
Review Article

Imaging predictors of outcome in acute
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Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for about 5% of strokes, but has a very high morbidity and

mortality. Many survivors are left with important cognitive impairment and are severely incapacitated. Prediction of

complications such as vasospasm and delayed cerebral ischemia, and of clinical outcome after SAH, is challenging. Imaging

studies are essential in the initial evaluation of SAH patients and are increasingly relevant in assessing for complications

and prognosis. In this article, we reviewed the role of imaging studies in evaluating early brain injury and predicting

complications as well as clinical and neuropsychological prognosis after acute SAH.
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Introduction

Spontaneous subarachnoid hemorrhage (SAH) is
caused in most cases by a ruptured intracranial aneur-
ysm and often affects young patients (1,2). Aneurysmal
SAH is a serious clinical condition, with pre-hospital
mortality reaching 50% and a global mortality in the
range of 18–67% (2,3). Survivors are often left with
physical or neuropsychological sequelae that prevent
the return to normal premorbid life (4,5). Other types
of SAH, such as perimesencephalic hemorrhage and
non-traumatic convexity SAH, have different origins
(venous hemorrhage, amyloid angiopathy, venous
thrombosis, vasculitis, reversible cerebral vasoconstric-
tion syndrome [RCVS], drugs) and different clinical
courses.

Clinical outcome of patients with aneurysmal SAH
is heterogeneous, with some patients promptly recover-
ing completely and others worsening and becoming
severely incapacitated, despite optimal medical and sur-
gical treatment. Prediction of outcome in SAH is diffi-
cult considering the multifactorial pathogenesis of
SAH, and the not yet fully explained mechanisms
behind early brain injury (EBI) and delayed cerebral
ischemia (DCI), the two main complications of SAH.

Imaging plays a central role throughout the course
of this disease and, as in other diseases, has a growing
role in predicting prognosis. This review focused
on imaging studies and their role in assessing EBI
and predicting complications such as DCI and vaso-
spasm, clinical and neurocognitive prognosis after
spontaneous SAH.

Initial imaging evaluation of SAH: clues to
the prognosis

Computed tomography (CT) is usually the first imaging
study performed in SAH. Magnetic resonance imaging
(MRI) is the most sensitive imaging study to evaluate
cerebral parenchyma, but is not a routine exam in
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Hospitalar Lisboa Central, Lisbon, Portugal.

Email: isabelfragata@gmail.com

Acta Radiologica

0(0) 1–13

! The Foundation Acta Radiologica

2018

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0284185118778877

journals.sagepub.com/home/acr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório do Centro Hospitalar de Lisboa Central, EPE

https://core.ac.uk/display/389476354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-7037-7458
https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0284185118778877
journals.sagepub.com/home/acr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0284185118778877&domain=pdf&date_stamp=2018-05-23


SAH, because of less availability, longer scanning
times, and logistical issues in severely ill patients.

The hallmark of spontaneous SAH is the presence of
hyperdensities in the basal cisterns. Quantification
of cisternal blood is important as a prognostic tool
(Fig. 1, Table 1). Fisher grade (6) and the Modified
Fisher scale (7) are widely used scales that correlate
the amount of blood to the risk of vasospasm,
DCI and clinical outcome (6–8). The Hijdra scale is a
more complex method of quantifying cisternal blood
(9, 10), that has been included in some prognostic
scales as a predictor of vasospasm, DCI, and clinical
outcome (10,11). The presence of a space occupying
parenchymal hematoma also negatively influences

prognosis, especially in patients with poor-grade
SAH (12).

Acute hydrocephalus, affecting around 20% of
patients (13), can be diagnosed in admission imaging
studies and negatively influences neurological and func-
tional outcome, particularly if associated with intraven-
tricular hemorrhage.

In summary, from the first imaging assessment, we may
infer that higher amounts of hemorrhage correlate with
increased risk of vasospasm, DCI, and poor outcome. The
early identification of patients at higher risk for vasospasm
and DCI is clinically relevant, since these patients will need
closer monitoring and eventually more aggressive pharma-
cological and endovascular approaches.

Fig. 1. Non-contrast admission CT scan of acute spontaneous SAH in four different patients, illustrating different Fisher grades:

grade 1 (a), grade 2 (b), grade 3 (c) and grade 4 (d). Patient A had a ruptured anterior communicating artery aneurysm. Patient B had

a perimesencephalic hemorrhage, and no identifiable aneurysm. Both Patients C and D had basilar aneurysms.
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Early brain injury: insights from imaging
studies

The concept of EBI was described in 2004 (14) and
encompasses the global parenchymal insult occurring
in the first 72 h after SAH, that primes the brain
for further injury (15). EBI at the time of hemorrhage
is an important cause of mortality in the first days after
SAH (16).

Pathophysiological mechanisms involved in EBI are
multiple (15): increased intracranial pressure; global
cerebral hypoperfusion; impairment of autoregulation;
microvascular constriction and thrombosis; injury of
the blood–brain barrier; cortical spreading depolariza-
tion; and apoptosis. Some of these early pathophysio-
logical changes can be translated in MR studies that
may reveal acute ischemic lesions, global cerebral
edema, or even vasogenic edema in normal-appearing
white matter (17–22). There is an increasing number of
studies demonstrating the potential interest of MRI in
SAH, revealing lesions missed on CT studies. The
impact of some of these subtle and until recently
unknown MRI abnormalities on prognosis is not fully
established.

Hyperacute ischemic lesions

Mechanisms behind acute DWI lesions in SAH are
not fully understood, but possibly coincide with
pathophysiological mechanisms of EBI: intracranial
circulatory arrest after SAH; vasogenic edema;
microcirculatory dysfunction; lesion of blood–brain
barrier; activation of platelets; and cortical spreading
depolarization (18). Hyperacute ischemic lesions in
SAH occur in multiple patterns: punctate in up to
75% of patients, but also territorial and cortical (20).

They affect distinct vascular territories (23,24),
mostly cortical anterior cerebral artery and middle
cerebral artery, but also basal ganglia and cerebellum
(Fig. 2). The burden of early acute ischemia is pro-
portional to the neurological status at admission,
occurring in up to 86% in poor-grade SAH patients
(17,18), and predicts DCI in the course of SAH
(18–20,25).

Diagnosis and prediction of delayed
cerebral ischemia

Arterial vasospasm was described more than 60 years
ago, occurring in association with the rupture of aneur-
ysms (26), and is, strictly speaking, a reduction in the
caliber of cerebral arteries. Vasospasm usually starts
after 72 h after SAH, has its peak at 6–8 days, and
subsides after 2–3 weeks (27). Vasospasm occurs
in up to 70% of patients (1,28), is diagnosed by non-
invasive methods such as transcranial Doppler (TCD)
and CT angiography, or by conventional subtraction
angiography (Fig. 3). Vasospasm is potentially pre-
vented with vasodilators and screening for vasospasm
is current practice in SAH, because it is potentially
treatable both pharmacologically and endovascularly
(1). Clinical vasospasm (also called symptomatic vaso-
spasm) corresponds to the clinical manifestation of
ischemia secondary to arterial narrowing, and occurs
in far fewer patients, around 25–30% (29). A wider
concept was set forward in 2010 that incorporates
clinical vasospasm and imaging: DCI. This is defined
as a ‘‘de novo’’ neurological deficit in the absence of
other causes and/or in the presence of ischemic lesions
on imaging studies after the fourth day post SAH
(to exclude lesions secondary to angiographic/surgi-
cal treatment of aneurysms) (30,31). DCI occurs in

Table 1. Commonly used scales to quantify blood on admission CT after spontaneous SAH.

Fisher scale (6) Modified Fisher scale (7) Hijdra score (9)

Grade 1: no SAH detected Grade 0: no SAH or IVH Cisternal Hijdra (range¼ 0–30)

No blood¼ 0

Small amount¼ 1

Moderately filled¼ 2

Completely filled¼ 3

Grade 2: diffuse thin (< 1 mm)

SAH

Grade 1: focal/diffuse thin

(< 1 mm) SAH, no IVH

Grade 2: focal/diffuse thin

(< 1 mm) SAH and IVH

Grade 3: localized clot/

SAH> 1 mm thick

Grade 3: focal/diffuse thick

(> 1 mm) SAH, no IVH

Ventricular Hijdra (range¼ 0–12)

No blood¼ 0

Sedimentation¼ 1

Partly filled¼ 2

Completely filled¼ 3

Grade 4: diffuse SAH and IVH

and/or intracerebral

hemorrhage

Grade 4: focal/diffuse thick

(> 1 mm) SAH and IVH

For Hijdra score calculation, ten basal cisterns are considered: anterior inter-hemispheric fissure; lateral sylvian fissure; basal sylvian

fissure; suprasellar cistern; ambient cistern and quadrigeminal cistern; and the four ventricles are considered.

IVH, intraventricular hemorrhage.
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Fig. 2. Early brain injury lesions. (a) Axial DWI performed on the first 24 h after SAH, showing acute ischemia in both frontal lobes,

right occipital lobe, insular cortex bilaterally, and posterior left thalamus. Lesions were not visible in a CT scan performed on the same

day (b). (c–f) DWI images of different patients, illustrating different distributions of acute ischemic lesions: (c) corpus callosum

splenium; (d) bilateral involvement of the hippocampi; (e) bilateral cortical and subcortical cerebellar lesions; (f) lesions involving

several territories, including right frontal cortex, bilateral occipital cortex, bilateral deep basal ganglia and internal capsule, and left

justaventricular white matter.
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20–40% of patients and is associated with worse clinical
and cognitive prognosis (27,31). It is the leading cause
of morbidity and mortality in patients that survive early
brain injury after SAH (2,32).

There is growing evidence that DCI is multifactorial
in origin, and although vasospasm might be a contri-
buting factor, it is not its only determinant. Although
there is a strong association of severe vasospasm in
TCD and angiographic studies with the occurrence of
cerebral infarction (32,33), the presence of angiographic
vasospasm is not linearly associated with ischemia and
DCI (32), and cerebral infarction can appear in terri-
tories unaffected by vasospasm (32,34,35). The best
method to predict DCI remains uncertain. In the fol-
lowing paragraphs, we will refer to the main imaging
techniques used for the diagnosis of vasospasm and
DCI, and we will discuss the relative contribution of
each in predicting DCI.

Can transcranial Doppler ultrasonography predict
DCI?

TCD is routinely used to screen for the emergence of
cerebral vasospasm, with a high negative predictive
value (36). The use of indices such as the Lindegaard
Ratio (that corrects middle cerebral artery velocities
by calculating a ratio with the ipsilateral internal
carotid artery) help to distinguish increased velocities
due to hemodynamic factors from vasospasm (36).
Although useful for proximal large vessel vasospasm,
TCD is insensitive to distal spasm (37). Regarding
DCI, the positive predictive value and sensitivity of
TCD vasospasm is only 67% (32) and 63% (37),
respectively, as would be expected considering that
vasospasm and DCI are not linearly associated.
Therefore, TCD seems to be insufficient to identify
patients at risk for DCI.

Fig. 3. Digital subtraction angiography images from a patient with a ruptured basilar tip aneurysm. (a, b) Angiography performed on

day 1, showing the final result post coiling of the aneurysm. (c) Angiography performed on day 7 shows marked reduction of the basilar

and posterior cerebral arteries caliber, secondary to vasospasm. Other territories were also affected in this patient: (d) anteropos-

terior view of the right internal carotid artery on day 1; (e) severe angiographic vasospasm of the middle and anterior cerebral arteries

on day 7.
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Cerebral perfusion imaging and prediction of DCI

Cerebral perfusion is affected both in the acute stage of
SAH (38,39) and during the time window of vasospasm
(40–43). Among the available methods for studying
perfusion, CT (Fig. 4) is practically the only one used
in clinical practice, since the availability of PET,
SPECT, and Xenon perfusion is limited. There are
very few studies using MR perfusion in acute SAH,
and only one study using arterial spin labelling (44),
but results are not consistent respecting the utility of
MR perfusion to diagnose or predict DCI.

Perfusion imaging has been used both for the diag-
nosis and the prediction of DCI.

Vasospasm is associated with perfusion deficits
detected by CT perfusion studies, manifested by
increased mean transit time (MTT) and reduced

cerebral blood flow (CBF) (38,40,42,43,45). The reduc-
tion of cerebral perfusion usually correlates with the
onset of neurological symptoms. Values of perfusion
parameters overlap between patients with and without
DCI, but there is a trend for higher MTT and lower
CBF in patients with DCI (46). Thresholds for diagno-
sis of DCI at the time window for vasospasm were set
by many authors, with MTT values in the range of
5.0–6.4s (46,47), and for CBF in the range of
30.5–44.3mL/100mg/min (47).

Perfusion studies seem to be effective in diagnosing
vasospasm and DCI; however, it would be important if
they could predict their occurrence earlier in the course
of SAH. Accordingly, some studies suggested that per-
fusion studies could be used to identify patients at risk
of developing vasospasm and DCI (Fig. 5)
(38,39,41,48–51). Patients who later in the course of

Fig. 4. Source images of perfusion studies on CT (a) and MR (b). After postprocessing, color maps of the several parameters can be

obtained. CBF maps on CT (c) and MR (d) of the same patient show relatively symmetric perfusion of both hemispheres.
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SAH developed DCI presented early lower global and
focal CBF values, lower cerebral blood volume (CBV),
and raised MTT values (52–55), indicating not only
cerebral hypoperfusion, but also an inability to com-
pensate for the reduced perfusion.

However, there is still controversy concerning the
value of CT perfusion in prediction DCI. In fact, one
meta-analysis including 345 patients (41) described a
23-fold increased probability of DCI in patients with
early CT perfusion changes, but another meta-analysis
published in the same year including 570 patients failed
to reliably associate early perfusion findings to the
occurrence of DCI (48).

Although the rationale of evaluating CT perfusion
to predict DCI is logical, the clinical validation and
application of these studies have failed so far, in part
due to the problems with standardizing CT perfusion
protocols between centers and also due to the hetero-
geneity of studies design, with mostly retrospective ana-
lyses, different timings of measurement, diverse
definitions of outcomes, and insufficient adjustment
for variables that could be associated with both brain
perfusion and outcome.

Cerebral autoregulation evaluation and prediction
of DCI

Autoregulatory dysfunction predisposes to DCI and is
aggravated by the installation of vasospasm (52–55).
The assessment of cerebral autoregulatory capacity
may be a tool for identifying patients at risk for DCI.
There are several techniques available to assess cerebral
autoregulation.

Monitoring of cerebral autoregulation during SAH
is possible using indexes derived from TCD, such as the

mean velocity index, that has been shown to associate
with vasospasm and outcome, or direct measures of
tissue oxygenation through near-infrared spectroscopy,
that allow continuous monitoring of cerebral blood
flow (56). A recent study reported that patients with
DCI have a distinct autoregulatory profile (57). In a
study using perfusion-weighted MRI, reduced CBF
and reduced CBV in the basal ganglia were found in
patients with SAH, even in the absence of vasospasm,
suggesting dysfunctional vascular autoregulation in this
region (58). At present, regardless of its interest and
relevance, the assessment of autoregulation is not
used in the clinical setting.

Imaging of blood–brain barrier and DCI

The analysis of blood–brain barrier dysfunction, in stu-
dies of permeability, is a yet unexplored tool to evaluate
endothelial dysfunction in SAH and its association with
vasospasm or DCI. There are very few studies on per-
meability after SAH (59). Permeability can be measured
using CT or MR perfusion techniques, and the few
existing studies have found a relation of increased
blood–brain barrier permeability and vasospasm (60),
but not with DCI or prognosis (53).

In conclusion, despite all the recent developments
and extensive research, the effectiveness of imaging stu-
dies in predicting DCI is still uncertain.

Imaging predictors of clinical outcome

Although hospital mortality has decreased in recent
years, functional outcome after SAH remains poor
(61). Of the surviving patients who regain independence
at daily life activities, up to 50% are left with different

Fig. 5. (a) MR perfusion study showing increased TTP (red and orange) in the left temporal lobe (middle cerebral artery territory)

and in both occipital lobes (posterior cerebral artery territory) on the first 24 h after SAH. (b) DWI performed on the same day shows

small punctate acute ischemic lesions and no territorial infarction on the hypoperfused areas. (c) CT scan ten days after showing acute

ischemic lesions due to severe vasospasm, affecting the hypoperfused territories.
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degrees of cognitive impairment (62) and many are not
be able to return to work due to deficits in memory,
attention, executive functioning, and also mood dis-
turbances and anxiety that last for years after hemor-
rhage (4,5).

Imaging studies have been used to help predict long-
term outcome after SAH, such as mortality, functional
independence, or cognitive impairment. As previously
discussed, non-contrast CT can provide important
information concerning short- or long-term prognosis,
but its role is quite limited in assessing the full impact of
SAH in cerebral parenchyma, such as the burden of
acute ischemic lesions or cerebral edema.

Brain MRI and clinical outcome

One important predictor of outcome is the burden of
ischemic lesions, not only in the acute stage of SAH,
but also during the vasospasm time window. The pres-
ence of acute ischemia seems to be a marker of worse
immediate and long-term clinical outcome (17,63,64).
A higher number of ischemic lesions and volume of
ischemia, even if asymptomatic, relates to worse sur-
vival rate and poor clinical outcome: the number of
ischemic lesions and volume of ischemia predicts
severe disability and death with high sensitivity and
specificity (20,65). Infarcts related to aneurysm treat-
ment also impact on clinical outcome (66). Location
of infarcts has impact on prognosis (67), since even
small lesions in strategic locations may cause important
symptoms (23), and the combined occurrence of cor-
tical and deep infarcts is associated with poor cognitive
and functional outcome (Fig. 6) (67,68).

Global cerebral edema, a marker of EBI, was sug-
gested to be an independent predictor of mortality and
poor clinical prognosis (22,69).

The premorbid existence of white matter cerebral
lesions in FLAIR was found to associate with worse clin-
ical outcome, in a similar manner as in stroke patients,
where higher volumes of chronic white matter injury
relate to worse outcomes (19). Global brain atrophy is
also correlated to worse long-term functional outcomes
(70,71).

Advanced modalities such as diffusion tensor ima-
ging (DTI) studies are starting to be used to assess
the prognosis of SAH patients. DTI allows for quanti-
fication of the microstructural integrity of white matter
tracts and therefore can theoretically increase the sen-
sitivity to detect parenchymal lesions, even in normal-
appearing brain. The utility of DTI as a predictor of
outcome has already been established for other dis-
eases, such as traumatic brain disorders (72,73). We
recently suggested the role of fractional anisotropy
(FA) and ADC as independent predictors of DCI and
clinical outcome at three months (74,75). Sener et al.

measured DTI parameters at day 12 after SAH and
found an association between reductions in FA and
white matter tracts and mortality at six months (73).
Although promising, DTI is yet not validated as a tool
to predict prognosis in SAH.

Cerebral perfusion imaging and prediction of clinical
outcome

In addition to the possible role in predicting DCI as
discussed above, CT perfusion studies were also studied
as tools to predict clinical outcome. The few published
studies included mostly early CT perfusion evaluations,
before the vasospasm time window. One recent study
found that the earliest the perfusion changes occur, the
higher likelihood of poor outcome in patients with DCI
(76). From all perfusion parameters, MTT seems to be
the most significant regarding outcome prediction.
Lagares et al. reported that an MTT of > 5.9 s is asso-
ciated with a 20-fold risk of poor outcomes on the
Glasgow Outcome Scale with a 90% positive predictive
value (77). Etminan et al. reported an association of
early elevated MTT together with higher blood
burden on admission CT with poor clinical outcome
at six weeks (49). Mathys et al. reported an MTT
threshold > 4 s predicts unfavorable outcome at 23
months (78). Tateyama et al. described global MTT
as an independent predictor of poor outcome (39).
However, there are contradictory reports on CT perfu-
sion value as a predictor of outcome and some did not
confirm the association between early MTT or CBF
changes and long-term outcome (53).

In summary, there is already considerable and sound
evidence that imaging studies are important in the pre-
diction of outcome after SAH. However, the main limi-
tation is the lack of validation and standardization of
these imaging tools that prevent their application in
prognosis scales. In the future, the use of automated
software may allow for a more uniform application of
DWI, DTI, and eventually perfusion studies in
prognostication.

Imaging prediction of cognitive outcome

Despite good clinical outcome in neurologic grading
scales, up to 50% of patients with aneurysmal SAH
are left with neuropsychological deficits that impact on
daily activities and on the return to normal life (5).
Cognitive dysfunction is both global and domain-speci-
fic, affecting mood, memory, and speech (5). The cause
for cognitive dysfunction after SAH is not fully under-
stood. Patients with vasospasm and DCI have associated
worse neuropsychological outcomes (28,62,79,80).
Some studies have identified associations between acute
SAH imaging findings and long-term cognitive
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Fig. 6. (a, b) Admission CT images of a 50-year old patient with acute SAH and right temporal hematoma, and bilateral middle

cerebral artery aneurysms. (c, d) DWI images at 48 h after SAH showing acute ischemic lesions in the right middle cerebral artery

territory (c) and watershed infarcts on the left hemisphere (d). MRI performed four years after shows large areas of encephalomalacia

on the right temporal and occipital lobes (e), and no evidence of residual left hemispheric lesions (f). The patient had no motor

sequelae but was not able to return to her professional activity as a hairdresser and needs constant assistance for daily activities due to

severe memory disturbance.
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prognosis: higher Fisher grades and acute hydrocephalus
on admission associate with brain atrophy, that ultim-
ately associates with long-term cognitive impairment
(81,82); global cerebral edema is strongly associated
with cognitive impairment in multiple domains (83).

The increased detail in MRI studies may allow a
better understanding of the impact of structural lesions
in cognitive outcome. Reduced volume of the hippo-
campi is associated with increased incidence of mood
disorders in surgically treated SAH patients (84).
Volumetric changes in MRI studies have been described
also at the chronic stage of SAH, globally affecting the
gray and white matter (71,82,85) and focally affecting
specific areas such as the left prefrontal lobes and stri-
atum (86), and the mammillothalamic tract (87); these
changes in imaging studies correlate with neuropsycho-
logical and cognitive outcome (70,82).

Finally, there are very few data on functional MRI
(fMRI) studies in SAH. One study showed differences
in BOLD-fMRI in SAH patients with memory impair-
ment (88). Although still experimental, fMRI studies
might serve as an additional tool to predict subtle cog-
nitive changes after SAH.

In conclusion, neuroimaging studies are presently
essential in the diagnosis of spontaneous SAH and
are adjunctive methods to better identify several com-
plications and understand patients’ outcomes. They are
also emerging as promising tools to predict the occur-
rence of DCI and clinical prognosis.

At the first examination, the amount of blood on CT
is one of the most important factors to predict patient
prognosis. MRI, although not currently performed at
initial stage of SAH, has the potential to provide data
on early brain injury and ischemia lesions occurring
soon after the ictus. With increasing use of MRI studies
in SAH patients, advanced modalities such as DTI and
brain volumetry may expand their role in predicting
outcome, either when performed at the acute phase of
SAH or in later phases.

Cerebral perfusion is affected at early stages of SAH
and during the vasospasm period, and it can be assessed
by CT perfusion studies. Although routinely used in
many centers, there are still some difficulties in estab-
lishing validated thresholds of perfusion to predict DCI
and prognosis, which limits its generalization. Future
advances in imaging techniques and active research in
imaging of SAH will certainly contribute for a better
understanding of the pathophysiology of this complex
disease and, most importantly, in a more precise deter-
mination of its prognosis.
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54. Rodriguez-régent C, Hafsa M, Turc G, et al. Early quan-

titative CT perfusion parameters variation for prediction
of delayed cerebral ischemia following aneurysmal sub-
arachnoid hemorrhage. Eur Radiol 2016;26:2956–2963.

55. Murphy A, Leonardo A, Manoel DO, et al. Changes in

cerebral perfusion with induced hypertension in aneurys-
mal subarachnoid hemorrhage: a pilot and feasibility
study. Neurocrit Care 2017;27:3–10.

56. Zweifel C, Castellani G, Czosnyka M, et al. Continuous
assessment of cerebral autoregulation with near-infrared
spectroscopy in adults after subarachnoid hemorrhage.

Stroke 2010;41:1963–1968.
57. Santos GA, Petersen N, Zamani AA, et al.

Pathophysiologic differences in cerebral autoregulation
after subarachnoid hemorrhage. Neurology 2016;86:

1950–1956.
58. Hattingen E, Blasel S, Dettmann E, et al. Perfusion-

weighted MRI to evaluate cerebral autoregulation in

aneurysmal subarachnoid haemorrhage. Neuroradiology
2008;50:929–938.

59. Heye AK, Culling RD, Valdés Hernández MDC, et al.

Assessment of blood-brain barrier disruption using

dynamic contrast-enhanced MRI. A systematic review.

NeuroImage Clin 2014;6:262–274.

60. Kishore S, Ko N, Soares BP, et al. Perfusion-CT assess-

ment of blood-brain barrier permeability in patients with

aneurysmal subarachnoid hemorrhage. J Neuroradiol

2012;39:317–325.
61. Lovelock CE, Rinkel GJE, Rothwell PM. Time trends in

outcome of subarachnoid hemorrhage: Population-based

study and systematic review. Neurology 2010;74:

1494–1501.
62. Springer MV, Schmidt JM, Wartenberg KE, et al.

Predictors of global cognitive impairment 1 year after

subarachnoid hemorrhage. Neurosurgery 2009;65:

1043–1050.
63. Fu C, Yu W, Sun L, et al. Early cerebral infarction fol-

lowing aneurysmal subarachnoid hemorrhage: frequency,

risk factors, patterns, and prognosis. Curr Neurovasc Res

2013;10:316–324.
64. Vergouwen MDI, Ilodigwe D, MacDonald RL. Cerebral

infarction after subarachnoid hemorrhage contributes to

poor outcome by vasospasm-dependent and -independent

effects. Stroke 2011;42:924–929.

65. Schmidt JM, Wartenberg KE, Fernandez A, et al.

Frequency and clinical impact of asymptomatic cerebral

infarction due to vasospasm after subarachnoid hemor-

rhage. J Neurosurg 2008;109:1052–1059.
66. Juvela S, Siironen J. Early cerebral infarction as a risk

factor for poor outcome after aneurysmal subarachnoid

haemorrhage. Eur J Neurol 2012;19:332–339.

67. Wong GKC, Nung RCH, Sitt JCM, et al. Location,

infarct load, and 3-month outcomes of delayed cerebral

infarction after aneurysmal subarachnoid hemorrhage.

Stroke 2015;46:3099–3104.
68. Naidech AM, Bendok BR, Bassin SL, et al. Classification

of cerebral infarction after subarachnoid hemorrhage

impacts outcome. Neurosurgery 2009;64:1052–1058.
69. Choi HA, Bajgur SS, Jones WH, et al. Quantification of

cerebral edema after subarachnoid hemorrhage.

Neurocrit Care 2016;25:64–70.

70. Tam A, Kapadia A, Ilodigwe D, et al. Impact of global

cerebral atrophy on clinical outcome after subarachnoid

hemorrhage. J Neurosurg 2013;119:198–206.
71. de Bresser J, Schaafsma JD, Luitse MJ a, et al.

Quantification of structural cerebral abnormalities on

MRI 18 months after aneurysmal subarachnoid hemor-

rhage in patients who received endovascular treatment.

Neuroradiology 2015;57:269–274.
72. Yuh EL, Cooper SR, Mukherjee P, et al. Diffusion tensor

imaging for outcome prediction in mild traumatic brain

injury: a TRACK-TBI study. J Neurotrauma 2014;31:

1457–1477.
73. Sener S, Van Hecke W, Feyen BFE, et al. Diffusion

tensor imaging: a possible biomarker in severe traumatic

brain injury and aneurysmal subarachnoid hemorrhage?

Neurosurgery 2016;79:786–793.
74. Fragata I, Alves M, Papoila AL, et al. Early prediction of

delayed ischemia and functional outcome in acute sub-

arachnoid hemorrhage: role of diffusion tensor imaging.

Stroke 2017;48:2091–2097.

12 Acta Radiologica 0(0)



75. Fragata I, Alves M, Papoila AL, et al. Prediction of clin-
ical outcome in subacute subarachnoid hemorrhage using
diffusion tensor imaging. J Neurosurg 2018;DOI:

10.3171/2017.10.JNS171793.
76. Caspers J, Rubbert C, Turowski B, et al. Timing of mean

transit time maximization is associated with neurological
outcome after subarachnoid hemorrhage. Clin

Neuroradiol 2017;27:15–22.
77. Lagares A, Cicuendez M, Ramos A, et al. Acute perfu-

sion changes after spontaneous SAH: a perfusion CT

study. Acta Neurochir (Wien) 2012;154:402–405.
78. Mathys C, Martens D, Reichelt DC, et al. Long-term

impact of perfusion CT data after subarachnoid hemor-

rhage. Neuroradiology 2013;55:1323–1331.
79. Ogden J, Mee E, Henning M. A prospective study of

impairment of cognition and memory and recovery

after subarachnoid hemorrhage. Neurosurgery 1993;33:
572–586.

80. Stienen MN, Smoll NR, Weisshaupt R, et al. Delayed
cerebral ischemia predicts neurocognitive impairment fol-

lowing aneurysmal subarachnoid hemorrhage. World
Neurosurg 2014;82:e599–e605.

81. Orbo M, Waterloo K, Egge A, et al. Predictors for cog-

nitive impairment one year after surgery for aneurysmal
subarachnoid hemorrhage. J Neurol 2008;255:1770–1776.

82. Bendel P, Koivisto T, Aikia M, et al. Atrophic enlarge-
ment of CSF volume after subarachnoid hemorrhage:
correlation with neuropsychological outcome. Am J

Neuroradiol 2010;31:370–376.
83. Claassen J, Carhuapoma JR, Kreiter KT, et al. Global

cerebral edema after subarachnoid hemorrhage: fre-
quency, predictors, and impact on outcome. Stroke

2002;33:1225–1232.
84. Wostrack M, Friedrich B, Hammer K, et al. Hippocampal

damage and affective disorders after treatment of cerebral

aneurysms. J Neurol 2014;261:2128–2135.
85. de Bresser J, Vincken KL, Kaspers AJ, et al.

Quantification of cerebral volumes on MRI 6 months

after aneurysmal subarachnoid hemorrhage. Stroke
2012;43:2782–2784.

86. Martinaud O, Perin B, Gérardin E, et al. Anatomy of

executive deficit following ruptured anterior communi-
cating artery aneurysm. Eur J Neurol 2009;16:595–601.

87. Jang SH, Choi BY, Kim SH, et al. Injury of the
mammillothalamic tract in patients with subarachnoid

haemorrhage: a retrospective diffusion tensor imaging
study. BMJ Open 2014;4:e005613–e005613.

88. Ellmore TM, Rohlffs F, Khursheed F. FMRI of working

memory impairment after recovery from subarachnoid
hemorrhage. Front Neurol 2013;4:179.

Fragata and Canhão 13


