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Abstract
Background  Assessment of 2D/3D left ventricular ejection fraction (LVEF) and 2D global longitudinal strain (GLS) is 
the gold standard for diagnosing cancer therapeutics-related cardiac dysfunction (CTRCD). Although 3D speckle-tracking 
echocardiography (STE) has several advantages, it is not used in this setting.
Methods  105 breast cancer patients who underwent serial echocardiographic assessment during anthracycline therapy were 
included. STE was used to estimate 2D GLS, 3D GLS, 3D global circumferential strain (GCS), 3D global radial strain (GRS), 
and 3D global area strain (GAS). CTRCD was defined as an absolute decrease in 2D/3D LVEF > 10% to a value < 54% or 
a relative decrease in 2D GLS > 15%.
Results  24 patients developed CTRCD. There was a significant worsening of all 3D strain parameters during chemotherapy. 
3D strain regional analysis showed impaired contractility in the anterior, inferior, and septal walls. Variations of 3D GRS and 
3D GCS were associated with a higher incidence of CTRCD and the variation of 3D GRS was an independent predictor of 
CTRCD. Variations of 3D GCS and 3D GRS had a good discrimination for predicting CTRCD, with optimal cutoff values 
of − 34.2% for 3D GCS and − 34.4% for 3D GRS. These variations were observed 45 and 23 days before the diagnosis of 
CTRCD, respectively.
Conclusion  Variations of 3D strain parameters were predictive of and preceded CTRCD, and thus have added value over 
currently recommended 2D/3D LVEF and 2D GLS. Routine application of this technique should be considered to offer 
targeted monitoring and timely initiation of cardioprotective treatment.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0039​2-019-01556​-1) contains 
supplementary material, which is available to authorized users.
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Introduction

Cancer therapeutics-related cardiac dysfunction (CTRCD) 
is a common complication of anthracycline treatment, 
affecting up to 26% of patients receiving standard cumu-
lative doses [1], which can have a significant impact on 
patient outcomes [2]. Although there is universal agree-
ment for the need to monitor cardiac function after expo-
sure to anthracyclines, current surveillance approaches are 
often inadequate to detect myocardial disease; the issue of 
the best screening method remains unresolved.

Left ventricle ejection fraction (LVEF) has been the 
most widely used tool to diagnose cardiac dysfunction in 
this setting [3–5]. However, this method presents several 
shortcomings, such as the need for geometrical assump-
tions, apical foreshortening, load dependency, and meas-
urement variability [6, 7]. Three-dimensional (3D) LVEF 
emerged as an alternative to overcome these problems, 
since it is less dependent on geometrical assumptions, has 
a greater reproducibility of sequential assessments and a 
better correlation with cardiac magnetic resonance [6–8]. 
A further limitation of LVEF is the fact that it fails to 
detect early changes in cardiac function, before an irre-
versible loss of myocardium has occurred [5, 9, 10]. Two-
dimensional (2D) speckle-tracking echocardiography 
(STE) with assessment of myocardial deformation is able 
to detect subclinical cardiac dysfunction [11]. These tech-
niques are now recommended over 2D LVEF to screen for 
CTRCD [12].

3D STE has the ability to track out-of-plane motion of 
speckles, has a higher reproducibility of measurements, 

and allows for a simultaneous evaluation of all strain 
parameters from a single volumetric data set, effectively 
reducing the time needed for assessment [13–15]. This 
technique has the potential to perform a more reliable and 
complete assessment in patients treated with chemother-
apy. However, it is still poorly studied in this population.

The aim of this study was to investigate the usefulness 
of 3D STE in evaluating left ventricle mechanics and its 
relation to CTRCD in a population of breast cancer patients 
submitted to anthracycline treatment.

Materials and methods

Study design

This was a sub-analysis of a single-center prospective obser-
vational study of patients with breast cancer undergoing 
chemotherapy with anthracyclines between August 2011 
and August 2018. Patients were included after referral by 
the center’s Oncology department for echocardiographic 
assessment, which included standard parameters and 2D 
global longitudinal strain (GLS). At the discretion of the 
echocardiographer, 3D echocardiography was performed in 
a subgroup of patients. Patients with 3D STE data available 
before the initiation of chemotherapy and during/after treat-
ment were selected for this analysis. To avoid confounding 
factors that may affect left ventricle function, those with 
previous history of cardiovascular risk factors (arterial 
hypertension, diabetes mellitus, and chronic kidney dis-
ease), heart disease (coronary artery disease, cardiomyopa-
thy, arrhythmias, prosthetic heart valves, implantable cardiac 
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devices, or congenital heart disease), cardiac symptoms/
signs, cardiac medications, or significant pathological find-
ings on the baseline echocardiography (LVEF < 54%, left 
ventricle end-diastolic diameter > 32 mm/m2, left ventricle 
septal or posterior wall thickness > 9 mm, more than mild 
valvular heart disease, or wall motion abnormalities) were 
excluded. Demographic data, anticancer therapy and echo-
cardiographic parameters were recorded.

Echocardiographic acquisition and processing

Initial and follow-up echocardiographic assessments were 
performed according to the clinical indications established 
by the oncologist. All echocardiograms were performed 
by one experienced cardiologist, unblinded to the previ-
ous exams. Echocardiographic parameters were determined 
according to the American Society of Echocardiography/
European Association of Cardiovascular Imaging’s recom-
mendations [7, 16–18]. Vivid 95 or Vivid 9 ultrasound sys-
tems (GE Healthcare) were used to acquire parasternal long- 
and short-axis views, as well as apical 4-, 2-, and 3-chamber 
views. Left and right atrial volumes were assessed by the 
biplane and single-plane methods of disks, respectively. 
LVEF was measured using the biplane Simpson’s method. A 
3D volumetric transducer was used for real-time full-volume 
data acquisition in apical view of the left ventricle over four 
consecutive cardiac cycles during a single breath hold.

Data sets were analyzed on a workstation (EchoPAC 
BT12 workstation, GE Healthcare) equipped with a com-
mercially available software for offline quantification of 2D 
longitudinal strain, 3D volumes, and 3D strain using the 
speckle-tracking technique with semi-automatic tracing of 
the endo- and epicardium following manual delineation of 
the mitral valve edges and apex. Whenever the tracing was 
not deemed to be correct, it was manually changed by the 
operator. 2D and 3D global strain parameters were calcu-
lated as averages of the regional values from the 18 or 17 
myocardial segments, respectively. Rejected segments were 
excluded from the calculation of global strain values. If more 
than three segments were rejected, global strain values were 
not calculated.

Definitions

CTRCD was defined as an absolute decrease in 2D or 3D 
LVEF > 10% to a value < 54% or a relative decrease in 2D 
GLS > 15% [7, 12].

Abnormal 3D global strain parameters were defined 
according to vendor-specific reference values for women 
with the following lower limits of normal: − 15% for 3D 
GLS, − 14% for 3D global circumferential strain (GCS), 40% 
for 3D global radial strain (GRS), and − 27% for 3D global 
area strain (GAS) [19]. All strain values are interpreted on 

their absolute magnitude, such that more negative values 
represent better deformation for longitudinal, circumferen-
tial, and area strain and more positive values represent better 
deformation for radial strain. Percentage variation of strain 
values refers to the absolute value of the strain parameters, 
such that a negative variation corresponds to a worsen-
ing deformation and a positive variation to an increasing 
deformation.

Cumulative doses of each anthracycline were converted to 
doxorubicin equivalents by considering drug potency [20].

Statistical analysis

Continuous variables were expressed as mean and standard 
deviation when they followed a normal distribution, and as 
median and interquartile range otherwise. Qualitative vari-
ables were expressed as frequency and percentage. Changes 
in 2D and 3D echocardiographic parameters were analyzed 
by comparing baseline with follow-up echocardiograms. 
When more than one follow-up echocardiogram had been 
performed, the values corresponding to the greatest varia-
tion in the study variables were used. Incidence of CTRCD 
was assumed if at least one echocardiogram presented the 
above-mentioned criteria when compared to the baseline 
assessment. Continuous variables were compared using the 
Student’s t test and Wilcoxon sign-rank test, as appropriate, 
while categorical variables were compared using the Chi-
square test. Correlation between echocardiographic variables 
and cumulative anthracycline dose was analyzed with the 
Pearson’s and Spearman’s correlation coefficients, as appro-
priate. Logistic regression analysis was used to determine 
predictors of CTRCD, with the incidence of CTRCD during 
follow-up as the dependent variable and including demo-
graphic characteristics, baseline echocardiographic param-
eters, anticancer therapy, and variations of 3D strain values 
as independent variables. Variables with p value < 0.05 
on the univariate analysis were included in the multivari-
ate model. Receiver operating curve analysis was used to 
assess the discrimination of variations of 3D strain values 
for predicting CTRCD. The optimum cutoff value for dis-
criminating CTRCD was determined using the maximum 
likelihood ratio. A two-tailed p value < 0.05 was considered 
to be statistically significant. Statistical analysis was per-
formed with the software package SPSS, version 23.0 (IBM 
Corp, Armonk, NY).

Results

Baseline characteristics

After excluding six patients (three for atrial fibrillation, 
one for arterial hypertension, one for coronary artery 
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disease, and one for abnormal LVEF at baseline), a total 
of 105 women were assessed during a mean follow-up of 
12.1 ± 11.5 months. Mean age at first echocardiogram was 
53.8 ± 12.5 years (range 27–77 years). The mean cumula-
tive anthracycline dose was 259.6 ± 63.3 mg/m2. 52.4% of 
patients were also submitted to human epidermal growth 
factor receptor 2 (HER2) inhibitor therapy and 77.2% to 
radiotherapy. All patients underwent at least two echo-
cardiographic studies, with an average of 3.8 exams per 

patient at a mean interval of 123 days. Baseline charac-
teristics, including standard baseline echocardiographic 
parameters, are shown in Table 1.

Incidence of cancer therapeutics‑related cardiac 
dysfunction

CTRCD occurred in 24 (22.9%) patients during follow-up. 
Most patients (n = 14) were diagnosed according to the 
GLS criterion. Cumulative anthracycline dose predicted 
CTRCD (odds ratio [OR] 1.088 95% confidence interval 
[CI] 1.001–1.022 p = 0.033). Six (5.7%) patients dropped 
out of anthracycline therapy because of cardiac dysfunc-
tion (mean LVEF during chemotherapy 43.6% ± 9.8%).

Standard echocardiographic follow‑up

Table 2 displays the standard echocardiographic param-
eters for the assessment of CTRCD before and during 
chemotherapy. LVEF, either 2D- or 3D-derived, as well 
as 2D GLS showed a significant reduction during anthra-
cycline treatment (all p < 0.001). Both left and right atrial 
volumes increased (all p < 0.001) and mitral deceleration 
time decreased (p = 0.042) during chemotherapy.

Table 1   Baseline characteristics

LA left atrium, LV left ventricle, TAPSE tricuspid annular plane sys-
tolic excursion

Age (years) 53.8 ± 12.5
Cumulative anthracycline dose (mg/m2) 259.6 ± 63.3
HER2 inhibitor therapy, n (%) 55 (52.4)
Radiotherapy, n (%) 87 (77.2)
LV end-diastolic diameter (mm) 49.7 ± 5.5
LV end-systolic diameter (mm) 29.6 ± 6.0
Fractional shortening (%) 40.8 ± 7.4
LV septal thickness (mm) 8.3 ± 2.1
LV posterior wall thickness (mm) 7.8 ± 1.4
Aortic root diameter (mm) 28.4 ± 3.7
LA diameter (mm) 35.2 ± 4.6
TAPSE (mm) 22.5 ± 3.1
Tricuspid s′ (cm/s) 12.9 ± 3.0
Transtricuspid pressure gradient (mmHg) 21.0 ± 7.4

Table 2   Echocardiographic 
parameters before and during 
chemotherapy

2D two-dimensional, 3D three-dimensional, LA left atrium, LV left ventricle, LVEF left ventricle ejection 
fraction, RA right atrium

Baseline During chemotherapy p value

2D parameters
 LV end-diastolic volume (ml) 92.3 ± 23.0 99.6 ± 27.3 0.043
 LV end-systolic volume (ml) 31.7 ± 11.7 42.0 ± 13.4 0.021
 LVEF (%) 65.6 ± 8.0 57.8 ± 11.0 < 0.001
 LV stroke volume (ml) 60.6 ± 3.0 57.6 ± 1.8 0.014
 LV cardiac output (l/min) 5.2 ± 1.6 4.6 ± 2.0 0.011
 LA volume (ml) 44.1 ± 12.7 54.0 ± 13.1 < 0.001
 RA volume (ml) 27.4 ± 10.0 36.3 ± 10.5 < 0.001
 Transmitral E/A ratio 1.2 ± 0.1 1.1 ± 0.5 0.586
 Transmitral declaration time (ms) 200.2 ± 46.2 188.1 ± 48.0 0.042
 Mitral E/e′ ratio 7.9 ± 3.7 7.7 ± 3.4 0.682

2D strain parameter
 Global longitudinal strain (%) − 21.1 ± 3.0 − 18.8 ± 3.1 < 0.001

3D volumetric parameters
 LV end-diastolic volume (ml) 84.0 ± 17.0 89.9 ± 30.8 0.156
 LV end-systolic volume (ml) 32.3 ± 9.4 41.0 ± 26.6 0.002
 LVEF (%) 61.5 ± 6.0 54.4 ± 8.8 < 0.001
 LV stroke volume (ml) 51.7 ± 26.9 48.9 ± 12.2 0.010
 LV cardiac output (l/min) 4.3 ± 1.7 3.9 ± 1.4 < 0.001
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Three‑dimensional global strain analysis

Values of 3D GLS, 3D GCS, 3D GRS, and 3D GAS all 
showed a significant worsening during anthracycline treat-
ment (all p < 0.001). Percentage variation was numerically 
greater for 3D GCS and 3D GRS (Table 3). A high per-
centage of the total study population presented 3D global 
strain values below the limits of normal during chemo-
therapy: 81.4% for GLS, 73.1% for GCS, 83.6% for GRS, 
and 88.6% for GAS (Fig.  1). Cumulative anthracycline 
dose was correlated with 3D GCS (r = 0.349, p = 0.026) 
and 3D GRS (r = − 0.328, p = 0.034). 3D GLS (− 9.7 ± 3.6 
vs. − 12.1 ± 3.9, p = 0.021) and 3D GRS (24.2 ± 11.5 vs. 
31.6 ± 12.5, p = 0.038) were lower in patients who were 
treated with HER2 inhibitor therapy (Online Resource 1). 

Three‑dimensional regional strain analysis

Overall, regional 3D strain could be determined in 94.0% of 
the segments analyzed, with lower success rates in the basal 
inferior (79.3%) and basal inferolateral (82.1%) walls. 2D 
regional strain analysis showed a greater feasibility, with 
adequate assessment of 96.1% of segments (p < 0.001). 
There was no difference in the ability to analyze regional 
3D strain before and during chemotherapy. When comparing 

echocardiograms before and during chemotherapy, there was 
a significantly impaired 3D longitudinal strain in 13 seg-
ments, circumferential strain in 7 segments, radial strain 
in 14 segments, and area strain in 11 out of 17 segments 
(Figs. 1, 2). Overall, the anterior, inferior, and septal walls 
were most consistently affected, while the lateral wall and 
apex were relatively spared.

Relationship of three‑dimensional strain and cancer 
therapeutics‑related cardiac dysfunction

There was no difference in 3D global strain values in patients 
with and without CTRCD. On the other hand, 3D GCS vari-
ation (− 38.2% vs. − 24.9% p = 0.020) and 3D GRS variation 
(− 41.9% vs. − 27.5% p = 0.024) were significantly greater 
in patients with diagnosed CTRCD (Fig. 3). Atrial volumes 
and diastolic function parameters were not correlated with 
3D STE values.

Logistic regression analysis showed that variations of 3D 
GRS and 3D GCS were associated with a higher incidence of 
CTRCD. In the multivariate model, the variation of 3D GRS 
remained the only independent predictor of CTRCD (Table 4).

The receiver operating curve analysis showed a good dis-
crimination of variations of 3D GCS and 3D GRS in predict-
ing CTRCD with areas under the curve of 0.748 (p = 0.033) 

Table 3   3D-derived strain 
parameters before and during 
chemotherapy

3D three-dimensional

Baseline During chemotherapy p value Variation

3D global longitudinal strain (%) − 15.6 ± 3.4 − 10.9 ± 4.1 < 0.001 − 25.5 ± 22.7
3D global circumferential strain (%) − 14.0 ± 4.0 − 11.0 ± 5.0 < 0.001 − 29.3 ± 20.0
3D global radial strain (%) 42.0 ± 17.0 28.5 ± 17.5 < 0.001 − 29.4 ± 24.0
3D global area strain (%) − 27.0 ± 8.5 − 20.0 ± 9.0 < 0.001 − 25.0 ± 23.1

Fig. 1   Representative example of 3D speckle-tracking strain analysis 
in a breast cancer patient during chemotherapy with anthracyclines 
showing semi-automatic tracking of the endo- and epicardium, global 
longitudinal, circumferential, radial and area strain values (G), as well 

as corresponding regional values presented as a color-coded 17-seg-
ment bull’s eye plot. Note that all strain parameters are below the 
lower limits of normal and that anterior, inferolateral, and septal walls 
are most often affected
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and 0.719 (p = 0.047), with the optimal cutoff values being 
− 34.2% (sensitivity 63.6%, specificity 73.3%, and likelihood 
ratio 2.38) and − 34.4% (sensitivity 72.7%, specificity 68.7%, 

and likelihood ratio 2.32), respectively (Fig. 4). According to 
these cutoffs, 26.9% of this cohort showed significant varia-
tions of 3D GCS and 48.2% significant variations of 3D GRS. 

Fig. 2   3D regional longitudinal 
(3D LS), circumferential (3D 
CS), radial (3D RS), and area 
(3D AS) strain. Numbers repre-
sent p values of the Student’s t 
test comparing echocardiograms 
before and during chemotherapy 
for each segment

Fig. 3   3D global strain variation 
according to the presence or 
absence of CTRCD. Dark grey 
bars represent patients without 
CTRCD. Light grey bars 
represent patients with CTRCD. 
Significant differences in varia-
tion were seen for 3D GCS and 
3D GRS. 3D three-dimensional, 
GAS global area strain, GCS 
global circumferential strain; 
GLS global longitudinal strain; 
GRS global radial strain
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Among these, 63.6% and 58.3% went on to develop CTRCD, 
respectively. These variations were observed a median of 
45 days and 23 days before the diagnosis of CTRCD.

Discussion

CTRCD induced by anthracyclines is a growing problem 
that affects the outcome of cancer patients [2]. The revers-
ibility of cardiac dysfunction is inversely related to the time 
since the start of chemotherapy [21, 22]. As such, there has 

been a continuous search for the optimal screening technique 
to diagnose subclinical dysfunction to allow for timely initia-
tion of neurohumoral therapy and prevent the progression 
to overt heart failure. 2D STE has proved to detect early 
impairment of myocardial systolic function before LVEF 
decreases [11]. 2D GLS is recommended over other 2D 
strain parameters [12] because of concerns about the repro-
ducibility of measurements of 2D GRS and 2D GCS [11]. 
Besides, the evaluation of all strain parameters by 2D STE 
is time-consuming and not adequate for clinical practice.

Table 4   Logistic regression 
analysis for predictors of cancer 
therapeutics-related cardiac 
dysfunction

3D three-dimensional, CI confidence interval, GAS global area strain, GCS global circumferential strain, 
GLS global longitudinal strain, GRS global radial strain, OR odds ratio
p values < 0.05 are highlighted in bold

Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Age 1.01 (0.97–1.05) 0.556 –
Anthracycline cumulative dose 1.09 (1.00–1.02) 0.033 0.99 (0.95–1.04) 0.761
Radiotherapy 3.34 (0.38–29.71) 0.275 –
HER2 inhibitor therapy 0.57 (0.21–1.60) 0.287 –
Fractional shortening 0.95 (0.89–1.02) 0.149 –
Mitral E/e′ ratio 1.08 (0.93–1.25) 0.314 –
3D GLS variation 0.53 (0.06–4.33) 0.550 –
3D GCS variation 1.97 (1.63–2.38) 0.036 1.38 (0.01–5.69) 0.952
3D GRS variation 5.95 (1.29–2.76) 0.041 1.39 (1.13–2.18) 0.016
3D GAS variation 4.51 (0.03–6.18) 0.549 – –

Fig. 4   Receiver operating curves of variations of 3D GCS and 3D 
GRS for prediction of CTRCD, with areas under de curve of 0.748 
(p = 0.033) and 0.719 (p = 0.047), with the optimal cutoff values 

being − 34.2% (likelihood ratio 2.38) and − 34.4% (likelihood ratio 
2.32), respectively. 3D three-dimensional; GCS global circumferential 
strain, GRS global radial strain
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3D STE assessment of myocardial deformation has sev-
eral advantages, such as the ability to track out-of-plane 
motion of speckles, higher reproducibility, and simultane-
ous evaluation of all strain parameters [13–15].

In the present study, we hypothesized that 3D STE would 
be a better technique for global and regional evaluation 
of left ventricle mechanics and CTRCD in breast cancer 
patients submitted to anthracycline chemotherapy. The main 
findings of our study were: (1) CTRCD is a common occur-
rence in this high-risk population; (2) a significant decrease 
in all 3D strain parameters was observed, with a high per-
centage of patients showing abnormal values during chemo-
therapy; (3) anterior, inferior, and septal walls were most 
commonly affected; and (4) percentage variations of 3D 
GCS and 3D GRS were good early predictors of CTRCD.

Incidence of cancer therapeutics‑related cardiac 
dysfunction

We report an incidence of CTRCD that is higher than in the 
previous studies for the described cumulative dose [12]. As 
the definition of CTRCD changes towards a more sensitive 
one, it is expected that its incidence will be higher than in 
older studies employing LVEF instead of 2D GLS. Another 
factor that probably contributed to this incidence is the high 
percentage of patients treated with HER2 inhibitor therapy, 
which is known to have an additive effect to anthracyclines 
[23]. Cumulative anthracycline dose was a determinant of 
CTRCD, as described previously [12].

Worsening of three‑dimensional global strain 
during chemotherapy

The use of 3D STE in this population demonstrates that left 
ventricle mechanics are affected in all strain components 
during chemotherapy. This is concordant with the evidence 
obtained with 2D STE analyzing 2D GLS, 2D GCS, and 
2D GRS [24], as well as with more recent reports of 3D 
STE [25–30]. 3D GCS and 3D GRS had a more pronounced 
variation than 3D GLS and 3D GAS. In fact, the previous 
reports employing 2D STE already hinted at a possibility 
of a greater affliction of 2D GRS [31–35] and 2D GCS [33, 
36, 37], although results were highly variable [24]. Studies 
using 3D STE also showed inconsistent results, with greater 
affliction of 3D GCS and 3D GAS [27], 3D GRS and 3D 
GAS [26], 3D GLS and 3D GRS [38], 3D GRS [25, 39], or 
3D GAS [40].

Interestingly, baseline 3D strain parameters were around 
the lower limits of normal. Abnormal values of 2D strain 
parameters in cancer patients before treatment initiation have 
previously been reported [41], suggesting a direct effect of 
cancer on cardiac mechanics.

Cumulative anthracycline dose and HER2 inhibitor ther-
apy were related to lower values of 3D strain parameters. 
This correlation was previously described for cumulative 
anthracycline dose using 3D STE [25, 40, 42], but not for 
HER2 inhibitor therapy.

Regional pattern of cancer therapeutics‑related 
cardiac dysfunction

The anterior, inferior, and septal walls were more commonly 
affected in this cohort, possibly indicating a regional hetero-
geneity in the development of systolic dysfunction. Previ-
ous authors have published similar patterns, mainly affect-
ing the septum, using 2D [32, 43–45] and 3D [39] STE, 
cardiac magnetic resonance [46, 47], and visual evaluation 
of wall motion abnormalities [48]. The explanation for this 
regional pattern is currently unclear, but could lie in shear 
stress forces acting differently in relation to left ventricle 
geometry [49], the increased exposure to anthracyclines 
in regions of terminal circulation [50], or the differential 
local activation of signal transduction pathways of fibrosis 
or apoptosis [51]. While this needs confirmation in further 
studies, the recognition of this regional pattern may prove 
useful when screening for CTRCD.

Prediction of cardiac dysfunction 
by three‑dimensional strain

2D STE is a sensitive marker of CTRCD, with a number of 
studies showing a decrease in 2D global strain parameters 
before an abnormal LVEF was evident [11, 52]. Further-
more, a decrease in 2D GLS predicts the subsequent devel-
opment of cardiac dysfunction measured by LVEF [11]. On 
the other hand, results on 2D GRS predicting CTRCD are 
less consistent [53–55] and inexistent for 2D GCS.

Evidence that 3D STE could predict subsequent changes 
in 2D LVEF was first given by Mornoş et al. [25]. Zhang and 
colleagues then proved that this prediction was independ-
ent of 2D strain values [29]. To date, only two studies have 
shown that decreases in 3D strain can occur at a timepoint, 
when both 2D strain and LVEF were unchanged [28, 40]. 
While this could be an important finding showing added 
value of 3D over 2D STE, the authors failed to explore its 
relation to subsequent decreases of 2D GLS.

Similarly, our results show a much higher proportion 
of patients with abnormal 3D strain values than the per-
centage with CTRCD. This suggests the presence of sub-
clinical myocardial dysfunction, even in patients who do 
not go on to develop CTRCD. 3D STE is, therefore, a 
more sensitive method to screen for cardiac dysfunction. 
This is the first study, where 3D STE, namely, 3D GCS 
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and 3D GRS variations, showed good predictive ability 
for cardiotoxicity diagnosed by an up-to-date definition 
with 2D/3D LVEF and 2D GLS as criteria. In particular, 
3D GRS was the only independent predictor among other 
known determinants of cardiac dysfunction. The superior-
ity of these parameters for predicting LVEF has also been 
described by other authors [29, 38]. Although the early 
detection of myocardial changes is conceptually impor-
tant, the real value of these changes lies in their ability to 
prognosticate a subsequent LVEF decrease. Importantly, 
our results are also the first to show that variations of 3D 
GCS and 3D GRS preceded the diagnosis of CTRCD by a 
median of 45 and 23 days, establishing this method as an 
important tool for the follow-up of patients submitted to 
anthracycline therapy. We provide cutoff values of strain 
variation for detecting subsequent CTRCD (− 34.2% for 
3D GCS and − 34.4% for 3D GRS) that still need exter-
nal validation, but are a starting point for further studies. 
This could allow closer monitoring of this population and 
even earlier initiation of cardioprotective therapies before 
the development of left ventricle dysfunction. Future rec-
ommendations could rely on screening of a combination 
of 3D STE and cardiac biomarkers. A possible algorithm 
could be repeating the echocardiogram 2–4 weeks after a 
significant variation in 3D STE and starting beta-blockers 
and angiotensin converting enzyme inhibitors if cardiac 
biomarkers are also increased.

Feasibility of three‑dimensional strain analysis

Low feasibility, mainly due to poor acoustic window, has 
been described for 3D STE when compared with 2D STE 
[19, 25, 27]. In our study, 3D echocardiography was per-
formed at the discretion of the echocardiographer, which 
means that a significant number of patients might have 
been excluded due to insufficient image quality. However, 
more recent reports have described excellent feasibility, 
as well as lower inter- and intra-observer variability of 3D 
STE compared to 2D STE [29]. Concerns have emerged 
regarding the adverse effects of cancer therapeutics (radio-
therapy, mastectomy, and breast prothesis) on the ability to 
perform 3D STE [27]. We did not find any significant dif-
ferences in feasibility comparing echocardiograms before 
and during chemotherapy.

On a regional level, even though we found that the fea-
sibility of 3D STE was lower than that of 2D STE, it was 
still excellent (94.0%). The basal inferior and basal infe-
rolateral walls were the segments with the least feasibility. 
This is congruent with the previous studies, where these 
segments are the most challenging to track because of their 
active excursion and position in the far field in apical data 
sets [19, 27].

Study limitations

The main limitation of this study is the absence of clini-
cal events as endpoints, which precludes their correlation to 
echocardiographic parameters. It would be important to eval-
uate the prognostic value of worsening 3D strain parameters. 
Although 3D strain parameters have already been associ-
ated with clinical events in other contexts [56], this relation-
ship has not been established for cancer patients. Equally, 
improved outcomes with earlier initiation of cardioprotective 
therapies guided by 3D strain still needs to be proven. An 
intrinsic limitation of any study that addresses the natural 
history of CTRCD based on echocardiographic parameters 
is that the variables analyzed are measures of left ventricle 
contractile or systolic function and overlap between them 
may exist. Notwithstanding, our findings have important 
clinical implications, since they could allow earlier diagnosis 
of cardiac dysfunction, more targeted monitoring and timely 
initiation of cardioprotective treatment. Furthermore, the 
fact that echocardiographic exams were performed at the dis-
cretion of the oncologist and the relatively short follow-up 
of this cohort may have contributed to an underestimation of 
CTRCD. In patients with fewer echocardiograms or shorter 
follow-up, exposure to anthracyclines may not have reached 
a sufficiently high cumulative dose to produce a significant 
decrease in LVEF or 2D GLS. Nevertheless, it is clear in 
this cohort that abnormal 3D strain parameters were much 
more common than CTRCD and that 3D STE predicted the 
subsequent diagnosis of CTRCD. An additional limitation is 
the fact that a significant proportion of patients also received 
HER2 inhibitor therapy and/or radiotherapy, such that it is 
difficult to assess the sole contribution of anthracyclines to 
cardiac dysfunction. The results cannot then be generalized 
to those under anthracycline therapy alone. Finally, the ref-
erence values for 3D strain are not yet fully established. We 
used vendor-specific reference values described in a large 
cohort of healthy subjects [19] and inter-vendor inconsisten-
cies of 3D strain parameters are well documented [57]. As 
such, caution should be exerted against direct comparison 
of results obtained by different scanners. However, using the 
percentage variation of 3D strain values as the main subject 
of our analysis, we intended to produce evidence that would 
be practical in as many settings as possible and potentially 
applicable to other vendors.

Conclusion

Left ventricle contractility, as assessed by 3D STE, worsened 
during anthracycline therapy for breast cancer, with predom-
inant involvement of septal, anterior, and inferior walls. Per-
centage variations of 3D GCS and 3D GRS were predictive 
of subsequent CTRCD, and thus can be considered an earlier 
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sign of CTRCD, with added value over the currently recom-
mended 2D or 3D LVEF and 2D GLS. Routine application 
of this technique should be considered in cancer patients 
treated with chemotherapy to offer targeted monitoring and 
timely initiation of cardioprotective treatment.
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