
energies

Article

Production Line Optimization to Minimize Energy Cost and
Participate in Demand Response Events

Bruno Mota 1,2, Luis Gomes 1,2 , Pedro Faria 1,2 , Carlos Ramos 1,2, Zita Vale 2,* and Regina Correia 3

����������
�������

Citation: Mota, B.; Gomes, L.; Faria,

P.; Ramos, C.; Vale, Z.; Correia, R.

Production Line Optimization to

Minimize Energy Cost and

Participate in Demand Response

Events. Energies 2021, 14, 462.

https://doi.org/10.3390/en14020462

Received: 15 December 2020

Accepted: 14 January 2021

Published: 16 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 GECAD-Research Group on Intelligent Engineering and Computing for Advanced Innovation and
Development, P-4200-072 Porto, Portugal; bamoa@isep.ipp.pt (B.M.); lufog@isep.ipp.pt (L.G.);
pnf@isep.ipp.pt (P.F.); csr@isep.ipp.pt (C.R.)

2 Polytechnic of Porto (P.PORTO), P-4200-072 Porto, Portugal
3 SISTRADE—Software Consulting, S.A., 4250-380 Porto, Portugal; regina.correia@sistrade.com
* Correspondence: zav@isep.ipp.pt; Tel.: +351-228-340-500

Abstract: The scheduling of tasks in a production line is a complex problem that needs to take into
account several constraints, such as product deadlines and machine limitations. With innovative
focus, the main constraint that will be addressed in this paper, and that usually is not considered,
is the energy consumption cost in the production line. For that, an approach based on genetic
algorithms is proposed and implemented. The use of local energy generation, especially from
renewable sources, and the possibility of having multiple energy providers allow the user to manage
its consumption according to energy prices and energy availability. The proposed solution takes into
account the energy availability of renewable sources and energy prices to optimize the scheduling of
a production line using a genetic algorithm with multiple constraints. The proposed algorithm also
enables a production line to participate in demand response events by shifting its production, by
using the flexibility of production lines. A case study using real production data that represents a
textile industry is presented, where the tasks for six days are scheduled. During the week, a demand
response event is launched, and the proposed algorithm shifts the consumption by changing task
orders and machine usage.

Keywords: demand-side management; demand response; flexibility; genetic algorithm; production
line; tasks scheduling

1. Introduction

Power and energy systems are going through a paradigm change where distributed
management, distributed generation, and end-user participation are promoted and needed [1].
The end-user participation is key for the proliferation of smart grids and needs to be ad-
dressed [2]. The use of end-users flexibility in demand-side management methodologies can
increase the use of local renewable energy generation and enable their participation in demand
response programs [3,4]. The application of artificial intelligence in industrial demand-side
management systems is capable of producing energy management systems that consider the
users’ needs and preferences to minimize energy consumption and costs [5]. These systems
aligned with manufacturing management tools to support best practices [6], planning [7], and
operation [8] can increase manufacturing productivity while minimizing costs.

The scheduling of tasks in a production line is not a straightforward problem and,
therefore, proposed solutions can be found in the literature [9–13]. Some solutions use
artificial intelligence considering multiple restrictions [14,15]. In Ðurasević et al. (2016)
a genetic algorithm is proposed to schedule tasks in several unrelated machines [16]. In
Wu et al. (2016) the software project scheduling problem is addressed using an evolu-
tionary hyper-heuristic algorithm that can distribute tasks among developers [17]. The
same problem was addressed by Shen et al. (2018) using a q-learning-based memetic
algorithm [18] and by Xiao et al. (2019) using a multi-objective ant colony optimization [19].

Energies 2021, 14, 462. https://doi.org/10.3390/en14020462 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8597-3383
https://orcid.org/0000-0002-5982-8342
https://orcid.org/0000-0002-4560-9544
https://doi.org/10.3390/en14020462
https://doi.org/10.3390/en14020462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14020462
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/2/462?type=check_update&version=1

Energies 2021, 14, 462 2 of 14

Chen et al. (2015) proposed a bilevel algorithm using simulated annealing and the heuristic
of the earliest completion machine to solve the synchronization problem of production and
shipping [20].

Regarding the scheduling of production lines, the consideration of energy costs is
uncommon, and few works address this issue. Duarte et al. (2020) proposed a multi-
process production scheduling based on a column-and-constraint generation algorithm that
considers the time-and-level-of-use (TLOU) demand response program [21]. However, this
work did not consider constraints at the machine level, such as product production tasks
definition and their relations/constraints. A similar focus can be found in Chen and Zhang
(2019) where the scheduling considers the time of use (TOU) demand response program [22].
Addressing the onsite renewable generation, it is possible to find the proposed systems by
Santana-Viera et al. (2015) and Li et al. (2017) [23,24].

The participation in production lines, without decreasing the production, requires
the shifting of production or changing the production consumptions to enable the produc-
tion in demand response programs. Participation in demand response programs usually
occurs in two steps: the program enrolment and the event [25]. This allows end-users
to know about the program before reacting to it. In this way, when an event occurs, the
production lines should reschedule their tasks without compromising their production
commitments. Demand response can be mainly divided into two types: price-based and
incentive-based [26]. According to the context, different price signals can be given to the
consumer in order to obtain a certain reaction to the price, or a certain remuneration can be
paid per each kWh of consumption reduced [27].

Being a complex problem, the scheduling of tasks in production lines demands non-
deterministic approaches that can handle multiple constraints and be executed in an
acceptable time. This paper proposes a solution based on a genetic algorithm. This
evolutionary algorithm uses natural selection and genetics to achieve a solution for the
problem [28,29]. The proposed solution enables the scheduling of tasks in a production
line, considering several constraints, and the participation in demand response programs.
This solution will go beyond the state-of-the-art by providing a complete solution capable
of scheduling tasks, minimizing energy costs, and participating in demand response events
for load shifting.

The solution proposed in this paper will minimize energy costs considering the
scheduling of tasks, local renewable energy sources, and multiple energy retailers. The
innovative aspect of the work presented in this paper relies on the integration of demand
response events in the real-time update of the production schedule, respecting the produc-
tion commitments and the energy-related constraints as the available on-site generation
and the electricity prices in real time. It also proposes an innovative genetic algorithm
crossover approach, which allows getting more consistent individuals that respect imposed
constraints in the schedule.

2. Proposed Solution

The proposed solution to achieve energy cost minimization uses a combination of
artificial intelligence techniques, such as genetic algorithms, and deterministic-based op-
timizations. It is developed in the programming language Python, without using any
libraries related to genetic algorithms, since no library is capable of solving the complexity
of the problem presented in this paper. The proposed solution not only allows energy cost
optimization by scheduling tasks according to the availability of energy sources and the
energy prices, but it also enables the consideration of demand response programs, shifting
tasks away from the demand response event period.

The proposed solution is not dependent on time units. There is no definition regarding
time units, leaving this definition to the user during execution time. The methodology
uses the concept of periods without actually knowing what it represents (e.g., one hour,
fifteen minutes, or one second). Therefore, all the inputs must respect the same period.
For instance, if the duration of tasks is defined in a one minute period, then the energy

Energies 2021, 14, 462 3 of 14

market prices and forecasts must be given also in one minute periods, maintaining data
consistency. The energy units must be provided as Wh, but they can vary in their unit
prefix (e.g., kWh or MWh), using the same logic as periods, the user must use the same
prefix for all energy units. Energy usage is always represented as energy unit per period
(e.g., Wh/period, kWh/period, or MWh/period).

2.1. Production Domain Model

In this paper, production lines are characterized by a set of concepts that allow solving
the energy cost minimization problem of task scheduling. The proposed optimization
domain model, shown in Figure 1, can be divided into nine sections:

• task—an activity that needs to be executed to create a product;
• task mode—a combination of energy and time profiles regarding the execution of a

given task, where each task can have multiple task modes associated, which means
that a single task can be executed in different ways;

• machine—a representation of a machine that has a list of compatible task modes that
it can execute, thus being indirectly associated with tasks;

• cell—portrays a collection of machines where a product can be built;
• product—a representation of a product describing the necessary tasks to be completed

before the product is considered finished;
• product request—the request of a new product to be produced along with the quantity

needed;
• energy source—the energy source availability amount and price, an energy source

can represent external providers (e.g., aggregator or retailer) or local generation (e.g.,
photovoltaic), the energy prices of local renewable sources can be set to zero;

• demand response—identifies the demand response program that the production line
will participate in;

• constraint—a condition that will be respected by the algorithm.

Energies 2021, 14, x FOR PEER REVIEW 3 of 15

uses the concept of periods without actually knowing what it represents (e.g., one hour,

fifteen minutes, or one second). Therefore, all the inputs must respect the same period.

For instance, if the duration of tasks is defined in a one minute period, then the energy

market prices and forecasts must be given also in one minute periods, maintaining data

consistency. The energy units must be provided as Wh, but they can vary in their unit

prefix (e.g., kWh or MWh), using the same logic as periods, the user must use the same

prefix for all energy units. Energy usage is always represented as energy unit per period

(e.g., Wh/period, kWh/period, or MWh/period).

2.1. Production Domain Model

In this paper, production lines are characterized by a set of concepts that allow solv-

ing the energy cost minimization problem of task scheduling. The proposed optimization

domain model, shown in Figure 1, can be divided into nine sections:

 task—an activity that needs to be executed to create a product;

 task mode—a combination of energy and time profiles regarding the execution of a

given task, where each task can have multiple task modes associated, which means

that a single task can be executed in different ways;

 machine—a representation of a machine that has a list of compatible task modes that

it can execute, thus being indirectly associated with tasks;

 cell—portrays a collection of machines where a product can be built;

 product—a representation of a product describing the necessary tasks to be com-

pleted before the product is considered finished;

 product request—the request of a new product to be produced along with the quan-

tity needed;

 energy source—the energy source availability amount and price, an energy source

can represent external providers (e.g., aggregator or retailer) or local generation (e.g.,

photovoltaic), the energy prices of local renewable sources can be set to zero;

 demand response—identifies the demand response program that the production line

will participate in;

 constraint—a condition that will be respected by the algorithm.

Figure 1. Domain model of the proposed methodology.

The use of constraints is not mandatory, but it is needed to represent realistic cases

where physical restrictions are in place. Currently, the proposed algorithm has the follow-

ing constraints available to use:

 task order—defines a sequence between two tasks, for example, task 𝐵 can only be

executed after task 𝐴 is completed;

 product task order—defines a sequence of tasks for a given product, allowing not

only to have chains of repeated tasks but also have order constraints unique to a

product. It is noteworthy that tasks that integrate this constraint do not need to com-

ply with the task order constraint, due to logical fallacies;

 task collision—defines two tasks that cannot be executed at the same time;

Figure 1. Domain model of the proposed methodology.

The use of constraints is not mandatory, but it is needed to represent realistic cases
where physical restrictions are in place. Currently, the proposed algorithm has the following
constraints available to use:

• task order—defines a sequence between two tasks, for example, task B can only be
executed after task A is completed;

• product task order—defines a sequence of tasks for a given product, allowing not only
to have chains of repeated tasks but also have order constraints unique to a product.
It is noteworthy that tasks that integrate this constraint do not need to comply with
the task order constraint, due to logical fallacies;

• task collision—defines two tasks that cannot be executed at the same time;
• task setup—defines a setup action that needs to occur before task execution, this setup

is defined by time and energy;
• time leap—can define breaks in time, the algorithm can schedule an entire week, but

in cases where the production line does not operate 24 h a day, the time leap is used

Energies 2021, 14, 462 4 of 14

to indicate the last period before the break. This is necessary for tasks that cannot be
stopped and must completely end before the break;

• interruptible task—defines tasks that can be paused and resumed any time;
• machine available frames—defines a maximum number of periods a machine is able

to operate, for instance, it can be useful to prevent a machine from overloading;
• product request deadline—defines a deadline to which production of a given product

request must be completed;
• product request task period range—defines a range of periods when a given task must

be executed;
• product request cell choosing—defines the cell where the product request must be

produced, bypassing the cell balancing optimization;
• energy limit—defines an energy limit, within a given interval, to be applied to energy

sources with prices above zero. This constraint may also have monetary compensation
for the full compliance with its limit;

• shift margin—the margin on energy price that the algorithm can use to allow the task
to be close to each other, avoiding the existence of empty periods even if this increases
the energy costs.

2.2. Production Line Optimization to Minimize Energy Cost

The production line energy cost optimization is divided into three main components:
data processing characterized by the cell balancing; genetic algorithm represented by
the initial population, crossover, mutation, and selection; and finally, the deterministic
optimizations defined by the cost and shift optimizations. Figure 2 represents the flowchart
of the production line energy cost optimization.

Energies 2021, 14, x FOR PEER REVIEW 4 of 15

 task setup—defines a setup action that needs to occur before task execution, this

setup is defined by time and energy;

 time leap—can define breaks in time, the algorithm can schedule an entire week, but

in cases where the production line does not operate 24 h a day, the time leap is used

to indicate the last period before the break. This is necessary for tasks that cannot be

stopped and must completely end before the break;

 interruptible task—defines tasks that can be paused and resumed any time;

 machine available frames—defines a maximum number of periods a machine is able

to operate, for instance, it can be useful to prevent a machine from overloading;

 product request deadline—defines a deadline to which production of a given prod-

uct request must be completed;

 product request task period range—defines a range of periods when a given task

must be executed;

 product request cell choosing—defines the cell where the product request must be

produced, bypassing the cell balancing optimization;

 energy limit—defines an energy limit, within a given interval, to be applied to energy

sources with prices above zero. This constraint may also have monetary compensa-

tion for the full compliance with its limit;

 shift margin—the margin on energy price that the algorithm can use to allow the task

to be close to each other, avoiding the existence of empty periods even if this increases

the energy costs.

2.2. Production Line Optimization to Minimize Energy Cost

The production line energy cost optimization is divided into three main components:

data processing characterized by the cell balancing; genetic algorithm represented by the

initial population, crossover, mutation, and selection; and finally, the deterministic opti-

mizations defined by the cost and shift optimizations. Figure 2 represents the flowchart

of the production line energy cost optimization.

Figure 2. Flowchart of the production line energy cost optimization.

2.2.1. Cell Balancing

The proposed algorithm starts by balancing the requests by the different cells avail-

able for manufacturing. This phase begins with the creation of a product request list,

sorted by descending order of energy consumption needed to complete a product request.

Because the tasks needed to complete a product request can be executed using different

task modes with different energy profiles, an average is made considering all the possible

task modes. An average of all the possible task modes is considered, above any other type

of measure, since it better represents the overall processing time that a task can take.

Figure 2. Flowchart of the production line energy cost optimization.

2.2.1. Cell Balancing

The proposed algorithm starts by balancing the requests by the different cells available
for manufacturing. This phase begins with the creation of a product request list, sorted by
descending order of energy consumption needed to complete a product request. Because
the tasks needed to complete a product request can be executed using different task modes
with different energy profiles, an average is made considering all the possible task modes.
An average of all the possible task modes is considered, above any other type of measure,
since it better represents the overall processing time that a task can take.

Afterward, following the product request list, each request is assigned to the cell that
has the lowest overall energy consumption, being the product request consumption added
to the cell’s overall energy consumption. Moreover, the cell assignment process also takes
into account if a cell is able to produce the requested product and if it has enough time
frames to execute the product tasks.

Energies 2021, 14, 462 5 of 14

Finally, after each request is assigned to a cell, each cell is executed by a genetic algo-
rithm, followed by the deterministic-based optimizations. However, the cell optimizations
are connected among them by the general data and to comply with general constraints,
such as the availability of renewable energy sources that are shared among cells, and energy
limit constraints that are applied to the plant floor (i.e., the sum of cells).

The cell balancing optimization focuses on maximizing energy distribution among
cells, thus allowing more flexible request management, which in turn reduces the overall
energy cost.

2.2.2. Initial Population

The genetic algorithm starts by initially creating an initial random population, respect-
ing all the imposed constraints. To facilitate the creation of an individual and decrease the
rate of not feasible individuals, the algorithm takes into account the compatible machines
for each task and prioritizes tasks with a lower number of compatible machines and with a
higher processing time. After knowing the list of tasks associated with each machine, a two-
dimensional matrix is created, which represents the work plan of the job shop, where each
line represents the plan of a machine, and each column represents a period. Figure 3 shows
an example of such a matrix, where tasks are identified by colors and their identifiers.

Energies 2021, 14, x FOR PEER REVIEW 5 of 15

Afterward, following the product request list, each request is assigned to the cell that

has the lowest overall energy consumption, being the product request consumption

added to the cell’s overall energy consumption. Moreover, the cell assignment process

also takes into account if a cell is able to produce the requested product and if it has

enough time frames to execute the product tasks.

Finally, after each request is assigned to a cell, each cell is executed by a genetic algo-

rithm, followed by the deterministic-based optimizations. However, the cell optimiza-

tions are connected among them by the general data and to comply with general con-

straints, such as the availability of renewable energy sources that are shared among cells,

and energy limit constraints that are applied to the plant floor (i.e., the sum of cells).

The cell balancing optimization focuses on maximizing energy distribution among

cells, thus allowing more flexible request management, which in turn reduces the overall

energy cost.

2.2.2. Initial Population

The genetic algorithm starts by initially creating an initial random population, re-

specting all the imposed constraints. To facilitate the creation of an individual and de-

crease the rate of not feasible individuals, the algorithm takes into account the compatible

machines for each task and prioritizes tasks with a lower number of compatible machines

and with a higher processing time. After knowing the list of tasks associated with each

machine, a two-dimensional matrix is created, which represents the work plan of the job

shop, where each line represents the plan of a machine, and each column represents a

period. Figure 3 shows an example of such a matrix, where tasks are identified by colors

and their identifiers.

Figure 3. Example of an individual matrix (machine/period), from the genetic algorithm, where

tasks are identified by colors and their identifiers.

After an individual matrix is generated and at least one constraint is not respected,

there are implemented methods that try to repair the generated individual (i.e., by shifting

tasks left or right, swapping tasks). In case the repair is not successful, another individual

is generated.

Since the number of columns (time period) corresponds to the time window of the

schedule, every matrix from each cell will have the same number of columns but may

differ in the number of rows, as cells can have a different number of machines associated.

2.2.3. Crossover

A new generation begins with the crossover of the population of the previous gener-

ation. The crossover performed is done between two individuals randomly chosen, which

have not yet been crossed; this is guaranteed through a permutation of the population

before the crossover is done. The crossover is a two-dimensional type, which will try to

balance the tasks coming from each parent (individual). The crossover between two indi-

viduals (parents) begins with the formation of the list of tasks for the entire plan, ordered

in decreasing order of processing time, and if they have equal times, it is ordered in as-

cending order of the number of machines compatible with the task. This, therefore, allows

reducing the rate of invalid crosses between two individuals. In order of the task list, each

Figure 3. Example of an individual matrix (machine/period), from the genetic algorithm, where
tasks are identified by colors and their identifiers.

After an individual matrix is generated and at least one constraint is not respected,
there are implemented methods that try to repair the generated individual (i.e., by shifting
tasks left or right, swapping tasks). In case the repair is not successful, another individual
is generated.

Since the number of columns (time period) corresponds to the time window of the
schedule, every matrix from each cell will have the same number of columns but may differ
in the number of rows, as cells can have a different number of machines associated.

2.2.3. Crossover

A new generation begins with the crossover of the population of the previous genera-
tion. The crossover performed is done between two individuals randomly chosen, which
have not yet been crossed; this is guaranteed through a permutation of the population
before the crossover is done. The crossover is a two-dimensional type, which will try
to balance the tasks coming from each parent (individual). The crossover between two
individuals (parents) begins with the formation of the list of tasks for the entire plan,
ordered in decreasing order of processing time, and if they have equal times, it is ordered
in ascending order of the number of machines compatible with the task. This, therefore,
allows reducing the rate of invalid crosses between two individuals. In order of the task
list, each task is taken and inserted in the child according to the parents’ coordinates; first,
it starts with parent 1, then it changes to parent 2, then parent 1 again, and in general
follows this sequence. Another child is made from the same parents but starts with parent
2 coordinates. Figure 4a represents the first four steps in a crossover, starting from parent 1.

Energies 2021, 14, 462 6 of 14

Energies 2021, 14, x FOR PEER REVIEW 6 of 15

task is taken and inserted in the child according to the parents’ coordinates; first, it starts

with parent 1, then it changes to parent 2, then parent 1 again, and in general follows this

sequence. Another child is made from the same parents but starts with parent 2 coordi-

nates. Figure 4a represents the first four steps in a crossover, starting from parent 1.

Figure 4. Individuals’ crossover and mutation. (a) Example of the first 4 steps in a crossover, starting from parent 1; (b)

example of a swapping tasks mutation; (c) example of a swapping the task mode on a task mutation.

After each crossover, where there are no incompatibilities between parent 1 coordi-

nates and parent 2 coordinates, the resulted child is evaluated in terms of respecting all

the imposed constraints. If at least one of the imposed constraints is not respected, the

crossover is considered invalid.

In case of an invalid crossover, a perfect copy of either parent 1 or parent 2 is done to

the child. This is done since afterward, in the selection phase, all the repeating individuals

are eliminated, thus removing the child from the population pool. In short, if an invalid

crossover occurs the child is never added to the population.

The most common approach to a crossover in a matrix is separating the parents based

on a cutting point(s), in either a column or row manner, in other words, a probabilistic

strategy. However, due to the problem at hand, many problems would arise such as task

splitting, a high overlap of tasks, between the parents, and inconsistencies (i.e., tasks can

have different processing times on each parent, due to task modes). Therefore, it was nec-

essary to use a more deterministic approach to solve these issues.

Figure 4. Individuals’ crossover and mutation. (a) Example of the first 4 steps in a crossover, starting from parent 1;
(b) example of a swapping tasks mutation; (c) example of a swapping the task mode on a task mutation.

After each crossover, where there are no incompatibilities between parent 1 coordinates
and parent 2 coordinates, the resulted child is evaluated in terms of respecting all the
imposed constraints. If at least one of the imposed constraints is not respected, the crossover
is considered invalid.

In case of an invalid crossover, a perfect copy of either parent 1 or parent 2 is done to
the child. This is done since afterward, in the selection phase, all the repeating individuals
are eliminated, thus removing the child from the population pool. In short, if an invalid
crossover occurs the child is never added to the population.

The most common approach to a crossover in a matrix is separating the parents based
on a cutting point(s), in either a column or row manner, in other words, a probabilistic
strategy. However, due to the problem at hand, many problems would arise such as task
splitting, a high overlap of tasks, between the parents, and inconsistencies (i.e., tasks can
have different processing times on each parent, due to task modes). Therefore, it was
necessary to use a more deterministic approach to solve these issues.

2.2.4. Mutation

Using the population obtained from the crossover, a mutation is performed. In this
procedure, the algorithm takes each individual, and according to the percentage of mutation
defined in the input data, it decides whether or not the mutation will be applied to a given

Energies 2021, 14, 462 7 of 14

individual. However, if the mutation is applied, one of three different types, using equal
probabilities, is randomly chosen:

• swapping tasks, changing two tasks in order of execution and/or machine. Figure 4b
represents an example of a swapping tasks mutation;

• swapping the task mode on a task, affecting energy consumption and processing time.
Figure 4c represents an example of a swapping the task mode on a task mutation;

• the combination of both swapping tasks and task mode.

If a mutation leads to an invalid individual (i.e., not respecting a certain constraint)
then the mutation is reversed and another mutation, affecting different tasks in the schedule,
is tried. Nevertheless, if no valid individual can be reached with a mutation, after a short
number of tries, no mutation is done.

2.2.5. Selection

The selection phase begins with the union of the new and the old populations, that is,
the crossed and mutated population with the initial population of the previous generation.
Additionally, repetitions of individuals are eliminated. Then, each individual is evaluated
using the following fitness equation:

Fitness Individual =
1

∑T
t=1(((∑

M
m=1 Etask(t, m))− EGen(t)) ∗ EPrice(t))

(1)

where t represents a time frame (period), T the time window of the schedule, m portrays a
machine index, and M the maximum number of machines available. Both t and m can be
translated into the cartesian coordinates, x and y, respectively, to navigate in the schedule
matrix. The energy consumption of a task in a given period is represented by Etask, EGen
defines the locally generated energy, which is energy free of charge (e.g., photovoltaic
generation), and EPrice represent the energy prices. The energy cost of each individual,
represented in the denominator of the fraction, is determined as a result of the energy
balance (consumption − generation) multiplied by the respective energy price.

The selection of the n best individuals is made according to the input parameter of the
algorithm, chosen by the user. The remaining individuals (i.e., population size less n) are
obtained from non-elite tournaments. Each tournament consists of two individuals ran-
domly chosen, where they compete based on their fitness scores. The algorithm calculates
the chance of individual 1 winning the tournament using the equation

Individual1
change =

f it1
f it1 + f it2

(2)

where f it1 and f it2 represent the fitness of the individual 1 and individual 2, respectively.
Then, a random decimal number between 0 and 1 is generated. If the generated

decimal is lower than the chance of individual 1 winning, Equation (2), then individual 1 is
declared the winner. Otherwise, individual 2 leaves victorious. Therefore, the individual
with the highest fitness, which in turn has the lowest cost, is the one most likely to be chosen.

2.2.6. Extract Best Individual

At the end of the selection phase, the next generation begins with the population
obtained from this selection, and all the procedures mentioned above are repeated. Finally,
after a stop condition is met, the best individual is extracted from the last population of the
genetic, that is, the lowest cost job shop schedule, generated by the genetic algorithm. Thus,
in general, the genetic algorithm, through Equation (1), which represents the objective
function, tries to minimize the energy cost of the elaborated job shop schedule as much as
possible, taking into consideration restrictions, such as task orders, task collisions, energy
limits, request deadlines, PV generation, etc.

Energies 2021, 14, 462 8 of 14

2.2.7. Cost Optimization

After the execution of the genetic algorithm, a post-processing phase is required to
adjust/further optimize the result given by the genetic algorithm through a determinis-
tic approach.

The cost optimization function will analyze the result of the genetic algorithm, and it
will identify periods with lower energy costs that do not have an assigned task, then it will
try to place the tasks with higher energy consumption to the lower energy cost time slots. If
tasks can be exchanged while resulting in a cost reduction and respecting all the constraints,
the exchange is carried out. This optimization function uses the energy cost resulted from
the prices of all energy sources available, including local renewable energy sources.

2.2.8. Shift Optimization

Shift optimization is made by sliding tasks in time to reduce the time between them.
This optimization differences from the cost optimization because no task will be changed,
only slide to near periods. Its main purpose is to join tasks, reducing the time between
them. For each isolated task (i.e., with empty periods on the left or on the right), the shift
optimization will try to shift it to the left, and if all constraints are valid and energy costs
decrease, or are maintained within the shift margin constraint level, the shift is performed.
If the left shifting is not possible, then the shift optimization tries to shift the task to the
right, applying the same conditions described before. Figure 5 shows an example of the
shift optimization performed to a machine work plan.

Energies 2021, 14, x FOR PEER REVIEW 8 of 15

2.2.6. Extract Best Individual

At the end of the selection phase, the next generation begins with the population

obtained from this selection, and all the procedures mentioned above are repeated. Fi-

nally, after a stop condition is met, the best individual is extracted from the last population

of the genetic, that is, the lowest cost job shop schedule, generated by the genetic algo-

rithm. Thus, in general, the genetic algorithm, through Equation (1), which represents the

objective function, tries to minimize the energy cost of the elaborated job shop schedule

as much as possible, taking into consideration restrictions, such as task orders, task colli-

sions, energy limits, request deadlines, PV generation, etc.

2.2.7. Cost Optimization

After the execution of the genetic algorithm, a post-processing phase is required to

adjust/further optimize the result given by the genetic algorithm through a deterministic

approach.

The cost optimization function will analyze the result of the genetic algorithm, and it

will identify periods with lower energy costs that do not have an assigned task, then it

will try to place the tasks with higher energy consumption to the lower energy cost time

slots. If tasks can be exchanged while resulting in a cost reduction and respecting all the

constraints, the exchange is carried out. This optimization function uses the energy cost

resulted from the prices of all energy sources available, including local renewable energy

sources.

2.2.8. Shift Optimization

Shift optimization is made by sliding tasks in time to reduce the time between them.

This optimization differences from the cost optimization because no task will be changed,

only slide to near periods. Its main purpose is to join tasks, reducing the time between

them. For each isolated task (i.e., with empty periods on the left or on the right), the shift

optimization will try to shift it to the left, and if all constraints are valid and energy costs

decrease, or are maintained within the shift margin constraint level, the shift is performed.

If the left shifting is not possible, then the shift optimization tries to shift the task to the

right, applying the same conditions described before. Figure 5 shows an example of the

shift optimization performed to a machine work plan.

Figure 5. Example of the shift optimization for a machine work plan.

2.3. Demand Response Participation Using Production Line Flexibility

The proposed algorithm enables the use of flexibility in production lines for demand

response participation. To use the flexibility of the production line, three main parts are

needed: data processing, genetic algorithm, and determinist optimizations. This process

is similar to the one presented in Figure 2, with the addition of the block of flexible data

Figure 5. Example of the shift optimization for a machine work plan.

2.3. Demand Response Participation Using Production Line Flexibility

The proposed algorithm enables the use of flexibility in production lines for demand
response participation. To use the flexibility of the production line, three main parts are
needed: data processing, genetic algorithm, and determinist optimizations. This process
is similar to the one presented in Figure 2, with the addition of the block of flexible data
processing introduced to enable the use of flexibility in the scheduling optimization. Figure 6
shows how flexibility is used in the proposed methodology.

The flowchart of Figure 6 is only applied to schedule plans that were already resulted
from the proposed algorithm of Section 2.2. For plans that did not already start, the
demand response event can be integrated directly into the optimization using the energy
limit constraint. For plans that had already started being executed, then we need to apply
the flowchart of Figure 6.

Energies 2021, 14, 462 9 of 14

Energies 2021, 14, x FOR PEER REVIEW 9 of 15

processing introduced to enable the use of flexibility in the scheduling optimization. Fig-

ure 6 shows how flexibility is used in the proposed methodology.

Figure 6. Flowchart for flexibility usage.

The flowchart of Figure 6 is only applied to schedule plans that were already resulted

from the proposed algorithm of Section 2.2. For plans that did not already start, the de-

mand response event can be integrated directly into the optimization using the energy

limit constraint. For plans that had already started being executed, then we need to apply

the flowchart of Figure 6.

In the flexible data processing module, the already-made schedule is divided into

two segments: one that represents the schedule with the tasks that were already started

or executed, and a second segment with the schedule of tasks that are planned but not yet

started. The second segment is then parsed to create an input for the genetic algorithm,

taking into account the task already executed in the first schedule segment and updating

all the constraints. However, before the genetic algorithm execution, the proposed solu-

tion applies the cell balancing method described in Section 2.2.1.

The genetic algorithm is executed with an additional constraint: energy limit. This

constraint defines a limit within a given interval of time frames of energy we can get from

the energy provider that had launched the demand response event. Considering this con-

straint, the genetic algorithm is able to produce a result compliant with the demand re-

sponse event.

The same cost and shift optimizations, described in Sections 2.2.7 and 2.2.8, are ap-

plied in the result of the genetic algorithm. Finally, the new schedule is attached to the

schedule of the first segment, with the tasks already started or executed, and the final

schedule is presented to the user.

3. Results and Discussion

The case study of this paper uses real production data, provided by a textile company

that manufactures hang tags. Their working schedule is from 7:00 to 23:00 each working

day, from Monday to Saturday. The case study uses a period of 5 min for all task durations

and energy data, thus an overall time window of 1152. The case study considers six work-

ing days, Monday to Saturday, from 7:00 to 23:00 each day. The scheduling algorithm was

used for three machines that share the same cell, thus each individual matrix, in the ge-

netic algorithm, is 3 rows by 1152 columns. Table 1 describes the machines according to

the tasks they are able to execute.

Figure 6. Flowchart for flexibility usage.

In the flexible data processing module, the already-made schedule is divided into
two segments: one that represents the schedule with the tasks that were already started or
executed, and a second segment with the schedule of tasks that are planned but not yet
started. The second segment is then parsed to create an input for the genetic algorithm,
taking into account the task already executed in the first schedule segment and updating
all the constraints. However, before the genetic algorithm execution, the proposed solution
applies the cell balancing method described in Section 2.2.1.

The genetic algorithm is executed with an additional constraint: energy limit. This
constraint defines a limit within a given interval of time frames of energy we can get
from the energy provider that had launched the demand response event. Considering this
constraint, the genetic algorithm is able to produce a result compliant with the demand
response event.

The same cost and shift optimizations, described in Sections 2.2.7 and 2.2.8, are applied
in the result of the genetic algorithm. Finally, the new schedule is attached to the schedule
of the first segment, with the tasks already started or executed, and the final schedule is
presented to the user.

3. Results and Discussion

The case study of this paper uses real production data, provided by a textile company
that manufactures hang tags. Their working schedule is from 7:00 to 23:00 each working
day, from Monday to Saturday. The case study uses a period of 5 min for all task durations
and energy data, thus an overall time window of 1152. The case study considers six
working days, Monday to Saturday, from 7:00 to 23:00 each day. The scheduling algorithm
was used for three machines that share the same cell, thus each individual matrix, in the
genetic algorithm, is 3 rows by 1152 columns. Table 1 describes the machines according to
the tasks they are able to execute.

Table 1. Tasks that each machine executes.

Task
Machine

118 119 120

Anti-Shrinkage X
Harden [0.5] X X
Harden [1] X X

Harden [1.5] X X
Harden [2] X

Ironing X X X
Sublimation X

The case study used four constraints: time leap, task order, task collision, and product
request deadline. The time leap constraint was applied in every period that represents a
day transition, time periods 192, 384, 576, 768, and 960, which corresponds to the final time
period in each day (23:00 of Monday, Tuesday, Wednesday, Thursday, and Friday). A task

Energies 2021, 14, 462 10 of 14

order constraint where every task “Harden [1.5]” must be preceded by a task “Harden [2]”,
a task collision constraint between tasks “Sublimation” and “Harden [2]”, and a product
request deadline, in a product, of time period 960, which corresponds to a deadline of 23:00
of Friday. During the week, 132 units of 14 products were requests. The genetic algorithm
was executed using a population size of 20, an elite size of 3, a mutation rate of 5%, and
with a stop condition of 2 h, which for this case study averages around 1500 generations.
Regarding the full access of the datasets used in this paper, the full description of the input
data and results of the genetic algorithm can be seen in [30], while the results of the demand
response program can be seen in [31].

3.1. Energy Cost Optimization

The scheduling of the production line considers the scenario described above and two
energy sources, including local renewable generation provided by photovoltaic panels.
Market prices considered are MIBEL (Iberian Electricy Market) prices from the 7 January
2019 to the 12 January 2019, and the sale value corresponds to 50% of the buying. The local
renewable generation profile was obtained from the 6 June 2020 to the 11 June 2020 in a
3 kW peak photovoltaic installation in Portugal. The algorithm was executed in 2 h on a
computer with an Intel® Core™ i3-7020U processor running at 2.30 GHz using 8 GB of
RAM, running Windows 10 Home version 2004. Its main results can be seen in Figure 7
where tasks are distributed by the available machines and along the time periods available.
Due to size limitations, it was not possible to discriminate all the tasks names; nonetheless,
the complete open data were published in [30]. Machine occupation rates of 59.72%, 81.77%,
and 79.86% were reached for machines 118, 119, and 120, respectively.

Energies 2021, 14, x FOR PEER REVIEW 11 of 15

Figure 7. Gantt diagram of the scheduled plan.

Figure 8 shows the consumption aggregation of production profiles considering the

result of the scheduling optimization. Energy consumed is obtained through the algo-

rithm, which provides stats. The market prices reflect the MIBEL prices from the 7 January

2019 to the 12 January 2019. The solar generation profile was obtained from the 6 June

2020 to the 11 June 2020 in a 3 kW peak photovoltaic installation in Portugal. It is note-

worthy that the higher the energy price in a given period the lower the energy consumed,

indicating that the algorithm was able to shift the tasks to lower energy price periods. The

local energy generation, provided by photovoltaic panels, was used as much as possible

by the algorithm, reducing the demand for external supplies with higher energy prices.

Figure 8. Energy consumption with energy costs.

0.050

0.055

0.060

0.065

0.070

0.075

0

500

1000

1500

2000

2500

3000

3500

4000

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

1
0

2
7

1
0

6
5

1
1

0
3

1
1

4
1

En
er

gy
 P

ri
ce

 [
EU

R
/k

W
h

]

En
er

gy
 [

W
h

]

Period
Consumed Solar Energy Consumed Socket Energy Dynamic Tariff

Monday Tuesday Wednesday SaturdayFridayThursday

Figure 7. Gantt diagram of the scheduled plan.

Figure 8 shows the consumption aggregation of production profiles considering the
result of the scheduling optimization. Energy consumed is obtained through the algorithm,
which provides stats. The market prices reflect the MIBEL prices from the 7 January 2019
to the 12 January 2019. The solar generation profile was obtained from the 6 June 2020 to

Energies 2021, 14, 462 11 of 14

the 11 June 2020 in a 3 kW peak photovoltaic installation in Portugal. It is noteworthy that
the higher the energy price in a given period the lower the energy consumed, indicating
that the algorithm was able to shift the tasks to lower energy price periods. The local
energy generation, provided by photovoltaic panels, was used as much as possible by the
algorithm, reducing the demand for external supplies with higher energy prices.

Energies 2021, 14, x FOR PEER REVIEW 11 of 15

Figure 7. Gantt diagram of the scheduled plan.

Figure 8 shows the consumption aggregation of production profiles considering the

result of the scheduling optimization. Energy consumed is obtained through the algo-

rithm, which provides stats. The market prices reflect the MIBEL prices from the 7 January

2019 to the 12 January 2019. The solar generation profile was obtained from the 6 June

2020 to the 11 June 2020 in a 3 kW peak photovoltaic installation in Portugal. It is note-

worthy that the higher the energy price in a given period the lower the energy consumed,

indicating that the algorithm was able to shift the tasks to lower energy price periods. The

local energy generation, provided by photovoltaic panels, was used as much as possible

by the algorithm, reducing the demand for external supplies with higher energy prices.

Figure 8. Energy consumption with energy costs.

0.050

0.055

0.060

0.065

0.070

0.075

0

500

1000

1500

2000

2500

3000

3500

4000

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

1
0

2
7

1
0

6
5

1
1

0
3

1
1

4
1

En
er

gy
 P

ri
ce

 [
EU

R
/k

W
h

]

En
er

gy
 [

W
h

]

Period
Consumed Solar Energy Consumed Socket Energy Dynamic Tariff

Monday Tuesday Wednesday SaturdayFridayThursday

Figure 8. Energy consumption with energy costs.

The overall performance of the algorithm can be seen in Figure 9 where the best
individual of each generation is presented according to its overall cost. The results followed
a decreasing logarithmic function, showing a good performance.

Energies 2021, 14, x FOR PEER REVIEW 12 of 15

The overall performance of the algorithm can be seen in Figure 9 where the best in-

dividual of each generation is presented according to its overall cost. The results followed

a decreasing logarithmic function, showing a good performance.

Figure 9. Cost per generation of the genetic algorithm.

3.2. Demand Response Application

Using the previous data as the starting point, an announcement of a demand re-

sponse program was simulated on Friday at 6:00, describing a demand response event

from Friday at 21:00 (period 937) to Friday at 23:00 (period 960), where each period repre-

sents five minutes. The demand response program imposed a limit consumption, during

its event, of 2.5 kWh. The announcement of the demand response allowed the use of the

proposed solution to limit energy consumption. For that, the algorithm described in Sec-

tion 2.3 was executed at period 769 (Friday at 7:00). Figure 10 shows the machines’ energy

consumption before and after the demand response participation rescheduling of tasks.

The full dataset can be seen in [31]. The demand response event is represented with an

orange rectangle, while the rescheduling consumption is represented by an orange line.

Figure 10. Energy consumption of the demand response event.

Figure 11 shows the machines’ energy consumption difference, considering as base

the previously scheduled plan, and it is compared to the new scheduled plan. It is possible

to see that during the demand response event (orange rectangle) the consumption de-

creased to not go above 2.5 kWh.

Figure 9. Cost per generation of the genetic algorithm.

3.2. Demand Response Application

Using the previous data as the starting point, an announcement of a demand response
program was simulated on Friday at 6:00, describing a demand response event from Friday
at 21:00 (period 937) to Friday at 23:00 (period 960), where each period represents five
minutes. The demand response program imposed a limit consumption, during its event,
of 2.5 kWh. The announcement of the demand response allowed the use of the proposed
solution to limit energy consumption. For that, the algorithm described in Section 2.3 was
executed at period 769 (Friday at 7:00). Figure 10 shows the machines’ energy consumption
before and after the demand response participation rescheduling of tasks. The full dataset
can be seen in [31]. The demand response event is represented with an orange rectangle,
while the rescheduling consumption is represented by an orange line.

Figure 11 shows the machines’ energy consumption difference, considering as base the
previously scheduled plan, and it is compared to the new scheduled plan. It is possible to
see that during the demand response event (orange rectangle) the consumption decreased
to not go above 2.5 kWh.

Energies 2021, 14, 462 12 of 14

Energies 2021, 14, x FOR PEER REVIEW 12 of 15

The overall performance of the algorithm can be seen in Figure 9 where the best in-

dividual of each generation is presented according to its overall cost. The results followed

a decreasing logarithmic function, showing a good performance.

Figure 9. Cost per generation of the genetic algorithm.

3.2. Demand Response Application

Using the previous data as the starting point, an announcement of a demand re-

sponse program was simulated on Friday at 6:00, describing a demand response event

from Friday at 21:00 (period 937) to Friday at 23:00 (period 960), where each period repre-

sents five minutes. The demand response program imposed a limit consumption, during

its event, of 2.5 kWh. The announcement of the demand response allowed the use of the

proposed solution to limit energy consumption. For that, the algorithm described in Sec-

tion 2.3 was executed at period 769 (Friday at 7:00). Figure 10 shows the machines’ energy

consumption before and after the demand response participation rescheduling of tasks.

The full dataset can be seen in [31]. The demand response event is represented with an

orange rectangle, while the rescheduling consumption is represented by an orange line.

Figure 10. Energy consumption of the demand response event.

Figure 11 shows the machines’ energy consumption difference, considering as base

the previously scheduled plan, and it is compared to the new scheduled plan. It is possible

to see that during the demand response event (orange rectangle) the consumption de-

creased to not go above 2.5 kWh.

Figure 10. Energy consumption of the demand response event.

Energies 2021, 14, x FOR PEER REVIEW 13 of 15

Figure 11. Energy consumption difference (after − before) of the demand response event.

The tasks were rescheduled away from the demand response event period. Figure 12

shows a magnification of before and after the demand response, where the full before

scenario is shown in Figure 7. As can be seen, the algorithm started the demand response

event with scheduled tasks, but when it reached a total energy of near 2.5 kWh, no more

tasks were executed.

Figure 12. Before and after Gantt diagrams of the demand response event, respectively, from period 848 to period 1058.

4. Conclusions

Industries nowadays operate in a challenging dynamic environment where time

commitments are very rigid. Moreover, all the costs should be considered and minimized.

This includes the energy costs and the opportunities coming from the participation in de-

mand response events. Moreover, the electricity prices changing in real-time should be

followed.

Accordingly, the present paper proposed and implemented an approach based on a

genetic algorithm to minimize operation costs of a production line, respecting a set of

constraints related to the product delivery and to the energy aspects. The implemented

approach was able to handle this complex optimization problem in a time frame fast

enough to receive demand response and energy prices in real-time and update the pro-

duction planning taking into account such inputs.

The obtained results highlight the robustness of the implemented methodology to

handle a set of three machines operating sequentially to deliver products in a one-week

time frame. Given the flexibility of time available to perform each task, it was possible to

 1

 2

Tuesday Monday

Figure 11. Energy consumption difference (after − before) of the demand response event.

The tasks were rescheduled away from the demand response event period. Figure
12 shows a magnification of before and after the demand response, where the full before
scenario is shown in Figure 7. As can be seen, the algorithm started the demand response
event with scheduled tasks, but when it reached a total energy of near 2.5 kWh, no more
tasks were executed.

Energies 2021, 14, x FOR PEER REVIEW 13 of 15

Figure 11. Energy consumption difference (after − before) of the demand response event.

The tasks were rescheduled away from the demand response event period. Figure 12

shows a magnification of before and after the demand response, where the full before

scenario is shown in Figure 7. As can be seen, the algorithm started the demand response

event with scheduled tasks, but when it reached a total energy of near 2.5 kWh, no more

tasks were executed.

Figure 12. Before and after Gantt diagrams of the demand response event, respectively, from period 848 to period 1058.

4. Conclusions

Industries nowadays operate in a challenging dynamic environment where time

commitments are very rigid. Moreover, all the costs should be considered and minimized.

This includes the energy costs and the opportunities coming from the participation in de-

mand response events. Moreover, the electricity prices changing in real-time should be

followed.

Accordingly, the present paper proposed and implemented an approach based on a

genetic algorithm to minimize operation costs of a production line, respecting a set of

constraints related to the product delivery and to the energy aspects. The implemented

approach was able to handle this complex optimization problem in a time frame fast

enough to receive demand response and energy prices in real-time and update the pro-

duction planning taking into account such inputs.

The obtained results highlight the robustness of the implemented methodology to

handle a set of three machines operating sequentially to deliver products in a one-week

time frame. Given the flexibility of time available to perform each task, it was possible to

 1

 2

Tuesday Monday

Figure 12. Before and after Gantt diagrams of the demand response event, respectively, from period 848 to period 1058.

Energies 2021, 14, 462 13 of 14

4. Conclusions

Industries nowadays operate in a challenging dynamic environment where time
commitments are very rigid. Moreover, all the costs should be considered and minimized.
This includes the energy costs and the opportunities coming from the participation in
demand response events. Moreover, the electricity prices changing in real-time should
be followed.

Accordingly, the present paper proposed and implemented an approach based on
a genetic algorithm to minimize operation costs of a production line, respecting a set of
constraints related to the product delivery and to the energy aspects. The implemented
approach was able to handle this complex optimization problem in a time frame fast enough
to receive demand response and energy prices in real-time and update the production
planning taking into account such inputs.

The obtained results highlight the robustness of the implemented methodology to
handle a set of three machines operating sequentially to deliver products in a one-week
time frame. Given the flexibility of time available to perform each task, it was possible to
allocate each task considering its specific consumption looking at the prices in real-time
and the demand response event. In this way, the production cost was minimized.

Author Contributions: Conceptualization, C.R. and Z.V.; methodology, L.G., P.F., C.R. and Z.V.;
software, B.M.; validation, B.M., L.G., P.F., C.R., R.C. and Z.V.; formal analysis, B.M., L.G. and P.F.;
investigation, B.M., L.G. and P.F.; resources, C.R. and Z.V.; data curation, B.M. and R.C.; writing—
original draft preparation, B.M., L.G. and P.F.; writing—review and editing, C.R., R.C. and Z.V.;
visualization, B.M. and L.G.; supervision, C.R. and Z.V.; project administration, C.R., R.C. and Z.V.;
funding acquisition, C.R., R.C. and Z.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has received funding from Portugal 2020 under SPEAR project (NORTE-01-
0247-FEDER-040224) and from FEDER Funds through COMPETE program and from National Funds
through (FCT) under the project UIDB/00760/2020, and CEECIND/02887/2017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in [30,31].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guerrero, J.; Gebbran, D.; Mhanna, S.; Chapman, A.C.; Verbič, G. Towards a transactive energy system for integration of

distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading.
Renew. Sustain. Energy Rev. 2020, 132, 110000. [CrossRef]

2. Schweiger, G.; Eckerstorfer, L.V.; Hafner, I.; Fleischhacker, A.; Radl, J.; Glock, B.; Wastian, M.; Rößler, M.; Lettner, G.; Pop-
per, N.; et al. Active consumer participation in smart energy systems. Energy Build. 2020, 227, 110359. [CrossRef]

3. Zhang, Y.; Campana, P.E.; Yang, Y.; Stridh, B.; Lundblad, A.; Yan, J. Energy flexibility from the consumer: Integrating local
electricity and heat supplies in a building. Appl. Energy 2018, 223, 430–442. [CrossRef]

4. Afzalan, M.; Jazizadeh, F. Residential loads flexibility potential for demand response using energy consumption patterns and
user segments. Appl. Energy 2019, 254, 113693. [CrossRef]

5. Gomes, L.; Spínola, J.; Vale, Z.; Corchado, J.M. Agent-based architecture for demand side management using real-time resources’
priorities and a deterministic optimization algorithm. J. Clean. Prod. 2019, 241, 118154. [CrossRef]

6. Gherghea, I.C.; Bungau, C.; Negrau, C.C. Best Practices to Increase Manufacturing Productivity—Comparative study. In
Proceedings of the 9th International Conference on Manufacturing Science and Education (MSE 2019), Sibiu, Romania, 5–7 June
2019. [CrossRef]

7. Ramos, C.; Barreto, R.; Mota, B.; Gomes, L.; Faria, P.; Vale, Z. Scheduling of a textile production line integrating PV generation
using a genetic algorithm. Energy Rep. 2020, 6, 148–154. [CrossRef]

8. Wang, B.; Tao, F.; Fang, X.; Liu, C.; Liu, Y.; Freiheit, T. Smart Manufacturing and Intelligent Manufacturing: A Comparative
Review. Engineering 2020. [CrossRef]

9. Nguyen, S.; Mei, Y.; Zhang, M. Genetic programming for production scheduling: A survey with a unified framework. Complex
Intell. Syst. 2017, 3, 41–66. [CrossRef]

http://doi.org/10.1016/j.rser.2020.110000
http://doi.org/10.1016/j.enbuild.2020.110359
http://doi.org/10.1016/j.apenergy.2018.04.041
http://doi.org/10.1016/j.apenergy.2019.113693
http://doi.org/10.1016/j.jclepro.2019.118154
http://doi.org/10.1051/matecconf/201929007007
http://doi.org/10.1016/j.egyr.2020.11.093
http://doi.org/10.1016/j.eng.2020.07.017
http://doi.org/10.1007/s40747-017-0036-x

Energies 2021, 14, 462 14 of 14

10. Ángel Vega-Velázquez, M.; García-Nájera, A.; Cervantes, H. A survey on the Software Project Scheduling Problem. Int. J. Prod.
Econ. 2018, 202, 145–161. [CrossRef]

11. Branke, J.; Nguyen, S.; Pickardt, C.W.; Zhang, M. Automated Design of Production Scheduling Heuristics: A Review. IEEE Trans.
Evol. Comput. 2016, 20, 110–124. [CrossRef]

12. Khorram, M.; Faria, P.; Vale, Z.; Ramos, C. Sequential Tasks Shifting for Participation in Demand Response Programs. Energies 2020,
13, 4879. [CrossRef]

13. Luo, Z.; Hong, S.-H.; Kim, J.-B. A Price-Based Demand Response Scheme for Discrete Manufacturing in Smart Grids. Energies
2016, 9, 650. [CrossRef]

14. Abedinnia, H.; Glock, C.H.; Schneider, M.D. Machine scheduling in production: A content analysis. Appl. Math. Model. 2017, 50,
279–299. [CrossRef]

15. Fuchigami, H.Y.; Rangel, S. A survey of case studies in production scheduling: Analysis and perspectives. J. Comput. Sci. 2018, 25,
425–436. [CrossRef]

16. Ðurasević, M.; Jakobović, D.; Knežević, K. Adaptive scheduling on unrelated machines with genetic programming. Appl. Soft
Comput. 2016, 48, 419–430. [CrossRef]

17. Wu, X.; Consoli, P.; Minku, L.; Ochoa, G.; Yao, X. An Evolutionary Hyper-heuristic for the Software Project Scheduling Problem.
In Parallel Problem Solving from Nature—PPSN XIV. PPSN 2016; Lecture Notes in Computer Science; Handl, J., Hart, E., Lewis, P.,
López-Ibáñez, M., Ochoa, G., Paechter, B., Eds.; Springer: Cham, Switzerland, 2016; Volume 9921. [CrossRef]

18. Shen, X.N.; Minku, L.L.; Marturi, N.; Guo, Y.N.; Han, Y. A Q-learning-based memetic algorithm for multi-objective dynamic
software project scheduling. Inf. Sci. 2018, 428, 1–29. [CrossRef]

19. Xiao, J.; Gao, M.-L.; Huang, M.M. Empirical Study of Multi-objective Ant Colony Optimization to Software Project Scheduling
Problems. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO ’15), New York,
NY, USA, 11–15 July 2015. [CrossRef]

20. Chen, J.; Huang, G.Q.; Wang, J.Q. Synchronized scheduling of production and outbound shipping using bilevel-based simulated
annealing algorithm. Comput. Ind. Eng. 2019, 137, 106050. [CrossRef]

21. Ruiz Duarte, J.L.; Fan, N.; Jin, T. Multi-process production scheduling with variable renewable integration and demand response.
Eur. J. Oper. Res. 2020, 281, 186–200. [CrossRef]

22. Chen, B.; Zhang, X. Scheduling with time-of-use costs. Eur. J. Oper. Res. 2019, 274, 900–908. [CrossRef]
23. Santana-Viera, V.; Jimenez, J.; Jin, T.; Espiritu, J. Implementing factory demand response via onsite renewable energy: A design-

of-experiment approach. Int. J. Prod. Res. 2015, 53, 7034–7048. [CrossRef]
24. Li, B.; Tian, Y.; Chen, F.; Jin, T. Toward net-zero carbon manufacturing operations: An onsite renewables solution. J. Oper. Res. Soc.

2017, 68, 308–321. [CrossRef]
25. Gomes, L.; Faria, P.; Morais, H.; Vale, Z.; Ramos, C. Distributed, Agent-Based Intelligent System for Demand Response Program

Simulation in Smart Grids. IEEE Intell. Syst. 2014, 29, 56–65. [CrossRef]
26. Faria, P.; Vale, Z. Demand response in electrical energy supply: An optimal real time pricing approach. Energy 2011, 36, 5374–5384.

[CrossRef]
27. Vale, Z.; Morais, H.; Faria, P.; Ramos, C. Distribution system operation supported by contextual energy resource management

based on intelligent SCADA. Renew. Energy 2013, 52, 143–153. [CrossRef]
28. Bharathi, C.; Rekha, D.; Vijayakumar, V. Genetic Algorithm Based Demand Side Management for Smart Grid. Wirel. Pers.

Commun. 2017, 93, 481–502. [CrossRef]
29. Fernandes, F.; Sousa, T.; Silva, M.; Morais, H.; Vale, Z.; Faria, P. Genetic algorithm methodology applied to intelligent house

control. In Proceedings of the 2011 IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG), Paris,
France, 11–15 April 2011. [CrossRef]

30. Mota, B.; Gomes, L.; Faria, P.; Ramos, C.; Vale, Z. Production line dataset for task scheduling and energy optimization—Schedule
Optimization (Version 0.1). Zenodo 2020. [CrossRef]

31. Mota, B.; Gomes, L.; Faria, P.; Ramos, C.; Vale, Z. Production line dataset for task scheduling and energy optimization—Demand
Response Participation (Version 0.1). Zenodo 2020. [CrossRef]

http://doi.org/10.1016/j.ijpe.2018.04.020
http://doi.org/10.1109/TEVC.2015.2429314
http://doi.org/10.3390/en13184879
http://doi.org/10.3390/en9080650
http://doi.org/10.1016/j.apm.2017.05.016
http://doi.org/10.1016/j.jocs.2017.06.004
http://doi.org/10.1016/j.asoc.2016.07.025
http://doi.org/10.1007/978-3-319-45823-6_4
http://doi.org/10.1016/j.ins.2017.10.041
http://doi.org/10.1145/2739480.2754702
http://doi.org/10.1016/j.cie.2019.106050
http://doi.org/10.1016/j.ejor.2019.08.017
http://doi.org/10.1016/j.ejor.2018.11.002
http://doi.org/10.1080/00207543.2014.957877
http://doi.org/10.1057/s41274-016-0014-5
http://doi.org/10.1109/MIS.2013.2
http://doi.org/10.1016/j.energy.2011.06.049
http://doi.org/10.1016/j.renene.2012.10.019
http://doi.org/10.1007/s11277-017-3959-z
http://doi.org/10.1109/CIASG.2011.5953341
http://doi.org/10.5281/zenodo.4106746
http://doi.org/10.5281/zenodo.4247232

	Introduction
	Proposed Solution
	Production Domain Model
	Production Line Optimization to Minimize Energy Cost
	Cell Balancing
	Initial Population
	Crossover
	Mutation
	Selection
	Extract Best Individual
	Cost Optimization
	Shift Optimization

	Demand Response Participation Using Production Line Flexibility

	Results and Discussion
	Energy Cost Optimization
	Demand Response Application

	Conclusions
	References

