
For example, a new extraction algorithm could be implemented without changing the code
responsible for the algorithm execution. Developing a system for extensibility "leads to fewer,

40 Chapter 5. Analysis and Design

cleaner, dependencies, well defined interfaces and abstractions with corresponding reduction
in coupling and higher cohesion" (Kelly 2002).

Due to the iterative nature of the development process, it was expected that the proposed
solution design would progressively diverge from the initial alternatives.

From a high-level perspective, the proposed solution contains most of the components de-
fined in the diagram presented in figure 5.5 while taking into account the problems which
lead to the changes in the diagram in the figure 5.7.

The communication between the spiders/robots and the Backend happens asynchronously,
using the previously proposed publish/subscribe pattern. In addition, the spider project
provides an HTTP API designed for the execution of the spiders. The result is the system
represented in figure 5.11.

Figure 5.11: High level implementation / development view of proposed so-
lution’s system

As previously mentioned, although hand-written wrapper(spiders) perform better when com-
pared to those generated by wrapper induction, they have the disadvantage of being tedious
and time-consuming to create (Flesca et al. 2004).

A way to minimize the cost of developing these spiders is to create generic spiders that are
parameterized to become configurable.

A scraping project that contains generic spider with executions configurable by their parame-
ters can also contain custom made spiders for specific websites. As such, if a specific website
requires a different approach from the ones available in the generic spiders, its scraping can
be accommodated. As such, for a data retrieval solution, there are few disadvantages of
using this approach, although it requires additional care to the security of the application
when defining the parameters to avoid malicious code injections.

The Job Scheduler is responsible for scheduling scraping requests periodically and for con-
figuring the execution of generic spider. Consequently, the job scheduler provides a remote
facade (Fowler 2002) to the spiders’ project API (represented as Scraping job API).

5.5. Proposed design selection 41

The Timetables Backend is responsible for handling the scraping responses, mapping the
data onto the ontologies, and handling the persistence of that information. The Timetables
Backend also offers the export endpoint from which users can request the generated files.

5.5.1 Spiders Project low-level design

This component contains a set of spiders/robots that instantiate items subjected to a se-
quence of pipelines, similar to the pipes-and-filters architectural pattern (Monroe et al.
1997). From a fine-grained perspective, the spiders’ project has the design simplified in
figure 5.12.

Figure 5.12: Low level logical view of Spider Project

The pipelines’ order of execution is configured by an integer defined in the settings object,
starting with the lower value to higher valued classes. An example of this process is simplified
in the sequence diagram 5.13, where the Engine / Mediator is the Scrapy engine.

Figure 5.13: Spider and pipeline execution sequence in Spider Project

The settings object can also include additional properties for improved configurability. Since
the settings object is not private to the spider, it can be accessed by the pipelines. For

42 Chapter 5. Analysis and Design

example, adding a property for the message broker queue name allows different spiders to
have different destination queues for their data.

5.5.2 Job Scheduler low level design

This component schedules spider executions from the spiders’ project. The Job Scheduler
communicates with the spider’s project using the Scraping job API and provides a Scheduler
API that works as a facade to the Scraping job API. A fine-grained design diagram is
represented in figure 5.14

Figure 5.14: Low level logical view of Job Scheduler

The generic spiders in the spiders’ projects are executed via the Scraping job API, using the
set of profiles available to the Request Scheduler. A profile is the group of parameters that
configure the execution of a generic spider.

This component is also responsible for resolving the previously identified issue of handling
dependencies and triggers in spiders’ executions (refer to 5.3). This problem is resolved
by consuming an execution’s response from the message broker and handling the events by
scheduling new spider executions if necessary.

The definition of which executions are triggered from which events is done via configuration
and the Mediator object has the responsibility of managing it (Gamma et al. 1995). This
allows to reduce the coupling between the system’s components, and by applying the single
responsibility principle, it improves the program’s comprehension and maintenance (Gamma
et al. 1995).

5.5.3 TimeTables Backend low level design

The timetables Backend is responsible for consuming the extracted data and exporting
the data mapped into the desired formats. This component interacts with the ontologies,
creating individuals of the Timetable ontology and mapping them into the file representation
ontologies. A fine-grained overview of this component is represented in figure 5.15

5.5. Proposed design selection 43

+export_gtfs_files(agency_name)
+export_opt_files(agency_name)

API Controller

-agency : String
-location_name : String
-latitude : Double
-longitude : Double

LocationCoordinates

+consume()
+handle_item_callback(body)

Queue Listener

+process_alignment(alignment, target_ontology, origin_ontology) : Ontology
+generate_properties(origin_ontology, target_ontology, alignment_graph)
+generate_individuals(origin_ontology, target_ontology, alignment_graph)

Ontology Matcher

+create(location)
+read(location_id)
+update(location)

Location Repository

-api_key

+request_google_maps_location(location)

GeocodingAPI

+create(timetable)
+read(timetable_id)
+read_by_agency(agency)
+update(location)

Timetable Repository

+run_algorith(data, timetable) : Timetable

<<Interface>>
Mining Algorithm

Ontologies

+create(object)
+read(object_id)
+update(object)

<<Interface>>
Repository

-repository : LocationRepository
-geocoding : GeocodingAPI

+get_location() : LocationCoordinates

LocationService

-agency : String
-rows : List<String>
-columns : List<String>
-stop : List<String>
-stop_time : List<String>

+apply_algorithm(algorithm)

Timetable

+run_algorith(data, timetable) : Timetable

HTML Timetable Algorithm

+generate_files(target_ontology)

File Generator

Alignments

+create_timetable(item_data) : Timetable

Director

+generate_individuals(instances_list) : Ontology

Ontology Generator

<<use>>

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<instantiate>>

<<use>>

Visual Paradigm Standard Edition(João Baptista Monteiro Westerberg(Instituto Superior de Engenharia do Porto))

Figure 5.15: Low level logical view of Timetables Backend

This component consumes the responses from spiders’ execution, which create and persist
timetable object. When a message is received in the queue, a mining algorithm is selected,
creating and persisting a Timetable instance. This process is represented in figure 5.16.

loop

[for each item_data in body]

<<Interface>>
Mining Algorithm

instance : Timetable

Timetable RepositoryDirectorQueue Listener

1.2.4.1: run_algorithm(self.item_data, self)

1.2.4: apply_algorithm(mining_algorithm)

1.2.1: select algorithm

1.2.2: instantiate()

1.2.3: instantiate(item_data)

1.3: create(timetable)

1.2.5: instance

1.2: create_timetable(item_data)

1.1: handle_item_callback(body)1: Message body retrieved from queue

Visual Paradigm Standard Edition(João Baptista Monteiro Westerberg(Instituto Superior de Engenharia do Porto))

Figure 5.16: Process of creating and persisting timetables

The Mining Algorithm’s concrete implementations encapsulate the logic for extracting in-
formation from the raw data. Simultaneously, the timetable contains the logic for creating
its internal components (for example, instance.create_stop(stop_data)).

When creating the concrete implementations of the Mining Algorithm, the composite design
pattern can be applied alongside the chain of responsibility pattern, improving the separation
of concerns (Gamma et al. 1995) and following the Open/Closed Principle (figure 5.17
(Meyer 1997)).

44 Chapter 5. Analysis and Design

Figure 5.17: Mining Algorithm concrete implementations with separation of
concerns

The timetable object represents a set of instances in the Timetable ontology. The Timetable
Backend component also provides the API to export the files. When it receives an export
request, the timetable’s instances are retrieved from the database using the repository, and
the process of generating individuals is initiated, as represented in 5.18.

File GeneratorOntology
Matcher

Ontology
Generator

Timetable RepositoryAPI Controller

User

1.6: zip generated files

1.5: generate_files(target_ontology)

1.7: return zip with requested files

1.4.3: generate_individuals (origin_ontology,
target_ontology, alignment_graph)

1.4.2: generate_properties (origin_ontology,
target_ontology, alignment_graph)

1.4.1: Load target ontology
and alignment

1.4.4: target_ontology

1.4: process_alignment(target_ontology_path, alignment_path, bridge_ontology):

1.3.2: Creates instances

1.3.1: Loads bridge ontology

1.3.3: bridge_ontology

1.3: generate_individuals(timetable)

1.2: timetables

1.1: read_by_agency(agency)

1: export gtfs files
GET \gtfs?agency= {agency}

Visual Paradigm Standard Edition(João Baptista Monteiro Westerberg(Instituto Superior de Engenharia do Porto))

Figure 5.18: Low level logical view of Timetables Backend

5.5.4 Solution deployment

Regarding the solutions’ deployment, the designed proposed provides flexibility on where
and how the system executes. By using virtual environments, it is possible to manage the
packages and modules that do not come as part of the standard library. These virtual
environments are a self-contained directory tree that contains a Python installation and
additional packages. As expected, the virtual environments facilitate the deployment in a
new physical device or a cloud environment.

5.5. Proposed design selection 45

Applying other good practices, such as setting/configuration files to configure the location of
components and the location of their external APIs, makes it possible to scale the application
using horizontal duplication. With horizontal duplication, the same application runs multiple
copies behind a load balancer 2.

The diagrams in the figure 5.19 and figure 5.20 represent the two deployment approaches
for this solution. By providing two contrasting approaches, it is possible to understand the
limits of the solution regarding its distribution and the flexibility of its deployment.

Figure 5.19: Deployment view of the solution in a single device

The first approach provides a design view, where a single device is used to contain multi-
ple components. Each component is executed inside its virtual environment, allowing for
different python versions and library versions to co-exist within the same device.

A scrapyd container encapsulates the Spiders Project component. Scrapyd is a service dae-
mon for running Scrapy projects and spiders that provide a JSON web service and transforms
the web service request into the Scrapy console commands required to run a spider.

2More information on horizontal duplication and other scalability dimensions can be found at https:
//microservices.io/articles/scalecube.html

46 Chapter 5. Analysis and Design

Figure 5.20: Deployment view of the solution distributed in several devices

The second deployment view provides a scenario on the other side of the spectrum. In this
approach, every service is deployed on a different physical device. As previously mentioned,
it is possible to scale the application service by running a new copy of a service and a load
balancer. As an example, it would be possible to add a new copy of the Timetables Backend
in a different machine and use the message broker with multiple queues for an exchange to
achieve round-robin consumption.

5.6 Excalibur design for PDFs’ information extraction

The open-source Excalibur project was selected and tailored to fit the solution’s requirements
for extracting the data and information from the agencies’ PDFs. From a coarse-grained
perspective, the Excalibur project contains the components illustrated in figure 5.21.

Figure 5.21: Deployment view of the solution distributed in several devices

From a more detailed perspective, the project can be represented as illustrated in figure 5.22.
The Excalibur project contains a Frontend developed using Jinja3, a Model-View-Template,
that fills HTML templates with the responses received by the Backend API client.

The Backend contains an HTTP API to access the Camelot library’s functionalities while
also containing the classes required for the data persistence and the file importation.

3Documentation regardings jinja can be found at https://jinja.palletsprojects.com/en/2.11.x/

5.6. Excalibur design for PDFs’ information extraction 47

Figure 5.22: Deployment view of the solution distributed in several devices

A message broker client was added to the Excalibur code base to integrate the Excalibur
project into the solution’s system. The Excalibur Backend can then communicate with the
other solution’s components using the channels already defined in the message broker.

When receiving a list of URLs identified by the spider as PDF, the files are downloaded and
connected with Excalibur’s file import features.

Figure 5.23: Deployment view of the solution distributed in several devices

Finally, after extracting the files’ information, a message is sent to the appropriate message
broker exchange to be consumed by its subscribers.

49

Chapter 6

Implementation

This chapter of the document describes the implementation process of the solution from the
design described in 5.5. It begins by describing the generic spiders’ implementation and job
scheduler. It continues with the ontology engineering process and, finally, with the Backend
services’ implementation details.

6.1 Spider project implementation

The spider project is the component responsible for data/information retrieval. This compo-
nent consists of spiders and common/shared classes that promote code reusage from spider
to spider. The shared classes are either items or pipelines.

"Items" is the Scrapy terminology for the simple python objects returned from a spider’s
parse method. These objects are implementing the pattern usually referred to in software
engineering as Data Transfer Object (DTO) (Fowler 2002), and, as its name would suggest,
are objects whose purpose is to specify the structure of data transferred in the communica-
tion between system’s components.

Scrapy pipelines are middleware components that can be used for:

• cleaning HTML data

• validating scraped data (checking that the items contain certain fields)

• checking for duplicates (and dropping them)

• storing the scraped item in a database

Pipelines are classes implementing the process_item and close_spider methods as demon-
strated in code 6.1.

50 Chapter 6. Implementation

c l a s s Rabb i tMQPipe l i n e (o b j e c t) :
. . . # S e t t i n g up c h ann e l and c o nn e c t i o n

d e f c l o s e_ s p i d e r (s e l f , s p i d e r) :
da ta = s e l f . e n code r . encode (s e l f . i t ems) #encode r =

ScrapyJSONEncoder ()
i f l e n (data) > 0 :

s e l f . i t ems = []
s e l f . c h a nn e l . b a s i c_p u b l i s h (exchange= s e l f .

exchange , r ou t i ng_key= s e l f . r ou t i ng_key , body=data)
s e l f . c h a nn e l . c l o s e ()
s e l f . c o n n e c t i o n . c l o s e ()

d e f p roce s s_ i t em (s e l f , i tem , s p i d e r) :
s e l f . i t ems . append (i t em . copy ())
r e t u r n i t em

Listing 6.1: RabbitMQ pipeline (Python).

Finally, as previously explained, generic spiders were constructed to reduce the development
time required to scrape a website. These generic spiders share the same pipelines and items.
The generic spiders implemented are "URL Extractor," "Single timetable per page," spider,
and "Multiple timetables per page" spider.

6.1.1 URL Extractor

This generic spider is responsible for crawling a web site and finding its relevant URLs. It
receives a root URL and a set of parameters that restrict the scope of the crawling. Those
parameters are presented in table 6.1 alongside a brief description.

Table 6.1: URL Extractor Attributes

Attribute Name Brief Description
event_name Event to be published in the response
agency_name Name of the agency
root Starting URL of execution
allow_domains Domains allowed
allow Restrictions to subdirectories using regex
allow_pdf Boolean value where if true logs the URL of the PDFs found

Using the initial URL, the spider finds URLs embedded in the HTML and iterates them
recursively with a depth-first search algorithm. The extraction of embedded URLs is done
using the LinkExtractor object from Scrapy 1.

The process of URL crawling is presented in a simplified format in the algorithm 6.1
1Documentation about LinkExtractor at https://docs.scrapy.org/en/latest/topics/

link-extractors.html

6.1. Spider project implementation 51

Algorithm 6.1 Algorithm for extracting a URL item
1: Input: Response object response, List of items l ist
2: Output: Items created
3:
4: procedure CreateURLItems(response)
5: ur ls ← extract_ur ls(response) . Current URL is replaced by new URLs
6: if ur ls not empty then
7: l ist.add(create_item(response))
8: for each ur l ∈ ur ls do
9: if ur l not pdf then
10: return Request(ur l, cal lback = CreateURLItems)
11: end if
12: end for
13: else
14: return l ist
15: end if
16: end procedure

The Scrapy framework takes advantage of a trait present in the python programming lan-
guage. By requiring the spiders to use the yield operator, instead of returning the obtained
values, the spider parse function becomes a generator.

In simple terms, a generator is a function that behaves as an iterable and can be thought
of as an iterator that contains a frozen stack frame (Van Rossum et al. 2007). When a
function asks for the next element in the generator, the operation resumes until the next
yield value.

Considering this, although the algorithm might suggest that it implements a depth-first
search, the responsibility of managing the URLs navigating and selecting the crawling order is
delegated to the Scrapy core. This implementation allows a developer to swap the searching
algorithm by altering the project configuration file’s respective property.

Besides finding the hyperlinks of an HTML page, this spider can also be configured to extract
the URL of PDF files using the allow_pdf property. This boolean property has the default
value of false, but if changed, the ".pdf" extension is removed from the deny_extensions
used by the LinkExtractor.

If the execution finds any PDFs, these responses are passed to the PDFPipeline and are
downloaded, as demonstrated in code 6.2.

c l a s s PDFF i l e P i p e l i n e (F i l e s P i p e l i n e) :
d e f f i l e_ p a t h (s e l f , r e qu e s t , r e s p o n s e=None , i n f o =None) :

o r i g i n a l_ p a t h = s up e r (PDFF i l eP i p e l i n e , s e l f) . f i l e_ p a t h (
r e qu e s t , r e s p o n s e=None , i n f o =None)

sha1_and_extens ion = o r i g i n a l_ p a t h . s p l i t (’ / ’) [1] #
d e l e t e d e f a u l t ’ f u l l / ’ f rom the path

name = r e q u e s t . u r l . s p l i t ("/") [−1] . s p l i t (" . ") [0] # get
o r i g i n a l name o f document

f o l d e r = r e q u e s t . meta [’ agency_name ’] # s e t the f o l d e r
name as the agency_name

r e t u r n f ’ { f o l d e r }/{name}_{ sha1_and_extens ion } ’

d e f get_med ia_request s (s e l f , i tem , i n f o) :
r e t u r n [s c r a p y . Request (x , meta={ ’ agency_name ’ : i t em [’

agency_name ’] }) f o r x i n i t em . ge t (’ f i l e _ u r l s ’ , [])]

Listing 6.2: PDF pipeline (Python).

52 Chapter 6. Implementation

6.1.2 Single Timetable per page

While the previous spider is responsible for extracting the relevant URLs for the scraping,
this generic spider receives a list of those URLs and returns items according to the parsing
specifications. The configuration attributes are represented in table 6.2 alongside a brief
description.

Table 6.2: Spider attributes

Attribute Name Brief Description
agency_name Name of agency
urls List of urls
config Dictionary of XPath expression and respective name

The config property specifies the target HTML element and how those XPath expressions
can parse/access the elements. For each entry in the config, spider parses the HTML as
demonstrated in algorithm 6.2.

Algorithm 6.2 Algorithm for extracting a timetable item
1: Input: HTML data named html an a dictionary, conf ig
2: Output: Item created
3:
4: procedure CreateItems(html, conf ig)
5: item ← new timetablei tem
6: for each (Element,XPathExpression) ∈ conf ig do
7: item[Element]← html.extract(XPathExpression)
8: end for
9: return item

10: end procedure

The process of extraction presented in the algorithm is slightly simplified to improve interpre-
tation. The algorithm can is complemented with the code in 6.3, showcasing the response
handling. Showing the code is the easiest way to communicate how the Scrapy framework
handles the extraction of HTML elements from raw data using XPath expression.

de f s t a r t_ r e q u e s t s (s e l f) :
f o r u r l i n s e l f . u r l s :

y i e l d s c r a p y . Request (u r l , c a l l b a c k = s e l f . p a r s e)

d e f p a r s e (s e l f , r e s p o n s e) :
i t em = Tab l e I t em ()
f o r key i n s e l f . c o n f i g :

e l ement = r e s p o n s e . xpa th (s e l f . c o n f i g [key]) . e x t r a c t ()
t r a n s_ t a b l e = { ord (c) : None f o r c i n u ’ \ r \ t \n\ xa0 ’ } # remove

u n d e s i r a b l e un i c od e c h a r s from e x t r a c t e d data
i t em [key] = [e lem . t r a n s l a t e (t r a n s_ t a b l e) f o r e lem i n

e l ement]
y i e l d i t em

Listing 6.3: Simple generic spider for HTML response handling
(Python).

In this operation, the data from the web pages begin to be processed into information. The
dictionary described in the config property will be the catalyst in the data to information

6.1. Spider project implementation 53

conversion. During the scraping process, the spider identifies and names specific HTML
elements, adding context to the retrieved data. Thus, it is possible to use a finite set of
names/flags that can be used by the Backend components for identifying the correct method
of data/information mining. The names/flags used are:

• direction - element with the timetable name and direction, usually a heading tag(e.g.,h1,h2)

• service - element with the timetable schedule(e.g., Monday to Friday), usually a head-
ing tag or an HTML label

• table - element with the table information, usually an HTML table or div

• observations - element with additional information, usually a heading tag or HTML
paragraph

6.1.3 Multiple Timetables per page

The previous spider handles websites where each URL has a specific timetable. However,
some public transportation agencies use websites in which a single page displays multiple
timetables.

These webpages should not be confused with scraping single-page applications. In this
scenario, the objective is still to scrape a static web page, but instead of retrieving a single
item for URL, it retrieves multiple items (timetables).

Although XPath extractors still perform the extraction of data, the result of those extractors
will be a list of HTML elements instead of a single element.

Using the Web page in figure 6.1 and the elements identified, the spider can generate two
items containing a service, a title, a table, and observations. Some elements need to be
shared by multiple items (in this example, the service, and observations).

Figure 6.1: Example of multiple timetables per page

This spider requires some additional parameters that are not present in the "single timetable
per page" spider to achieve that behavior. The parameters and their brief description are
presented in table 6.3.

Table 6.3: Spider attributes

54 Chapter 6. Implementation

Attribute Name Brief Description
agency_name Name of agency
urls List of urls
config Dictionary of XPath expression and respective object

name in page_structure
page_structure Dictionary with position order of elements in the web

page’s HTML and respective XPath
item_structure List of items to be created using the elements found

Figure 6.2 presents an example for the property values required to extract multiple items
from 6.1.

Config

ServiceXPath

TitleXPath

TableXPath

Observation
XPath

Page Structure Item Structure
service : ServiceXPath

title1 : TitleXPath

title2 : TitleXPath

table1 : TableXPath

table2 : TableXPath

observations :
ObservationXPath

service:
service,
title: title1,
table: table1,
observations:
observations

service:
service,
title: title2,
table: table2,
observations:
observations

Figure 6.2: Properties for multiple timetables spider example

The page structure-property does not require the definition of the entire web page’s struc-
ture. Instead, it identifies groups of HTML elements. If the web page contains four HTML
div elements, each with child elements following the structure presented in 6.2, the result
will be eight items. The algorithm 6.3 demonstrates how this can be achieved.

Algorithm 6.3 Algorithm for extracting Multiple Timetables per page
1: Input: HTML data named html , two dictionaries, conf ig, page_structure and a list of dictionaries
item_structure

2: Output: List of items created
3:
4: procedure CreateItems(html, conf ig, page_structure, item_structure)
5: item_l ist ← new list
6: html_elements ← new dict
7: for each (XPathExpressionId, XPathExpression) ∈ conf ig do
8: html_elements[XPathExpressionId]← html.extract(XPathExpression)
9: end for

10: while html_elements.has_elements() do
11: elements_value ← new dict
12: for each (ElementName,XPathExpressionId) ∈ item_structure do
13: elements_value[ElementName]← html_elements[XPathExpressionId].remove_f ir st
14: end for
15: for each structure ∈ item_structure do
16: item ← new item
17: for each (ItemAttr ibute, ElementName) ∈ structure do
18: item[ItemAttr ibute]← elements_value[ElementName]
19: end for
20: add item to item_l ist
21: end for
22: end while
23: return item_l ist
24: end procedure

6.2. Event mediation with job scheduler 55

6.2 Event mediation with job scheduler

The Job Scheduler is the software component responsible for making execution requests to
the spiders and handles the events published with the spiders’ response.

This component requires for the spiders to be deployed using a scrapyd container since it
depends on the API provided by the scrapyd container for its full operation 2.

The scrapyd API should be accessed exclusively by the job scheduler. As previously noted,
the spiders require a set of parameters for their execution. This way, the job scheduler only
allows the scheduling of spider executions by using pre-specified configuration files called
execution profiles.

These execution profiles are JSON files, located in the "jsonResources" folder of the project
root, that define a set of parameters to configure a generic spider execution.

The Job Scheduler runs three different threads, each representing a different type of action
that leads to an execution’s scheduling. These three different actions are:

• Scheduled execution, for example, every day at 01:00, use a group of execution profiles
to run specific executions

• User request via the Scheduler API (refer to subchapter 5.5.2)

• Consumed events that triggers new requests

For the first type of action, using the schedule3 and time packages, the following code 6.4
represents scheduling, where "scrape/avminho" is the name of the profile to be executed
every day at 1:00 am.

de f d a i l y_ s c h e d u l e () :
s c h e d u l e . e v e r y () . day . a t (" 01 :00 ") . do (
d a i l y_ s c h e d u l e_ c a l l b a c k)
w h i l e True :

s c h e d u l e . run_pend ing ()
t ime . s l e e p (60)

d e f d a i l y_ s c h e d u l e_ c a l l b a c k () :
R equ e s t S c h edu l e r () . s c h edu l e_ r equ e s t_w i t h_u r l s (" s c r a p e /
avminho ")

Listing 6.4: Daily Scheduling (Python).

For the second action type, the API implemented receives a query parameter from the API
consumer sends a query parameter, representing the profile’s name. The endpoints were
implemented using the Flask4 library / micro-framework as demonstrated in the example
code 6.5.

2Detailed information about the scrapyd API is available at https://scrapyd.readthedocs.io/en/
stable/api.html

3Documentation for the schedule package at https://schedule.readthedocs.io/en/stable/
4More information about Flask and documentation is found at https://flask.palletsprojects.com/

en/1.1.x/

56 Chapter 6. Implementation

app = F l a s k (__name__)

de f run_app () :
w i t h open (’ . / j s o nR e s o u r c e s / c o n f i g . j s o n ’) as
c o n f i g _ f i l e :

c o n f i g = j s o n . l o a d (c o n f i g _ f i l e)
app . run (p o r t= c o n f i g [’ API_Port ’])

@app . r o u t e (’ / e x t r a c t ’)
d e f e x t r a c t () :

s c h e d u l e r = Requ e s t S c h edu l e r ()
p r o f i l e = r e q u e s t . a r g s . ge t (’ p r o f i l e ’)
s c h e d u l e r . s c h e d u l e_ r e q u e s t (f " e x t r a c t /{ p r o f i l e }")

Listing 6.5: API Scheduling (Python).

The last action that leads to an execution’s scheduling comes from event handling. After
executing a URL Extraction spider, an event is created and published to the RabbitMQ
exchange/queue. The job scheduler will then consume this event, as demonstrated in code
6.6.

de f consume () :
c h a nn e l . bas ic_consume (queue= ’ i t em ’ ,
on_message_ca l lback= i t ems_queue_ca l l back , auto_ack=
True)
c h ann e l . s t a r t_consum ing ()

d e f i t ems_queue_ca l l back (ch , method , p r o p e r t i e s , body) :
med i a t o r = Med i a to r ()
j son_body = j s o n . l o a d s (body)
med i a t o r . n o t i f y (j son_body ["event_name"] . pop () , l i s t (
j son_body [" u r l s "]))

Listing 6.6: Event Scheduling (Python).

After consuming the message with that event, the job scheduler’s Mediator object accesses
a configuration file containing a dictionary where the keys are the event_names, and the
values are the list of execution profiles to be scheduled. The Mediator verifies which profiles
should execute after the event is triggered and schedule those executions, as presented in
code 6.7

c l a s s Med i a to r () :
d e f __init__(s e l f , e v e n t s_con f i g=" e v e n t s " , s c h e d u l e r =
Requ e s t S c h edu l e r ()) :

w i t h open (f " . / j s o nR e s o u r c e s /{ e v e n t s_con f i g } . j s o n ")
as j s o n_ f i l e :

s e l f . e v e n t s = j s o n . l o a d (j s o n_ f i l e)
s e l f . s c h e d u l e r = s c h e d u l e r

d e f n o t i f y (s e l f , e v en t : s t r , u r l s : l i s t) :
i f e v e n t i n s e l f . e v e n t s :

f o r f i l e n am e i n s e l f . e v e n t s [e v en t] :
s e l f . s c h e d u l e r . s c h edu l e_ r equ e s t_w i t h_u r l s (

f i l e n ame , u r l s)

Listing 6.7: Event mediator from job scheduler (Python).

6.3. Implemented ontologies 57

6.3 Implemented ontologies

As already established, for the development of this solution, ontologies were developed to
describe the data’s structure and mediate the mapping between output formats.

The proposed solution includes three ontologies. Two of these ontologies represent the
structure of the desired output files. In contrast, the other ontology works as a bridge
connecting the different data formats of the same domain with the file representation on-
tologies. These ontologies were developed using Stanford’s Protege tool (N. Noy et al.
2001) and are expressed in RDF/XML (Beckett and Brian McBride 2004).

The development of the GTFS and OPT ontologies was simple. The objective of these
ontologies is to represent the classes and taxonomy represented in the desired output. For
the OPT format, the classes and properties created in OWL/RDF-S result from the domain
model previously described in the diagram in figure 5.8. For GTFS, an outdated GTFS
ontology 5 was repurposed and customized to represent the current file formats.

The two file representation ontologies are domain ontologies about public transportation,
each under a slightly different scope of view. Using the words of Gruber (1993), "An
ontology is a specification of a conceptualization", so in this concrete example, there are
two different specifications of the same domain concepts.

Each of these ontology uses different terminology to describe similar concepts. An approach
that would allow the representation format’s interchangeability is to design the timetable
ontology as a domain ontology that contains the terms of both representations. As previously
identified in 3.4.2, this type of integration is categorized as ontology merging, where a new
ontology that represents the unification of the ontologies to integrate is created to work as
the common ground.

However, it is essential not to lose focus on the issue at hand. The support of multiple
output formats is secondary to the main responsibility of the bridge ontology. This ontology
connects the unorganized and unformatted data retrieved by the spiders with the organized
and formalized output formats.

Although using a domain ontology as the bridge ontology can enable the support of multiple
file representation, its usage increases the difficulty of the initial data mapping, mapping the
unorganized data to instances of the ontology.

A different approach is to design the bridge ontology as a task ontology that specifies the
format of how this type of data is generally found online. This approach allows the spiders
to map the data to the bridge ontology’s Abox easily.

When it comes to representing public transportation data, most representation includes the
name of a route and a table with the stops and passage times. As such, the bridge ontology
needs to contain the terms necessary to describe the data in that original format, alongside
axioms that provide context and understanding, enabling the extraction of information and
knowledge.

The bridge ontology can contain terminology from the target ontologies as necessary, and
the instances of those terms can be inferred using axioms.

5GTFS ontology can be found at http://vocab.gtfs.org/gtfs.ttl#, credited to Pieter Colpaert and
Andrew Byrd

58 Chapter 6. Implementation

Using the timetable in the figure 6.3 as an example 6, some concepts typical of these
representations can be identified and specified.

Route

Stops Stops Time

Table

Figure 6.3: Example of online timetable with concepts identified

The process of ontology engineering involves not only understanding and codifying the con-
cepts represented but also codify the concepts, axioms, and rules for how tabulated data is
presented and how a human reader perceives this data under the scope of transport sched-
ules.

For instance, this includes describing the parts of a table, the difference between a row and
column, and other logical assumptions subconsciously understood by a human reader due to
their exposure to these types of formats.

By analyzing the concepts of a scheduling table (such as the one in figure 6.3), it is possible
to obtain the ontology’s classes, properties, and taxonomy represented in figure 6.4.

Figure 6.4: Table related OWL classes and properties

This representation contains the property partOf used in the following axioms 6.1 and 6.27.
6Timetable retrieved from http://www.avminho.pt/horarios
7An overview of the description logics notation is explained in Baader (2003)

6.3. Implemented ontologies 59

TableItem v ∃partOf.Table (6.1)

TableComponent v ∃partOf.Table (6.2)

Besides the properties represented, the ontology contains the inverse properties presented
in table 6.4.

Table 6.4: Inverse properties of timetable ontology

Property Inverse Property Inverse Property
Domains

Inverse Property Range

partOf hasPart Table TableComponent t TableItem
hasColumn hasItemInColumn TableColumn TableItem
hasRow hasItemInRow TableRow TableItem

Considering the topic and purpose of the ontology, the ontology concepts may not be
related to the domain of public transportation but instead to the representation of a table.
For example, to differentiate the subClasses of TableComponent, which are TableRow and
TableColumn, the class Orientation was added, resulting in the following axioms.

TableRow v hasOrientation(Horizontal) (6.3)

TableColumn v hasOrientation(Vertical) (6.4)

These axioms also required the addition of the instances "Vertical and Horizontal" to the
Abox of the ontology. When a reasoner executes, as a consequence of these axioms, every
instance of TableRow will have the property hasOrientation with Horizontal, and the same
applies to the TableColumn and Vertical.

At first sight, these axioms might seem simplistic and unrelated to the topic of public
transportation or even integration. However, these embedded semantics can be used to
define complex classes or to query the knowledge graph.

The next step after defining a timetable visualization’s basic concepts was to add domain
concepts to the ontology. Preferably the concepts share the same name as the ones present
in the target outputs.

Using the domain model of the GTFS format presented in figure 5.9 the table 6.5 was
created representing the added domain concepts. Since most of the concepts present in the
diagram were optional, the table only contains the essential and relevant concepts with a
brief description. These concepts were then defined as OWL classes.

Table 6.5: Domain concepts from GTFS format

Concept Brief Description
Agency Public transportation company or public transport provider
Stop Geographic location where vehicles pick up or drop off riders

60 Chapter 6. Implementation

Stop Time Time that a vehicles departs from a specific stop
Trip A trip is a sequence of two or more stops that occur during a

specific time period
Route A route is a group of trips under the same name, usually the

origin stop and the destination stop
Service A service is the weekly schedule of a given route. A route can

have multiple weekly schedule each with different trips. For ex-
ample a Sunday service that has a trip starting at 9:30, and a
Monday service with different trips

Except for "Trip", all other concepts can be extracted from the spiders’ execution. How-
ever, it is still required for the ontology to maintain or create the relationships between the
extracted data.

Using a timetable different from the one represented in the figure 6.3, the timetable repre-
sented in the figure 6.5 possesses the same visual components 8 but the grouping of elements
is different.

Figure 6.5: Example of online timetable with stops grouped in a row

In the previous example (figure 6.3), the stops were displayed in a column, where in this
example (figure 6.5) are displayed in a row.

This ambiguity causes issues when trying to identify the individuals that are Trips. In the
first table, a trip was a column with the exception of the column with stops. The second
table presents the reverse situation, and a trip becomes a row. The following axioms and
rules solve this ambiguity.

8The figure only represents a portion of the timetable retrieved from https://www.metrodoporto.pt/
frontoffice/pages/337

6.3. Implemented ontologies 61

TableComponent u (≥ 2 hasItemInColumn.Stopt ≥ 2 hasItemInRow.Stop)

v StopsTableComponent
(6.5)

∀x, y , z : Table(x) ∧ StopsTableComponent(y) ∧ hasPart(x, y)
∧ hasOrientation(y , z)→ routeOrientation(x, z)

Rule 6.1: Rule for defining the orientation of a table’s trips

At first, the axiom 6.5 defines that if a TableComponent contains more than one stop, it
has the superClass StopsTableComponent (which is a subclass of TableComponent).

With this information, it is then possible to identify the orientation in which the Trips are
represented for that table because the Trips will have the same orientation as the Table-
Component with the routes stops.

Using this information is then possible for the reasoner to infer which instances of Table-
Component are Trips. Using a closed world assumption, an axiom such as 6.2 would
work. However, due to OWL’s open-world assumption, the reasoner cannot assume that
every TableComponent that is not asserted as a StopsTableComponent is an instance of
¬StopsTableComponent.

∀x, y , z : Table(x) ∧ TableComponent(y) ∧ hasPart(x, y) ∧ routeOrientation(x, z)
∧ hasOrientation(y , z) ∧ (¬StopsTableComponent)(y)

→ TripTableComponent(y)

Rule 6.2: Rule for defining trips individuals with negation

The issue with the open-world assumption could be easily solved if the Abox of the solution
was static. If that were the case, that property could be asserted about the individuals.
However, since the Abox of the ontology needs to be dynamic and filled in by an external
source, it is necessary to find an alternative.

Therefore the SWRL rule in 6.2 was changed to 6.3. Instead of verifying that if a Table-
Component is not a StopsTableComponent, this was changed for premise that verifies if the
TableComponent has a StopTime item.

∀x, y , z : Table(x) ∧ TableComponent(y) ∧ hasPart(x, y) ∧ routeOrientation(x, z)
∧ hasOrientation(y , z)

∧ (≥ 1 hasItemInColumn.StopTimet ≥ 1 hasItemInRow.StopTime)(y)

→ TripTableComponent(y)

Rule 6.3: Rule for defining trips individuals

62 Chapter 6. Implementation

Additionally, it is necessary to create a property to describe the relationship between the
class StopTime and the newly created TripTableComponent. This can be done by defining
the rule 6.4

∀x, y : TripTableComponent(x) ∧ (hasRow t hasColumn)(y , x)→ hasTrip(y , x)

Rule 6.4: Rule for inferring hasTrip property

When defining axioms/rules for inferring properties in OWL, there are two different ap-
proaches. The first is to use SWRL rules as represented, for example, in rule 6.1 for
creating defining new properties/roles using first order logic. A different approach that does
not require SWRL is to apply complex role inclusion axioms to construct complex roles from
more straightforward / atomic properties. This can be achieved by using property chains.

However, since some premises of the rule can be class assertions, to express the rule in
OWL, its necessary to use a transformation called rolification. The rolification of a concept
A results in a new role RA defined by the axiom A ≡ ∃RA.Self (Krisnadhi, Maier, and Hitzler
2011). As such by defining the axiom 6.6 it is possible to transform the SWRL rule 6.4
into the OWL axiom 6.7 and axiom 6.8 where hasTrip has the domain StopTime and range
TripTableComponent.

TripTableComponent ≡ ∃RT r ip.Self (6.6)

hasRow ◦ RT r ip v hasTrip (6.7)

hasColumn ◦ RT r ip v hasTrip (6.8)

The technique of rolification for defining complex roles can also be applied to other concepts
of this ontology. The example expressed in axiom 6.9 uses rolification for defining the class
of both individuals. The axiom 6.9 establishes the property hasStop between individuals with
the classes StopTime and Stop that shares the same column.

RStopT ime ◦ hasColumn ◦ hasItemInColumn ◦ RStop v hasStop (6.9)

Unfortunately, property chains cannot be used for data properties. For this reason, inferring
data properties still require the creation of SWRL rules. As an example of an important data
property in the integration process is the property of stopSequence. This property represents
in GTFS the order of stops for a particular trip, and it is represented as a property of a stop
time instance.

The stopSequence is co-related to the index of the column or row in which that stopTime
is located, and that is perpendicular to the TripTableComponent. This property is easily
visualized using the timetable in figure 6.6. This figure represents the timetable in figure
6.5 with the domain concepts of StopsTableComponent, Trip, and index identified. In this

6.4. Backend service 63

example, every component, its simple to verify that the value of stopSequence is equal to
the index of the TableColumn.

Figure 6.6: Example of online timetable with trips and index representation

Since property changes cannot be used for data properties, the following SWRL rules (6.5
and 6.6) were defined to handle this property’s inference.

∀x, y , z, i : StopTime(x) ∧ hasTrip(x, y) ∧ TableRow(y) ∧ hasColumn(x, z)

∧ index(z, i)→ stopSequence(x, i)

Rule 6.5: Rule for defining stopSequence if trip is a row

∀x, y , z, i : StopTime(x) ∧ hasTrip(x, y) ∧ TableColumn(y) ∧ hasRow(x, z)
∧ index(z, i)→ stopSequence(x, i)

Rule 6.6: Rule for defining stopSequence if trip is a column

6.4 Backend service

The components described thus far are able to scrape the data from websites, add context
to that data by naming the HTML elements extracted, and describe the knowledge and
structure of the information presented in those visual formats.

However, in order to transform the data extracted to knowledge, it is first necessary to
transform the data into information. In other words, it is necessary to create the ontology
Abox from the extracted data.

This process of creating information and mapping it to the Timetable ontology Abox is one
of the Backend service responsibilities.

64 Chapter 6. Implementation

6.4.1 Backend information extraction

After receiving the response of a spider’s execution, the data will be handled by a group
of algorithms that implement the "MiningAlgorithm" interface (refer to 5.17). The tags
previously defined in the execution profiles will be used to identify which part of the data will
be used by each algorithm. As defined in the design, the algorithms are organized in a tree
structure, and the root algorithm is demonstrated in code 6.8.

c l a s s T imetab l e :
d e f a p p l y_a l g o r i t hm (s e l f , a l g o r i t hm : M i n i n gA l go r i t hm) :

a l g o r i t hm . do_a lgo r i thm (s e l f . data , s e l f)
r e t u r n s e l f # f o r o p t i o n a l l y c h a i n i n g method c a l l i n g s

c l a s s T ime t ab l eA l g o r i t hm (M in i n gA l go r i t hm) :
d e f do_a lgo r i thm (s e l f , data , i n s t a n c e s =None) :

i f i n s t a n c e s i s None :
i n s t a n c e s = t im e t a b l e . T imetab l e (data=data)

r e t u r n i n s t a n c e s . a p p l y_a l g o r i t hm (AgencyA lgo r i t hm ()) . \
a pp l y_a l g o r i t hm (S e r v i c e A l g o r i t hm ()) . \
a pp l y_a l g o r i t hm (D i r e c t i o nA l g o r i t hm ()) . \
a pp l y_a l g o r i t hm (Tab l eA l go r i t hm ())

Listing 6.8: Timetable Algorithm root (Python).

The leaf algorithms aim to define the properties of a timetable object using the retrieved
data. These objects will then be persisted, and mapped into the Timetable ontology, when
a request for that agency is received.

These leaf mining algorithms vary in complexity, depending on the portion of the data that
it targets. The simpler algorithms target sections of the data that translate into a single
element on the ontology. For example, the algorithm in the code snippet in 6.9 retrieves the
portion of the HTML data identified in the execution profile as a "direction" and extracts
the text. The parsing library lxml9, which is the same library used by Scrapy selectors, is
used by the Backend service to handle the HTML elements received from the spiders.

f rom l xm l impo r t html

c l a s s D i r e c t i o nA l g o r i t hm (A l g o r i t hmS t r a t e g y) :
d e f do_a lgo r i thm (s e l f , data , i n s t a n c e s) :

d i r e c t i o n_d a t a = data [" t i m e t a b l e "] [" d i r e c t i o n "]
t r e e = html . f r om s t r i n g (d i r e c t i o n_d a t a)
t e x t = t r e e . xpa th (’ // t e x t () ’)
i n s t a n c e s . D i r e c t i o n = f o rm a t_ s t r i n g_ l i s t (t e x t , "_"

)
r e t u r n i n s t a n c e s

Listing 6.9: Direction Algorithm (Python).

In contrast, TableAlgorithm and ServiceAlgorithm are more complex. The complexity from
the TableAlgorithm comes from having to create multiple instances from an HTML tree.
An HTML table elements instantiate a list of columns, a list of rows, a list of stops, and a
list of stop_times. This algorithm is presented in the code 6.10 and 6.11

9Documentation for the lxml parsing library can be found at https://lxml.de/

6.4. Backend service 65

c l a s s Tab l eA l go r i t hm (A l g o r i t hmS t r a t e g y) :
d e f do_a lgo r i thm (s e l f , data , i n s t a n c e s) :

t ab l e_da ta = data [" t i m e t a b l e "] [" t a b l e "]
t r e e = html . f r om s t r i n g (t ab l e_da ta)
t r_tags = t r e e . xpa th (’ // t r ’)
f o r row_index , t r i n enumerate (t r_tags , s t a r t =0) : #

i t e r a t e s the rows
td_tags = t r . xpa th (’ . / td / t e x t () ’)
row_name = i n s t a n c e s . c reate_row (row_index)
i f td_tags :

f o r co lumn_index , td_text i n enumerate (td_tags ,
s t a r t =0) : # i t e r a t e s the co lumns

column_name = i n s t a n c e s . c reate_co lumn (
co lumn_index)

s e l f . i n s t a n t i a t e_ e l em e n t (td_text , i n s t a n c e s ,
row_name , column_name)

r e t u r n i n s t a n c e s

Listing 6.10: Table Algorithm (Python).

For each row and column combination, the algorithm calls the instantiate_element. This
method, presented in 6.11, uses the regular expressions also defined in that code snippet
to select which of the TableItem sub-classes the element is. These regular expressions are
presented in the table 6.6 with a brief description.

stop_t ime_regex = r e . c omp i l e (r ’ \d { 1 , 2 } (: | ,) \d\d ’)
s top_regex = r e . c omp i l e (r ’ ^[a−zA−Z]+[^0−9]+$ ’)
empty_regex = r e . c omp i l e (r ’ ^\. ∗$ ’)

@s t a t i cme thod
de f i n s t a n t i a t e_ e l em e n t (e lement , i n s t a n c e s , row , column) :

e l ement = e l ement . s t r i p ()
r egex_case = [(stop_time_regex , i n s t a n c e s . c rea te_stop_t ime) ,

(s top_regex , i n s t a n c e s . c r e a t e_s top) ,
(empty_regex , i n s t a n c e s . c reate_empty)]

f o r r egex , c a s e i n regex_case :
i f r e . s e a r c h (regex , e l ement) :

c a s e (e lement , row , column)

Listing 6.11: TableItem subclass selection (Python).

Table 6.6: Regular expressions for identifying table items

Item Type Regular expression Brief Description
Stop ^[a-zA-Z]+[^0-9]+$ Items that start with a letter without contain-

ing numbers
Stop Time \d{1,2}(:|,)\d\d Items with one or two numbers followed by a

separator and two numbers (e.g. "1:30" and
"11,30"). For military time/24-hour clock

Empty item ^\.*$ Filler items usually expressed in tables as a
string of dots

The ServiceAlgorithm also takes advantage of regular expressions to identify the days of
the week where a service is running. However, due to several informal representations of

66 Chapter 6. Implementation

services, there exist ambiguity in the extracted data. Some agencies might present the
service as "Saturday and Sunday" while other agencies use "Weekend". The responsibility
of the ServiceAlgorithm is to define a formal format easily mappable to the Timetable
ontology.

An approach using lexical analysis was applied to tackle this problem. For this process, a
dictionary (defined as a thesaurus) contains the alphabet of tokens as the keys with the
values representing a list of regular expressions. The thesaurus used is available in appendix
B.

The algorithm applies these regular expressions to the text strings extracted from the service
data extracting the known tokens. Since the tokens’ order is important, a string without the
sub-strings not identified by the regular expressions is created. The result is a string that
follows the formal grammar 6.1.

〈expression〉 ::= 〈day〉〈term〉 | 〈weekday〉 to 〈weekday〉〈term〉
〈term〉 ::= , 〈day〉〈term〉 | , 〈weekday〉 to 〈weekday〉〈term〉 | ε
〈day〉 ::= 〈weekday〉 | Holiday

〈weekday〉 ::= Monday | Tuesday | Wednesday | Thursday | Friday
| Saturday | Sunday

Grammar 6.1: Formal grammar of service string

The string which follows the grammar is then transformed into a list of weekdays (or "holi-
day") according to the code in snippet 6.12.

de f st r ing_to_week_days (s : s t r) :
Conve r t s s t r i n g to a l i s t o f week days
s _ l i s t = s . s p l i t (" , ")
week_days_resu l t = s e t ()
f o r s t r i n g i n s _ l i s t :

i f " to " i n s t r i n g :
week_days_resu l t |= (s e t (range_str_to_week_days (s t r i n g)))

e l s e :
s t r i n g = s t r i n g . r e p l a c e (" " , "") . l owe r ()
i f s t r i n g i n week_days . k e y s () o r s t r i n g == " h o l i d a y " :

week_days_resu l t . add (s t r i n g . c a p i t a l i z e ())
r e t u r n l i s t (week_days_resu l t)

d e f range_str_to_week_days (s t r _ l i s t) :
Conve r t s a r ange s t r i n g to a l i s t o f week days
temp = l i s t (f i l t e r (lambda s t r i n g : s t r i n g . l owe r () i n week_days .
k e y s () , s t r _ l i s t . s p l i t (" ")))
i f l e n (temp) >= 2 :

s t a r t , ∗_, end = temp # l i s t unpack i ng
f o r i i n r ange (week_days [s t a r t] , week_days [end]+1 i f

week_days [end] > week_days [s t a r t] e l s e week_days [end]+8) :
y i e l d day_int_to_str (i)

Listing 6.12: Tranform string in list of days (Python).

6.4. Backend service 67

6.4.2 Information persistence and external information requests

After extracting the information from the data and parsing it into the Timetable python
object, the information needs to be stored in order to outlive the process that created it.
Since each item received by the spiders’ execution generates a Timetable object in a one to
one conversion, and the desired output files contain information of multiple timetables of
the same agency, by storing this information in a database, it is possible to query and group
it when filling the ontology’s Abox.

This solution uses a MongoDB database for saving the Timetables as JSON documents.
Transactions with the database are done using the MongoDB python driver encapsulated by
Repository objects.

Unfortunately, in most situations, the information extracted from the Timetable formats is
not enough to fulfill the required outputs.

The solution to this problem is to extract this information from an additional source. The
most relevant example is in identifying the location of stops. Most agencies represent their
stops in a timetable without machine-readable information of the stops’ locations.

For this concrete example, the google places API was selected as the external API selected
to handle the stops’ geocoding. This API allows for the retrieval of a place’s location from
textual input. Additionally, each place is categorized by place type, and the API can restrict
the search’s scope using the type as a query parameter. The place types that identify stops
are the following:

• train_station

• bus_station

• subway_station

• light_rail_station

• transit_station

Each of these place types identifies a different type of vehicle. The exception is the tran-
sit_station type, which is the root type of this sub-domain.

The requests to the API uses the stop name as the query input and the transit_station type
for restricting the results. These results are then persisted using a Location object and a
Location Repository.

Unfortunately, most of the context known about the stop is not passed to the external API.
This results in occasionally receiving incorrect location values from the API response. The
figure illustrates a concrete example of this situation. It shows two stops with the same
name and just a distance of 33,6 Km. A query for the stop "Trindade" near "Paços de
Ferreira" will instead return the "Trindade" near the shore.

68 Chapter 6. Implementation

Figure 6.7: Example of ambiguity in stops’ names

This problem with the ambiguity was identified, no solution for resolving the ambiguity was
studied since the problem did not belong to the thesis scope.

A workaround was implemented, by having the locations persisted in a separate document,
and using the agency’s name and the stop’s name as combined keys, it facilitates the
managements of the location content and allows fixes to any incorrect values.

Thus, when searching for a stop location, the system first checks its database, and if it finds
no results, it requests the external API for that information. After receiving that response,
the system saves it to its database for further location searches.

c l a s s L o c a t i o n S e r v i c e :
d e f g e t_ l o c a t i o n (s e l f , agency , locat ion_name) :

q u e r y_ r e s u l t = s e l f . r e p o s i t o r y .
read_by_agency_and_location_name (agency , locat ion_name)

i f q u e r y_ r e s u l t :
r e t u r n L o c a t i o nCoo r d i n a t e s . bu i l d_f rom_json (q u e r y_ r e s u l t)

l o c a t i o n = Lo c a t i o nCoo r d i n a t e s (agency=agency , locat ion_name=
locat ion_name)

r e s u l t = s e l f . g eocod i ng . r e q u e s t_goog l e_p l a c e s_ l o c a t i o n (
locat ion_name)

l o c a t i o n . hand l e_geocod i ng_response (r e s u l t)
s e l f . r e p o s i t o r y . c r e a t e (l o c a t i o n)
r e t u r n l o c a t i o n

Listing 6.13: Location service (Python).

Although not ideal, this approach also helps with reducing the dependency that the Backend
service has with the external API. Reducing the number of requests to the external API also
reduces the monetary cost, since the Places API has a charge by request policy.

6.4. Backend service 69

6.4.3 Ontology alignment and Backend API

The Backend service provides an API that allows a user to retrieve a specific agency’s
information in a specific format.

As previously mentioned, the selected formats were the OPT format and the GTFS format.
Consequently, the API consists of two HTTP endpoints, each representing one of those
formats. Each endpoint also requires the agency name as a query parameter.

When a request is received, the system retrieves the agency’s information specified in the
parameter from its database. The information is mapped into the ontology, and the reasoner
is executed.

To handle the ontologies, the Backend uses the owlready2 package that integrates the OWL
ontology model with the Python object model (Lamy 2017). The Backend is then able to
create the ontologies Abox using an object-oriented approach.

The package provides the functionality of executing the Hermit reasoner or the Pellet rea-
soner. Unfortunately, in the current version, the general class axioms are not correctly
imported by the owlready2. The owlready2 package uses close word assumption for defin-
ing knowledge, taking advantage of the python programming language. As a solution for
the failing imports, the general class axioms were also implemented under a close world
assumption, introducing redundancy to the operation.

It is important to note that this is not the ideal approach. Although redundancy can be ben-
eficial in some engineering processes, such as in improving fault tolerance (Carzaniga, Gorla,
and Pezzè 2009), when it comes to a software solution, it can impact the maintainability of
a project throughout its lifetime.

With the Timetable Ontology Abox able to import the agency instances, next it is necessary
to define the mappings between the Timetable Ontology and the OPT ontology and the
GTFS ontology. The set of correspondence/matches between entities of two ontologies are
called alignments (David et al. 2011). A simplified version of the Expressive and Declarative
Ontology Alignment Language (EDOAL) (Euzenat 2015) was used to create the alignments.
Each alignment is represented by an RDF/XML file containing mappings between the entities
of two different ontologies and their relationships. To handle RDF parsing, the Backend uses
the rdflib10 library.

The AgreementMakerLight ontology matching system (Faria et al. 2013) was used to auto-
matically create the base alignment file between the ontologies. Some matches were added
manually, since the system could not detect the less straightforward matches, for example,
TripsTableComponent to Line.

For creating the files, the systems follow the process previously illustrated in the design
chapter using figure 5.18. The method for creating the individuals in the target ontology
is displayed in algorithm 6.4, where the input variables represent the ontologies and the
alignment files, located in memory and properly formatted.

10Documentation for rdflib can be found at https://rdflib.readthedocs.io/en/stable/

70 Chapter 6. Implementation

Algorithm 6.4 Filling target ontology’s Abox
1: Input: The timetable ontology or igin_ontology , the target representation ontology, target_ontology and

the matches named al ignment
2: Output: Filled target ontology
3:
4: for each match ∈ al ignment do
5: or igin_entity ← match.or igin
6: target_entity ← match.target
7: if Entities not null and exist in ontology then
8: target_entity .equivalent_to.or igin_entity
9: for each or igin_indiv idual ∈ or igin_ontology.get_instances_of (or igin_entity) do
10: target_indiv idual ← new target_entity(or igin_indiv idual)
11: target_indiv idual.equivalent_to.or igin_indiv idual
12: end for
13: end if
14: end for

Lastly, the target ontology is used by a serializer to create the desired files locally. These
files are then zipped using the zipfile11 python module and returned as the response.

6.5 PDF extraction

Considering the percentage of agencies that use PDF files to represent their timetables, the
system could not be complete without an approach for handling that type of data.

As previously mentioned, the camelot/Excalibur project was selected as the base for the
PDF extraction prototype.

The changes made to the forked version of the Excalibur project were the following:

• Add asynchronous communication support

• Add subroutine to locally download the PDF files

• Change user interface to allow user input related to the timetables service and name

• Add duplication identification and handling

The first step for adding the support for asynchronous communication was to define a new
thread for the queue listener.

Besides communicating as a consumer, the PDF extraction module acts as a publisher,
sending the extracted information to the Backend service after a successful extraction. The
code responsible for asynchronous communication is presented in 6.14

11Documentation about zip file can be found at https://docs.python.org/3/library/zipfile.html

6.5. PDF extraction 71

de f consume () :
. . . c r e a t e c h a nn e l
c h a nn e l . bas ic_consume (queue= ’ i tem_pdf ’ , on_message_ca l lback=
i t ems_queue_ca l l back , auto_ack=True)
c h ann e l . s t a r t_consum ing ()

d e f p u b l i s h (message) :
. . . c r e a t e connec t i on , channe l , exchange and queue
c h ann e l . b a s i c_p u b l i s h (

exchange=" e x c a l i b u r " ,
r ou t i ng_key=" i t em " ,
body=message ,

)
c o n n e c t i o n . c l o s e ()

Listing 6.14: Excalibur asynchronous communication (Python).

For downloading the PDF files locally, the coroutine in the code snippet 6.15 was created.
This coroutine has to run in a non-blocking fashion since otherwise, it would block the queue
listener thread and receive a timeout from the message broker.

de f d own l o a d_ f i l e (f i l e _ u r l) :
name = f i l e _ u r l . s p l i t ("/") [−1]
r e q u e s t = r e q u e s t s . ge t (f i l e _ u r l)
p r i n t (f " h e r e − { r e q u e s t . c on t en t }")
f i l e = Bytes IO (r e q u e s t . c on t en t)
r e t u r n f i l e , name

async d e f d own l o a d_ f i l e s (f i l e _ u r l s , agency_name) :
f o r u r l i n f i l e _ u r l s :

f i l e , name = down l o a d_ f i l e (u r l)
p r i n t (f " con t en t = { f i l e }")
con t en t = F i l e S t o r a g e (s t r eam= f i l e , name=name , f i l e n am e=name ,

content_type= ’ a p p l i c a t i o n / pd f ’)
c r e a t e _ f i l e s (content , agency_name=agency_name , u r l = u r l)

Listing 6.15: PDF downloader (Python).

The Excalibur project only had support for importing PDF using the WebApp graphical
interface. The functionality of importing the PDFs had to be separated from the API
endpoint for manual importation.

After receiving a message from the spiders via the queue listener, if the message contains any
PDFs’ URLs, the callback function will download the files and use the function for importing
PDF, allowing to automate the importation of files.

During an importing the PDFs are transformed into image files. These image files are
normally used by Excalibur to present the file in the user interface. By comparing the
generated image files with the Pillow package, a new functionality of duplication identification
was added. If a image from a newly imported file is detected as a duplicate, the system flags
the file and warns the user.

Other small changes had to be done both in the Frontend and the Backend API, to accom-
modate the user input related to the timetables service and name, but those mostly include
changes to the HTML templates and the download endpoint.

72 Chapter 6. Implementation

6.6 Putting everything together with asynchronous communi-
cation

As previously defined, the system applies an asynchronous communication approach using
messaging with an intermediary component responsible for handling message distribution,
also known as a message broker pattern. This improves the system’s reliability because
considering that the time of some operations is variable, for example, a spider execution, it
would be unreasonable for a component to actively wait for the recipients’ response.

The system uses a RabbitMQ instance to implement the message broker pattern. Figure
6.8 represents the exchanges and queues used by the system’s components. This is an
implementation of the publisher/subscribe pattern, where the publishers are represented in
the figure as the producers and the subscribers as the consumers.

Figure 6.8: RabbitMQ exchanges and queues routing

Moreover, in this system, the exchanges are direct exchanges, meaning the communication
occurs using multicast via a binding routing key. This approach differs from a simpler
publisher/subscribe that can also be implemented in RabbitMQ using fanout exchanges,
allowing for mindless message broadcast.

73

Chapter 7

Evaluation of the solution

This chapter contains a description of methodologies, criteria, metrics, and measurements
to evaluate the solution.

7.1 Information retrieval criteria

For evaluating an information retrieval solution, some standard criteria and measurements
allow verifying the system’s effectiveness.

When executing an information retrieval system, two parameters are responsible for the
system’s effectiveness. The first is Indexing exhaustivity; this reflects the degree to which
an IR system recognizes and indexes the terms present in the documents. A higher indexing
exhaustivity results in a bigger, but more disperse collection of terms (Gudivada et al. 1997).

On the other hand, the second parameter is term specificity, which refers to the breadth
of the terms used for indexing. The less specific the terms are, the higher the number of
documents is retrieved. However, this also results in the retrieval of documents irrelevant
to the search. By increasing the term specificity, the relevancy of the documents increases,
but there is also the possibility of losing important documents (Gudivada et al. 1997).

To measure these two criteria the following metrics are defined:

• Recall, which is the ratio of the number of relevant documents retrieved to the total
number of relevant documents in the collection.

Recal l =
T ruePositives

T ruePositives + FalseNegatives
(7.1)

• Precision, which is the ratio of the number of relevant documents retrieved to the
total number of documents retrieved.

P recision =
T ruePositives

T ruePositives + FalsePositives
(7.2)

7.2 Ontology criteria

Brank, Grobelnik, and Mladenic (2005) defines ontology evaluation as "the problem of
assessing a given ontology from a particular criterion of application". This evaluation is
done from a verification perspective and a validation perspective.

74 Chapter 7. Evaluation of the solution

Ontology verification allows the detection of errors in the encoding, allowing to verify the
quality of the ontology specification (Gómez-Perez 2004).

On the other hand, ontology validation aims to confirm if the ontology fulfills its purpose.
The objective is to validate if the formal definition of the ontology is compatible with the
real world representation under the context where the ontology is applied (Gómez-Perez
2004).

The evaluation can then be performed using a diverse set of criteria, that either focus on
the ontology correctness or the ontology quality (Hlomani and Stacey 2014). Denny (2009)
identifies several criteria that can be used for verification and validation of ontologies. The
criteria are divided as follows:

• Accuracy focus on if the ontology correctly captures and represents the aspects of the
real world. It is one of the criteria used for validating the ontology correctness and the
same metrics used on information retrieval (precision and recall) can be applied to an
ontology and its knowledge base.

• Adaptability refers to the capacity of an ontology to be used in different scenarios. An
ontology that is easily extensible and can easily support the addition of new axioms
is more adaptable than an ontology less open to change. This criterion is used to
evaluate the ontology from a quality perspective, analyzing the choices selected in
the design phase, and as such, the study of this criteria can be done by verifying
metrics showcasing the coupling (e.g., number of external classes referenced) and the
cohesion (e.g., Average Depth of Inheritance Tree of Leaf Node) of the ontologies
classes (Hlomani and Stacey 2014).

• Clarity refers to how the ontology communicates the intended meaning of the defined
terms effectively. Hlomani and Stacey (2014) suggests the usage of word sense as a
quantifiable measurement to these criteria.

• Completeness or competency, as the name suggests, is a criterion focused on how
complete the ontology is when compared to the domain. This criterion can be quan-
tified by measuring the coverage of the domain.

• Computational efficiency is a quality criterion that is correlated with the size and
complexity of the ontology. Thus, those measurements can be used to quantify the
computation efficiency of an ontology.

• Conciseness measures "how weak are the assumptions regarding the ontology’s un-
derlying philosophical theory about reality" (Denny 2009). It focuses on the axioms’
relevancy and how significant those axioms are to the subject being specified in the on-
tology. Using an extreme example, if a domain ontology for medicine contains axioms
about software engineering, it is not concise.

• Consistency or coherence is an evaluation criterion for verifying the correctness of an
ontology. When examining this criterion, the target is to identify inconsistencies and
errors in the ontologies axioms or terms. The number of inconsistent results can be
used as a measurement for this criteria.

• Organizational fitness or commercial accessibility focuses on the commercialization
of the ontology and attempts to measure the suitability of the ontology among the
potential stakeholders.

7.3. Evaluation methodology 75

7.3 Evaluation methodology

Considering the criteria presented is then possible to define a concrete methodology for
evaluation.

The first characteristic to evaluate is the quality of the results of the solution. In an ideal
scenario, the information extracted should be as precise as possible. Although a low value
of recall is never desirable, for the context where the solution will be applied, a low value
of precision is worst. In this context, it is better to have missing information than incorrect
information.

To measure these criteria of information retrieval, tests should be designed where the spiders
run in previously selected web sites, and the results are compared to actual values. Since
the crawling process is deterministic, to evaluate each spider, only a single execution is
required. An acceptable threshold should be specified to each criterion and validated after
an execution.

Besides using the static criteria of ontology evaluation, a group of software tests should
be designed to ensure the mapping is performed correctly to evaluate the information inte-
gration. Besides unit testing, a set of integration tests can be used to guarantee that the
information retrieved by the spiders is correctly mapped to the canonical ontology or the
domain ontology.

7.3.1 Evaluating quality and resource cost

This project aims to ensure that the quality of this solution is on par with the current manual
process and that the resources necessary for this task are reduced.

As such, a methodology/approach should be defined to address these concerns.

A possible approach would be to use a survey to validate that the solution developed by
questioning the company associates. However, since in this context, the company has a low
number of employees, the results can be skewed due to a low number of responses.

A different approach is to compare the quality and resource cost to values before the instal-
lation of the solution, allowing the verification of improvements or decline in those values.
The problem with this approach is that the results were obtained under different condi-
tions irrelevant to the solution, which might have a correlation with the values and skew
the results. This approach also requires the existence of data about the process before the
installation of the solution.

The ideal approach would be to perform A/B testing, a test where two groups are created,
the first uses the solution, and the second acts as control by not using the solution. Both
groups’ quality and resource costs are measured and compared to prove or disprove the
optimizing/enhancement hypothesis.

Unfortunately, it was not possible to apply A/B testing in the current context of the OPT
business. The alternative proposed is to create two different experimentation scenarios using
the same data sample. In the first scenario, the data is to be converted into files using a
manual approach, while in the second, the files are created using the developed solution.
This differs from A/B testing, by previously selecting the data sample and by having the
same person perform both tasks.

76 Chapter 7. Evaluation of the solution

7.4 Experimentation scenarios

It is then necessary to consider the method of evaluation a scenario resource usage. Consid-
ering that time is the most relevant resource used when creating the files (more specifically,
the time spent by human workers), the experiment scenarios designed aim to measure the
time required to perform the same transformation using both approaches.

As previously defined, the data can be transformed manually or automatically, and each of
these methods ensures a specific scenario. However, the process for obtaining information
from a PDF is different from the process for obtaining it from an HTML. Therefore, four
different experimentation scenarios were created.

The experimentation scenarios are group into two pairs. Each pair represents a different
input format and contains the two different methods of transformation, either manual or
automated. The scenarios defined are the following:

• Create OPT files manually from HTML files

• Create OPT files from HTML files automatically by using the created solution

• Create OPT files manually from PDF files

• Create OPT files from PDF files automatically by using the created solution

The OPT output file was selected since it is the internal file format created by the company,
and it is the output format used to integrate external information into the company’s sys-
tems. Consequently, without an automated process, this format would be manually created.

Each scenario contains the set of steps required for the extraction. In the experiments, the
time required for each step is measured. The time required for manual steps is rounded up
to the minute, while the steps performed by the software solution are rounded up to the
second.

7.4.1 Create OPT files from HTML files automatically

For creating the files from HTML files using the developed solution, it is necessary first to
define the spiders’ execution. The steps after the configuration phase are automated by the
spiders and Backend.

Since the information referring to a stop location has the issues detailed in chapter 6.4.2,
the last step involves "validating and fixing location coordinates". This task combines a
manual and an automated approach resulting in the measurements to be rounded up to the
minute.

Luckily, there exists a vast amount of tools using the GTFS format for different purposes1.
Some of these tools provide validation or visualization of the information serialized in the
GTFS files. Since tools that provide the validation of OPT files do not exist, and since the
developed solution can generate GTFS files portraying the same information as the OPT
files, the following GTFS tools were selected to detect incorrect information.

1List of GTFS tools can be found at https://github.com/CUTR-at-USF/awesome-transit

7.4. Experimentation scenarios 77

• transitfeed-feedvalidator2 - Validator tool maintained by google, which validates GTFS
structure and content. It is able to detect incorrect stop locations by calculating the
transport travel speed and verifying if it is physically achievable.

• gtfs-to-html3 - Visualizer tool to create a HTML pages from GTFS files. The pages
display a map which allows the detection of incorrect locations.

The steps required to extract the timetables from HTML files are presented in table 7.1.

Table 7.1: Steps for automatic generation of OPT files from HTML

Step Description Step type
Configure url extrac-
tion spider

Create the json configuration file for the url
extraction spider and add the event to the
events’ dictionary

Manual

Configure scraping spi-
der

Create the json configuration file for one of
the spiders, creating the XPath queries

Manual

Run Url extractor Execute the url extractor with the new spider
profile by using the job scheduler API

Automated

Run Scraping spider Automatic execution of the url extractor with
the new spider profile by using the job sched-
uler API

Automated

Backend’s ontology
mapping and file
generation

Request files from Backend API Automated

Validating and fixing
location coordinates

Validate the information in the generated files
and fix erroneous information regarding the lo-
cation

Manual and
Automated

It could be argued that the step of "validating and fixing location coordinates" can be
separated into the two different steps of "validating" and "fixing". However, since in some
situations, these two tasks follow an iterative process, this task is presented as a single step.

7.4.2 Create OPT files from PDF files automatically

The process of creating the files from PDF files using the developed solution is similar to the
previous scenario. As with the previous scenario, it is necessary first to define the spider’s
execution. For PDF extraction, the user only creates the URL extractor profile.

By specifying in the profile that PDFs are allowed, the URL extractor collects the URLs
referencing PDFs and publishes it. The Excalibur component downloads the PDF and waits
for the user instructions.

At this point, the user has to select the tables to send for the Backend. The following steps
are the same as the ones specified in the HTML extraction scenario.

The steps of process for extracting timetables from PDF files are presented in table 7.1.

2Transitfeed-feedvalidator available at https://github.com/google/transitfeed
3gtfs-to-html available at https://github.com/BlinkTagInc/gtfs-to-html

78 Chapter 7. Evaluation of the solution

Table 7.2: Steps for automatic generation of OPT files from PDFs

Step Description Step type
Configure url extrac-
tion spider

Create the json configuration file for the url
extraction spider allowing pdf formats

Manual

Run Url extractor Execute the url extractor with the new spider
profile by using the job scheduler API

Automated

Download PDFs Download the PDFs found in the previous step Automated
Select tables to extract Use the Excalibur user interface to select the

tables to extract
Manual and
Automated

Backend’s ontology
mapping and file
generation

Request files from Backend API Automated

Validating and fix loca-
tion coordinates

Validate the information in the generated files
and fix erroneous information regarding the lo-
cation

Manual and
Automated

The task of selecting the table is categorized as "Manual and Automated" since Excalibur
provides an auto table detector functionality. However, the detected tables usually require
small fixes, and the user needs to select the extraction algorithm and define its parameters.

7.4.3 Create OPT files manually

As should be expected, the steps required to create the OPT files manually are independent
of the original format. As such, the two manual experimentation scenarios previously identi-
fied can be defined as a single scenario independent from the method of representation used
by the source, as displayed in the table 7.3. Each step represents the creation of a different
file. Every step in this scenario is manual, and as such, the measured times were rounded
up to the minute.

Table 7.3: Steps for manual generation of OPT files

Step Description
Find the informa-
tion

Find the target timetable

Search the stops’
location

Search the geographic location for each stop

Create the Stops
file

Create the Stops file with the information on the stops name
and location.

Create the Lines
file

Create the Lines file with the name, and stop sequence

Create the Sched-
ules file

Create the Schedules file with the Day types and interval
dates

Create the Pass-
ings file

Create the Passings files including the stop time, direction
and stop code

7.5. Evaluation results and discussion 79

7.4.4 Agencies and sources selection

Considering that the process of manually creating a timetable is time-consuming, only two
timetables were selected for each source type (HTML or PDF). Each of the selected timeta-
bles is provided by a different agency. This ensures that the steps of creating the spiders’
profiles are done in every experiment.

Although the manual scenarios only focus on one timetable, several steps in the automated
scenarios cover multiple timetables. For example, the spiders’ execution profile for an HTML
extraction must be able to collect the data of every timetable on the agency’s website, even
if the following manual steps only target a specific timetable.

Regarding the selection, the chosen agencies and timetables are represented in the table 7.4

Table 7.4: Timetable selected for evaluation

Agency Route name Timetable url Source
Type

Gondomarense Porto - Valchão http://www.gondomarense.pt/
horarios-2006/index.htm

PDF

AVPacense Paços de Fer-
reira – Valongo
– Porto

http://www.avpacense.pt/PACOS%
20DE%20FERREIRA%20-%20VALONGO%
20-%20PORTO.pdf

PDF

AVMinho Póvoa de
Varzim - Porto

http://www.avminho.pt/horarios HTML

Rodonorte Felgueiras -
Porto

http://beware.pt/IP/MotorBusca/
rodonorte/Horario.aspx?id=26553

HTML

7.5 Evaluation results and discussion

This section documents the results of the timetables’ extractions. For the timetables se-
lected, the time required for each step was measured. Since the timetables and the respective
URLs were already selected, the default value of one minute was attributed to the step of
"finding the information source" for the manual scenario.

Starting with the extraction from the Gondomarense agency, the time measured for each
step is represented in table 7.5.

Table 7.5: Steps’ time for automated extraction and manual extraction of
Gondomarense timetable.

Automated steps Time (mm:ss)

Configure URL extraction 6:00
URL extractor execution 0:13

PDF Download 1:52
Table selection 5:00
File generation 0:40

Validation and fix 3:00
Total 16:45

Manual steps Time (mm:ss)

Find the information 1:00
Search the stops’ location 7:00

Create the Stops file 4:00
Create the Lines file 5:00

Create the Schedules file 2:00
Create the Passings file 16:00

Total 35:00

80 Chapter 7. Evaluation of the solution

A different view of the times measured from the automated extraction is presented in the
graph in figure 7.1. With this visualization, it is possible to verify that 83,6% of the time
required for this extraction was spent in the solutions manual steps, in contrast with the
remaining 16,4% used for the automated tasks. It is important to note that most of these
measurements can differ from several conditions and depending on the user familiarity with
the system. Another variable is the download speed of the internet connection. From this
extraction, a total of 95 PDF files were retrieved totaling 34,9 Megabytes.

Figure 7.1: Time in seconds for step in automated extraction of ETG

Considering that the automated extraction retrieved a total of 95 PDF documents from
the source website and that the number of PDF documents in the website that contained
timetable information was 48, the Recall and Precision for this agency were calculated and
displayed in the table 7.6.

Table 7.6: Timetable selected for evaluation

True Positives 40

False Negatives 8

False Positives 55

Recall 40
48 ≈ 0, 833

Precision 40
95 ≈ 0, 421

The timetable for the route "Porto - Valchão", which was used in the manual scenario and
also selected from the PDFs generated for the manual steps, contained two tables with
different services that were transformed into 4 stops, 14 trips, and 51 stop times.

The next agency also displayed information using PDF. In these scenarios, the target
timetable for the manual steps was the timetable for the route "Paços de Ferreira – Valongo
– Porto" from the AVPacense agency. The result time measurements are displayed in table
7.7.

7.5. Evaluation results and discussion 81

Table 7.7: Steps’ time for automated extraction and manual extraction of
Avpacense timetable.

Automated steps Time (mm:ss)

Configure URL extraction 3:00
URL extractor execution 0:10

PDF Download 0:25
Table selection 9:00
File generation 0:11

Validation and fix 3:00
Total 15:46

Manual steps Time (mm:ss)

Find the information 1:00
Search the stops’ location 9:00

Create the Stops file 6:00
Create the Lines file 3:00

Create the Schedules file 1:00
Create the Passings file 24:00

Total

Similar to the extraction from Gondomarense, the manual step in the automated process
required the majority. Since the spider’s result found 24 PDFs, totaling to 2,08 Megabytes,
the download time vastly decreased compared to the previous agency. For this execution,
the manual steps’ time represents 95,1% of the entire scenario, as presented in figure 7.2.

Figure 7.2: Time in seconds for step in automated extraction of AVPacense

For this agency, a total of 24 PDF documents were found, while the relevant documents
available on the website totaled 16. The Recall and Precision for this scenario were calculated
and are displayed in table 7.8.

Table 7.8: Timetable selected for evaluation

True Positives 16

False Negatives 0

False Positives 8

Recall 16
16 = 1

Precision 16
24 ≈ 0, 667

Proceeding to the scenarios using HTML as the source of information. Starting with the

82 Chapter 7. Evaluation of the solution

route "Póvoa de Varzim - Porto" by the AVMinho agency, the spider extraction required one
simple profile for the URLExtractor spider and two distinct profiles for the scraping. The
time measurements for the automated extraction and the manual extraction are represented
in table 7.9

Table 7.9: Steps’ time for automated extraction and manual extraction of
AVMinho timetable.

Automated steps Time (mm:ss)

Configure URL extraction 1:00
Configure scraping 32:00

URL extraction execution 0:25
Scraping execution 0:09
File generation 0:12

Validation and fix 1:00
Total 34:46

Manual steps Time (mm:ss)

Find the information 1:00
Search the stops’ location 7:00

Create the Stops file 5:00
Create the Lines file 2:00

Create the Schedules file 1:00
Create the Passings file 12:00

Total 28:00

These measurements are the first example where the manual extraction performed better
from a time-consuming perspective. By analyzing the graph in figure 7.3, it is visible that the
majority of the automated extraction was spent in the manual step of defining the scraping
spider profiles, more specifically the XPath expressions required to extract the information.

Figure 7.3: Time in seconds for step in automated extraction of AVMinho

However, while the manual scenario only serialized one of the timetable’s information, the
automated scenario managed to extract every timetable on the website.

This is a consequence of the simplicity in the AVMinho website. The website contains every
timetable on the same web page (under the same URL) and represents every timetable
using the same HTML structure. This makes it extremely easy for a web spider to extract
structured data without missing a single timetable. With this in mind, the recall and precision
have a perfect score, as represented in table 7.10.

Table 7.10: Timetable selected for evaluation

7.5. Evaluation results and discussion 83

True Positives 58

False Negatives 0

False Positives 0

Recall 58
58 = 1

Precision 58
58 ≈ 1

The final timetable extracted for these experiments was the "Felgueiras - Porto" and
the rodonorte agency. Similarly to AVMinho, this agency uses HTML to represents their
timetable. However, instead of displaying every timetable on the same page, it instead dis-
plays a list of hyperlinks, each containing a different timetable. The measurements for this
timetable extractions are represented in the table 7.11.

Table 7.11: Steps’ time for automated extraction and manual extraction of
Rodonorte timetable.

Automated steps Time (mm:ss)

Configure URL extraction 3:00
Configure scraping 23:00

URL extraction execution 2:17
Scraping execution 1:15
File generation 0:21

Validation and fix 7:00
Total 36:53

Manual steps Time (mm:ss)

Find the information 1:00
Search the stops’ location 12:00

Create the Stops file 6:00
Create the Lines file 2:00

Create the Schedules file 1:00
Create the Passings file 7:00

Total 29:00

Just as with the previous HTML source, the manual extraction performed better from a
time-consuming perspective. Even though the configure scrape was faster than the previous
example, the naming convention used by rodonorte for their stops negatively influences the
geocoding API accuracy.

As expected, the configure scraping step requires the majority of the time at 62,4%, followed
by the validation and fixing of the location of the stop taking 7 minutes or 18,9%, as
presented in figure 7.4

84 Chapter 7. Evaluation of the solution

Figure 7.4: Time in seconds for step in automated extraction of rodonorte

With the analysis of retrieved timetables, it is possible to verify that number of items ex-
tracted is higher than the number of timetables, as demonstrated in table 7.12.

Table 7.12: Timetable selected for evaluation

True Positives 264

False Negatives 0

False Positives 94(scrape), 0(persisted)

Recall 264
264 = 1

Precision 264
358 ≈ 0.737

The retrieval process detected a total of 94 incorrect timetables. Luckily, these timetables
were identified by the Backend service during the mining phase.

This issue can be attributed to the inability of the "spider for multiple timetables per page" to
adapt the number of items extracted if there is a varying number of services. Consequently,
the spider creates and returns items with empty fields beside the actual timetable items for
some pages. For this specific example, the precision of the scraping can be improved by
creating a custom spider.

The results obtained allow us to understand the system’s limitations and shortcomings bet-
ter. The high percentage of false positives for PDF extraction indicates a necessity for
an improved filtering mechanism. The current solution addresses these false positives by
requiring confirmation from a user. Therefore an improved filtering mechanism can increase
the system’s automation/independence.

With the results from the HTML extraction, it becomes clear that the precision of this type
of extraction is higher compared to the PDF. However, this type of extraction also required
a lot more time for configuration, most of which was spent creating the XPath queries
required for the information retrieval.

7.5. Evaluation results and discussion 85

For both agencies/providers of this type, the automated approach was more time consuming
that the manual extraction. Of course, the number of timetables retrieved makes the extra
effort/time used worth it.

Lastly, a common issue with both types of extraction lies in the inaccuracy of the stops’
geocoding operation. This specific issue led to a demand of the user time and attention to
fix incorrect or incomplete values.

87

Chapter 8

Conclusions and future work

This work presented a practical case study where the application of existing information
retrieval and integration techniques converges into the engineering, design, and development
of a software system capable of converting data from the web into information, and capable
of integrating the information into a pre-existing system.

While the current work is a promising start in integrating information using an automated
approach, it has the potential to improve with the correct changes.

First, the current solution has a severe difference in extraction quality when comparing the
source types, PDF, or HTML. The solution only takes a superficial study of what can be
done when extracting PDF. The work developed on that topic comes off as an unpolished
product, not ready for production in an enterprise environment. This component’s simplicity
was expected, considering the decision to create a basic prototype service to deal with
PDF extraction. Throughout the development of the prototype, the areas that require
improvements became visible.

The most crucial improvement is to provide a process for identifying and categorizing a PDF
considering its contents. With this improvement, it is expected a reduction of the False Posi-
tives detected in the experimentation process, improving the overall system’s precision. This
improvement can also be the first step in increasing the automation present in information
extraction for the PDF sources.

When it comes to the components for extracting information from HTML, a good starting
point for deciding the next steps for the future work is to understand which parts require
the most attention when maintaining the correctness of the system information, and as a
result, are the most time-consuming.

A good start would be to improve the accuracy of the stop’s geolocation process. For
example, to use the context of a route when determining the location of a stop, and create
complex queries to the geolocation service. This improvement should result in a reduction
for the time required to the step of "validating and fixing" the stops.

8.1 Revisiting the objectives of the project

Back in chapter 1.4, we defined the objectives of this project. At the end of the document,
it is essential to revisit the objectives and review if those were achieved or not. As such, an
overview of the objectives and their completion level are demonstrated in table 8.1.

88 Chapter 8. Conclusions and future work

Table 8.1: Objectives and completion level

Objectives Completion Level

Detect updates in the information sources Completed

Perform information retrieval from the websites/files when
changes are detected

Completed

Define input/output formats and respective mapping rules Completed

Guarantee the consistency of information retrieved from multi-
ple sources, allowing inference and querying of information from
transports with different transport providers

Uncompleted

Provide an interface to access and export the converted infor-
mation

Partially completed.

With this, its possible to conclude that the most crucial objectives of the project were
successfully complete.

The exceptions are the objectives of guarantee the consistency across multiple agencies/providers
and developing a graphical user interface to visualize the information before exporting.

Unfortunately, the current geocoding functionality implementation is not accurate to allow
guaranteeing the consistency across multiple agencies, since the inference of these connec-
tion requires accurate stops’ longitude and latitude.

Although a graphical user interface would improve the system’s feedback and usability, the
development of such a service was outside of the thesis’ scope. As such, the system simply
contains a web service for the exportation of the serialized files, justifying the partially
completed score for the objective.

89

Bibliography

Ackoff, Russell L (1989). “From data to wisdom”. In: Journal of applied systems analysis
16.1, pp. 3–9.

Aristarán, Manuel et al. (2018). Tabula. url: https://tabula.technology.
Baader, Franz (2003). “Appendix: description logic terminology”. In: The Description logic
handbook: Theory, implementation, and applications, pp. 485–495.

Beckett, Dave and Brian McBride (2004). “RDF/XML syntax specification (revised)”. In:
W3C recommendation 10.2.3.

Berners-Lee, Tim (2000). Semantic Web on XML. url: https://www.w3.org/2000/
Talks/1206-xml2k-tbl/all.htm.

Berners-Lee, Tim, James Hendler, and Ora Lassila (2001). “The semantic web”. In: Scientific
american 284.5, pp. 34–43.

Borza, John (2011). “FAST diagrams: The foundation for creating effective function mod-
els”. In: General Dynamics Land Systems.

Braga, Luís Miguel Barbosa (2013). “Engineering Temporal and Spatial Aspects in OWL
using Patterns”. PhD thesis.

Brank, Janez, Marko Grobelnik, and Dunja Mladenic (2005). “A survey of ontology evalua-
tion techniques”. In: Proceedings of the conference on data mining and data warehouses
(SiKDD 2005). Citeseer Ljubljana, Slovenia, pp. 166–170.

Brickley, Dan, Ramanathan V Guha, and Brian McBride (2014). “RDF Schema 1.1”. In:
W3C recommendation 25.

Carzaniga, Antonio, Alessandra Gorla, and Mauro Pezzè (2009). “Handling software faults
with redundancy”. In: Architecting Dependable Systems VI. Springer, pp. 148–171.

Chandrasekaran, Balakrishnan, John R Josephson, and V Richard Benjamins (1999). “What
are ontologies, and why do we need them?” In: IEEE Intelligent systems 1, pp. 20–26.

Chen, Min et al. (2008). “Data, information, and knowledge in visualization”. In: IEEE Com-
puter Graphics and Applications 29.1, pp. 12–19.

Choi, Namyoun, Il-Yeol Song, and Hyoil Han (2006). “A survey on ontology mapping”. In:
ACM Sigmod Record 35.3, pp. 34–41.

Clark, James, Steve DeRose, et al. (1999). XML path language (XPath) version 1.0.
David, Jérôme et al. (2011). “The alignment API 4.0”. In: Semantic web 2.1, pp. 3–10.
Denny, Vrandevcic (2009). “Ontology evaluation”. In: Handbook on ontologies. Springer,
pp. 293–313.

Eugster, Patrick Th et al. (2003). “The many faces of publish/subscribe”. In: ACM com-
puting surveys (CSUR) 35.2, pp. 114–131.

Euzenat, J (2015). “EDOAL: Expressive and Declarative Ontology Alignment Language”.
In: URL: http://alignapi.gforge.inria.fr/edoal.html (visited on 22/08/2020).

Faria, Daniel et al. (2013). “The agreementmakerlight ontology matching system”. In: OTM
Confederated International Conferences" On the Move to Meaningful Internet Systems".
Springer, pp. 527–541.

Flesca, Sergio et al. (2004). “Web wrapper induction: a brief survey”. In: AI communications
17.2, pp. 57–61.

90 BIBLIOGRAPHY

Fowler, Martin (2002). Patterns of enterprise application architecture. Addison-Wesley Long-
man Publishing Co., Inc.

Friedl, Jeffrey EF (2006). Mastering regular expressions. " O’Reilly Media, Inc."
Gaizauskas, Robert and Yorick Wilks (1998). “Information extraction: Beyond document
retrieval”. In: Journal of documentation 54.1, pp. 70–105.

Gamma, Erich et al. (1995). Design patterns: elements of reusable object-oriented software.
Pearson Education.

Gómez-Perez, Asunción (2004). “Ontology evaluation”. In: Handbook on ontologies. Springer,
pp. 251–273.

Google (2019). GTFS general view. url: https://developers.google.com/transit/
gtfs.

Gruber, Thomas R (1993). “A translation approach to portable ontology specifications”. In:
Knowledge acquisition 5.2, pp. 199–220.

Guarino, Nicola (1997). “Semantic matching: Formal ontological distinctions for information
organization, extraction, and integration”. In: International Summer School on Information
Extraction. Springer, pp. 139–170.

– (1998). Formal ontology in information systems: Proceedings of the first international
conference (FOIS’98), June 6-8, Trento, Italy. Vol. 46. IOS press, pp. 3–15.

Gudivada, Venkat N et al. (1997). “Information retrieval on the world wide web”. In: IEEE
Internet Computing 1.5, pp. 58–68.

Heidegger, M. (1967). Being and Time. Blackwell. isbn: 9780631197706. url: https://
books.google.pt/books?id=S57m5gW0L-MC.

Hlomani, Hlomani and Deborah Stacey (2014). “Approaches, methods, metrics, measures,
and subjectivity in ontology evaluation: A survey”. In: Semantic Web Journal 1.5, pp. 1–
11.

Hong, Sungjun et al. (2016). “Analysis on the level of contribution to the national greenhouse
gas reduction target in Korean transportation sector using LEAP model”. In: Renewable
and Sustainable Energy Reviews 60, pp. 549–559.

Horrocks, Ian et al. (2004). “SWRL: A semantic web rule language combining OWL and
RuleML”. In: W3C Member submission 21.79, pp. 1–31.

Hoyland, Christine A et al. (2014). “The RQ-Tech methodology: a new paradigm for con-
ceptualizing strategic enterprise architectures”. In: Journal of Management Analytics 1.1,
pp. 55–77.

Hunt, Andrew and David Thomas (1999). The pragmatic programmer. Pearson Education.
ICEACSA-TEKIA, UTE (2019). datex2 About. url: https://datex2.eu/datex2/about.
Inkpen, Diana (2007). “Information retrieval on the internet”. In: Retrieved December 29,
p. 2013.

Kelly, Allan (2002). “The philosophy of extensible software”. In: The Internet’s Coming Silent
Spring, p. 27.

Klyne, Graham, Jeremy J Carroll, and B McBride (2004). Resource description framework
(rdf): concepts and abstract syntax, 2004.

Krisnadhi, Adila, Frederick Maier, and Pascal Hitzler (2011). “OWL and Rules”. In: Reasoning
Web International Summer School. Springer, pp. 382–415.

Kushmerick, Nicholas, Daniel S Weld, and Robert Doorenbos (1997). Wrapper induction for
information extraction. University of Washington Washington.

Lamy, Jean-Baptiste (2017). “Owlready: Ontology-oriented programming in Python with
automatic classification and high level constructs for biomedical ontologies”. In: Artificial
intelligence in medicine 80, pp. 11–28.

BIBLIOGRAPHY 91

Lenzerini, Maurizio (2002). “Data integration: A theoretical perspective”. In: Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM, pp. 233–246.

Maedche, Alexander, Günter Neumann, and Steffen Staab (2003). “Bootstrapping an ontology-
based information extraction system”. In: Intelligent exploration of the web. Springer,
pp. 345–359.

Mak, Ronald (2007). “A Highly Reliable Enterprise System for NASA’s Mars Rover Mission”.
In: Beautiful Code: Leading Programmers Explain How they Think (Oram, A., and Wilson,
G.) Pp. 319–338.

McBride, Brian (2004). “The resource description framework (RDF) and its vocabulary
description language RDFS”. In: Handbook on ontologies. Springer, pp. 51–65.

McGuinness, Deborah L, Frank Van Harmelen, et al. (2004). “OWL web ontology language
overview”. In: W3C recommendation 10.10.

Mehta, Vinayak (2020). Camelot Documentation Release 0.8.2. url: https://readthedocs.
org/projects/camelot-py/downloads/pdf/master/.

Meyer, Bertrand (1997). Object-oriented software construction. Vol. 2. Prentice hall Engle-
wood Cliffs.

Mitchell, Ryan (2018). Web Scraping with Python: Collecting More Data from the Modern
Web. " O’Reilly Media, Inc."

Monroe, Robert T et al. (1997). “Architectural styles, design patterns, and objects”. In:
IEEE software 14.1, pp. 43–52.

Mouncif, Hicham and Azeddine Boulmakoul (2014). “Application SIG et norme GTFS pour
la conception d’un sys-tème d’information de transport multimodal: une approche SOA
pour le calcul des itinéraires multimodaux viables”. In: INTIS’2014, p. 117.

Muslea, Ion, Steve Minton, and Craig Knoblock (1999). “A hierarchical approach to wrap-
per induction”. In: Proceedings of the third annual conference on Autonomous Agents.
Citeseer, pp. 190–197.

Nekvasil, Marek (2007). “The use of ontologies in wrapper induction”. In: Databases, Texts,
p. 132.

Noy, Natalya F (2004). “Semantic integration: a survey of ontology-based approaches”. In:
ACM Sigmod Record 33.4, pp. 65–70.

Noy, Natasha et al. (2001). “Creating Semantic Web Contents with Protege-2000”. In:
Intelligent Systems, IEEE 16, pp. 60–71. doi: 10.1109/5254.920601.

Oliphant, Travis E (2007). “Python for scientific computing”. In: Computing in Science &
Engineering 9.3, pp. 10–20.

OpenLisbon (2018). Lisboa aberta missão. url: http://lisboaaberta.cm-lisboa.pt/
index.php/pt/.

Osterwalder, Alexander et al. (2014). Value proposition design: How to create products and
services customers want. John Wiley & Sons.

Pinto, H. Sofia, A. Gomez-Perez, and J. P. Martins (1999). “Some Issues on Ontology
Integration”. In: In Proc. of IJCAI99’s Workshop on Ontologies and Problem Solving
Methods: Lessons Learned and Future Trends 18, pp. 7–1.

Rosén, Gustav (2019). Analysis of Tabula: A PDF-Table extraction tool.
Santos, Jorge (2008). “Integração de Conhecimento Temporal em Sistemas Inteligentes”.
In: pp. 173–218.

Silva, Nuno (2004). “Multi-dimensional service-oriented ontology mapping”. PhD thesis. PhD
thesis, Universidade de Trás-os-Montes e Alto Douro, Villa Real, Portugal.

Silva, Nuno and Joao Rocha (2003). “Ontology Mapping for Interoperability in Semantic
Web.” In: ICWI, pp. 603–610.

92 BIBLIOGRAPHY

Staab, Steffen and Rudi Studer (2010). Handbook on ontologies. Springer Science & Busi-
ness Media.

Stephan, Grimm st, Hitzler st Pascal, and Abecker st Andreas (2007). “Knowledge rep-
resentation and ontologies”. In: Semantic Web Services: Concepts, Technologies, and
Applications, pp. 51–105.

Van Heijst, Gertjan, A Th Schreiber, and Bob J Wielinga (1997). “Using explicit ontologies in
KBS development”. In: International journal of human-computer studies 46.2-3, pp. 183–
292.

Van Rossum, Guido et al. (2007). “Python programming language.” In: USENIX annual
technical conference. Vol. 41, p. 36.

Walters, David and Geoff Lancaster (2000). “Implementing value strategy through the value
chain”. English. In: Management Decision 38.3, pp. 160–178. issn: 0025-1747. doi: 10.
1108/EUM0000000005344.

Wei-Guo, Yi et al. (2010). “An ontology-based Web information extraction approach”. In:
2010 2nd International Conference on Future Computer and Communication. Vol. 1.
IEEE, pp. V1–132.

White, Colin (2005). “Data integration: Using etl, eai, and eii tools to create an integrated
enterprise”. In: Business Intelligence Journal 10.I.

Zins, Chaim (2007). “Conceptual approaches for defining data, information, and knowledge”.
In: Journal of the American society for information science and technology 58.4, pp. 479–
493.

93

Appendix A

Operator websites

Table A.1: Operator websites with respective method of timetable informa-
tion

Operator Website Method of presentation

Metro do
Porto

https://www.metrodoporto.pt/
frontoffice/pages/337

A single PDF file with the
information of every trip

Arriva http://www.arriva.pt/horarios/ PDF file without embedded
text and only images

Espírito
Santo

http://www.carreiras.
espiritosanto.com.pt/horarios/

PDF files

AV Pacense http://www.avpacense.pt/horarios.
html

PDF files

AV Landim http://www.avlandim.pt/horarios.
html

PDF files

AV Tâmega https://avtamega.com/Schedule Not working
AV Minho http://www.avminho.pt/horarios HTML
Rodonorte https://www.rodonorte.pt/pt/ HTML
ETG http://www.gondomarense.pt/

horarios-2006/index.htm
PDF files

Valpibus https://www.valpibus.pt/
partidas-chegadas

PDF files and HTML for
real time information

Maia Trans-
portes

https://www.maiatransportes.com/ PDF files

MGC http://www.mgc.pt/
pt/servico-regular/
linhas-e-horarios/avintes/

PDF files

Maré de
matosinhos

https://maredematosinhos.pt/
linhas/

PDF file without embedded
text and only images

Transdev https://www.transdev.pt/ Both HTML and PDF files
are only available using
route calculation

AV Souto http://www.avsouto.com/ Flash application
TUST https://www.cm-stirso.pt/viver/

mobilidade-e-transportes/
transportes/rodoviario/
transportes-urbanos-de-santo-tirso

PDF file without embedded
text and only images

94 Appendix A. Operator websites

Albano http://www.albanobus.pt/horario.
php

PDF file

Transportes
urbanos de
Braga

https://www.tub.pt/percursos/ AngularJS web application

Barquense https://barquense.viageos.com/
wp-content/uploads/2018/06/

PDF info-board without
embedded text

GetBus https://www.getbus.eu/pt/
braga-aeroporto-braga/

HTML

Autna https://www.autna.com/es/
horarios-y-tarifas/

HTML and a single pdf file

Fertagus /
Sulfertagus

https://www.fertagus.pt/pt/
horarios

HTML

Transtejo /
Soflusa

https://ttsl.pt/passageiros/
horarios-de-ligacoes-fluviais/

HTML

Metro Lisboa https://www.metrolisboa.pt/
viajar/horarios-e-frequencias/

Does not have timetable in-
formation but has HTML
frequencies and files using
the GTFS format

CP https://www.cp.pt/passageiros/pt/
consultar-horarios

API available and files using
the GTFS format

95

Appendix B

Service thesaurus

{
" to " : [" to " , " a "] ,
" , " : [" , " , " e " , " and " , " ou " , " o r "] ,
"monday" : ["monday" , " segunda (s |− f e i r a) ?" , "2a?"] ,
" t u e s d a y " : [" t u e s d a y " , "ter(ç|c)a(s|-feira)?" , "3a?"] ,
"wednesday " : ["wednesday " , " qua r t a (s |− f e i r a) ?" , "4a?"] ,
" t h u r s d a y " : [" t h u r s d a y " , " q u i n t a (s |− f e i r a) ?" , "5a?"] ,
" f r i d a y " : [" f r i d a y " , " s e x t a (s |− f e i r a) ?" , "6a?"] ,
" s a t u r d a y " : [" s a t u r d a y " , "s(á|a)bados?"] ,
" sunday " : [" sunday " , " domingos ?"] ,
" h o l i d a y " : [" h o l i d a y " , " f e r i a d o s ?"] ,
"monday to f r i d a y " : [" wo rk i ng days " , "dias úteis" , " d i a s u t e i s "] ,
" s a t u r d a y , sunday " : ["week end" , " f im de semana" , " f im−de−
semana"] ,

"monday to sunday " : [" e v e r y d a y " , " todos os d i a s " , " sempre "]
}

Listing B.1: Service thesaurus (Json).

