

Semantic Web Services for Multi-Agent Systems
Interoperability

Alda Canito1, Gabriel Santos1, Juan M. Corchado2, Goreti Marreiros1 and Zita Vale3

1 Research Group on Intelligent Engineering and Computing for Advanced Innovation and De-
velopment, Institute of Engineering - Polytechnic of Porto (ISEP/IPP), Porto, Portugal

2 BISITE - Research Centre, University of Salamanca, Salamanca, Spain
3 Institute of Engineering - Polytechnic of Porto (ISEP/IPP), Porto, Portugal

1 {alrfc, gajls, mgt}@isep.ipp.pt
2 corchado@usal.es
3 zav@isep.ipp.pt

Abstract. Agent-based technologies are often used including existing web ser-
vices. The outputs of some services are also frequently used as inputs for other
services, including other MAS. However, while agent-based technologies can be
used to provide services, these are not described using the same semantic web
technologies web services use, which makes it difficult to discover, invoke and
compose them with web services seamlessly. In this paper, we analyse different
agent-based technologies and how these can be described using extensions to
OWL-S. Additionally, we propose an architecture that facilitates these services’
usage, where services of any kind can be registered and executed (semi-)auto-
matically.

Keywords: Semantic Web Services, Multi-Agent Systems, OWL-S.

1 Introduction

The execution of complex tasks often requires the composition of several, atomic ser-
vices. While a wide variety of these are available on the web as web services, the design
and development of a workflow is still very time-consuming, considering that: they
need to be found, they may have different interaction protocols, and proper description
of their workings, inputs and outputs if often lacking [1, 2]. Semantic Web technologies
have been proposed for the description of web services in order to make those descrip-
tions richer: by providing them in a machine-readable way, the processes of discovery
and composition of services by intelligent software agents become easier [2–4].

Individual agents, capable of solving specific tasks in their systems, can be seen as
service providers, as well as the Multi-Agent Systems (MAS) that are able to solve
more complex tasks. Both agents and MAS are capable of providing services, as is the
case of decision support agent-based systems [5–7]. Additionally, existing MAS-based
Decision Support Systems often execute tasks that depend on the outputs of services
[5, 8], but also of other known MAS systems, as is the case of [6, 9–11]. These services
are often not available outside of their environment for several reasons, e.g. the

Auth
or'

s v
ers

ion

mailto:mgt%7d@isep.ipp.pt
mailto:corchado@usal.es

2

complexity of the network configurations required to ensure secure communications.
Service providers can be shifted to different servers, and systems requiring those ser-
vices need to be reconfigured. To overcome these issue, one possible solution would
be to have a services’ catalogue where both agents and web services could register,
expose the service(s) they provide, making them publicly available for other systems
that might be potentially interested in using them. On the other hand, systems interested
in using services would be able to search for a type of service, and as response would
receive a list of available services – considering the type of service, the service provider,
the expected input(s), and the result output.

In order to overcome the necessary services’ heterogeneity, we propose an architec-
ture featuring semantic description of services that that facilitates service publishing,
discovery, composition and interoperability. Additionally, we present an extension to
OWL-S for Agent-based services, using JADE agents as an example. Agent-based ser-
vices and web services are described rather differently, with the former requiring infor-
mation to be communicated with, including, but not limited to, host, port, agent identi-
fier, performative(s), language(s) and ontology(ies). For the invocation of the later, in
turn, information regarding its URI, protocol (e.g.: HTTP, HTTPS), port, technology
(e.g. SOAP, REST) and method (e.g. GET, POST), among others, must be known.

This document is structured as follows: (1) Introduction, where the problem and mo-
tivations are exposed; (2) Multi-Agent Systems and Semantic Web Services, where ex-
isting approaches to semantic web service description are presented and we discuss the
relevance of agent-based approaches to service composition and how intelligent agents
could be described as service providers, (3) Semantic Description of Agent-Based Ser-
vices, where we propose an extension to OWL-S to allow the description of agent-based
services, (4) Architecture, in which we propose an architecture that would use these
semantic notations to invoke MAS-based services alongside with other types of ser-
vices and (4) Conclusions.

2 Multi-Agent Systems and Semantic Web Services

Intelligent Agents are often used to solve and simulate problems where the involved
parties have different goals and objectives which require different levels of proactivity.
While using Multi-Agent Systems in these scenarios is adequate, more complex sce-
narios can arise, as is the case of [5], where several multi-agent systems are invoked
and the outcomes of them must be processed and combined in order to generate a bigger
picture. Running several agent-based simulations concurrently in order to compare re-
sults is a fairly common task to perform, especially in scenarios where different con-
figurations have immediate impact on the results or where different systems must com-
municate. Similarly, it is often necessary to perform simulations sequentially, where
the results of the first serve as input or influence those that follow. While in some sce-
narios these systems directly communicate with each other [9, 11], such is not always
the case [5, 8]. This problem becomes even more complex if the data must be trans-
formed through other processes, such as those provided by services or tools [12], whose

Auth
or'

s v
ers

ion

3

availability must be assessed. As such, establishing which systems and services are
available and how they can be combined becomes an important issue.

As proposed by McIlraith in [3], describing web services in a semantically rich way
– not only in terms of their inputs and outputs, but also by describing the inner processes
of these services themselves and the tasks they perform – allows for a bigger automation
in the processes of service discovery, composition and compensation [2, 13–15]. The
principles of interoperability and coordination between agents follow the same vision
as the semantic web [4]; however, while web services represent atomic, mostly state-
less tasks, intelligent agents are proactive entities with specific goals [16]. This proac-
tivity manifests, among other things, in locating services and partners which will help
the agent to fulfil its tasks. In [17], the importance of the semantic description of ser-
vices for this task is discussed, establishing that web services and agents are similar
when it comes to their discovery and that any matching to be made between different
service groundings must ultimately rely on semantic abstractions.

 While there are many concurrent semantic approaches to the description of we ser-
vices [18–22], OWL-S includes a number of concepts and properties to allow the proper
description of SOAP services, with extensions also available for the RESTful kind [23].
Additionally, with OWL-S it is possible to describe not only atomic services, but also
workflows resulting of the composition of several atomic ones. In order to use OWL-S
to also describe agents and multi-agent systems, new concepts must be added to the
ontology. As such, we will study the properties of agent-based technologies in order to
establish how these can be described, and then proposing the necessary additions to
OWL-S.

3 Semantic Description of agent-based services

 OWL-S includes a number of concepts and properties to allow the proper description
of SOAP services, with extensions are also available for RESTful services [21]. In our
proposed architecture, agents will also be described with OWL-S; we will discuss if its
existing concepts and properties are sufficient for describing intelligent agents or if ex-
tensions are necessary.

OWL-S is divided in three main components: (i) Service Profile, (ii) Process Model
and (iii) Grounding. The first is meant to be read by humans and features the name of
the service, its description, provider, limitations and other relevant information. The
Process Model describes how the service works, describing its inputs and outputs, pre-
conditions and effects. Finally, Grounding specifies interaction details such as the in-
teraction protocol and message formats [24].

Agents do not expose their services through any standardized description formats
like WSDL [25] or WADL [26]. In order to define the properties that an entity must
know in order to interact with agents – in our case, specifically JADE agents [27] – an
abstract agent ontology was defined, from which JADE agent has been extended. Figure
Fig. 1 introduces the abstract Software Agent ontology including possible Subclasses,
such as OAA [28], ZEUS [29], Jadex [30], EMERALD [31], SeSAm [32] and JADE
agents.

Auth
or'

s v
ers

ion

4

Fig. 1. The Software Agent ontology.

The Software Agent ontology is described by the SoftwareAgent abstract Class which
is composed by the Data Properties name, host, and port that identify the agent. The
FIPACompliant agent SubClass includes the ontology and language Data Properties
for the effective communication with the agent, and also the AgentPlatform Class which
identifies the agent platform name and the addresses list. From the FIPACompliant
agent Class ZEUS agent, JADE agent, and Jadex agent SubClasses are derived. The
JADE agent Class is expressed by the Data Property AID which is the agent unique
identifier in the agents’ community. The EMERALD agent is Subclass of JADE.

By definition, Software Agents run on a given host through a specific port and have
a unique name for identification purposes. While additional information may be re-
quired for interaction with an agent, these basic properties are used in the SoftwareA-
gent abstract Class. Other properties, which may be required by different agent imple-
mentations, are exposed in different Subclasses.

FIPA provides a number of standards for communication between heterogeneous
agents and the services they provide [33], specifying that all agents must state which
ontology they use to describe their message and the language they use (e.g.: XML,
JSON, RDF/XML, TURTLE, etc.). Therefore, the FIPACompliant agent Subclass in-
cludes the ontology and language Data Properties for the effective communication with
the agent, and the AgentPlatform Class which identifies the agent platform name and
the addresses list. ZEUS, JADE, EMERALD, and Jadex-based agents, being FIPA

Auth
or'

s v
ers

ion

5

compliant, are expressed though four new Subclasses, named accordingly. JADE
agents, in particular, require an identification for individual agents in a given commu-
nity, which is provided by the Data Property AID (agent unique identifier).

The JADE agent Class supplies atomic services via the JadeAtomicService Class.
The interaction protocol for this scenario, i.e. its Grounding, is provided by the Jade-
Grounding Class. The relationships between these entities and those supplied by the
OWL-S and RESTFul Grounding are represented in Figure Fig. 2, below:

Fig. 2. JADE and WALD Grounding Classes.

For our example, let’s consider a Forecast Service, which is provided either by a
RESTFul web service and by an agent. This is a generic forecasting service based on
an artificial neural network algorithm. As input, the algorithm expects to receive a train-
ing set composed of two arrays, and a testing set array to determine the output. The
training set arrays are the TrainInput and TrainOutput. The TrainInput, is an array of
arrays where each array outputs the value of the corresponding position of the Train-
Output array. Given the training set, the algorithm determines the output of the TestIn-
put array. Fig. 3 presents the Forecast ontology.

Fig. 3. The Forecast ontology.

Auth
or'

s v
ers

ion

6

The Forecast ontology is composed by the classes Array, TestInput, TrainInput,
TrainOutput and Item_Value. The Array Class is an abstract class equivalent to the
objList:List1 Class in conjunction with the Object Property first with range Item_Value,
and the Object Property rest with recursive range Array. The objList:List Class is part
of the OWL-S ontology and it is used due to the need of representing lists of objects.
The Array abstract Class has been defined to be reused in both TestInput and Train-
Output Classes, being these last equivalents to the Array Class. The Item_Value Class
is defined by the Data Property itemValue which holds the double value of each item.
Finally, the TrainInput Class is equivalent to the objList:List Class in conjunction with
the Object Property first with range Array, and the Object Property rest with recursive
range TrainInput.

Now that the entities regarding inputs and outputs of the service are established, a
definition of the service itself is in order. Figure Fig. 4 introduces the Forecast Service
definition.

Fig. 4. Forecast Service definition.

The ForecastService presents a ForecastProfile, is described by the Fore-
castAtomicProcess, and supports both ForecastWaldGrounding and ForecastJade-
Grounding. Two different Groundings are provided for this Forecast Service: Forecast-
WaldGrounding and ForecastJadeGrounding, instances of WadlGrounding and Jade-
Grounding respectively, representing the two possible ways to invoke this service.

The WadlGrounding adds a semantic definition to the parameters of the service, but
when it comes to invocation, it ultimately refers to its WADL file for details. Jade-
Grounding provides the description for the forecast service provided by the software
agent. It is very similar to the WadlGrounding definition, being the main difference the
use of the Software Agent semantic model instead of the WADL file definition for the
service’s invocation.

The complete service definition, along with instantiation files, as well as the seman-
tic data models are publicly available online2 for appreciation.

1 http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl#List
2 http://www.gecad.isep.ipp.pt/epia/19/services/forecast/

Auth
or'

s v
ers

ion

7

4 Architecture

The proposed architecture must: (i) enable semantic services to register/deregister
in/from the platform; (ii) enable client applications to search for services by different
filter parameters and (iii) provide clients with machine-readable information about the
available services (including services’ parameterization, inputs and outputs). This way,
systems will be able to perform these processes automatically when a service is re-
quired. Fig. 3 introduces the application level architecture, where three different entities
are easily identified: (i) the Service’s Catalogue, (ii) Service Providers (e.g. Agent-
based or web service) and (iii) the Services’ Clients.

Fig. 5. Application level architecture.

Service providers can be any Agent, Multi-Agent System or Web Service that is able
to execute a specific atomic task. This task must clearly specify its input and output
parameters and supply a description as to what processes it entails.

Concurrently, the Services’ Client represents the client applications searching for
available services. These applications can use the information provided by the Services’
Broker response to request for the services’ execution directly to the service pro-
vider(s). It should be noticed that any registered service is also a potential service client:
for instance, an agent-based service may be composed by several web-services, also
available independently in the broker’s application platform.

The Catalogue is the main application. It is responsible for proving semantic ser-
vice’s registration, deregistration and search services. The Catalogue’s modules are dis-
tributed through three layers, namely: (i) Client Interface, which fulfils tasks such as
Service Registration and De-Registration, supplies descriptions of services and allows
Clients to search for the services they need; (ii) Composition Suggestion, which is used

Auth
or'

s v
ers

ion

8

for supplying descriptions and services when a specific task requires more than one
known service to be fulfilled, and (iii) Service Database, where the descriptions of the
known services are stored and which can be queried via a SPARQL endpoint. The lay-
ers and modules, along with the relationships between them are shown in Fig. 6, below:

Fig. 6. The Catalogue’s inner modules

Upon registration, service providers must announce what type of service they supply,
a description of its purpose, where and how it can be invoked and its input and output
parameters. When it comes to service discovery, different types of searches can be per-
formed [34], allowing not only for syntactic similarity but for semantic similarity as
well: e.g., by being able to compute how similar two ontological entities are or if map-
pings between them are available. Additionally, as single service may not be able to
fulfil a certain task, but the combination of two or more known services may generate
the desired outcome, the Composition Suggestion module can be invoked. As the name
suggests, it will try to break down a discovery request into multiple queries and confirm
is a composition can be made with those results. Different techniques of service dis-
covery and composition will be employed in this task. If the Client agrees with the
suggestion, it will be stored in the database as a composite service, with its own OWL-
S description.

5 Conclusions

In order to discover, invoke and compose agent-based alongside with web services, a
common framework for their description is required. Existing semantic web technolo-
gies for the description of web services exist, with OWL-S being one of the most com-
monly applied. In this paper, we explored the possibility of viewing agent-based solu-
tions as web services - as those provided in SOAP or RESTful applications - but with
a different interaction protocol. We therefore analysed the specific needs of agent-based
solutions and how OWL-S could be extended to properly represent them. Finally, we
proposed an architecture that would allow entities, agents or otherwise, to register, de-
register an invoke each other seamlessly, while also providing services for discovery
and composition suggestion.

Auth
or'

s v
ers

ion

9

The most common implementations of OWL-S ontology, namely the instantiation
of Grounding ontology module, end up by pointing to an XML file. In the future, it
would be interesting to study the implications of using a purely semantic description
for the invocation of all services, as we proposed in this paper to be done for agents,
such that no WADL or WSLD files would be necessary, especially when it comes to
service definition change over time.

Acknowledgements

The present work has received funding from FEDER Funds through NORTE2020 pro-
gram and from National Funds through Fundação para a Ciência e a Tecnologia (FCT)
under the project UID/EEA/00760/2019. Gabriel Santos is supported by national funds
through FCT PhD studentship with reference SFRH/BD/118487/2016.

References

1. Lemos, A.L., Daniel, F., Benatallah, B.: Web Service Composition. ACM Comput.
Surv. 48, 1–41 (2015).

2. Klusch, M., Kapahnke, P., Schulte, S., Lecue, F., Bernstein, A.: Semantic Web Service
Search: A Brief Survey. KI - Künstliche Intelligenz. 30, 139–147 (2016).

3. McIlraith, S.A., Son, T.C., Honglei Zeng: Semantic Web services. IEEE Intell. Syst. 16,
46–53 (2001).

4. Huhns, M.N.: Agents as Web services. IEEE Internet Comput. 6, 93–95 (2002).
5. Teixeira, B., Pinto, T., Silva, F., Santos, G., Praça, I., Vale, Z.: Multi-Agent Decision

Support Tool to Enable Interoperability among Heterogeneous Energy Systems. Appl.
Sci. 8, 328 (2018).

6. Pinto, T., Morais, H., Sousa, T.M., Sousa, T., Vale, Z., Praca, I., Faia, R., Pires, E.J.S.:
Adaptive Portfolio Optimization for Multiple Electricity Markets Participation. IEEE
Trans. Neural Networks Learn. Syst. 27, 1720–1733 (2016).

7. Pinto, T., Vale, Z., Praça, I., Pires, E.J.S., Lopes, F.: Decision Support for Energy
Contracts Negotiation with Game Theory and Adaptive Learning. Energies. 8, 9817–
9842 (2015).

8. Teixeira, B., Silva, F., Pinto, T., Santos, G., Praca, I., Vale, Z.: TOOCC: Enabling
heterogeneous systems interoperability in the study of energy systems. In: 2017 IEEE
Power & Energy Society General Meeting. pp. 1–5. IEEE (2017).

9. Santos, G., Femandes, F., Pinto, T., Silva, M., Abrishambaf, O., Morais, H., Vale, Z.:
House management system with real and virtual resources: Energy efficiency in
residential microgrid. In: 2016 Global Information Infrastructure and Networking
Symposium (GIIS). pp. 1–6. IEEE (2016).

10. Santos, G., Pinto, T., Praça, I., Vale, Z.: MASCEM: Optimizing the performance of a
multi-agent system. Energy. 111, 513–524 (2016).

11. Kravari, K., Bassiliades, N., Boley, H.: Cross-community interoperation between
knowledge-based multi-agent systems: A study on EMERALD and Rule Responder.
Expert Syst. Appl. 39, 9571–9587 (2012).

Auth
or'

s v
ers

ion

10

12. Carneiro, J., Alves, P., Marreiros, G., Novais, P.: A Multi-agent System Framework for
Dialogue Games in the Group Decision-Making Context. Presented at the (2019).

13. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
OWLS-MX. In: Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems - AAMAS ’06. p. 915. ACM Press, New York, New
York, USA (2006).

14. Lord, P., Alper, P., Wroe, C., Goble, C.: Feta: A Light-Weight Architecture for User
Oriented Semantic Service Discovery. Presented at the (2005).

15. Rodriguez-Mier, P., Pedrinaci, C., Lama, M., Mucientes, M.: An Integrated Semantic
Web Service Discovery and Composition Framework. IEEE Trans. Serv. Comput. 9,
537–550 (2016).

16. Greenwood, D., Calisti, M.: Engineering web service - agent integration. In: 2004 IEEE
International Conference on Systems, Man and Cybernetics (IEEE Cat.
No.04CH37583). pp. 1918–1925. IEEE.

17. Martin, D., Burstein, M., McIlraith, S., Paolucci, M., Sycara, K.: OWL-S and Agent-
Based Systems. In: Extending Web Services Technologies. pp. 53–77. Springer-Verlag,
New York.

18. Web Service Modeling Language (WSML), https://www.w3.org/Submission/WSML/.
19. Semantic Annotations for WSDL and XML Schema, https://www.w3.org/TR/sawsdl/.
20. Pedrinaci, C., Cardoso, J., Leidig, T.: Linked USDL: A Vocabulary for Web-Scale

Service Trading. Presented at the (2014).
21. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML Microformat for

Describing RESTful Web Services. In: 2008 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology. pp. 619–625. IEEE (2008).

22. SA-REST: Semantic Annotation of Web Resources,
https://www.w3.org/Submission/SA-REST/.

23. Filho, O.F.F., Ferreira, M.A.G.V.: SEMANTIC WEB SERVICES: A RESTFUL
APPROACH. (2009).

24. OWL-S: Semantic Markup for Web Services,
http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/.

25. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Service Definition
Language (WSDL), https://www.w3.org/TR/2001/NOTE-wsdl-20010315.

26. Hadley, M.: Web Application Description Language,
https://www.w3.org/Submission/wadl/.

27. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. John Wiley (2007).

28. The Open Agent Architecture, http://www.ai.sri.com/~oaa/.
29. The Zeus Technical Manual,

http://zeusagent.sourceforge.net/docs/techmanual/TOC.html.
30. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI-Agent System Combining

Middleware and Reasoning. In: Software Agent-Based Applications, Platforms and
Development Kits. pp. 143–168. Birkhäuser-Verlag, Basel (2005).

31. Kravari, K., Kontopoulos, E., Bassiliades, N.: EMERALD: A Multi-Agent System for
Knowledge-Based Reasoning Interoperability in the Semantic Web. Presented at the
(2010).

Auth
or'

s v
ers

ion

11

32. Klügl, F., Herrler, R., Klügl, F., Herrler, R., Fehler, M.: SeSAm: implementation of
agent-based simulation using visual programming Policy Agents I, II, III View project
SeSAm: Implementation of Agent-Based Simulation Using Visual Programming.
(2006).

33. Foundation for Intelligent Physical Agents: FIPA A.C.L.,
http://www.fipa.org/specs/fipa00061/SC00061G.html.

34. Negi, A., Kaur, P.: Examination of Sense Significance in Semantic Web Services
Discovery. Presented at the (2019).

Auth
or'

s v
ers

ion

	1 Introduction
	2 Multi-Agent Systems and Semantic Web Services
	3 Semantic Description of agent-based services
	4 Architecture
	5 Conclusions
	Acknowledgements
	References

