
Emergency Landing Spot Detection for
Unmanned Aerial Vehicle

GABRIEL DA SILVA MARTINS LOUREIRO
novembro de 2020

Emergency Landing Spot Detection for
Unmanned Aerial Vehicle

Master in Electrical and Computer Engineering
Branch of Autonomous Systems

Gabriel da Silva Martins Loureiro
No 1170081

Supervisor
André Miguel Pinheiro Dias

Academic Year: 2019-2020

Instituto Superior de Engenharia do Porto
Departamento de Engenharia Eletrotécnica

Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto

Agradecimentos

Primeiro, gostaria de agradecer ao meu orientador, Eng. André Dias, pelo
desafio proposto, como também pelo auxílio durante o desenvolvimento desta
dissertação.

Gostaria de agradecer também os meus colegas de mestrado que fizeram
parte deste percurso.

Aos meus amigos de longa data pela amizade durante esses anos. Mesmo
que indiretamente, tiveram grande contribuição para a conclusão deste mestrado.

Ao meu irmão, Bruno Loureiro, pelo carinho e preocupação demonstrado ao
longo desses anos. O teu apoio foi fundamental para o fim desta etapa.

Por fim, um agradecimento especial aos meus pais, Fernando e Nazaré. Obri-
gado pelo vosso carinho, vossa paciência e cuidado durante toda a minha vida.
Serei eternamente grato por todos esforços e desafios superados para poderem
me proporcionar todas estas oportunidades. Espero poder retribuir tudo o que
já fizeram por mim.

Muito obrigado.
Gabriel da Silva Martins Loureiro

iii

Abstract

The use and research of Unmanned Aerial Vehicle (UAV) have been increas-
ing over the years due to the applicability in several operations such as search
and rescue, delivery, surveillance and others. Considering the increased pres-
ence of these vehicles in the airspace, it becomes necessary to reflect on the safety
issues or failures that UAV may have and what is the appropriate action to take.
Furthermore, in many missions the vehicle will not return to its original location
and, in case of fail to achieve the landing spot, need to have onboard capability
to estimate the best spot to safely land.

The vehicles are susceptible to external disturbance or electromechanical
malfunction. In this emergencies scenarios, UAVs must safely land in a way
that will minimize damage to the robot and will not cause any human injury.

The suitability of a landing site depends on two main factors: the distance of
the aircraft to the landing site and the ground conditions. The ground conditions
are all the factors that are relevant when the aircraft is in contact with the ground,
such as slope, roughness and presence of obstacles.

This dissertation addresses the scenario of finding a safe landing spot dur-
ing operation. Therefore, the algorithm must be able to classify the incoming
data and store the location of suitable areas. Specifically, by processing Light
Detection and Ranging (LiDAR) data to identify potential landing zones and
evaluating the detected spots continuously given certain conditions.

In this dissertation, it was developed a method that analyses geometric fea-
tures on point cloud data and detects potential good spots. The algorithm uses
the Principal Component Analysis (PCA) to find planes in point clouds clusters.
The planes that have slope less than a threshold are considered potential landing
spots. These spots are then evaluated regarding ground and vehicles conditions
such as the distance to the UAV, presence of obstacles, roughness of the area,
slope of the spot. The output of the algorithm is the optimum spot to land and
can vary during operation.

Keywords: unmanned aerial vehicle, LiDAR, landing spots detection, emer-
gency landing, point cloud

v

Resumo

O uso e pesquisa de veículos aéreos não tripulados (VANT) têm aumentado
ao longo dos anos devido à aplicabilidade em diversas operações, como busca
e salvamento, entrega, vigilância e outras. Considerando a crescente presença
desses veículos no espaço aéreo, torna-se necessário refletir sobre os problemas
ou falhas de segurança que o veículo pode ter e qual é a ação apropriada a ser
tomada. Além disso, em muitas missões, o veículo não retornará ao seu local
original e, caso não seja possível alcançar a zona de aterragem, precisa ter a
capacidade de estimar o melhor ponto para aterrar em segurança.

Os veículos são suscetíveis a perturbações externas ou mau funcionamento
eletromecânico. Nesses cenários de emergência, os UAVs precisam aterrar com
segurança de forma a minimizar os danos ao robô e não causar ferimentos em
pessoas.

A adequação de um local de pouso depende de dois fatores principais: a
distância do veículo aéreo ao local de pouso e as condições do solo. As condições
do solo são todos os fatores relevantes quando a aeronave está em contacto com
o solo, como declividade, rugosidade e presença de obstáculos.

Esta dissertação aborda o cenário de encontrar um local de pouso seguro
durante a operação. Portanto, o algoritmo deve ser capaz de classificar os da-
dos recebidos e armazenar a localização de áreas adequadas. Especificamente,
processando dados de LiDAR para identificar possíveis zonas de aterragem e
avaliando os pontos detetados continuamente, dadas determinadas condições.

Nesta dissertação, foi desenvolvido um método que analisa características
geométricas em nuvem de pontos e deteta possíveis bons locais de aterragem. O
algoritmo usa a Análise de Componente Principal (PCA) para encontrar planos
em clusters de nuvens de pontos. Os planos com inclinação menor que um limite
são considerados possíveis pontos de aterragem. Esses pontos são então avali-
ados quanto às condições do solo e dos veículos, como a distância ao UAV, pre-
sença de obstáculos, rugosidade da área, inclinação do ponto. A saída do algo-
ritmo é o local ideal para aterrar e pode variar durante a operação.

Palavras-chave: veículos aéreos não tripulados, LiDAR, deteção de pontos

vii

de aterragem, aterragem de emergência, nuvem de pontos

Contents

Abstract v

Resumo viii

Contents i

List of Figures v

List of Tables vii

List of Algorithms and Program code ix

List of Acronyms xi

1 Introduction 1
1.1 Motivation . 4
1.2 Objectives . 5
1.3 Structure . 6

2 Related Work 7
2.1 Emergency Landing Spot Detection 7

2.1.1 LiDAR Landing Detection Systems 7
2.1.2 Vision Landing Detection Systems 11
2.1.3 Other approaches . 15

2.2 Discussion . 15

3 Fundamentals 17
3.1 LiDAR . 17

3.1.1 Spinning LiDAR . 18
3.1.2 Solid-State LiDAR . 18

3.1.2.1 Flash-array LiDAR 19
3.1.2.2 Phase-array LiDAR 19

i

ii CONTENTS

3.1.3 MEMS LiDAR . 19
3.2 UAV Localization . 20

3.2.1 Reference Frames . 21
3.2.1.1 ECEF Frame . 21
3.2.1.2 Local Navigation Frame 23
3.2.1.3 Body-Fixed Frame 23
3.2.1.4 IMU-Fixed Frame 23
3.2.1.5 LiDAR Frame . 24

3.2.2 Attitude Representation . 24
3.2.2.1 Euler Angles . 24
3.2.2.2 Quaternions . 25

3.2.3 Frames Relations . 26
3.2.4 Extended Kalman Filter . 27

3.3 Data Processing . 30
3.3.1 Point Cloud Downsampling 30

3.3.1.1 Voxel Grid Filter 30
3.4 Data Structuring . 31

3.4.1 Octree . 31
3.5 Plane Detection . 32

3.5.1 General Form of the Plane Equation 32
3.5.2 Principal Component Analysis 33

3.6 Robotic Middleware . 35
3.6.1 Robot Operating System - ROS 35

3.7 Robotic Simulators . 37
3.7.1 Modular Open Robots Simulation Engine - MORSE 37

4 System Design 39
4.1 Hardware Architecture . 39
4.2 Software Architecture . 40

5 Emergency Landing Spot Detection Algorithm 43
5.1 Algorithm Procedure . 43

5.1.1 Frames Transformation . 43
5.1.2 Point Cloud Downsampling 46
5.1.3 Data Structuring and Neighbour Search 46
5.1.4 Plane Detection . 48
5.1.5 Registration and Classification 49

6 Implementation 53
6.1 UAV . 53

6.1.1 Velodyne VLP-16 . 54
6.2 ROS Packages . 57

CONTENTS iii

6.3 Point Cloud Library . 58
6.4 Simulation Setup . 59

6.4.1 Morse . 59
6.5 Developed Software . 60

7 Results 63
7.1 Simulated Environment . 63

7.1.1 Environment I . 63
7.1.1.1 Parameters . 63
7.1.1.2 Results and Discussion 64

7.1.2 Environment II . 67
7.1.2.1 Parameters . 69
7.1.2.2 Results and Discussion 69

7.2 Experimental Dataset . 73
7.2.1 Parameters . 75
7.2.2 Results and Discussion . 75

8 Conclusions and Future Work 79

Bibliography 81

List of Figures

1.1 Examples of different UAVs. 2
1.2 Conceptual approach for Emergency landing spot detection with a

UAV. 3
1.3 Robots developed by CRAS and LSA. 4

2.1 3-D LiDAR downward and forward scan 8
2.2 3-D Convolutional Neural Network to detect safe landing spots. . . . 10
2.3 Sliding window approach. 10
2.4 Preliminary Map Example. 12
2.5 Proposed algorithm by Shen et al. 13
2.6 Results of Forster et al. 14

3.1 Principle of operation of a LiDAR sensor. 17
3.2 Spinning LiDAR diagram. 18
3.3 Spinning LiDAR spherical coordinates system. 19
3.4 Phased-array LiDAR concept. 20
3.5 MEMS mirror LiDAR. 20
3.6 References frames in localization. 22
3.7 LiDAR reference frame. 24
3.8 Euler Angles in an UAV. 25
3.9 Representation of one point in two frames. 26
3.10 Voxel Grid with single voxel shaded in grey. 30
3.11 Representation of a voxel grid in 2-D. 31
3.12 General representation of an octree. 32
3.13 Effect of different resolutions values for an octree. 32
3.14 Plane representation in the Cartesian coordinate system. 33
3.15 Publisher/Subscriber communication. 36
3.16 Server/client communication. 37
3.17 Example of a Blender environment used in MORSE. 38

4.1 High-level hardware architecture. 40

v

vi LIST OF FIGURES

4.2 High-level software pipeline. 41

5.1 Flowchart of the developed algorithm. 44
5.2 Frames of reference. 45
5.3 Point cloud frame transformation. 45
5.4 Point cloud downsampling. 47
5.5 Spherical neighbourhood of a randomly chosen point. 47
5.6 Different values for the radius of the sphere. 48
5.7 Rating function of the four parameters. 51

6.1 STORK UAV. 54
6.2 Velodyne Puck LiDAR . 55
6.3 Velodyne VLP-16 data packets structure. 56
6.4 ROS communication architecture for the software. 62

7.1 First scenario point cloud and Blender model. 64
7.2 UAV trajectory for the first simulation. 65
7.3 UAV orientation for the first simulation. 65
7.4 Number of divisions along the three axis. 66
7.5 Comparison between Downsampling and PCA execution time for

the first simulation. 67
7.6 Spots detected for the first scenario with different parameters. 68
7.7 Second scenario point cloud and Blender model. 69
7.8 UAV trajectory for the second simulation. 70
7.9 UAV orientation for the second simulation. 70
7.10 Number of divisions along the three axis for the second simulation. . 71
7.11 Comparison between Downsampling and PCA execution time for

the second simulation. 72
7.12 Spots detected for the second scenario with different parameters. . . 73
7.13 Best spots grades for the second scenario with different parameters. . 74
7.14 Grades of the best spot and each spot detected for 50 search points. . 74
7.15 Monastery of Tibães. 75
7.16 UAV trajectories during the mission. 76
7.17 Point cloud, spots and camera image near a water fountain. 76
7.18 Point cloud, spots and camera image on the stairway. 77
7.19 Point cloud, spots and camera image near a building. 77
7.20 Point cloud, spots and camera image near entrance. 77
7.21 Rating of the best spot for the dataset. 78

List of Tables

3.1 WGS84 Parameters . 22

5.1 The parameters used in the plane detection step. 49
5.2 The parameters that are analysed to classify the spot. 50

6.1 Velodyne VLP-16 horizontal angular resolution. 55
6.2 Velodyne VLP-16 firing sequence. 56
6.3 Velodyne Scan Message Structure. 57
6.4 PointClou2 Message Data Structure 58
6.5 Field channels of the PointCloud2 message published by the velo-

dyne package. 58
6.6 Pose Message Structure. 61
6.7 Custom Plane Message Structure. 61

7.1 The parameters used in the first simulation. Each parameter is de-
fined by the user. 64

7.2 Results for the simulation of the first case 68
7.3 The parameters used in the second simulation. 69
7.4 Results for the simulation of the second case. 71
7.5 Results for several values of voxel size. 73
7.6 The parameters used in the dataset. 75
7.7 Results for several values of voxel size in the dataset. 78

vii

List of Algorithms and Program
code

3.1 Pseudocode for the PCA algorithm. 35
5.1 Algorithm for neighbourhood and plane identification steps. . . . 49
6.1 Python Script Example . 60

ix

List of Acronyms

2-D Two-Dimensional.

21⁄2-D Two-and-a-Half-Dimensional.

3-D Three-Dimensional.

CRAS Centre for Robotics and Autonomous Systems.

ECEF Earth-centered Earth-fixed.

EKF Extended Kalman Filter.

ENU East-North-Up.

FLU Forward-Left-Up.

FoV Field of View.

FRD Forward-Right-Down.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

IMU Inertial Measurement Unit.

INESC TEC Institute for Systems and Computer Engineering, Technology and
Science.

INS Inertial Navigation System.

ISEP Engineering School of Porto Polytechnic.

KF Kalman Filter.

xi

xii LIST OF ACRONYMS

LiDAR Light Detection And Ranging.

LMS Least Median Square.

LSA Autonomous Systems Laboratory.

MEMS Microelectromechanical mirrors.

MORSE Modular Open Robots Simulation Engine.

NED North-East-Down.

NMEA National Marine Electronics Association.

P2P Peer-to-Peer.

PCA Principal Component Analysis.

PCL Point Cloud Library.

PPS Pulse Per Second.

RADAR Radio Detection And Ranging.

ROS Robot Operating System.

RTK Real Time Kinematic.

ToF Time of Flight.

UAV Unmanned Aerial Vehicle.

UTC Coordinated Universal Time.

V-REP Virtual Robot Experimentation Platform.

WGS World Geodetic System.

Chapter 1

Introduction

In recent years, the study and use of Unmanned Aerial Vehicles (UAVs),
commonly known as drones, has been the focus of great interest due to the large
set of research topics, such as hardware development, human-system interac-
tion, obstacle detection, collision avoidance and considerably more [1]. These
vehicles consists of a aircraft that can be remotely operated by a human oper-
ator or execute a mission autonomously [2]. In the latter case, the degree of
autonomy and the mission which they are capable to achieve depend on the
sensors used.

In terms of categorisation, there are several ways which UAVs can be classi-
fied: aerodynamics, landing, weight and range [3]. Generally, the classification
regarding their aerodynamics is more used. For instance, there are fixed-wing,
flying-wings and flapping-wing vehicles in which their wings are the main fac-
tor to generate lift. On the other hand, there are other types such as helicopters,
quadcopter that uses multiple rotors to produce forceful thrust.

Given the numerous UAVs with multiple sensors, motors and design config-
urations, they present applicability in several kinds of operations, such as search
and rescue operations[8, 9], delivery [10], surveillance [11], inspection and inter-
action with the environment [12, 13]. Considering the applications scenarios,
there are missions where the UAV must fly in civilian airspace, i.e., they must
fly over populated areas. However, they are susceptible to external disturbance
or electromechanical malfunction. As a matter of fact, there are different failures
scenarios that could impact the operation thus leading to an emergency landing:

• Global Positioning System (GPS) failures. In general, UAVs use a GPS
message to navigate. Although there a several sensors that could aid the
navigation, in the occurrence of loss of GPS signal the vehicle may need to
land.

1

2 CHAPTER 1. INTRODUCTION

(a) Fixed-wing UAV (FALCOS) [4] (b) Multirotor (OTUS) [5]

(c) Flapping-wing UAV (BionicOpter)
[6] (d) Helicopter UAV (Alpha 800) [7]

Figure 1.1: Examples of different UAVs.

• Loss of communication. In the event of loss of communication between
the UAV and a base station, one possible action is to realize a emergency
landing.

• Battery failure. If a battery failure is detected, the vehicle may not be able
to continue the operation and as a result an emergency landing is neces-
sary.

• Software and hardware errors. During operation, a mechanical fault such
as broken propellers could limit the vehicle dynamic. Besides this, soft-
ware crashes could occur. In this scenario, the UAV may need to land.

• Environment factors. Bad weather conditions such as strong winds and
rain make the vehicle unable to carry out the mission, forcing it to land.

In this type of situations, UAVs must safely land in a way that will minimize
damage to itself and won’t cause any injury to humans.

Consequently, detecting a reliable landing spot is essential to safe operation.
In order to determine a landing spot, a set of conditions must be considered
when analysing the sensor data. These conditions are typically restraints on the
surface. The reliability of a safe landing site depends on several factors, such as
the distance of the aircraft to the landing site and the ground conditions. The

3

ground conditions are all the factors that are relevant when the aircraft is in
contact with the ground. The conditions considered in this project are:

• The slope of the plane. The surface the UAV will land must have a slope
smaller than a threshold;

• The roughness of the area. There are cases when the vehicle will land in a
surface with vegetation or other obstacles. In this case, the height of these
obstacle must not be larger than a maximum value pre-defined before the
mission;

• The size of the spot. The landing spot must be large enough for the UAV;

• Presence of obstacles. The approximation to landing spot depends on the
obstacles around the area. Given that, the presence of obstacles must be
taken into account when evaluating the spot;

• Distance to vehicle. The UAV must be able to reach the desired spot with
the remaining battery power.

Since one of the factors is the distance of the aircraft to the landing site, the
suitability of a landing spot varies during the mission. Figure 1.2 illustrates the
conceptual approach for emergency landing spot detection with a UAV in real
time.

Figure 1.2: Conceptual approach for Emergency landing spot detection with a
UAV.

In order to increase the reliability of an UAV operation, this dissertation ad-
dresses the development of an algorithm for detect, store and select emergency

4 CHAPTER 1. INTRODUCTION

landing spots in operation time using Light Detection And Ranging (LiDAR)
(LiDAR) data. The main focus is to develop an algorithm that will evaluate
continuously the geometry of the terrain, based on LiDAR data, and establish a
list of possible landing spots. In addition, since the probability of a spot being
the best landing zone should depend on several factors, a re-evaluation must be
done while the UAV is operating.

1.1 Motivation

The Centre for Robotics and Autonomous Systems (CRAS)1, from the Insti-
tute for Systems and Computer Engineering, Technology and Science (INESC
TEC)2, and the Autonomous Systems Laboratory (LSA), from the Engineering
School of Porto Polytechnic (ISEP), have been developing numerous projects in
the robotics field over the past years. The result of these projects are the devel-
opment of different robotic systems for several fields of research: underwater
(figures 1.3a and 1.3b), water surface (figure 1.3c), land and air (1.3d).

(a) TURTLE II [14] (b) EVA [15]

(c) ROAZ II [16] (d) STORK I [17]

Figure 1.3: Robots developed by CRAS and LSA.

1https://www.inesctec.pt/en/centres/cras
2https://www.inesctec.pt/en

1.2. OBJECTIVES 5

Their background of UAVs involves the fixed-wing vehicle FALCOS and, re-
cently, multirotor robots, such as OTUS, STORK and GRIFO-X. These robots are
related to multiple projects, with ROSM3, SpilLess4, Sunny5 and MineHeritage6

being examples of those multiple projects. Regarding the MineHeritage project,
for instance, the UAV obtains high resolution images and maps the external re-
gion with a static Three-Dimensional (3-D) LiDAR.

Furthermore, they have won the Grand Challenge of two international com-
petitions of search and rescue missions using the UAVs OTUS and STORK: the
euRathlon7 [8] and ERL Emergency Robots8, in 2015 and 2017, respectively.

Considering these projects and vehicles, we note the different applications
in which the robots can be used. However, these missions have in common the
need to occasionally land in a different position than take-off origin. Besides
emergency scenarios, detecting a landing location different from the original
position allows optimization of missions, reducing battery consumption, for ex-
ample.

1.2 Objectives

This dissertation addresses the detection of landing spots for unmanned
aerial vehicles in operation time, using a LiDAR sensor. For the purpose of
achieving the main objective of this dissertation, there are several intermediate
objectives that need to be fulfilled:

• Study of existing works related to the detection of landing spots and their
different approaches.;

• Analysis of the requirements to determine a safe landing spot. The suit-
ability of a landing site depends on several conditions that need to be ad-
dressed in the project;

• Creation of a data processing pipeline. The pipeline is based on the ac-
quired knowledge from the previous objectives;

• Development of a simulation environment able to provide the required
tools to validate the algorithm for emergency landing spot;

• Development of a spot detection algorithm based on ground conditions
given a mathematical methodology;

3https://www.inesctec.pt/pt/projetos/rosm
4https://www.inesctec.pt/pt/projetos/spilless
5https://www.inesctec.pt/pt/projetos/sunny
6https://mineheritage-project.eu/
7https://www.eurathlon.eu/
8https://www.eu-robotics.net/robotics_league/erl-emergency/about/index.html

6 CHAPTER 1. INTRODUCTION

• Classification of the suitable spots given different parameters;

• Performance evaluation in different environments in order to validate the
developed algorithm.

1.3 Structure

This dissertation is divided in eight chapters. The next chapter presents a
preliminary study of the related works to the topic of this dissertation. The
chapter ends with the analyses of the different works, presenting their advan-
tages and pointing the drawbacks. Besides this, it also shows the common as-
sumptions made.

Chapter 3 introduces the theory in which parts of the algorithm are based.
Moreover, it also presents the technologies used in the developed method. Next,
chapter 4 shows the high-level software and hardware architecture, detailing
their components.

Chapter 5 introduces the developed algorithm and its requirements. Beside
this, the algorithms sequence of data processing blocks is displayed. Chapter 6
presents the specifications for the vehicle. In addition, it shows the libraries of
algorithms used and the developed communication packages.

In chapter 7, the results are presented as well as the analyses and perfor-
mance of the algorithm.

Finally, in chapter 8 we discuss the conclusions of the method for detecting
safe landing spots. Here we also present suggestions or directions for further
work.

Chapter 2

Related Work

In this chapter is presented the state-of-the-art regarding the topic of emer-
gency and safe landing. Several approaches related to the detection of landing
spots using an UAV is exposed. The chapter ends with a brief analysis of the
presented works and comparison with this dissertation.

The survey present in this chapter resulted in the submission of the paper
Survey of Approaches for Emergency Landing Spot Detection with Unmanned Aerial
Vehicles [18] to the 23rd edition of International Conference series on Climb-
ing and Walking Robots and the Support Technologies for Mobile Machines
(CLAWAR 2020), in Moscow, Russia.

2.1 Emergency Landing Spot Detection

The main problem to be addressed is the integration in an UAV the ability
to detect safe landing zones. Hence, it is necessary to process different types
of data from several sensors so that it is possible to obtain information about
the zone where it is intended to land. Different sensors provide distinct infor-
mation regarding terrain, obstacles, presenting advantages and disadvantages
in relation to each other. Thus, there are multiple approaches in the literature
regarding safe landing, either for emergency situations or for other purposes.

2.1.1 LiDAR Landing Detection Systems

It is established in the literature that LiDAR sensors can provide accurate
data about the environment and their scope of applicability ranges from terres-
trial robots to aerial robots. The point clouds generated by the sensors are pro-
cessed using geometric approaches, identifying terrain features such as slope

7

8 CHAPTER 2. RELATED WORK

and roughness. This data can also be used to detect possible hazard to the air-
craft.

Johnson et al. [19] developed in 2002 a system that uses LiDAR data to de-
tect obstacles and safely land spacecrafts on Mars. Their system is based on
geometric analysis of terrain characteristics. After generating a 21⁄2-D grid map
to represent the terrain, it computes a Least Median Square (LMS) estimation to
fit a plane in a grid cell. Then, a Least Squares fit is applied in the remaining in-
lier points [20]. The incidence angle and the roughness are computed to obtain
a landing cost map and select a safe landing site.

A similar approach is presented by Whalley et al. [21, 22] in 2009. The au-
thors proposed a method that analyses a 3-D point cloud generated by a LiDAR
to autonomously determine possible safe landing sites. The classification of the
landing spots is realized by computing the plane of a set of points and apply-
ing geometrical constraints. These constraints are the slope of the computed
plane that must be below a limit, the roughness and proximity of hazards and
obstacles. The safe landing algorithm maps the 3-D point cloud data from each
LiDAR scan on a grid. Next a square sliding window with the size of a landing
area moves along the grid to compute the slope and roughness at each point.
Then, the slope and roughness are analyzed to determine if the window is a
feasible landing spot. After the entire grid is covered and the statistics are calcu-
lated, the optimal landing point is chosen. An optimum point has the minimum
value of the sum of weighted roughness, slope, and distance.

An algorithm proposed by Chamberlain et al. [23], in 2011, allows a full-
scale unmanned helicopter to fly through unmapped terrain and perform a safe
landing without human control or input. Their approach uses a 3-D scanning
LiDAR was developed that operates in two modes: a forward scan to detect
obstacles and a downward scan to map the terrain (see figure 2.1). First, a map is

Figure 2.1: 3-D LiDAR downward and forward scan. (Adapted from [23])

built using the downward scan and then processed to remove rough and sloped
areas. The next step consist of a fine evaluation in which a 3-D virtual model
of the helicopter is placed on each cell of the map and a skid contact, wind

2.1. EMERGENCY LANDING SPOT DETECTION 9

direction and presence of obstructions in adjacent area evaluations are realized.
Then, their algorithm analyses the glide slope, i.e. the proper path of descent, to
each possible landing spot and compares to the point cloud model. Finally, the
landing spot is chosen from a optimization function based on the previous steps
results.

This approach is extended in [24, 25, 26] by applying a plane fit and present-
ing experimental results in urban and natural environments. The algorithm ap-
plies two evaluation based on geometrical features: a coarse evaluation to iden-
tify potential landing sites and a fine evaluation to choose the optimum spot.
First, a grip map is built given LiDAR points registered in global coordinates.
Each cell contain points and statistical information, such as mean, minimum
and maximum z-value, number of points. A first filtering step is also realized
by rejecting cells in which the standard deviation in z is larger than a threshold.
Then, a Least Square based on moment [27] is applied to fit a plane and compute
the slope. In the fine evaluation, a 2-D Delaunay triangulation [28] of the poten-
tial landing sites data is built and used to determine the intersections with the
landing skids and computing the roll and pitch of the aircraft. Finally, the vol-
ume between the triangulation and a 3-D model of the helicopter is calculated.
The value of the volume is used to predict bad contact and as another measure
to classify the landing site.

The problem of considering low vegetation as roughness is addressed in
Maturana and Scherer [29]. The authors proposed a 3-D Convolutional Neural
Networks [30] to detect landing zone for small UAVs. The algorithm incremen-
tally creates a volumetric density map from the point cloud stream. The xy plane
of the map is subdivided into non-overlapping tiles and for each tile the terrain
surface height is estimated. These sub-volumes are the input of the trained neu-
ral network. Finally, the output of the algorithm is the reliability rating of the
analyzed sub-volume regarding the feasibility to land. With this approach, they
were able to detect small obstacles presented in vegetation.

In 2014, Whalley et al. [31] developed autonomous obstacle navigation and
safe area selection on the U.S. Army Aeroflightdynamics Directorate RASCAL
JUH-60A [32] helicopter. The safe landing algorithm maps the 3-D point cloud
data from each LiDAR scan on a grid. The x and y values of each point falls into
one cell while the height is distributed to the adjacent cells based on the relative
horizontal position at the point within the cell. Next a square sliding window
(figure 2.3) with the size of a landing area moves along the grid to compute the
slope and roughness at each point. Then, the slope and roughness are analyzed
to determine if the window is a feasible landing spot. After the entire grid is
covered and the statistics are calculated, the optimal landing point is chosen. A
optimum point has the minimum of the sum of weighted roughness, slope and
distance.

10 CHAPTER 2. RELATED WORK

Figure 2.2: 3-D Convolutional Neural Network to detect safe landing spots [29].

Figure 2.3: Sliding window applied over a grid [31].

2.1. EMERGENCY LANDING SPOT DETECTION 11

The work of Lorenzo et al. [33] in 2017 presents an algorithm for landing
sites detection on manycore systems using parallel processing. Their proposal
is tested on several set of data with different characteristics. First, the 3-D points
of the point cloud is sorted to their x coordinates and then to their y coordinates.
Second, a read-only octree is built to hasten the neighbourhood search [34]. The
next step of the algorithm is to fit a plane in a neighbourhood larger enough
for the aircraft using Principal Component Analysis (PCA) [35]. The normals
to all points are computed in parallel. Finally, a quality rate is assigned to the
plane regarding the slope, roughness, skid landing requirements and presence
of obstructions.

2.1.2 Vision Landing Detection Systems

In addition to the use of LiDAR, the vision system has been the most popu-
lar approach to detect and assess a landing spot. There are multiple strategies
to land a UAV using vision-based algorithms. The focus of this survey is the
works related to landing on an unknown or partially known site as it is the most
likely to happen in an emergency scenario. However, other strategies for known
environments are landing on a marker, runway or a moving platform[36]. The
cameras have the advantage of being inexpensive and lighter compared to Li-
DARs. In Garcia-Pardo et al.[37], a safe landing site is an area that is big enough
for the helicopter to land and is clear of obstacles. Their algorithm assumes that
contrast in an image is higher near the obstacles. Therefore, it searches circular
areas in an image in which pixels have a level of contrast below a maximum
value.

The work developed by Bosch et al.[38] presents a method to detect land-
ing areas autonomously using monocular images. The algorithm applies a ho-
mography estimation process to select points that lie in a plane. Then, a dense
correlation technique is used to distinguish planar surfaces from non-planar ar-
eas. Finally, the information is saved in a stochastic 2-D grid in which each cell
has the probability of being planar. However, as the grid has the probability of
the region being flat, it is not capable of being used for other functions, such as
obstacle avoidance.

Another technique used to detect landing spots is machine vision. In Fitzger-
ald et al.[39, 40] and Mejias et al. [41], a machine approach is used to locate
safe landing areas for UAV forced landings given aerial imagery. The first step
is a preliminary site selection in which a Canny Edge Detector [42] and line-
expansion algorithm is applied to generate two binary images. These images
are fused and processed to generate a preliminary map where the safe and un-
safe areas are labeled (figure 2.4). The second step consists of classifying the
type of surface and build a coarse slope map. Finally, an optimum landing map
is built by fusing the previous maps using fuzzy linguistic as decision method.

12 CHAPTER 2. RELATED WORK

Figure 2.4: Preliminary Map example labeled regarding landing safety (Adapted
from [41]).

The work is later extended in 2015 by Warren et al. [43]. The 2-D points in the
preliminary maps are projected into a 3-D world model using the camera pose
and intrinsic model, accounting the terrain ruggedness. Then, a 3-D reconstruc-
tions using Structure-from-Motion is realized. Finally, the algorithm applies a
3-D surface analysis regarding size, local obstacles, terrain smoothness to select
the landing spot.

Eendebak et al. proposed in 2013 an algorithm for emergency landing selec-
tion in real-time operations. The method is able to detect objects in presence of
camera movement. The authors used Background Estimation [45] on stabilized
video and then compared the difference between the current frame of the video
and the background estimate to detect moving objects and structures. A binary
image is generated indicating obstacles and a distance map to all detected ob-
stacles is built. The maximum distance in the map is computed and chosen as
the landing site.

In 2013, Shen et al. [46] used aircraft-mounted cameras to acquire visual in-
formation and detect emergency landed sites (see figure 2.5). The method was
validated in offline experiments. First, the ground in the image is identified by
applying a hierarchical elastic horizon detection algorithm. After the horizon is
detected, a Canny Edge Detector is applied to assess the roughness of the area.
Furthermore, the terrain image is clustered in several clusters using the K-mean
clustering method. Then, the clusters are processed and analyzed to detect the
potential landing spot.

Forster et al. [47] proposed an elevation map-based technique to landing
spot detection for micro aerial vehicles using a monocular camera. The images
from the camera and the vehicle’s pose are combined to build a depth map.
Moreover, an elevation map is generated and updated given the resulting maps.
In the selection step, the authors considered a landing spot as a flat surface with

2.1. EMERGENCY LANDING SPOT DETECTION 13

(a) Sampled image.
" (b) Horizon detection.

(c) Edge detection.
(d) Clustering result given edge im-
ages.

Figure 2.5: Proposed algorithm using Canny edge detector and clustering algo-
rithm (Adapted from [46]).

a radius that depends on the size of the vehicle. Figure 2.6 shows the results
of the paper. The first image corresponds to the scenario, the second is the el-
evation map built and, finally, the last image is a video excerpt of the landing
procedure.

Hinzmann et al. [48] developed a vision-based algorithm to detect landing
spots in unknown environments at real time. The proposed algorithm applies
a segmentation technique to a camera image and classifies the resulting seg-
mented regions as "grass" or "not grass". Then, 3-D reconstruction and conse-
quently 21⁄2-D elevation map algorithms are realized given the potential landing
sites from the segmentation step. The optimum landing site is chosen given
terrain characteristics, such as slope and roughness, Finally, a distance map is
built.

Recently, Ayhan et al. [49] proposed a semi-automated emergency landing
selection algorithm. The method is a offline approach to finding rectangular
runway to serve as landing sites. The algorithm retrieves colour images from
Google Static Maps application. The colour images are then transformed into

14 CHAPTER 2. RELATED WORK

Figure 2.6: Results of the paper [47] (Adapted from [47]).

2.2. DISCUSSION 15

grey-scale image and Canny edge detection to create a binary image that is fi-
nally dilated. Then, connected components are detected in order to select land-
ing candidates. The candidates are rated considering several safety measures,
such as surface type estimation, homogeneity, maximum elevation difference
and other. At the end of the algorithm, the landing zones are ranked regarding
their reachability.

2.1.3 Other approaches

Besides the previous works presented, other approaches have been proposed
in which multiple sensors are used to solve the problem of terrain assessment
and safety. Serrano [50] proposed a combination of Radio Detection And Rang-
ing (RADAR), LiDAR and camera and a probabilistic framework to increase ro-
bustness of the selection of landing spots in landed space operation. The Least
Median of Squares regression algorithm is applied to fit a plane using RADAR
and LiDAR range data and determine slope and roughness. In addition, the au-
thors used edge detection techniques to identify craters and rocks from camera
imagery. Considering the terrain features, a Bayesian Networks [51] is used to
assess ground safety. On their proposal, the potential landing quality is modeled
using terrain, available fuel and region interest.

A similar sensors set is used by Howard and Seraji [52]. In this case, three
hazards maps are built from RADAR, LiDAR and camera and used to extract
measurements and terrain features. Each map is associated with a confidence
variable that designate the sensor certainty. Then, the different maps are aligned
and combined into a single fused map using fuzzy logic that represents terrain
safety.

2.2 Discussion

After presenting the works related to the topic of detection, selection and
classification of emergency and safe landing sites, a further study is realized in
order to improve the development of the dissertation project. Some of the ex-
posed approaches had already proposed solutions to overcome some limitations
and drawbacks associated to the problem that this project seeks to solve. In this
perspective, some premises made and proven in the current works can be either
improved or applied to some extent in this dissertation.

Considering the different set of sensors, cameras are less expensive and lighter
than the other sensor. However, the applicability of vision based algorithm de-
pends on visibility conditions. Conversely, LiDAR sensors are able to overcome
this hindrance and present higher accuracy. Nevertheless, LiDARs weight and
processing power can be a restriction to some UAVs.

16 CHAPTER 2. RELATED WORK

Specifically, the point cloud generated by LiDAR sensors must be spatially
structured. Data structuring allows the storage and organization of information.
In this context, this division leads to a more efficient data access and process. In
addition, the method chosen for structuring cannot cause loss of information
like the 21⁄2-D grids and planes projected images.

Regarding the detection of landing spots, the basis of the detection algorithm
is to identify a plane in the surface. Several techniques for real-time implemen-
tation of those algorithms search for geometrical features [19, 21, 23, 31, 53], such
as slope and roughness, to classify suitable landing sites in a point cloud. These
approaches does not present the need to train the algorithm when compared to
approaches based on neural networks and machine vision [29, 39, 40, 41].

According with the exposed works, the detected spots must be classified
in different levels considering the feasibility of landing. Hence, the final clas-
sification depends on terrain conditions, the presence of obstacles, distance to
the UAV, remaining power and trajectory conditions. Furthermore, this rating
should vary during the flight of the vehicle.

Chapter 3

Fundamentals

In this chapter it is presented a general outline of the important concepts for
a better understanding of the developed algorithm. Consequently, information
about mechanical functioning of sensors, mathematical models and computa-
tional concepts are described.

3.1 LiDAR

LiDAR is an active remote sensor used to compute ranges to objects by emit-
ting laser pulses and measuring the reflection. The principle of operation is fir-
ing beams of light and computing the Time of Flight (ToF), i.e., the time it takes
to the reflected pulse to be detected by the sensor, determining the distance to
the target [54], as shown in figure 3.1. Currently, there are several categories

Figure 3.1: Principle of operation of a LiDAR sensor (Adapted from [55])

to the LiDAR technology, such as spinning, flash, phased-array and Microelec-
tromechanical mirrors (MEMS) LiDARs.

17

18 CHAPTER 3. FUNDAMENTALS

3.1.1 Spinning LiDAR

In the spinning LiDARs (see Figure 3.2) a movable mirror is added to sensor
in order to enable obtaining 3-D map of the environment. One main advantage
of this class of LiDAR is the 360 degrees Field of View (FoV), allowing a complete
measurement of the vehicle’s surroundings [56]. Nevertheless, these sensors are,
in general, mechanically fragile to shocks and vibrations. In addition, the service
life of mechanical components is low, usually up to 2000 hours [57].

Figure 3.2: Spinning LiDAR diagram (Adapted from [58]).

Generally, the sensor returns data in Cartesian coordinates (x, y, z). These
values are acquired by applying a conversion of the points in spherical to Carte-
sian coordinates [59]. Considering a point in the sensor’s spherical coordinates
system (r, ω, α), where r is the radial distance to the point, ω is the elevation
angle and α is azimuth angle, the following equations transform the data to a
sensor-centered Cartesian frame:

x = r · cos ω · sin α (3.1)

y = r · cos ω · cos α (3.2)

z = r · sin ω (3.3)

3.1.2 Solid-State LiDAR

The Solid-state LiDARs are being devised in order to find a solution to the
problems of regarding the size, reliability and complexity of the mechanical
based LiDARs. Their design differ from conventional LiDARs by not having
movable pieces [60].

3.1. LIDAR 19

Figure 3.3: Spinning LiDAR spherical coordinates system (Adapted from [59]).

3.1.2.1 Flash-array LiDAR

In Flash LiDARS a beam of light is periodically fired towards a lens and are
thereby spread it to the environment. In addition, an array of photo-sensors
capture the reflected light. However, only a small portion of light is reflected,
hence the need for sensitive receivers, which increases the cost of these sensors
[57]. Its main advantage is the complete FoV acquirement at one moment, but
despite that, the FoV coverage is typically very small.

3.1.2.2 Phase-array LiDAR

Phase-array LiDAR uses a set of optical antennas synced up in a specific way.
It is possible to control the phase of the antennas, generating a radiation pattern
that possesses a certain size and is pointed in a particular direction [57]. Figure
3.4 shows the operation of these sensors where the signal is "steered" to a specific
direction.

Conversely, the beams produced tend to diverge more, making it hard to
achieve a combination of long range, high scanning resolution, and wide FOV
[56].

3.1.3 MEMS LiDAR

The MEMS LiDAR differs from spinning LiDAR by replacing the mechanical
mirrors to MEMS micro-mirrors. This allows the sensor to direct the light beams
during the transmission [61] (see figure 3.5).

They are generally smaller, less expensive and less sensible to vibrations
when compared to spinning LiDARs due to reduction of their mechanical parts.

20 CHAPTER 3. FUNDAMENTALS

Figure 3.4: Phased-array LiDAR concept (Adapted from [57]).

Figure 3.5: MEMS mirror LiDAR [61].

However, they are susceptible to mirrors drifting, which makes necessary the
realignment and recalibration.

3.2 UAV Localization

In robotics, robot localization is the procedure of determining the robot’s po-
sition and orientation, commonly called pose, in the environment. This process
is usually realized by combining several measurements from different sensors.
For instance, Inertial Navigation System (INS) and Global Positioning System
(GPS) have been used to determine the determine the vehicle localization. In
the case of UAVs, the pose is obtained in real time on-board the drone [62].

3.2. UAV LOCALIZATION 21

3.2.1 Reference Frames

In order to achieve the position and orientation of a robot, is necessary to
understand the concept of reference frames. The reason is that each sensor pro-
duces data in a different reference frame. For instance, figure 3.6 shows some of
the frames adopted in this dissertation:

• Earth-centered Earth-fixed (ECEF) frame;

• Local navigation frame;

• Body-fixed frame;

• IMU-fixed frame;

In addition, the dissertation also considers the LiDAR frame (figure 3.7).There-
fore, it is required to realize a transformation between the reference frames [63].

3.2.1.1 ECEF Frame

The ECEF frame has its origin in the center of the Earth. The coordinates are
denoted with a superscript e and are defined as follows: the z-axis points to the
north pole; the x-axis intersects the prime meridian and the equator; the y-axis
is perpendicular to other axes respecting the right-hand rule [64]. Hence, the
position vector in the ECEF frame is expressed by:

pe =

xe

ye

ze

 (3.4)

An additional variant commonly used to define a point in ECEF frame is the
geodetic coordinate system. The geodetic system describes a point regarding
longitude (λ), latitude (φ) and height(h). The latitude express the angle between
the equatorial plane and the point of interest. The longitude is obtained from the
angle between the prime meridian and the measured point. Finally, the height
is the vertical distance from the ellipsoid to the point of interest. Therefore, a
vector in the geodetic system is given by:

pe =

λe

φe

he

 (3.5)

The two variants are related using the standard World Geodetic System (WGS),
also known as WGS84. Table 3.1 shows the main parameters defined by the
standard WGS84. Consequently, considering a vector in geodetic coordinates,

22 CHAPTER 3. FUNDAMENTALS

Figure 3.6: Reference frames in localization [62].

Table 3.1: WGS84 Parameters

Description Notation Value Unit
Semi-major axis a 6,378,137.0 m
Semi-minor axis b 6,356,752.314245 m

Flattening Factor of the Earth 1/f 298.257223563
Nominal Mean Angular Velocity ω 7.292115× 10−5 rad/s

Geocentric Gravitational Constant GM 3, 986, 004.418× 108 m3/s2

the transformation to Cartesian coordinates in the ECEF frame is given by:

pe =

xe

ye

ze

 =

 (NE + h) cos φ cos λ

(NE + h) cos φ sin λ[
NE(1− e2) + h

]
sin φ

 (3.6)

where e2 is the first eccentricity squared

e2 =
a2 − b2

a2 = 6.6943799014× 10−3 (3.7)

3.2. UAV LOCALIZATION 23

and NE is the prime vertical radius of curvature

NE =
a√

1− e2 sin2 φ
(3.8)

3.2.1.2 Local Navigation Frame

The local navigation frame, also known as local tangent plane, has its origin
fixed in a arbitrary point in the Earth’s surface. Similarly to the ECEF frame, the
local navigation frame is Cartesian and can be represented by two variants: the
North-East-Down (NED) coordinates and the East-North-Up (ENU) frame.

In the local NED frame the x-axis points north, the y-axis points east and
the z-axis points downwards perpendicular to the other two axes. On the other
hand, in the local ENU frame the x-axis points east, the y-axis points north and
the z-axis points upwards orthogonal to the previous axis. Finally, the position
vector is labeled with a superscript n as follows:

pn =

xn

yn

zn

 (3.9)

3.2.1.3 Body-Fixed Frame

The body-fixed frame is defined arbitrarily in the body of the vehicle. There
are two ways to define the coordinates: Forward-Right-Down (FRD) and Forward-
Left-Up (FLU) frames. In the former case, the x, y and z-axis points forward,
right and downwards, respectively, while the latter case differs by expressing
the y-axis and z-axis pointing left and upwards, respectively. The coordinates
vectors in the body frame is labeled with the superscript b and are defined:

pb =

xb

yb

zb

 (3.10)

3.2.1.4 IMU-Fixed Frame

The IMU frame has its fixed origin in the IMU embedded in the vehicle.
Assuming that the accelerometers and gyroscopes of the sensor are in a per-
pendicular layout, then the axes of the IMU-fixed frame are aligned with each
accelerometer and gyros. The vectors in this frame are assigned with the super-
script IMU. For instance, the acceleration vector is defined as follows:

aIMU =

xIMU

yIMU

zIMU

 (3.11)

24 CHAPTER 3. FUNDAMENTALS

3.2.1.5 LiDAR Frame

Finally, the LiDAR frame has its origin generally fixed to device centre. Fig-
ure 3.7 show the coordinate system of a spinning LiDAR. Typically, a point in
the LiDAR frame is given in polar coordinates as follows:

pL =

α

ω

r

 (3.12)

where the L superscript labels the LiDAR frame.

Figure 3.7: Reference frame of a spinning LiDAR (Adapted from [59]).

3.2.2 Attitude Representation

3.2.2.1 Euler Angles

One variant to represent the vehicle’s orientation in space is the Euler angles

parametrization (Ψ =
[
φ θ ψ

]T
). In this representation, any orientation is

described by combining three successive elementary rotations around the x(φ) ,
y(θ), z(ψ) axes, which are defined:

Rx(φ) =

1 0 0
0 cos φ − sin φ

0 sin φ cos φ

 (3.13)

Ry(θ) =

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 (3.14)

Rz(ψ) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (3.15)

3.2. UAV LOCALIZATION 25

In order to complement the explanation, figure 3.8 illustrates the rotations in
the case of an UAV body frame.

Figure 3.8: Euler Angles in a UAV [65]

These rotations are denominated roll(φ), pitch(θ) and yaw(ψ), respectively.
The order in which these matrices are applied is important. In this dissertation is
considered the Euler ZYX convention, that is, a positive yaw-pitch-roll ordering.
Therefore, the resulting matrix is:

R(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ)

=

c(ψ)c(θ) c(ψ)s(θ)s(φ)− s(ψ)c(φ) c(ψ)s(θ)c(φ) + s(ψ)s(φ)
s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) s(ψ)s(θ)c(φ)− c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

(3.16)

where c(·) := cos(·) and s(·) := sin(·).
Following the equation 3.16, the Euler angles can be determined [66].φ

θ

ψ

 =

atan2(r32, r33)

−asin(r31)

atan2(r21, r11)

 (3.17)

where rij is the element in the row i and column j. The Euler angles are com-
monly used since is more perceptible to humans. However, this representation
presents singularity when the pitch value is near θ = π/2.

3.2.2.2 Quaternions

The aforementioned problem is avoided by using another variant to repre-
sent the orientation of the vehicle: quaternions (q = [q0, q1, q2, q3]

T). The param-
eter q0 is the scalar part while the parameters q1, q2 and q3 are the vector part.

26 CHAPTER 3. FUNDAMENTALS

The Euler angles and quaternions are related by the equation:

q =

q0

q1

q2

q3

 =

cos(ψ

2) cos(θ
2) cos(φ

2) + sin(ψ
2) sin(θ

2) sin(φ
2)

cos(ψ
2) cos(θ

2) sin(φ
2)− sin(ψ

2) sin(θ
2) cos(φ

2)

cos(ψ
2) sin(θ

2) cos(φ
2) + sin(ψ

2) cos(θ
2) sin(φ

2)

− cos(ψ
2) sin(θ

2) sin(φ
2) + sin(ψ

2) cos(θ
2) cos(φ

2)

 (3.18)

Considering a positive yaw-pitch-roll rotation, the resulting rotation matrix is:

R(q) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (3.19)

3.2.3 Frames Relations

The relationship of the coordinates of one point in two references frames
can be expressed by the homogeneous transformation matrix [67]. Figure 3.9
shows the vectors p0 and p1 with respect to Frame 0 and Frame 1, respectively.
Considering R0

1 as the rotation matrix of Frame 1 to Frame 0, the vectors are then
related:

p0 = o0
1 + R0

1p1 (3.20)

where o0
1 is the origin of Frame 1 with respect to Frame 0.

Figure 3.9: Representation of one point in two frames [67].

By adding a fourth unit component to the vectors p0 and p1 and expanding
the equation 3.20, the transformation can be defined in terms of matrix:[

p0

1

]
=

[
R0

1 o0
1

0T 1

] [
p1

1

]
(3.21)

3.2. UAV LOCALIZATION 27

Therefore, the homogeneous transformation matrix given by:

T0
1 =

[
R0

1 o0
1

0T 1

]
(3.22)

express the transformation of a vector from a generic frame 1 to the generic
frame 0.

3.2.4 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a recursive algorithm to estimate the
state of dynamic systems [68, 69]. The state is a set of variables that parameterize
the mathematical model of a dynamic system. The EKF differs from the usual
Kalman Filter (KF) by assuming that the system is nonlinear. Moreover, the
filter has a process model and an observation model and both have additive
white Gaussian noisy errors. The EKF fuses the sensors data in a two-step cycle:
prediction and update.

1. Prediction Step
First, let the nonlinear process system be modelled as

xk = f(xk−1) + wk−1 (3.23)

zk = h(xk) + vk (3.24)

where xk and wk−1 are the n × 1 vector states and process noise vector,
respectively, while zk is the m× 1 observation vector and vk is m× 1 the
measurement noise vector.
The system has initial state x0 with mean µ0 = E[x0] and initial covariance
P0 = E[(x0 − µ0)(x0 − µ0)T], where E[·] is the expectation operator. In
the following derivation, the notation xβ|α means the estimation at time β

given the observations up to time β > α.
Assuming that the last optimal estimation is

xk−1|k−1 = E [xk−1|Zk−1] (3.25)

The prediction step tries to find a prediction xk|k−1. Expanding f(·) in Tay-
lor Series about xk−1|k−1 and truncating at fist order gives

f(xk−1) = f(xk−1|k−1) + Fk(xk−1 − xk−1|k−1) (3.26)

where Fk if the Jacobian of f(·) about xk−1|k−1 and is defined as

F =
∂f
∂x

=

∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn

 (3.27)

28 CHAPTER 3. FUNDAMENTALS

Therefore, from equations 3.23 and 3.26 the predicted state is

xk|k−1 = E[xk|Zk−1]

= E[f(xk−1) + wk−1|Zk−1]

= E[f(xk−1|k−1) + Fk(xk−1 − xk−1|k−1) + wk−1|Zk−1]

= f(xk−1|k−1) (3.28)

Now, defining the prediction error as

ek|k−1 , xk − xk|k−1 (3.29)

Substituting equations 3.23 and 3.28 in the error equation gives

ek|k−1 = f(xk−1) + wk−1 − f(xk−1|k−1)

= Fkek−1|k−1 + wk−1 (3.30)

Consequently, the error covariance matrix is

Pk|k−1 = E[ek|k−1eT
k|k−1]

= FkE[ek−1|k−1eT
k−1|k−1]F

T
k + E[wk−1wT

k−1]

= FkPk−1FT
k + Qk−1 (3.31)

where Qk−1 is process noise covariance matrix.

2. Update Step
This stage of the EKF tries to find a linear estimator for xk. Similar to
the derivation of the predicted step, expanding h(·) in Taylor Series about
xk|k−1 and truncating at fist order results in

h(xk) = h(xk|k−1) + Hk(xk − xk|k−1) (3.32)

where Hk if the Jacobian of h(·).
Defining the predicted observation

zk|k−1 , E[zk|Zk−1] (3.33)

Then, from equations 3.24 and 3.32

zk|k−1 = h(xk|k−1) (3.34)

The measured observation error ik, also known as innovation, and the pre-
dicted observation error z̃k|k−1 are given by

ik = zk − h(xk|k−1) (3.35)

z̃k|k−1 , zk − zk|k−1

= Hk[xk|k−1 − xk] + vk−1 (3.36)

3.2. UAV LOCALIZATION 29

Squaring and taking expectations on both sides of equation 3.36 results

Sk = E[z̃k|k−1z̃T
k|k−1]

= HPk|k−1HT + Rk (3.37)

where Rk is observation noise covariance matrix.
Assuming a prediction xk|k−1 with covariance Pk|k−1 and an observation
zk, the best unbiased estimate is

xk|k = xk|k−1 + Kk(zk − h(xk|k−1)) (3.38)

where Kk is an appropriate gain matrix.
The estimation error is

x̃k|k = xk − xk|k (3.39)

Substituting equations 3.23 and 3.38 in 3.39

x̃k|k = f(xk−1) + wk−1 − (xk|k−1 + Kk(zk − h(xk|k−1)))

= [I−KkHk]Fkek|k−1 + [I−KkHk]wk−1 −Kkvk (3.40)

The updated covariance estimate is calculated by

Pk|k , E[x̃k|kx̃T
k|k]

= Pk|k−1 −KkHkPk|k−1 − Pk|k−1HT
k KT

k + KkHkPk|k−1HT
k KT

k + KkRkKT
k

(3.41)

The value for Kk is chosen to minimize the trace of Pk|k−1 with reference to
Kk

∂tr(Pk)

∂Kk
= 0 (3.42)

Therefore, the gain is given by

Kk = Pk|k−1HT
kS−1

k (3.43)

Substituting equation 3.43 in 3.41 results

Pk|k = (I−KkHk)Pk|k−1 (3.44)

In summary, the EKF equations are:

• Prediction:

xk|k−1 = f(xk−1|k−1)

Pk|k−1 = FkPk−1FT
k + Qk−1

30 CHAPTER 3. FUNDAMENTALS

• Update:

Sk = HkPk|k−1HT
k + Rk

Kk = Pk|k−1HT
kS−1

k

xk|k = xk|k−1 + Kk(zk − h(xk|k−1))

Pk|k = (I−KkHk)Pk|k−1

3.3 Data Processing

3.3.1 Point Cloud Downsampling

The point cloud datasets can be very large, making data processing complex
and memory consuming. Furthermore, many algorithms do not need to process
all points in the point cloud. Therefore, point cloud downsampling techniques
are applied in order to reduce the number of points present in the cloud, en-
abling better performance in terms of time and memory usage.

3.3.1.1 Voxel Grid Filter

The Voxel Grid filter procedure consists on sampling the input point cloud
using a 3-D voxel grid. Volumetric pixels (voxel) in a 3-D space can be under-
stood as a group of cube units that represent a single data point on a regular grid
(see figure 3.10). This technique has been used in the area of computer graphics
to reduce the number of points [70].

Voxel
Figure 3.10: Voxel Grid with single voxel shaded in grey.

The points can be approximated using the voxel centre, but this method does
not represent the surface accurately. Other approach is approximate the points
that lie in each voxel with their centroid. Then, considering a voxel containing

a set of n points with coordinates [x, y, z], the output point pn =
[

x̄ ȳ z̄
]T

can

3.4. DATA STRUCTURING 31

Figure 3.11: Representation of a Voxel Grid Filter in 2-D [71].

be computed:

x̄ =
1
n

i=n

∑
i=0

xi (3.45)

ȳ =
1
n

i=n

∑
i=0

yi (3.46)

z̄ =
1
n

i=n

∑
i=0

zi (3.47)

Figure 3.11 illustrates the filter process in 2-D for a better comprehension.
The green squares are the centre of the voxel while the red asteriks are the cen-
troid’s centre. This method allows to decrease the number of points of the cloud
and gives a point cloud with approximately constant density.

3.4 Data Structuring

3.4.1 Octree

Octree [72] is a hierarchical tree data structure technique for the represen-
tation of 3-D data in space. The 3-D space is subdivided into eight children
(octants) by each internal nodes until the information in each node is below a
threshold or the maximum tree size is achieved. Figure 3.12 shows the general
representation of an octree structure.

32 CHAPTER 3. FUNDAMENTALS

The root node represents the entire object and the leaf nodes correspond to
cubes for which no further subdivision is required. Octree differs from a regular
grid by allowing it to store sparse data.

Figure 3.12: General representation of an octree[73].

Octrees decreases memory requirements by implementing lossless encoding
of the data [74]. Figure 3.13 shows the effect of different resolution in an octree.

Figure 3.13: Effect of different resolutions values for an octree[74].

3.5 Plane Detection

3.5.1 General Form of the Plane Equation

A plane in the 3-D Cartesian coordinate space can be defined by a point and
a vector that is perpendicular to the plane [75]. Figure 3.14 illustrates a plane in
the 3-D space. Considering two points in the plane p0 = (x0, y0, z0), p = (x, y, z)
and defining the normal vector of a plane as:

n =

a
b
c

 (3.48)

The normal vector is orthogonal to any point in the plane. Therefore, the scalar
product of the normal vector and (p− p0) is given by:

3.5. PLANE DETECTION 33

(p− p0) · n = (x− x0, y− y0, z− z0) · (a, b, c)

= a(x− x0) + b(y− y0) + c(z− z0) = 0 (3.49)

Equation 3.49 can be rewritten as:

ax + by + cz + d = 0. (3.50)

where d = −ax0 − by0 − cz0.
Finally, equation 3.50 is also known as the general form of the plane equation

in which parameters a, b and c represent the normal vector and parameter d is
the distance of the plane to reference origin.

Figure 3.14: Plane representation in the Cartesian coordinate system [75].

3.5.2 Principal Component Analysis

The Principal Component Analysis (PCA) is a statistical method for reduc-
ing the dimensionality of a large dataset [76, 77]. The PCA method applies an
orthogonal transformation to extract information from the dataset and map this
information to a set of values called principal components.

Considering a dataset of p observation of n-dimensional vectors, the data can
be written as a n× p matrix X, whose generic element is xnp. First, the data X is
normalized by subtracting the mean of each dimension in order to obtain a set
with mean equals to zero. The mean and the subsequent mean-centered matrix
are computed by:

34 CHAPTER 3. FUNDAMENTALS

uj =
∑n

i=1 Xij

n
(3.51)

X̄ = X− hut (3.52)

B = X− X̄ (3.53)

where j = 1, ..., p and h is a n× 1 column vector of all 1s.
Then, the covariance matrix C is obtained from the matrix determined by

equation 3.53. The covariance matrix is a square matrix that each element indi-
cates the correlation between two or more random variables [78].

C =
1

n− 1

n

∑
i=1

(X− X̄)(X− X̄)T (3.54)

The next step of the algorithm is to apply an eigen decomposition of the co-
variance matrix. This process corresponds to the factorization of the matrix in a
canonical form, represented in terms of eigenvalues and eigenvectors. Eigenval-
ues are a special set of scalars associated with a linear system of equations [79].
Each eigenvalue has a corresponding eigenvector.

Considering the covariance matrix given by equation 3.54, if there is a vector
v ∈ Rn 6= 0 that satisfies:

Cv = λ · v (3.55)

for some scalar λ, then λ is an eigenvalue of C with corresponding eigenvector
v.

The equation 3.55 can be rearranged:

(C− λ · I)v = 0 (3.56)

where I is the identify matrix.
The eigenvalue is determined by solving the following equation:

det(C− λ · I) = |(C− λ · I)| = 0 (3.57)

The eigenvectors are then found solving the equation 3.56 with the resulting
eigenvalue. Finally, the equation 3.55 can be generalized:

V−1CV = D (3.58)

where D is the diagonal matrix of eigenvalues of C and V is the eigenvectors
matrix.

After computing the eigenvalues and their respective eigenvectors, they are
sorted in order of decreasing eigenvalue. The eigenvalues represent the data dis-
tribution and the principal components are the directions of the data which the

3.6. ROBOTIC MIDDLEWARE 35

data are more spread. Therefore, the largest principal component is the direction
with more variance [80].

The projection matrix W is built, in which the desired eigenvectors are cho-
sen as basis vectors.

W = Vkl (3.59)

where k = 1, ..., p, l = 1, ..., L and 1 ≤ L ≤ p.
Finally, the data are then projected onto the new basis by applying equation:

T = BW (3.60)

Algorithm 3.1 summarizes the PCA method.

Algorithm 3.1 Pseudocode for the PCA algorithm.

Input: dataset X
Output: projected data T

1: Organize the dataset.
2: Compute the mean uj.
3: Compute the mean-centered matrix B.
4: Determine the covariance matrix C.
5: Compute the eigenvectors and eigenvalues.
6: Sort the eigenvector in descending order regarding the eigenvalues.
7: Build the projection matrix W.
8: Project the data to the new basis T.

3.6 Robotic Middleware

Robotic middlewares implement the communication between the operating
system and the software applications. They create a high-level abstraction of
devices, hiding the low-level implementation of the hardware components [81].
Therefore, they manage the hardware diversity, simplifying the software devel-
opment.

3.6.1 Robot Operating System - ROS

The Robot Operating System (ROS) [82] is a modular framework for the de-
velopment of robotic applications software. It is a set of tools, libraries and
conventions that simplifies the design of robot for multi-platform. The main
characteristics of ROS are:

• Communication Peer-to-Peer (P2P);

• Open source;

36 CHAPTER 3. FUNDAMENTALS

• Support for several programming languages, such as C++, Python and
others.

It is a communication structure that acts as a layer of the operating system on
networked computers. The communication is implemented by exchanging mes-
sages through independent process called nodes. The concepts are explained
below:

• Nodes: nodes are processes that execute some of developed code. For
instance, the control system of a robot has in general several nodes. One
node of ROS is written using the libraries roscpp (for C++ applications) or
rospy (for Python applications);

• Master: provides registration and name search. Without the master, nodes
are unable to exchange messages or call services;

• Messages: it is data structure. Support primitive data types or other struc-
tures;

• Topics: The messages are published through publisher/subscriber mecha-
nism. A node sends a ROS message by publishing it on a topic. The topic
is the name that identifies the content of the message. Another node that
wants to use the data from this published message must subscribe to the
appropriate topic. In this type of communication, there may be multiple
publisher and subscribers to a single topic or a single node may publish or
subscribe to several topics. In general, publishers and subscribes are not
aware of each other. Figure 3.15 demonstrates this mode of communica-
tion.

Figure 3.15: Publisher/Subscriber communication.

• Services: Although the publisher/subscriber mechanism is very flexible,
this mode of communication is appropriate for request/response that are
usually necessary in a distributed system. Thus, ROS can also communi-
cates through a client/server system. Services are a pair of messages: request

3.7. ROBOTIC SIMULATORS 37

and response. A node offers a service through a service name and a client
can use the service by sending request and waiting for a response. This mode
is summarize is figure 3.16.

Figure 3.16: Server/client communication.

The nodes are collected into packages which contains information about depen-
dencies for build, run and test. This type of organization encourages the col-
laborative development, as it facilitates the package migration between systems
and developers.

3.7 Robotic Simulators

It is generally interesting to check that a software does what is expected and
does not cause any damage to the physical system on which it is operating.
Therefore, a simulator is required.

Currently, robotic simulators are essential components for the development
of algorithms applied to robots. They allow the validation of concepts, verifica-
tion of software feasibility without applying them to a physical system.

There are several open-source robotics simulators, such as Gazebo [83], Vir-
tual Robot Experimentation Platform (V-REP) [84] and Modular Open Robots
Simulation Engine (MORSE) [85, 86, 87].

3.7.1 Modular Open Robots Simulation Engine - MORSE

MORSE is an open-source simulator that provides several features of interest
for robotic projects. It is developed in Python and makes use of the Blender
Game Engine1 to model and render the simulation (see figure 3.17). Besides
this, MORSE is only operated from a command line.

Moreover, MORSE provides a set of standard robots, sensors, and actuators
that can be interconnected to create any robot configuration. This flexibility al-
lows the user to control the level of abstraction in a variety of simulation scenar-
ios. MORSE also supports various middlewares, including ROS.

The principle of MORSE operation is based on two parts: a Blender file and
a Python script. As mentioned before, the Blender file corresponds to the sim-
ulation scenario and its physical properties while the Python script holds the
components and methods. The components available in MORSE are:

1https://www.blender.org/

38 CHAPTER 3. FUNDAMENTALS

Figure 3.17: Example of a Blender environment used in MORSE [88]

• Sensors: represent a real sensor, providing data from simulated environ-
ment, such as robot pose, laser scan and others.

• Actuators: generate an action on the robot, such as moving the robot,
change the position of a robotic arm and others.

• Robots: contain the robot model and functions. In addition to that, append
the sensors to the robot.

• Environment: define the 3-D model scenario.

• Middleware: defines the communication protocol between the simulation
and an user developed algorithm.

Chapter 4

System Design

After analyzing the works presented in chapter 2, some decisions were made
for the design of the system in order to achieve the objectives discussed in chap-
ter 1, specifically the algorithm for detecting landing zones for UAVs in emer-
gencies.

The usefulness of detecting emergency landing spots for UAVs has already
been described in chapter 1. Nevertheless, some hardware and software re-
quirements are necessary in order to achieve the expected objective. First, a
perception sensor such as LiDAR is needed to acquire the terrain features while
a localization module is essential to allow frame transformations.

This chapter contains an analysis of the hardware and software architec-
tures for implementing the developed algorithm. The software benefits from
the Robot Operating System (ROS) [82] modular structure, using the available
ROS packages and facilitating its integration in other future applications.

4.1 Hardware Architecture

The landing spot detection algorithm is designed to be executed simulta-
neously with others UAV tasks during operation. A spinning LiDAR provides
3-D point clouds that are processed using an onboard computer. Moreover, the
computer is also responsible to configure the LiDAR.

Considering that modern LiDARs produce hundreds of thousands of points
in each scan, a high transmission rate between the sensor and the computer is
necessary. For instance, an Ethernet connection allows the required rate (4.1, in
blue).

The point clouds are given in the LiDAR reference frame. Consequently,
knowing the UAV pose is essential in order to transform the data to a fixed

39

40 CHAPTER 4. SYSTEM DESIGN

frame. There are several configuration to estimate the vehicle state. In this
project we are considering two setup. One configuration is that Global Navi-
gation Satellite System (GNSS) and Inertial Measurement Unit (IMU) measure-
ments are fused in an onboard autopilot, such as Pixhawk1, and then the es-
timated pose is sent to the computer. The other layout is that the GNSS and
IMU data are directly fused in the onboard computer. The GNSS allows the
synchronization of the timestamps using Coordinated Universal Time (UTC) as
reference. The UTC system is a primary time standard by which the world regu-
lates clocks and time. The receiver provides a Pulse Per Second (PPS) signal and
GNSS data (figure 4.1, in red) that are used to synchronize the LiDAR sensor’s
data timestamp, the system time of the onboard computer, and the estimated
inertial data from the autopilot. Figure 4.1 represents the high-level architecture
of the former configuration.

LiDAR
Onboard Computer

GNSS Receiver

IMU

Autopilot

G
N

S
S
 d

a
ta

P
P
S
 s

ig
n
a
l

Po

High-l

comm

Linear Acc.

Angular Vel.

Linear Acc.

Angular Vel.

Eth
ern

et

Figure 4.1: High-level hardware architecture (Adapted from [89, 90]).

4.2 Software Architecture

In figure 4.2 is presented the high-level software architecture to detected a
potential landing spot given a point cloud generated by a LiDAR sensor. All the
pipeline elements were developed within the ROS framework, except for the
sensors input data. The software is divided into several data processing blocks:

1https://pixhawk.org/

4.2. SOFTWARE ARCHITECTURE 41

State
Estimator

GPS

IMU

Frame Trans-
formation

Point Cloud
Down-

sampling

Plane
Detection

Spot Eval-
uation

Spot RegisterLiDAR

GPS Data

Lidar Data Point Cloud
Transformed

Point Cloud
Downsampled

Potential
Spots

Sorted
Spots

Imu Data

UAV Pose

Data Fusion

Landing Spot Detection Algorithm

Reclassification

Figure 4.2: High-level software pipeline.

• Data Fusion: the data fusion section estimates the UAV’s states by fusing
the measurements from the IMU and GPS. There are several approaches
to realize this procedure. For example, the estimation can be performed in
the computer’s ROS environment using the robot_localization 2 ROS pack-
age. This package applies an Extended Kalman Filter algorithm given the
IMU and GPS data.

• Frame Transformations: considering that the LiDAR is fixed to the vehi-
cle, then the LiDAR pose is fixed in relation to the UAV. Hence, knowing
the UAV’s pose and the LiDAR pose, the LiDAR point cloud can be trans-
formed from the LiDAR frame to the local navigation frame. Using the
tf23 package, the relations between the UAV, LiDAR and global coordi-
nate frames are established. Furthermore, the package can also tracks the
frame’s relations over time.

• Point Cloud Downsampling: each LiDAR scan produces a point cloud
with thousands of points. Considering that the vehicle did not travel
a large distance to detect a spot, is important to accumulate the point
clouds with the intention to not lose information. Conversely, accumu-
lating the point clouds increases computational effort. Therefore, the ref-
erenced point cloud are downsampled.

• Plane Detection: following the downsampling of a point cloud, a plane
can be detected in the new point cloud. The plane detection can be subdi-
vide into several steps, conforming the available time, the computational
power and the desired resolution. Generally, the algorithms consist in es-
timating the parameters from the plane equation (see section 3.50) in a
limited region of the original point cloud. Moreover, the algorithms have
to fit a plane in the presence of outliers, i.e., points that do not fit the plane
model. Besides the landing spot detection for aerial vehicles, estimating

2http://wiki.ros.org/robot_localization
3http://wiki.ros.org/tf2

42 CHAPTER 4. SYSTEM DESIGN

the ground conditions is also useful to detect clear paths and to make fur-
ther processing less complex.

• Spot Evaluation: the segmented point cloud containing the detected plane
are then evaluated to classify the spot’s reliability. The roughness of the
landing zone can be assessed by computing the standard deviation in the
z axis. The higher the standard deviation, the rougher area. In addition,
a high value can also indicate the presence of obstacles, such as trees or
buildings. The spots are also evaluated regarding their slope as the land-
ing zone can not be steep enough to destabilise the vehicle when landed.
Furthermore, the size of area and the distance to the UAV can also be used
to evaluate the spot. Each evaluation factor has different importance ac-
cording to the environment. Thus, it becomes interesting to assign differ-
ent weights to these factors.

• Spot Register: the assessed spot are then registered as a landing spot.
However, The suitability of a landing point to be the optimal choice varies
during operation. In this way, the points registered have to be periodically
reassessed.

Chapter 5

Emergency Landing Spot
Detection Algorithm

This chapter presents in detail the algorithm developed to achieve the ob-
jectives and requirements for this dissertation. First, the conception of each
data processing block is presented, following with the complete description of
its procedure. Finally, the algorithm architecture and its pipeline is presented.
The algorithm here presented resulted in the publication of the paper Emergency
Landing Spot Detection for Unmanned Aerial Vehicle at the ROBOT’2019: Fourth
Iberian Robotics Conference [91].

5.1 Algorithm Procedure

For the purposes of fulfilling the objectives presented in chapter 1.2, the
method procedure is divided into several steps: the frame transformation of
the input data, the downsampling of the point cloud, the spatial structuring of
the data, detection of planes, filtering of potential candidates and, finally, clas-
sification of detected spots. Besides that, there are some rules created in order
to obtain the desired objective. Figure 5.1 shows the flowchart of the developed
software.

5.1.1 Frames Transformation

The problem of frames transformation consists of determining the point from
a reference frame to another. Figure 5.2 displays a general scenario of multiple
frames of reference.

The pose of a robot is given in the local navigation coordinates system (see
chapter 3.2.1.2). Consequently, the landing spot must be in the same frame.

43

44 CHAPTER 5. EMERGENCY LANDING SPOT DETECTION ALGORITHM

Raw Point Cloud Data

Transform to local
navigation frame

Accumulate point cloud

Check if
conditions are met

Downsample the point cloud

Subdivide the point cloud
using octree

Choose a random point

Determine the spherical
neighbourhood of the point

Apply PCA and determine plane slope

Slope less than
θmax degrees?

Check if ra-
dius is greater
than rmax?

Increase
neighbourhood radius

Compute standard
deviation in z

Check if
σ ≤ σmax

Compute centroid and
distance to UAV

Classify spot

Reject spot

Send best spot
position to main node

yes

no

yes

no

no

yes

yes

no

Figure 5.1: Flowchart of the developed algorithm.

5.1. ALGORITHM PROCEDURE 45

N

B

L

z

x

y

Figure 5.2: Frames of reference.

However, LiDARs report data in their own reference frame. Then, the first step
of the method is to transform the point cloud from the LiDAR reference frame
to the local reference frame. This procedure can be fulfilled by using transfor-
mation matrices (see chapter 3.2.3). Therefore, the relation between the frames
is defined by equation 5.1.

pn(t) = Tn
b(t)T

b
LpL(t) (5.1)

Considering a 3-D point pL(t) in the LiDAR reference frame, at instant t, the
transformation matrix given by Tb

L transforms the point to the body reference
frame. At this step, it is considered that the LiDAR is fixed to the robot, hence
the Tb

L matrix not varying overtime. Finally, the Tn
b(t) matrix multiplied by

Rb
LpL(t) results in the data expressed in the local navigation reference frame.

(a) Point cloud in LiDAR frame. (b) Point cloud in the local frame.

Figure 5.3: Point cloud frame transformation.

Figure 5.3 shows a frame transformation of a point cloud. In figure 5.3a, the
point cloud is provided by a LiDAR mounted in an UAV travelling 20 meters

46 CHAPTER 5. EMERGENCY LANDING SPOT DETECTION ALGORITHM

high. Figure 5.3b shows the same point cloud transformed to the local naviga-
tion frame where the origin is set to the point p0 = (0, 0, 0) at the ground.

The developed algorithm does not apply the landing zone detection step for
each LiDAR scan. This is due to some reasons: the vehicle may not have trav-
elled a sufficient distance to need a new spot other than the take off point; in
addition, the sensor may not return sufficient points of the environment. There-
fore, the point cloud registered in the local frame is stored until it reaches the
conditions to start the next step. The conditions defined are:

• Travelled distance: if the robot has traveled a long distance in relation to
the last landing spot, it becomes necessary to find a new location, since, in
an emergency scenario, the vehicle may not be able to reach the landing
zone.

• Size of accumulate point cloud: a high number of points in the point cloud
increases the execution time of search algorithms and the memory con-
sumption of the onboard computer. For this reason, if the size of the accu-
mulated cloud reaches a threshold, the algorithm starts the next step.

At the moment, this step is done considering only the vehicle pose. However, in
future projects, it is worth consider the vehicle velocity.

5.1.2 Point Cloud Downsampling

Accumulating the data until one of the necessary conditions are reached will
increase computational effort. In order to obtain better performance in terms of
execution time and memory consumption, it becomes necessary to perform the
downsampling of the point cloud. Therefore, a Voxel Grid filter is applied. The
filter takes a spatial average of the points in the cloud. A set of 3D volumetric
pixels (voxel) grid with size v f ilter is generated over the cloud and the points are
approximated with their centroid.

Figure 5.4 shows the result of the downsampling. At first analysis, the point
clouds displayed in figures 5.4a and 5.4b are almost identical. However, the
downsample technique created a point cloud 3 times less in size. This method
allows to decrease the number of points of the cloud and gives a point cloud
with approximately constant density. Finally, the algorithm resets the original
point cloud in order to free the memory.

5.1.3 Data Structuring and Neighbour Search

The next step is to determine the neighborhood of a point to perform the
plane identification method. The process of detecting a plane in a point cloud is
the most time-consuming process in the algorithm. Due to the large amount of
data, this step needs to be optimized in order to obtain a real-time analysis. For

5.1. ALGORITHM PROCEDURE 47

(a) Point cloud accumulated over time. (b) Point cloud downsampled.

Figure 5.4: Point cloud downsampling.

this reason, the point cloud is spatially structured using octree. Each internal
node of the octree is subdivided into eight octants. By using a tree structure like
an octree, the execution time of a search algorithm is considerably reduced [34].

There are several approaches to identify the neighbourhood of a point. In
this case, the algorithm finds the spherical neighborhood of a randomly chosen
point. Considering a point p(xp, yp, zp) in the point cloud, the neighbourhood
N(p) of this point with radius r is determined by:

N(p) = {∀q : (xq − xp)
2 + (yq − yp)

2 + (zq − zp)
2 < r2} (5.2)

where q(xq, yq, zq) is any point in the cloud.

Figure 5.5: Spherical neighbourhood of a randomly chosen point (Adapted from
[92]).

The minimum radius (rmin) of a plane is defined by the user as depends on
sensor and environment characteristics. By applying the equation 5.2, all the
points placed inside the sphere are considered as part of the neighbourhood.

48 CHAPTER 5. EMERGENCY LANDING SPOT DETECTION ALGORITHM

Figure 5.5 shows a representation of this step: the blue triangles are part of the
neighbourhood while the grey crosses are points that lie outside the sphere.

5.1.4 Plane Detection

After the previous step, it is possible to calculate a planar surface given the
neighbourhood points. This is done satisfactorily by using the PCA algorithm.
PCA applies an orthogonal transformation to map the data to a set of values
called principal components. As explained in chapter 3.5.2, the principal com-
ponets are the eigenvector of the covariance matrix.

The eigenvectors determined with PCA serve as the three axes of the plane
while the eigenvalues indicate the square sum of points deviations along the
corresponding axis. Therefore, the eigenvector with the smallest eigenvalue rep-
resents the normal vector given by equation 3.48 and the points are bounded by
the other two axes.

In this perspective, the slope of the plane is examined using the normal vec-
tor. The slope is the angle between the normal vector and the vertical vector

ẑ =
[
0 0 1

]T
and is computed using equation 5.3:

θ = arccos (ẑTn) (5.3)

Consequently, a first evaluation can be done using the plane slope. If the
resulting value is greater than the maximum slope (θmax) permitted for the robot,
the plane is rejected. Otherwise, the neighborhood radius used in the previous
section is increased and the process is repeated. By doing this procedure, the
method tries to find regions with different sizes that can be considered a landing
spot. Figure 5.6 displays the effect of increasing the radius: the region detected
in the first sphere is contained within the second; on the other hand, the points
inside the third sphere are not part of a plane and are thereby rejected.

Figure 5.6: Different values for the radius of the sphere (Adapted from [92]).

The algorithm 5.1 describes the neighborhood and plane identification steps.
The idea of the method is to detect planes for npoints random search points with
increasing radius.

5.1. ALGORITHM PROCEDURE 49

Algorithm 5.1 Algorithm for neighbourhood and plane identification steps.

Input: pointcloud downsampled
Output: point cloud cluster

1: for j = 1 to npoints do
2: Select random point in cloud as the search point

Declare radius and vectors of cloud indices
3: float rmin, vector radiusInx

While the plane is accepted, do radius search
4: while planeBool = true do
5: Start radius search;
6: if (radiusInx ≥ nmin) then
7: Get points inside the neighbourhood;
8: Start PCA;
9: Compute plane parameters;

10: Compute plane slope;
11: if slope ≤ θmax then
12: Increase radius;
13: else
14: planeBool = false
15: end if
16: end if
17: end while
18: end for

In summary, only the planes that have the slope less or equal than θmax are
sent to the register stage. Table 5.1 describes the parameters used in the algo-
rithm.

Table 5.1: The parameters used in the plane detection step.

Parameters Description
npoints Number of random points chosen from the cloud cluster
nmin Minimum points used to fit a plane
rmax Maximum radius considered for a plane
rmin Minimum radius considered for a plane
θmax Maximum slope accepted for the drone

5.1.5 Registration and Classification

Given the algorithm presented in the previous section, the next step consists
in evaluate the detected planes. In this perspective, many factors are considered
to decide the best landing spot. Initially, the point cloud centroid is computed
and is considered the spot centre. After this, each factor is computed individ-

50 CHAPTER 5. EMERGENCY LANDING SPOT DETECTION ALGORITHM

ually. A grade (gn) from 0 to 20 is computed for each parameter. It is worth
noting that the degree of importance for each parameter depends on the opera-
tion. Consequently, each grade has a different weight previously defined by the
user. Finally, each spot is classified regarding the following equation:

spotgrade =
(g1 · w1) + (g2 · w2) + (g3 · w3) + (g4 · w4)

20 · (w1 + w2 + w3 + w4)
(5.4)

Table 5.2 shows the parameters computed to classify the plane and their respec-
tive weights. In this stage, the planes that have standard deviation in the z-axis
greater than the maximum standard deviation σmax allowed are immediately re-
jected.

Table 5.2: The parameters that are analysed to classify the spot.

Parameters Weight Description
rp w1 Spot radius
θp w2 Spot slope
σp w3 Standard deviation of the spot
dv w4 Distance from the spot to the vehicle

Using these parameters, the algorithm evaluates the landing spot in terms of
terrain roughness, vehicle stability when landed, obstacle clearance of a location
and distance to the UAV.

Ultimately, the spots are stored and sorted from highest rate to smallest. In
general, a spot quality depends on the vehicle trajectory. In this perspective, the
stored spots are re-evaluated periodically. Figure 5.7 shows the functions that
evaluate the four parameters. The function that evaluates the distance to the
vehicle is only applied within a range of a minimum distance to a maximum
distance predefined by the user. If the distance to the UAV is larger than the
threshold, the lowest score is assigned. On the other hand, if the distance is less
that the minimum distance, the highest score is assigned.

5.1. ALGORITHM PROCEDURE 51

d
v
 = 0 d

v
 = d

min
d

v
 = d

max

Distance to UAV (m)

0

5

10

15

20

25

R
a
te

Rating d
v

r
p
 = r

min
r

p
 = r

max

Radius (m)

10

12

14

16

18

20

R
a
te

Rating r
p

0 5 10 15
p
 > 15

Slope (deg)

0

5

10

15

20

R
a
te

Rating
p

p
 = 0

p
 =

max

Standard Deviation (m)

0

5

10

15

20

R
a
te

Rating
p

Figure 5.7: Rating function of the four parameters.

This page intentionally left blank.

Chapter 6

Implementation

In our proposal, data acquired from a spinning LiDAR mounted in an aerial
vehicle is processed to extract information about the neighbouring environment,
as expressed in chapter 4. This chapter exhibits the characteristics of the used
UAV, specifying the key sensors needed to implement the algorithm. Moreover,
useful libraries and adaptations realized during the development of the algo-
rithm is presented.

6.1 UAV

The multirotor UAV STORK (shown in figure 6.1) is an autonomous aerial
vehicle with six rotors designed to achieve real time data acquisition and pro-
cessing efficiently. It has been used for several applications, including power
lines inspection, mapping and SpilLess and MineHeritage projects. The robot
was built allowing a modular payload assembly, i.e., the sensor can be replaced
by others that supply different type of data and using the same frame.

Furthermore, the UAV can operate in both manual and autonomous modes.
Currently, the low-level control of the UAV Stork is accomplished by a cus-
tomized autopilot (INESC TEC Autopilot) while the high-level control is per-
formed by an onboard computer ODROID-XU41 running Ubuntu 16.04 LTS2

and ROS Kinetic Kame3 distribution.
In terms of navigation, the UAV possess two IMUs and two GNSS receivers.

In addition to the low cost sensors, STORK also has the high performance IMU
STIM3004 and the single-band GNSS receiver ComNav K501G that supports on-

1https://wiki.odroid.com/odroid-xu4/odroid-xu4
2http://releases.ubuntu.com/16.04
3http://wiki.ros.org/kinetic
4https://www.sensonor.com/products/inertial-measurement-units/stim300

53

54 CHAPTER 6. IMPLEMENTATION

board Real Time Kinematic (RTK). Generally, these setup of sensors succeeds in
satisfying the requirements for many applications.

Regarding the perception assembly, that is, the sensors to extract information
about the surrounding area, the UAV STORK has two visual cameras (Teledyne
Dalsa G3-GC10-C20505 and FLIR Point- Grey CM3-U3-13S2C-CS6) and a 3-D
spinning LiDAR sensor (Velodyne VLP-167).

These sensors provide data that are used as input for processing algorithms
in several modules, such as navigation, 3-D reconstruction. For instance, the
Velodyne VLP-16 data is the input for the emergency landing spot detection
algorithm.

Figure 6.1: STORK UAV.

6.1.1 Velodyne VLP-16

The Velodyne Puck, shown in figure 6.2, is the spinning LiDAR mounted in
STORK. It provides a 360 degrees scan of the environment creating a 3-D point
data. This sensor has 16 pairs of infra-red lasers and infra-red detectors that
are fired rapidly to scan the surrounding area. This setup allows the sensor to
acquire up to 300,000 data point per second [59]. Besides this, its principle of
operation is based on the ToF methodology (see section 3.1).

There are three modes to handle the laser return. In the Strongest and Last
modes, a single return is obtained, with the strongest signal being reported in
the former, while the last signal is measured in the latter. On the other hand, in
the Dual mode, both measurements are obtained.

5http://www.teledynedalsa.com/en/products/imaging/cameras/genie-nano-gige
6https://www.flir.eu/products/chameleon3-usb3/
7https://velodynelidar.com/products/puck/

6.1. UAV 55

Figure 6.2: Velodyne Puck LiDAR [93].

The sensor vertical Field of View (FoV) is 30 degrees where each beam of the
16 lasers is vertically spaced by 2 degrees. The horizontal FoV is 360 degrees
with angular resolution depending on the sensor’s rotation frequency. Table 6.1
displays the rotation frequency and their respective angular resolution. Further-
more, the measurement range is up to 100 m with ± 3 cm of accuracy.

Table 6.1: Velodyne VLP-16 horizontal angular resolution.

Frequency (Hz) Resoluiton (◦)
5 0.1
10 0.2
15 0.3
20 0.4

In addition to that, the firing sequence of the beams is organized according
to table 6.2. This organization prevents interference between the beams.

The VLP-16 returns the 3-D points in data packets that are composed of a
header, 12 data blocks, a timestamp and factory bytes. Figure 6.3 exposes the
data packet of a single mode return. The data blocks are constructed with a two-
byte flag, a two-byte azimuth and 32 three-byte data (two bytes for distance and
on for intensity).

The data block contains the 3-D point in spherical coordinates. By using
equations 3.1, 3.2 and 3.3, the Cartesian coordinates of the point can be com-
puted, where the range and azimuth angle is obtained from the data packet and
the elevation angle is given by table 6.2.

The LiDAR can also synchronize its timestamp with the Coordinated Uni-
versal Time (UTC). This trait allows the matching of the sensor data with a nav-
igation system. In order to achieve the synchronization, it is necessary the use
of an external GNSS that generates a pulse per second signal and a National
Marine Electronics Association (NMEA) GPRMC message.

56 CHAPTER 6. IMPLEMENTATION

Table 6.2: Velodyne VLP-16 firing sequence.

Laser ID Vertical Angle (◦)
0 -15
1 1
2 -13
3 3
4 -11
5 5
6 -9
7 7
8 -7
9 9
10 -5
11 11
12 -3
13 13
14 -1
15 15

Figure 6.3: Velodyne VLP-16 data packets structure [59].

6.2. ROS PACKAGES 57

6.2 ROS Packages

As mentioned in the previous chapters, the project developed in this disser-
tation uses ROS as a communication middleware. One benefit of ROS is the vast
number of packages already available to the user, from drivers for sensors to the
implementation of algorithms for data processing. In addition, these packages
are modular and can be modified according to the application.

Considering Velodyne VLP-16, there is the velodyne package that allows the
connection with the device and the generation of point clouds from the received
data. This package is subdivided into three: velodyne_msgs, velodyne_driver
and velodyne_pointcloud. The velodyne_msgs package establishes the mes-
sages definitions for the Velodyne LiDARs.

The velodyne_driver corresponds to the ROS sensor driver. Hence, it is re-
sponsible for realizing the connection between the device and the computer, ac-
quiring the data. Furthermore, it publishes the data packets in ROS messages
of the type velodyne_msgs/VelodyneScan. Table 6.3 shows the data structure of a
VelodyneScan message. The message is published in the topic /velodyne_packets
and corresponds to a complete revolution of the sensor in the sensor reference
frame.

Table 6.3: Velodyne Scan Message Structure.

Message Type Name

std_msgs/Header
uint32 seq
time stamp

string frame_id

velodyne_msgs/VelodynePacket
time stamp

uint8[1206] data

The package velodyne_pointcloud subscribes to the /velodyne_packets topic,
transform the data packets to a 3-D point cloud and subsequently publishing it
as a sensor_msgs/PointCloud2 message to the topic /velodyne_points. The data
structure of a PointCloud2 message is exposed in table 6.4.

This package creates a sparse point cloud, meaning that all points are valid,
i.e., all points of the cloud are within an accepted range and angular interval.
The sensor_msgs/PointField portion of the published point cloud contains the
fields channels of the reported data, considering the table 6.5. The XYZ val-
ues correspond to the point in Cartesian coordinate system, intensity is the mea-
sured intensity of the beam reflection and, finally, ring encodes the vertical angle
beam.

58 CHAPTER 6. IMPLEMENTATION

Table 6.4: PointClou2 Message Data Structure

Message Type Name

std_msgs/Header
uint32 seq
time stamp

string frame_id
uint32 height
uint32 width

sensor_msgs/PointField

string name
uint32 offset
uint8 datatype
uint32 count
bool is_bigendian

uint32 point_step
uint32 row_step
uint8[] data

bool is_dense

Table 6.5: Field channels of the PointCloud2 message published by the velodyne
package.

Type Name
float x
float y
float z
float intensity

uint16 ring

6.3 Point Cloud Library

Initially, the raw point cloud does not provide enough information about the
terrain, which does not allow for qualitative assessment and detection of a land-
ing zone. Thus, it is necessary to process the point cloud. For this reason, the
Point Cloud Library (PCL) [94] is used. The PCL is an open-source library for
image and point cloud processing in 2-D and 3-D. It is written in the C++ pro-
gramming language and uses the Eigen8 library to implement the mathematical
operations.

Furthermore, PCL is split into several modular libraries, such as filters, seg-
mentation, surface reconstruction and many others. These modules can be com-
piled separately, enabling the user to compile only the necessaries libraries, sim-
plifying the project. During the development of this dissertation, the following
modules were used:

8http://eigen.tuxfamily.org/index.php?title=Main_Page

6.4. SIMULATION SETUP 59

• Common
The commom library is the core module of PCL. It contains data struc-
tures and methods that are used by other libraries. Besides the point types
defined, the PCA method is also implemented.

• Filters
The filters library contains computational routines for filtering applica-
tions. The Voxel Grid Filter is implemented here.

• Octree
The octree library is used to build a hierarchical data structure from the
input point cloud. The implementation of an octree reduces memory allo-
cation and computational effort.

• Search
The search library contains algorithms to realize a nearest neighbours search
given an octree or other data structure. In this library is implemented the
radius search routine used in our algorithm.

6.4 Simulation Setup

Before applying the algorithm in experimental tests, it is interesting to eval-
uate the performance of the project in a simulation environment. Simulators,
as the name implies, simulate real-world systems. They have the advantage
of providing feedback to the user in terms of efficiency and accuracy in a con-
trolled scenario. Therefore, it allows to understand the behaviour of the routine
without experiment physically and identify unexpected events, such as segmen-
tation faults, memory leaks and others.

6.4.1 Morse

For simulation purposes, it was chosen the Modular Open Robots Simula-
tion Engine (MORSE) (see chapter 3). It is an open-source simulator that pro-
vides several features of interest for this dissertation, such as ROS supports and
several simulation environments. In addition, MORSE has a generic 3-D LiDAR
similar to the Velodyne VLP-16 that performs a 180 degree scan and publishes a
point cloud message.

It was necessary to develop a Python script in order to configure the MORSE
setup. The code in listing 6.1 shows an example of Python script that defines a
quadrotor with two sensors: pose and LiDAR. The robot component is responsi-
ble to append the sensors to the 3-D model. Besides that, each sensor determine
the communication middleware. Finally, an environment component is created
using the path to a Blender model.

60 CHAPTER 6. IMPLEMENTATION

Listing 6.1 Python Script Example
1: from morse. builder import *
2:
3: quadrotor = Quadrotor ()
4: quadrotor . translate (0, 0, 20)
5: quadrotor . rotate (0, 0, 0)
6:
7: pose = Pose ()
8: quadrotor . append (pose)
9: pose. add_stream (’ros ’)

10:
11: velocity = RotorcraftVelocity ()
12: quadrotor . append (velocity)
13:
14: lidar = VLP16_180 ()
15: lidar. translate (0, 0, -0.25)
16: lidar. rotate (0, 1.57 , 0)
17: lidar. frequency (1)
18: quadrotor . append (lidar)
19: lidar. add_service (’ros ’)
20: lidar. add_stream (’ros ’)
21:
22: env = Environment (’land -1/ buildings_2 ’)
23: env. create ()

6.5 Developed Software

The software was organized in four ROS packages: tf_broadcaster, land-
ing_spot, plane_detection and spot_register. Each package contains a node that
implements the algorithm explained in chapter 5.

The package tf_broadcaster contains a node that subscribes to the UAV pose
topic local_position/pose with a sensor_msgs/PoseStamped message (see Table
6.6). Then,f2 the node broadcast a transformation matrix using the ROS pack-
ages tf29. The transformation matrix contains the data to transform a point from
the LiDAR frame to the local navigation frame.

The landing_spot package has a node that subscribes to the /velodyne_points
topic and listens to the tf message. Therefore, it is responsible to transform the
point cloud to the new frame. In addition, the downsampling is applied in this
package using the PCL library. The resulting point cloud is published to the
/landing_spot/points_downsampled topic with a PointCloud2 message. This
node also subscribes to the local_position/pose and it is responsible to subscribe
to the topic /spot_register/spot in which the best landing spot is published.

9http://wiki.ros.org/tf2

6.5. DEVELOPED SOFTWARE 61

Table 6.6: Pose Message Structure.

Message Type Name
std_msgs/Header header

geometry_msgs/Point
float64 x
float64 y
float64 z

geometry_msgs/Quaternion

float64 x
float64 y
float64 z
float64 w

The plane_detection subscribes to the downsampled point cloud and real-
ize data structuring and the PCA algorithm. Here a custom message is gener-
ated and published to the topic /plane_detection/planes. Table 6.7 shows the
structure of the custom message. The cloud parameter represents all the points
within the neighbourhood. The radius parameters is the neighbourhood radius
and the coefficients represent the normal vector of the plane.

Table 6.7: Custom Plane Message Structure.

Type Name
std_msgs/Header header

sensor_msgs/PointCloud2 cloud
float32[] coefficients
float64 radius

The spot_register package gets the custom message and applies the algo-
rithm to classify the spots. The spots are stored and reclassified periodically dur-
ing the operation. Finally, the best spot is published to the /spot_register/spot
topic as a geometry_msgs/PointStamped message.

Figure 6.4 shows the communication architecture for the software. The blue
ellipses represent the nodes while the red rectangles are the topics in which the
message is published.

62 CHAPTER 6. IMPLEMENTATION

/velodyne pointcloud /velodyne pointcloud

/uav pose /local position/pose

/tf broadcaster

/landing spot /landing spot/points downsampled

/plane detection

/plane detection/planes

/spot register /spot register/spot

Figure 6.4: ROS communication architecture for the software.

Chapter 7

Results

This chapter presents the results obtained for the emergency landing spot
detection algorithm. First, the method was tested in two simulation scenarios
using MORSE. This allowed to carry out a previous analysis of the behavior
of the algorithm and, in addition, to detect errors or software failures without
testing on the physical robot. Furthermore, this chapter also presents results for
two experimental datasets in a region with some obstructions.

Each section initially presents the parameters associated with the results ob-
tained and concludes with an analysis of the performance of the algorithm.

7.1 Simulated Environment

In order to validate the algorithm, the simulation was performed on a com-
puter with an Intel Core i7-6500U CPU @ 2.50GHz with 4 cores and 8 GB RAM,
with a Linux 4.15.0-50-generic Ubuntu.

7.1.1 Environment I

The fist scenario is a standard MORSE environment, as shown in figure 7.1.
It is important to note that this environment is relatively flat with only a few
obstructions in the form of buildings. Thus, the objective of this simulation is to
analyze the behavior of the algorithm in terms of time consumption, that is, the
time that the method takes to perform some steps.

7.1.1.1 Parameters

During the description of the developed algorithm, in chapter 5, were in-
troduced some parameters in whose its functionality relies on. Table 7.1 shows
the values used in this simulation and their description. For each parameter

63

64 CHAPTER 7. RESULTS

Figure 7.1: First scenario point cloud and Blender model.

listed is associated a brief description of its influence in the algorithm’s behav-
ior. In summary, the algorithm expects the vehicle to travel tvd = 10 m from
the last detected spot or that the accumulated point cloud has a maximum size
of csize = 106. Then, the Voxel Grid filter is applied to point cloud where each
voxel has v f ilter = 5 cm in size. The simulation was performed for different val-
ues of maximum radius and search points. It was considered that nmin = 50
points in the neighbourhood was enough to detect a spot. Finally, planes that
have slope greater than θmax = 15◦ or standard deviation in z-axis greater than
σmax = 0.20 m were rejected.

Table 7.1: The parameters used in the first simulation. Each parameter is defined
by the user.

Parameters Unit Values Description
tvd m 10 Travelled distance from the latest landing spot
csize − 106 Maximum point cloud size to start downsampling

v f ilter cm 5 Size of the voxel
npoints − [10, 20, 30, 50, 100] Number of random points chosen from the cloud cluster
nmin − 50 Minimum points used to fit a plane
rmax m [3, 4, 5, 10] Maximum radius considered for a plane
rmin m 1 Minimum radius considered for a plane
θmax degrees 15 Maximum slope accepted for the drone
σmax m 0.20 Maximum standard deviation accepted for the plane

7.1.1.2 Results and Discussion

To obtain better control of the vehicle in the simulator, the position of the
UAV along the z-axis was fixed to z = 20 m. Thus, the trajectory of the UAV is
illustrated in the figure 7.2. The position is given in the ENU frame coordinates
and frame origin is located at point pn

0 = (0, 0, 0). Figure 7.3 shows the vehicle
orientation during the simulation in which only UAV’s yaw was controlled.

The first step of the algorithm is to perform the downsample of the point
cloud. As explained in the chapter 3, voxels are generated along the cloud

7.1. SIMULATED ENVIRONMENT 65

-60 -40 -20 0 20 40 60

X (m)

-80

-60

-40

-20

0

20

40

60

Y
 (

m
)

Vehicle Trajectory

UAV trajectory

start point

end point

Figure 7.2: UAV trajectory for the first simulation.

0 20 40 60 80 100

Time (s)

-1

0

1

R
o
ll

(r
a
d
)

Roll

0 20 40 60 80 100

Time (s)

-1

0

1

P
it
c
h
 (

ra
d
)

Pitch

0 20 40 60 80 100

Time (s)

-5

0

5

Y
a
w

 (
ra

d
)

Yaw

Figure 7.3: UAV orientation for the first simulation.

66 CHAPTER 7. RESULTS

and the points are approximated according to the centroid of the points that
lie within the voxel. The figure 7.4 shows the number of divisions along the
three axis during one simulation.

Considering that the position on the z-axis had been fixed and the point
clouds are in the local navigation reference frame, it is expected that the number
of divisions along Z will be smaller than on the XY axes.

0 10 20 30 40 50

Samples

200

300

400

500

600

700

800

900

1000

1100

V
o
x
e
l

Number of voxels

X axis

Y axis

Z axis

Figure 7.4: Number of divisions along the three axis.

The next step of the software consists of applying the PCA algorithm to de-
tect a plane. This step is the most time consuming of the developed project. Fig-
ure 7.5 shows a comparison of the execution time between the downsampling
step and the PCA stage for several simulations with increased search points.
The downsampling technique is relatively fast, taking about 20 ms. Moreover,
increasing the number of search points implies more iterations for the PCA al-
gorithm. Considering that the PCA is applied in a downsampled point cloud,
downsampling the point cloud is justified because it limits the sample size.

In terms of detected spots, it is not possible to obtain a precise analysis of
the performance of the algorithm in this simulation. This is due to the fact that
the environment has many regions to land. However, it is possible to determine
from the results in the figure 7.6 that, during the simulation, some spots were
chosen (the red crosses), while other spots (black crosses) were not chosen. The
reason for this is the effect of the functions that classify the spots.

Analysing figure 7.5 and 7.6, it is possible to conclude that there is a trade-
off between detected spots and the number of points sought. By increasing the

7.1. SIMULATED ENVIRONMENT 67

0 10 20 30 40 50 60 70 80 90

Simulation Time (s)

0

100

200

300

400

500

600
E

x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution time

Downsample Time

PCA Time

(a) Time for 20 search points and maximum
3 m for radius.

0 20 40 60 80 100

Simulation Time (s)

0

200

400

600

800

1000

1200

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution time

Downsample Time

PCA Time

(b) Time for 30 search points and maxi-
mum 3 m for radius.

0 20 40 60 80 100

Simulation Time (s)

0

500

1000

1500

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution time

Downsample Time

PCA Time

(c) Time for 50 search points and maximum
3 m for radius.

0 20 40 60 80 100

Simulation Time (s)

0

500

1000

1500

2000

2500

3000

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution time

Downsample Time

PCA Time

(d) Time for 100 search points and maxi-
mum 3 m for radius.

Figure 7.5: Comparison between Downsampling and PCA execution time for
the first simulation.

number of points searched, more spots are detected, however, the execution
time increases considerably.

Table 7.2 summarizes the results for the simulation. Besides this, it presents
the results for the simulation with the a fixed search points, but increasing max-
imum radius. The PCA runtime increases rapidly to a small increase in ra-
dius. This implies that the value chosen for the neighborhood radius has greater
weight in this step.

7.1.2 Environment II

In order to test the algorithm in a bad scenario, it was developed in Blender
the environment shown in figure 7.7. The set consists of 6 rectangular surfaces
that represent the desired landing spots surrounded by a mountain like struc-
tures. Considering the environment and the dimension of each surface, the sim-

68 CHAPTER 7. RESULTS

-60 -40 -20 0 20 40 60

X (m)

-80

-60

-40

-20

0

20

40

60

Y
 (

m
)

Robot Trajectory and Landing Spots

trajectory

spots

best spots

(a) Spots detected for 20 search points and
maximum 3 m for radius.

-60 -40 -20 0 20 40 60

X (m)

-80

-60

-40

-20

0

20

40

60

Y
 (

m
)

Robot Trajectory and Landing Spots

trajectory

spots

best spots

(b) Spots detected for 30 search points and
maximum 3 m for radius.

-60 -40 -20 0 20 40 60

X (m)

-80

-60

-40

-20

0

20

40

60

Y
 (

m
)

Robot Trajectory and Landing Spots

trajectory

spots

best spots

(c) Spots detected for 50 search points and
maximum 3 m for radius.

-60 -40 -20 0 20 40 60

X (m)

-80

-60

-40

-20

0

20

40

60
Y

 (
m

)
Robot Trajectory and Landing Spots

trajectory

spots

best spots

(d) Spots for 100 search points and maxi-
mum 3 m for radius.

Figure 7.6: Spots detected for the first scenario with different parameters.

Table 7.2: Results for the simulation of the first case

Search
Points (#) Radius (m) Downsample

Mean Time (ms)
PCA

Mean Time (ms)
Rejected
Planes

Accepted
Planes

Chosen
Spots

10 3 20.54 84.73 184 146 27
20 3 19.07 408.00 495 65 41
30 3 19.55 556.93 754 116 54
50 3 20.00 898.35 1197 203 56

100 3 19.621 1674.37 2499 401 70
10 4 21.50 400.96 36 244 62
10 5 23.18 802.21 35 245 82
10 10 22.14 4583.9 24 156 7

7.1. SIMULATED ENVIRONMENT 69

ulations were realized for 4 different search points.

Figure 7.7: Second scenario point cloud and Blender model.

7.1.2.1 Parameters

Table 7.3 shows the values used in this simulation and their description. This
parameters differ from the first simulation due to the maximum value allowed
for the standard deviation in z, the number of search points tested and the max-
imum spot radius. The standard deviation is σmax = 0.15 m.

Table 7.3: The parameters used in the second simulation.

Parameters Unit Values Description
tvd m 10 Travelled distance from the latest landing spot
csize − 106 Maximum point cloud size to start downsampling

v f ilter cm 5 Size of the voxel
npoints − [20, 30, 50, 100] Number of random points chosen from the cloud cluster
nmin − 50 Minimum points used to fit a plane
rmax m 2 Maximum radius considered for a plane
rmin m 1 Minimum radius considered for a plane
θmax degrees 15 Maximum slope accepted for the drone
σmax m 0.15 Maximum standard deviation accepted for the plane

7.1.2.2 Results and Discussion

The trajectory of the UAV is illustrated in the figure 7.8. The position is given
in the ENU frame coordinates and frame origin is located at point pn

0 = (0, 0, 0).
Figure 7.9 shows the vehicle orientation during the simulation in which only
robot’s yaw was controlled.

Regarding the number of voxels generated at the downsampling stage, fig-
ure 7.10 shows the result obtained. It is worth mention that simulator LiDAR
provides zero data near the edge of the environment. Therefore, this explains
the sudden drop in the number of division along the xy axes.

Figure 7.11 shows a comparison of the execution time between the down-
sampling step and the PCA stage for several simulations with increased search

70 CHAPTER 7. RESULTS

-40 -30 -20 -10 0 10 20 30

X (m)

-30

-20

-10

0

10

20

30

40

Y
 (

m
)

Vehicle Trajectory

UAV trajectory

start point

end point

Figure 7.8: UAV trajectory for the second simulation.

0 20 40 60 80 100 120

Time (s)

-1

0

1

R
o
ll

(r
a
d
)

Roll

0 20 40 60 80 100 120

Time (s)

-1

0

1

P
it
c
h
 (

ra
d
)

Pitch

0 20 40 60 80 100 120

Time (s)

-5

0

5

Y
a
w

 (
ra

d
)

Yaw

Figure 7.9: UAV orientation for the second simulation.

points. For the simulations in figures 7.11a and 7.11b, the runtime of the PCA al-
gorithm were similar to the downsampling stage. The reason for this is that the
plane are immediately rejected. Since the environment has a high variance in z,
the angle between the normal vector calculated by the PCA and the vertical vec-
tor (ẑ = [0, 0, 1]T) is generally greater than the maximum allowed. As a result,
the algorithm does not perform many iterations for the same search point.

Regarding the detected spots, figure 7.12 shows the results obtained and fig-
ure 7.13 displays the progression of the grades of the best spots during the sim-
ulation. The landing surfaces are the red rectangles and the black crosses are the

7.1. SIMULATED ENVIRONMENT 71

0 10 20 30 40 50

Samples

200

300

400

500

600

700

800

900

1000

1100

1200

V
o
x
e
l

Number of voxels

X axis

Y axis

Z axis

Figure 7.10: Number of divisions along the three axis for the second simulation.

detected spots. However, the algorithm was not able to find a landing spot in
all planes. In this scenario, one drawback of the algorithm is that if the random
search point falls near a high deviation zone like the surface edges, the algorithm
may discard the plane or detect a spot outside the surface such as the result for
100 search points (figure 7.12d).

For a better understanding of how the best spot varies during the simulation,
figure 7.14 displays the graphs of the best spot grade and the grades of each
detected spot for the case with 50 search points. Furthermore, the instant of time
that a spot is detected or is considered the best spot is marked on the graph. It
was observed that the best spot varies with the distance from the vehicle.

Table 7.4 summarizes the results for the second simulation. The PCA mean
runtime is smaller than the downsampling mean time in the first test. The dif-
ference between rejected and accepted plans increased considerably as expected.
After this simulation, the following question was raised:

Table 7.4: Results for the simulation of the second case.

Search
Points (#)

Downsample
Mean Time (ms)

PCA
Mean Time(ms)

Rejected
Planes

Accepted
Planes

Chosen
Spots

20 23.77 20.64 278 22 3
30 24.27 25.30 566 54 5
50 23.57 52.43 1362 137 5
100 23.97 119.63 2712 288 8

"What is the influence of the voxel size on the other steps of the al-
gorithm?"

72 CHAPTER 7. RESULTS

0 20 40 60 80 100

Simulation Time (s)

0

10

20

30

40

50

60

70
E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Execution time

Downsample Time

PCA Time

(a) Execution time for 20 search points and
maximum 2 m for radius.

0 20 40 60 80 100

Simulation Time (s)

0

20

40

60

80

100

120

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution time

Downsample Time

PCA Time

(b) Execution time for 30 search points and
maximum 2 m for radius.

0 20 40 60 80 100

Simulation Time (s)

0

20

40

60

80

100

120

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution time

Downsample Time

PCA Time

(c) Execution time for 50 search points and
maximum 2 m for radius.

0 20 40 60 80 100

Simulation Time (s)

0

50

100

150

200

250

300

350

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution time

Downsample Time

PCA Time

(d) Execution time for 100 search points
and maximum 3 m for radius.

Figure 7.11: Comparison between Downsampling and PCA execution time for
the second simulation.

Therefore, new simulations with different values for the size of the voxel
were carried out to answer this question. Table 7.5 presents the results obtained.
It was chosen the number of search points npoints = 20.

As the value of the voxel increases, the size of the new point cloud decreases
considerably. This result shows that it is necessary to adjust the variable cor-
rectly, as it can lead to a great loss of information about the environment. In ad-
dition, after 1 m of voxel size, the algorithm stopped detecting landing points.
In terms of the performance of the PCA, the increase in size did not reflect a
major change in the execution time. However, the amount of detected planes
increased, indicating that the downsampled point cloud did not present many
obstructions as it should.

7.2. EXPERIMENTAL DATASET 73

-40 -30 -20 -10 0 10 20 30

X (m)

-40

-30

-20

-10

0

10

20

30

40

Y
 (

m
)

Spots Detected

possible landing spots

UAV trajectory

spot detected

(a) Spots detected for 20 search points and
maximum 2 m for radius.

-40 -30 -20 -10 0 10 20 30

X (m)

-40

-30

-20

-10

0

10

20

30

40

Y
 (

m
)

Spots Detected

possible landing spots

UAV trajectory

spot detected

(b) Spots detected for 30 search points and
maximum 2 m for radius.

-40 -30 -20 -10 0 10 20 30

X (m)

-40

-30

-20

-10

0

10

20

30

40

Y
 (

m
)

Spots Detected

possible landing spots

UAV trajectory

spot detected

(c) Spots detected for 50 search points and
maximum 2 m for radius.

-40 -30 -20 -10 0 10 20 30

X (m)

-40

-30

-20

-10

0

10

20

30

40

Y
 (

m
)

Spots Detected

possible landing spots

UAV trajectory

spot detected

(d) Spots detected for 100 search points
and maximum 2 m for radius.

Figure 7.12: Spots detected for the second scenario with different parameters.

Table 7.5: Results for several values of voxel size.

Voxel size (m)
Mean Point
Cloud Size

Mean Downsampled
Point Cloud Size

Downsample
Mean Time (ms)

PCA
Mean Time (ms)

Accepted
Planes

Detected
Spots

0.05 183278.6 70022.4 15.507 18.907 22 3
0.10 183278.6 32146.2 15.7388 9.155 78 7
0.5 183278.6 5735.2 12.390 9.606 132 8
1.0 183278.6 1541.5 11.733 10.565 210 0

7.2 Experimental Dataset

The experimental dataset corresponds to the staircase of the Monastery of
Tibães, Braga, Portugal. The stairway consists of several water fountains that are
intertwined by stairs. This area has numerous trees that hinder the navigation
and localization of the UAV and are considered obstacles for the detection of
landing points.

Two experiments were realized to assemble this dataset. First, the vehicle
started by mapping a field of vegetation near the staircase (see figure 7.15a).

74 CHAPTER 7. RESULTS

0 10 20 30 40 50 60 70 80

Time (s)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

R
a
te

 (
%

)

Grade over time for 20 search points

(a) Best spot grade for 20 search points and
maximum 2 m for radius.

0 10 20 30 40 50 60 70 80 90

Time (s)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R
a
te

 (
%

)

Grade over time for 30 search points

(b) Best spot grade for 30 search points and
maximum 2 m for radius.

0 10 20 30 40 50 60 70 80 90

Time (s)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
a
te

 (
%

)

Grade over time for 50 search points

(c) Best spot grade for 50 search points and
maximum 2 m for radius.

0 10 20 30 40 50 60 70 80 90

Time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

R
a
te

 (
%

)

Grade over time for 100 search points

(d) Best spot grade for 100 search points
and maximum 2 m for radius.

Figure 7.13: Best spots grades for the second scenario with different parameters.

Figure 7.14: Grades of the best spot and each spot detected for 50 search points.

7.2. EXPERIMENTAL DATASET 75

After that, he traveled through the different levels of the stairway. The second
experiment was done at the Monastery building. The second experiment was
carried out on the fence of the Monastery (figure 7.15b). This region consists
mainly of buildings and vegetation. It’s an open area with more landing spots.

(a) Monastery of Tibães stairway. (b) Monastery of Tibães fence.

Figure 7.15: Monastery of Tibães [95].

7.2.1 Parameters

Table 7.6 shows the values used in this dataset and their description. It was
considered that nmin = 50 points in the neighbourhood was enough to detect a
plane and the maximum neighbourhood radius is rmax = 4 m. Finally, planes
that have slope greater than θmax = 15◦ or standard deviation in z-axis greater
than σmax = 0.10 m were rejected.

Table 7.6: The parameters used in the dataset.

Parameters Unit Values Description
csize − 30000 Maximum point cloud size to start downsampling

npoints − 5 Number of random points chosen from the cloud cluster
nmin − 50 Minimum points used to fit a plane
rmax m 4 Maximum radius considered for a plane
rmin m 2 Minimum radius considered for a plane
θmax degrees 15 Maximum slope accepted for the drone
σmax m 0.05 Maximum standard deviation accepted for the plane

7.2.2 Results and Discussion

Figure 7.16 shows both UAV’s trajectories during the flight at the stairway
and the monastery, respectively. The trajectories are represented in the local
navigation frame considering the ENU system. Furthermore, the origin of the
frame is located at a base station in the city of Braga.

76 CHAPTER 7. RESULTS

-70

-65

200

-60

-55

-50

Z
(m

)

-45

-40

100

-35

Y (m)

Vehicle Trajectory

0 -4150-4155

X (m)

-4160-4165-4170-4175-100 -4180-4185

UAV trajectory

start point

end point

(a) UAV trajectory for the first part of the
dataset.

-75

260

-70

-65

240 -4100

-60

Z
(m

)

-55

-4120

Vehicle Trajectory

Y (m)

220

-50

X (m)

-4140

-45

200
-4160

180 -4180

UAV trajectory

start point

end point

(b) UAV trajectory for the second part of
the dataset.

Figure 7.16: UAV trajectories during the mission.

By using the rviz1 package, it was possible to view some detected spots in the
raw point cloud provided by the Velodyne VLP-16. Figure 7.17,7.18,7.19 and 7.20
show some screenshots of rviz and the image taken from the camera. The red
lines represent the centre of a plane detected during the PCA stage. The small
red lines are detected spots that were not chosen as the best landing zone. It is
worth noting that some of the detected landing spots are part of a larger spot.
Besides the fact that the search points are chosen at random, another reason that
justifies this behavior is the need for the maximum radius not to be too large so
that the plan detection algorithm does not consume much time, as previously
demonstrated by the simulations.

Figure 7.17: Point cloud, spots and camera image near a water fountain.

Figure 7.21 displays the progression of the rating during the dataset. The
result obtained illustrates the effect of the weights in the spot classification stage.

1http://wiki.ros.org/rviz

7.2. EXPERIMENTAL DATASET 77

Figure 7.18: Point cloud, spots and camera image on the stairway.

Figure 7.19: Point cloud, spots and camera image near a building.

Figure 7.20: Point cloud, spots and camera image near entrance.

78 CHAPTER 7. RESULTS

For instance, since the maximum allowed value for the standard deviation is
very restrictive, relatively safe zones can be chosen as the best spot even with a
low score.

0 100 200 300 400 500 600

Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
a

te
 (

%
)

Best spot grade over time

Figure 7.21: Rating of the best spot for the dataset.

Similarly to the simulation of the second environment, the performance of
the algorithm was evaluated for several sizes of voxels. Thus, table 7.7 displays
the results. The results obtained are similar to the simulation in relation to the
loss of information with the increase of the voxel. However, a considerable re-
duction in the execution time of the PCA stage was observed. One explanation
is that the dataset has more landing zones when compared to the second simu-
lated environment. Therefore, many iterations are performed in the PCA step,
unlike the simulation where there are only a few planar surfaces. Besides this,
the number of detected spots reduces with the increasing voxel.

Table 7.7: Results for several values of voxel size in the dataset.

Voxel size (m)
Mean Point
Cloud Size

Mean Downsampled
Point Cloud Size

Downsample
Mean Time (ms)

PCA
Mean Time (ms)

Accepted
Planes

Detected
Spots

0.05 31155.9 23131.5 5.333 55.035 2206 372
0.10 31155.9 13945.4 4.493 39.390 1703 319
0.5 31155.9 1996.8 3.695 4.838 1440 302
1.0 31155.9 538.9 3.261 3.177 565 37

Chapter 8

Conclusions and Future Work

This dissertation has addressed the development of an algorithm capable
of detecting, evaluating and selecting reliable emergency landing spots in real-
time. The incoming data for processing is provided by a LiDAR sensor mounted
in a multirotor UAV. Its outputs and performance were evaluated using simula-
tion and experiment dataset. The environments evaluated contain several types
of structures, vegetation. The main characteristic of our system is a geometric
approach to determine the suitability of potential landing areas given LiDAR
range data.

Analysing the results presented in chapter 7, the algorithm was able to fulfill
the desired objectives. First, the system downsamples the point cloud quickly,
then is able to detect a planar surface and segment the downsampled point
cloud to a new one containing only useful data. The clustered cloud are clas-
sified regarding their size, slope, distance to the vehicle and terrain roughness.
The experimental dataset shows that the detected points are reliable. Further-
more, the whole process is suitable for being adapted in real-time operation.

The algorithm was evaluated in different simulated environments. In the
first simulation, we present results in an urban area. The system was able to de-
tect many landing spots. The results for the computation time were presented
for different parameters. It was observed that given certain values for the pa-
rameters, the results were adequate. Conversely, the algorithm was not able to
identify all the spots for the second case. It was demonstrated that in a bad en-
vironment i.e, with few landing spots, the system is able to detect some of them,
but it is necessary to reduce the rigidity of the parameters.

To the best of author’s knowledge, the contribution of this dissertation is to
apply a Voxel Grid Filter for the compression of the point cloud. This step allows
to considerably decrease the number of points, while maintaining an adequate
representation of the environment. In addition, it is not necessary to know the

79

80 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

region beforehand or to store the processed point cloud. Only the distance to
the vehicle varies with the time of the analyzed parameters.

Although the concept of the algorithm was validated with the used dataset,
it still needs to be submitted to others with different conditions. For instance, it
is important to analyse the performance of the algorithm in environments with
false positives, i.e., water surfaces, snow. These regions can reflect the light
beams of the LiDAR and the algorithm would consider as regions with slope
equal to zero, therefore, it would be chosen as a landing point.

Furthermore, the work realized during the preparation of this dissertation
resulted in two papers. The paper Emergency Landing Spot Detection for Un-
manned Aerial Vehicle was published on the ROBOT’2019: Fourth Iberian Robotics
Conference, in Porto, and the paper Survey of Approaches for Emergency Landing
Spot Detection with Unmanned Aerial Vehicles was published to the 23rd edition of
International Conference series on Climbing and Walking Robots and the Sup-
port Technologies for Mobile Machines (CLAWAR 2020), in Moscow, Russia.

In terms of future work of this project, it is worth to realize more experiments
in order to evaluate the effect of weights in the registration step, so that the
choosing process can be optimized. Moreover, the trajectory to the landing spot
could be computed and used as another weighting factor to qualify the spot.
For instance, the path to a landing point may require more power to be reached.
Therefore, the remaining battery power can also be considered to classify the
spot.

Bibliography

[1] Kadir Alpaslan Demir, Halil Cicibas, and Naiz Arica. Unmanned aerial
vehicle domain: Areas of research. Defence Science Journal, 65(4), 2015.
[Quoted on p. 1]

[2] Chun Fui Liew, Danielle DeLatte, Naoya Takeishi, and Takehisa Yairi. Re-
cent developments in aerial robotics: A survey and prototypes overview.
arXiv preprint arXiv:1711.10085, 2017. [Quoted on p. 1]

[3] Gaurav Singhal, Babankumar Bansod, and Lini Mathew. Unmanned
aerial vehicle classification, applications and challenges: A review. 2018.
[Quoted on p. 1]

[4] Autonomous Systems Laboratory. FALCOS. https://
archive.osvaldosousa.com/lsa/falcos/index.html. Accessed on
Mar. 16, 2020. [Quoted on p. 2]

[5] INESC TEC. OTUS. http://www.strongmar.eu/site/otus-91, . Accessed
on Feb. 28, 2020. [Quoted on p. 2]

[6] FESTO. BionicOpter. https://www.festo.com/group/en/cms/10224.htm.
Accessed on Mar. 16, 2020. [Quoted on p. 2]

[7] Alpha Unmanned Systems. Alpha 800 UAV. https://
alphaunmannedsystems.com/alpha-800-uav/. Accessed on Feb. 28,
2020. [Quoted on p. 2]

[8] Pedro Sousa, André Ferreira, Miguel Moreira, Tiago Santos, Alfredo Mar-
tins, André Dias, J Almeida, and E Silva. Isep/inesc tec aerial robotics
team for search and rescue operations at the eurathlon challenge 2015. In
2016 International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pages 156–161. IEEE, 2016. [Quoted on p. 1, 5]

81

82 BIBLIOGRAPHY

[9] Geert De Cubber, Daniela Doroftei, Daniel Serrano, Keshav Chintamani,
Rui Sabino, and Stephane Ourevitch. The eu-icarus project: developing
assistive robotic tools for search and rescue operations. In 2013 IEEE inter-
national symposium on safety, security, and rescue robotics (SSRR), pages 1–4.
IEEE, 2013. [Quoted on p. 1]

[10] Amazon.com Inc. Amazon Prime Air. https://www.amazon.com/
primeair. Accessed on Feb. 11, 2020. [Quoted on p. 1]

[11] Naser Hossein Motlagh, Miloud Bagaa, and Tarik Taleb. Uav-based iot
platform: A crowd surveillance use case. IEEE Communications Magazine,
55(2):128–134, 2017. [Quoted on p. 1]

[12] F Azevedo, A Dias, J Almeida, A Oliveira, A Ferreira, T Santos, A Martins,
and E Silva. Real-time lidar-based power lines detection for unmanned
aerial vehicles. In 2019 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), pages 1–8. IEEE, 2019. [Quoted on p. 1]

[13] Mohammadreza Aghaei, Francesco Grimaccia, Carlo A Gonano, and Sonia
Leva. Innovative automated control system for pv fields inspection and
remote control. IEEE Transactions on Industrial Electronics, 62(11):7287–7296,
2015. [Quoted on p. 1]

[14] INESC TEC. TURTLE II. http://www.strongmar.eu/site/turtle-ii-
118, . Accessed on Feb. 28, 2020. [Quoted on p. 4]

[15] INESC TEC. EVA. http://www.strongmar.eu/site/eva-112, . Accessed
on Feb. 28, 2020. [Quoted on p. 4]

[16] INESC TEC. ROAZ II. http://www.strongmar.eu/site/roaz-ii-115, .
Accessed on Feb. 28, 2020. [Quoted on p. 4]

[17] INESC TEC. STORK I. http://www.strongmar.eu/site/stork-i-113, .
Accessed on Feb. 28, 2020. [Quoted on p. 4]

[18] Gabriel Loureiro, André Dias, and Alfredo Martins. Survey of approaches
for emergency landing spot detection with unmanned aerial vehicles. In
CLAWAR2020 conference, pages 129–136, 2020. [Quoted on p. 7]

[19] Andrew E Johnson, Allan R Klumpp, James B Collier, and Aron A Wolf.
Lidar-based hazard avoidance for safe landing on mars. Journal of guidance,
control, and dynamics, 25(6):1091–1099, 2002. [Quoted on p. 8, 16]

[20] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification and
scene analysis, volume 3. Wiley New York, 1973. [Quoted on p. 8]

BIBLIOGRAPHY 83

[21] Matt Whalley, Marc Takahashi, P Tsenkov, G Schulein, and C Goerzen.
Field-testing of a helicopter uav obstacle field navigation and landing sys-
tem. In 65th Annual Forum of the American Helicopter Society, Grapevine, TX,
2009. [Quoted on p. 8, 16]

[22] Matthew S Whalley, Marc D Takahashi, Jay W Fletcher, Ernesto Moralez III,
LTC Carl R Ott, LTC Michael G Olmstead, James C Savage, Chad L Go-
erzen, Gregory J Schulein, Hoyt N Burns, et al. Autonomous black hawk
in flight: Obstacle field navigation and landing-site selection on the rascal
juh-60a. Journal of Field Robotics, 31(4):591–616, 2014. [Quoted on p. 8]

[23] Lyle Chamberlain, Sebastian Scherer, and Sanjiv Singh. Self-aware he-
licopters: Full-scale automated landing and obstacle avoidance in un-
mapped environments. In Ahs Forum, volume 67, 2011. [Quoted on p. 8, 16]

[24] Sebastian Scherer, Lyle Chamberlain, and Sanjiv Singh. Autonomous land-
ing at unprepared sites by a full-scale helicopter. Robotics and Autonomous
Systems, 60(12):1545–1562, 2012. [Quoted on p. 9]

[25] Sebastian Scherer, Lyle Chamberlain, and Sanjiv Singh. Online assess-
ment of landing sites. In AIAA Infotech@ Aerospace 2010, page 3358. 2010.
[Quoted on p. 9]

[26] Sebastian Scherer. Low-altitude operation of unmanned rotorcraft. 2011.
[Quoted on p. 9]

[27] Sung Joon Ahn. Least squares orthogonal distance fitting of curves and sur-
faces in space, volume 3151. Springer Science & Business Media, 2004.
[Quoted on p. 9]

[28] Franco P Preparata and Michael I Shamos. Computational geometry: an in-
troduction. Springer Science & Business Media, 2012. [Quoted on p. 9]

[29] Daniel Maturana and Sebastian Scherer. 3d convolutional neural networks
for landing zone detection from lidar. In 2015 IEEE international conference
on robotics and automation (ICRA), pages 3471–3478. IEEE, 2015. [Quoted on p. 9,

10, 16]

[30] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne E Hubbard, and Lawrence D Jackel. Hand-
written digit recognition with a back-propagation network. In Advances in
neural information processing systems, pages 396–404, 1990. [Quoted on p. 9]

[31] Matthew S Whalley, Marc D Takahashi, Jay W Fletcher, Ernesto Moralez III,
LTC Carl R Ott, LTC Michael G Olmstead, James C Savage, Chad L Go-
erzen, Gregory J Schulein, Hoyt N Burns, et al. Autonomous black hawk

84 BIBLIOGRAPHY

in flight: Obstacle field navigation and landing-site selection on the rascal
juh-60a. Journal of Field Robotics, 31(4):591–616, 2014. [Quoted on p. 9, 10, 16]

[32] Nicholas A Rediess, Fernando Dones, Bruce L McManus, Lon Ulmer, and
Edwin W Aiken. An advanced fly-by-wire flight control system for the
rascal research rotorcraft: Concept to reality. 1995. [Quoted on p. 9]

[33] Oscar G Lorenzo, Jorge Martínez, David L Vilariño, Tomás F Pena, José C
Cabaleiro, and Francisco F Rivera. Landing sites detection using lidar data
on manycore systems. The Journal of Supercomputing, 73(1):557–575, 2017.
[Quoted on p. 11]

[34] Abu Saleh Mohammad Mosa, Bianca Schön, Michela Bertolotto, and De-
bra F Laefer. Evaluating the benefits of octree-based indexing for lidar
data. Photogrammetric Engineering & Remote Sensing, 78(9):927–934, 2012.
[Quoted on p. 11, 47]

[35] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2(11):559–572, 1901. [Quoted on p. 11]

[36] Weiwei Kong, Dianle Zhou, Daibing Zhang, and Jianwei Zhang. Vision-
based autonomous landing system for unmanned aerial vehicle: A survey.
In 2014 international conference on multisensor fusion and information integra-
tion for intelligent systems (MFI), pages 1–8. IEEE, 2014. [Quoted on p. 11]

[37] Pedro J Garcia-Pardo, Gaurav S Sukhatme, and James F Montgomery. To-
wards vision-based safe landing for an autonomous helicopter. Robotics and
Autonomous Systems, 38(1):19–29, 2002. [Quoted on p. 11]

[38] Sébastien Bosch, Simon Lacroix, and Fernando Caballero. Autonomous de-
tection of safe landing areas for an uav from monocular images. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5522–5527. IEEE, 2006. [Quoted on p. 11]

[39] Daniel Fitzgerald, Rodney Walker, and Duncan Campbell. A vision based
forced landing site selection system for an autonomous uav. In 2005 In-
ternational Conference on Intelligent Sensors, Sensor Networks and Information
Processing, pages 397–402. IEEE, 2005. [Quoted on p. 11, 16]

[40] Daniel Liam Fitzgerald. Landing site selection for UAV forced landings us-
ing machine vision. PhD thesis, Queensland University of Technology, 2007.
[Quoted on p. 11, 16]

[41] Luis Mejias, Daniel L Fitzgerald, Pillar C Eng, and Liu Xi. Forced landing
technologies for unmanned aerial vehicles: towards safer operations. Aerial
vehicles, 1:415–442, 2009. [Quoted on p. 11, 12, 16]

BIBLIOGRAPHY 85

[42] John Canny. A computational approach to edge detection. IEEE Transactions
on pattern analysis and machine intelligence, (6):679–698, 1986. [Quoted on p. 11]

[43] Michael Warren, Luis Mejias, Xilin Yang, Bilal Arain, Felipe Gonzalez, and
Ben Upcroft. Enabling aircraft emergency landings using active visual
site detection. In Field and Service Robotics, pages 167–181. Springer, 2015.
[Quoted on p. 12]

[44] PT Eendebak, AWM van Eekeren, and RJM den Hollander. Landing spot
selection for uav emergency landing. In Unmanned Systems Technology XV,
volume 8741, page 874105. International Society for Optics and Photonics,
2013. [Quoted on p. 12]

[45] Massimo Piccardi. Background subtraction techniques: a review. In 2004
IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.
04CH37583), volume 4, pages 3099–3104. IEEE, 2004. [Quoted on p. 12]

[46] Yu-Fei Shen, Zia-Ur Rahman, Dean Krusienski, and Jiang Li. A vision-
based automatic safe landing-site detection system. IEEE Transactions on
Aerospace and Electronic Systems, 49(1):294–311, 2013. [Quoted on p. 12, 13]

[47] Christian Forster, Matthias Faessler, Flavio Fontana, Manuel Werlberger,
and Davide Scaramuzza. Continuous on-board monocular-vision-based
elevation mapping applied to autonomous landing of micro aerial vehi-
cles. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 111–118. IEEE, 2015. [Quoted on p. 12, 14]

[48] Timo Hinzmann, Thomas Stastny, Cesar Cadena, Roland Siegwart, and
Igor Gilitschenski. Free lsd: prior-free visual landing site detection for
autonomous planes. IEEE Robotics and Automation Letters, 3(3):2545–2552,
2018. [Quoted on p. 13]

[49] Bulent Ayhan, Chiman Kwan, Yool-Bin Um, Bence Budavari, and Jude
Larkin. Semi-automated emergency landing site selection approach for
uavs. IEEE Transactions on Aerospace and Electronic Systems, 55(4):1892–1906,
2018. [Quoted on p. 13]

[50] Navid Serrano. A bayesian framework for landing site selection during
autonomous spacecraft descent. In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5112–5117. IEEE, 2006. [Quoted on p. 15]

[51] Henry E Kyburg. Probabilistic reasoning in intelligent systems: networks
of plausible inference by judea pearl. The Journal of Philosophy, 88(8):434–
437, 1991. [Quoted on p. 15]

86 BIBLIOGRAPHY

[52] Ayanna Howard and Homayoun Seraji. Multi-sensor terrain classification
for safe spacecraft landing. IEEE Transactions on Aerospace and Electronic
Systems, 40(4):1122–1131, 2004. [Quoted on p. 15]

[53] Sebastian Scherer, Lyle Chamberlain, and Sanjiv Singh. Autonomous land-
ing at unprepared sites by a full-scale helicopter. Robotics and Autonomous
Systems, 60(12):1545–1562, 2012. [Quoted on p. 16]

[54] Jamie Carter, Keil Schmid, Kirk Waters, Lindy Betzhold, B Hadley,
R Mataosky, and J Halleran. An introduction to lidar technology, data, and
applications. NOAA Coastal Services Center, 2, 2012. [Quoted on p. 17]

[55] Fiorani Luca. Environmental monitoring by laser radar. Lasers and Electro-
Optics Research at the Cutting Edge, Nova Publishers, New York, pages 119–171,
2007. [Quoted on p. 17]

[56] Thimothy B. Lee. Why spinning lidar sensors might be around for
another decade. https://arstechnica.com/cars/2018/05/why-bulky-
spinning-lidar-sensors-might-be-around-for-another-decade/.
Online;Accessed on Jul. 3, 2020. [Quoted on p. 18, 19]

[57] Nick Mokey. Solid-state lidar: The key to cheap self-driving cars -
Digital Trends. https://www.digitaltrends.com/cars/solid-state-
lidar-for-self-driving-cars./. Online;Accessed on Oct. 11, 2020.
[Quoted on p. 18, 19, 20]

[58] Renishaw. Optical encoders and LiDAR scanning. https://
www.renishaw.it/it/optical-encoders-and-lidar-scanning--39244.
Online; Accessed on Jul. 3, 2020. [Quoted on p. 18]

[59] Velodyne LiDAR. VLP-16 User Manual, 2 2019. Accessed on Jul. 3, 2020.
[Quoted on p. 18, 19, 24, 54, 56]

[60] LeddarTech. Leddar Solid-State LiDAR Technology Fundamentals. https:
//leddartech.com/leddar-technology-overview. Online;Accessed on
Oct. 11, 2020. [Quoted on p. 18]

[61] Andy Mohd. Does Infineon’s MEMS lidar portend a quantum leap
for ADAS? https://medium.com/futuremobile2025/does-infineons-
mems-lidar-portend-a-quantum-leap-for-adas-c14eb939545a. On-
line;Accessed on Oct. 11, 2020. [Quoted on p. 19, 20]

[62] Kimon P Valavanis and George J Vachtsevanos. Handbook of unmanned aerial
vehicles, volume 1. Springer, 2015. [Quoted on p. 20, 22]

[63] Jay Farrell. Aided navigation: GPS with high rate sensors. McGraw-Hill, Inc.,
2008. [Quoted on p. 21]

BIBLIOGRAPHY 87

[64] Guowei Cai, Ben M Chen, and Tong Heng Lee. Coordinate systems and
transformations. In Unmanned rotorcraft systems, pages 23–34. Springer,
2011. [Quoted on p. 21]

[65] ChRobotics. Understanding Quaternions. http://www.chrobotics.com/
wp-content/uploads/2012/11/F18.png. Online;Accessed on Jul. 6, 2020.
[Quoted on p. 25]

[66] Gregory G Slabaugh. Computing euler angles from a rotation matrix. Re-
trieved on August, 6(2000):39–63, 1999. [Quoted on p. 25]

[67] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.
Robotics: modelling, planning and control. Springer Science & Business Media,
2010. [Quoted on p. 26]

[68] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):
52–57, 2002. [Quoted on p. 27]

[69] Gabriel A Terejanu et al. Extended kalman filter tutorial. University at Buf-
falo, 2008. [Quoted on p. 27]

[70] Sergio Orts-Escolano, Vicente Morell, José García-Rodríguez, and Miguel
Cazorla. Point cloud data filtering and downsampling using growing neu-
ral gas. In The 2013 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2013. [Quoted on p. 30]

[71] LibPointMatcher. libpointmatcher Documentation. https://
libpointmatcher.readthedocs.io/en/latest/DataPointsFilterDev/.
Online;Accessed on Oct. 10, 2020. [Quoted on p. 31]

[72] Donald JR Meagher. Octree encoding: A new technique for the representa-
tion, manipulation and display of arbitrary 3-d objects by computer. Electri-
cal and Systems Engineering Department Rensseiaer Polytechnic . . . , 1980.
[Quoted on p. 31]

[73] The Infinite Loop. Advanced Octrees 1: preliminaries, insertion strategies
and maximum tree depth. https://geidav.wordpress.com/2014/07/
18/advanced-octrees-1-preliminaries-insertion-strategies-and-
max-tree-depth/. Online;Accessed on Jul. 15, 2020. [Quoted on p. 32]

[74] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard. Octomap: An efficient probabilistic 3d mapping
framework based on octrees. Autonomous robots, 34(3):189–206, 2013.
[Quoted on p. 32]

88 BIBLIOGRAPHY

[75] Hemang Agarwal, Sandeep Bhardwaj, Hobart Pao, George Keeling, An-
dres Gonzalez, Mahindra Jain and Jimin Khim . 3D Coordinate Geome-
try - Equation of a Plane. https://brilliant.org/wiki/3d-coordinate-
geometry-equation-of-a-plane/. Online;Accessed on Oct. 11, 2020.
[Quoted on p. 32, 33]

[76] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review
and recent developments. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 374(2065):20150202, 2016.
[Quoted on p. 33]

[77] Hervé Abdi and Lynne J Williams. Principal component analysis. Wi-
ley interdisciplinary reviews: computational statistics, 2(4):433–459, 2010.
[Quoted on p. 33]

[78] Weisstein, Eric W. "Covariance." From MathWorld–A Wolfram Web
Resource. https://mathworld.wolfram.com/Covariance.html, . On-
line;Accessed on Jul. 20, 2020. [Quoted on p. 34]

[79] Weisstein, Eric W. "Eigenvalue." From MathWorld–A Wolfram Web
Resource. https://mathworld.wolfram.com/Eigenvalue.html, . On-
line;Accessed on Oct. 11, 2020. [Quoted on p. 34]

[80] Valentina Alto. PCA: Eigenvectors and Eigenvalues. https:
//towardsdatascience.com/pca-eigenvectors-and-eigenvalues-
1f968bc6777a. Online;Accessed on Oct. 11, 2020. [Quoted on p. 35]

[81] Ayssam Elkady and Tarek Sobh. Robotics middleware: A comprehensive
literature survey and attribute-based bibliography. Journal of Robotics, 2012,
2012. [Quoted on p. 35]

[82] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot oper-
ating system. In ICRA workshop on open source software, volume 3, page 5.
Kobe, Japan, 2009. [Quoted on p. 35, 39]

[83] Nathan Koenig and Andrew Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2149–2154. IEEE, 2004. [Quoted on p. 37]

[84] Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and scal-
able robot simulation framework. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1321–1326. IEEE, 2013. [Quoted on p. 37]

BIBLIOGRAPHY 89

[85] Gilberto Echeverria, Séverin Lemaignan, Arnaud Degroote, Simon Lacroix,
Michael Karg, Pierrick Koch, Charles Lesire, and Serge Stinckwich. Simu-
lating complex robotic scenarios with morse. In International Conference on
Simulation, Modeling, and Programming for Autonomous Robots, pages 197–
208. Springer, 2012. [Quoted on p. 37]

[86] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote, and Séverin
Lemaignan. Modular open robots simulation engine: Morse. In 2011 IEEE
International Conference on Robotics and Automation, pages 46–51. Citeseer,
2011. [Quoted on p. 37]

[87] "The MORSE Simulator Documentation. https://www.openrobots.org/
morse/doc/stable/morse.html. Online;Accessed on Oct. 6, 2020.
[Quoted on p. 37]

[88] MORSE Simulator. MORSE Pre-defined Environment. https:
//www.openrobots.org/morse/doc/stable/user/environments/
buildings_2.html. Online;Accessed on Oct. 6, 2020. [Quoted on p. 38]

[89] Freepik. Flat Drone. https://www.freepik.com/free-vector/basic-
variety-of-flat-drones_1348538.htm. Online;Accessed on Oct. 11,
2020. [Quoted on p. 40]

[90] DNS. ODROID-XU4. https://cdn.antratek.nl/media/product/
d9e/odroid-xu4-octa-core-computer-with-samsung-exynos-5422-
g143452239825-47c.jpg. Online;Accessed on Oct. 11, 2020. [Quoted on p. 40]

[91] Gabriel Loureiro, Luís Soares, André Dias, and Alfredo Martins. Emer-
gency landing spot detection for unmanned aerial vehicle. In Iberian
Robotics conference, pages 122–133. Springer, 2019. [Quoted on p. 43]

[92] Nicolas Brodu and Dimitri Lague. 3d terrestrial lidar data classification of
complex natural scenes using a multi-scale dimensionality criterion: Ap-
plications in geomorphology. ISPRS Journal of Photogrammetry and Remote
Sensing, 68:121–134, 2012. [Quoted on p. 47, 48]

[93] Velodyne Lidar. VLP-16 Puck. https://velodynelidar.com/products/
puck/. Online;Accessed on Oct. 5, 2020. [Quoted on p. 55]

[94] Radu B Rusu and S Cousins. Point cloud library (pcl). In 2011 IEEE Interna-
tional Conference on Robotics and Automation, pages 1–4, 2011. [Quoted on p. 58]

[95] We Braga. Monastery of Tibães. https://webraga.pt/visitar/
monumentos/mosteiro-de-tibaes/. Online;Accessed on Oct. 12, 2020.
[Quoted on p. 75]

