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Resumen global 

i. Introducción 

A lo largo de los años, gran parte de los hitos en fisiología neonatal han estado 

íntimamente ligados a los avances en química analítica. Ejemplos de ello son las primeras 

medidas de oxihemoglobina en sangre de cordón realizadas por Zweifel a mediados del s. XIX 

empleando el recién inventado espectroscopio de Browning1, los estudios de los gases 

sanguíneos en fetos y neonatos realizados por Huggett y Barcroft a principios del s. XX 

empleando manómetros de Van Slyke (y los propios aparatos inventados por Barcroft), los 

estudios del metabolismo de la glucosa de Hugget empleando por primera vez glucosa marcada 

con 14C y determinaciones radiométricas2 o los estudios de lactato en sangre de cordón de 

Eastman empleando sofisticadas volumetrías3. De igual manera, ya durante la segunda mitad 

del s. XX, la introducción de los ensayos enzimáticos, inmunoensayos y técnicas 

cromatográficas y electroforéticas permitieron estudiar en profundidad metabolitos, hormonas 

y proteínas de interés en neonatología2. Asimismo, en años más recientes, los avances en las 

tecnologías ómicas y bioinformáticas han permitido mejorar el conocimiento de los síndromes 

y enfermedades en el ámbito neonatal estableciendo patrones genómicos, epigenéticos, 

proteómicos y metabolómicos, permitiendo el acceso a una multitud de biomarcadores2,4,5. 

Una de las definiciones más reconocidas de biomarcador es la que ofrece la iniciativa 

conjunta de la Food and Drug Administration (FDA) y los National Institutes of Health (NIH) 

de Estados Unidos en su glosario BEST, que lo definen como una característica medible 

indicativa de normalidad, proceso patológico o respuesta a exposición o intervención. Además, 

la definición también clasifica a los diferentes tipos de biomarcadores en moleculares, 

radiográficos e incluso características fisiológicas6. En este sentido, no han sido únicamente 

las tecnologías ómicas las que han ido ampliando el número de biomarcadores en neonatología, 

pero sí las que han permitido el surgimiento de una plétora de moléculas candidatas a serlo y 

de prolíficos autores4,5,7–11. A modo de ejemplo, en la Ilustración 1 puede observarse como el 

número de publicaciones sobre asfixia perinatal que incluye conceptos como biomarcador, 

metabolómica o algunos otros relacionados con otras ómicas ha experimentado un gran 

incremento en los últimos años.  

De entre todas las ómicas, la metabolómica aborda el análisis exhaustivo de las 

moléculas pequeñas (<1 kDa) de una muestra biológica y tiene su razón de ser en el desarrollo 

de las técnicas instrumentales y, especialmente, las técnicas acopladas12,13. La resonancia 
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magnética nuclear (RMN) y la espectrometría de masas de alta resolución, esta última 

usualmente acoplada a cromatografía de gases o líquidos, han sido las técnicas más 

ampliamente utilizadas. Estas metodologías generan una ingente cantidad de datos 

multidimensionales por lo que el desarrollo de herramientas quimiométricas multivariantes que 

permitan lidiar con ellos ha sido igualmente crucial para el desarrollo de la metabolómica. Los 

análisis metabolómicos pueden dividirse en dirigidos, semidirigidos o no dirigidos y todos ellos 

juegan un papel en la búsqueda y validación de nuevos biomarcadores.  

 

Ilustración 1 Porcentaje de los registros en la Web of Science® en el periodo 1999-2018 para cada intervalo de 3 

años. Bases de datos empleadas: WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO. Las combinaciones de 

booleanas empleadas fueron: TS = (asphy* OR hypox* OR HIE OR anoxia) AND TS = (perinatal OR pediatric 

OR neonat* OR newborn) para el campo “todos los registros”; para los campos “biomarcador”, “metabolómica” 

y “ómicas (no metabolómica)” se afinaron los resultados con los booleanos:  biomarker, (metabolom or 

metabonom*), and ((genomics or transcriptomics or proteomics or lipidomics or epigenomics)), respectivamente. 

Los métodos dirigidos fueron los primeros en desarrollarse y consisten en la 

cuantificación de un número relativamente pequeño de metabolitos (decenas de ellos), 

conocidos a priori. Al conocer las propiedades químicas de los analitos y las matrices de 

interés, es posible optimizar las variables experimentales para obtener unos parámetros de 

calidad analítica (selectividad, sensibilidad, precisión, exactitud, entre otros) adecuados. 

Además, es para los métodos dirigidos para los que existe un mayor desarrollo en cuanto a lo 

que validación analítica se refiere, existiendo diversas guías de organismos internacionales 

como la Agencia Europea del Medicamento y la FDA estadounidense14,15. Las determinaciones 

cuantitativas realizadas en los laboratorios clínicos empleando productos sanitarios para 

diagnóstico in vitro (in vitro diagnostic tests, IVDs)16 hacen uso de métodos dirigidos y son 

también los métodos dirigidos los únicos que, a día de hoy, pueden enmarcarse en las normas 

internacionales de acreditación ISO 15189 e ISO/IEC 17025 para laboratorios clínicos y 

laboratorios generales de ensayo/calibración, respectivamente17,18. Sin embargo, la capacidad 

de los métodos dirigidos para descubrir nuevos biomarcadores y generar nuevas hipótesis es 

limitada ya que se encuentran circunscritos al panel de compuestos escogido.  

Por su parte, los métodos no dirigidos consisten en el análisis simultáneo de tantos 

compuestos como sea posible en la muestra biológica en cuestión. Estos métodos proporcionan 
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información semicuantitativa (como p.ej. áreas de picos) en lugar de concentraciones 

absolutas19 y la identidad de los compuestos no es conocida a priori, de hecho, el proceso de 

identificación es uno de los principales retos en los estudios de metabolómica no dirigida20. En 

este escenario se suele decir que el análisis es libre de hipótesis y las limitaciones son 

fundamentalmente instrumentales o computacionales.  

Existe un enfoque intermedio entre el análisis no dirigido y el análisis dirigido 

denominado análisis semidirigido. En este tipo de análisis, se realiza un análisis de un gran 

número de compuestos, usualmente cientos de ellos. Estos números son accesibles gracias al 

desarrollo de los modernos equipos de cromatografía líquida-espectrometría de masas tándem 

(LC-MS/MS) y especialmente a las actuales interfases de electrospray (ESI). Estos métodos, 

suelen incluir simultáneamente determinaciones cuantitativas y otras semicuantitativas, 

empleando diferentes curvas de calibrado y múltiples calibraciones de patrón interno. 

Actualmente se comercializan varios kits comerciales como los desarrollados por Biocrates 

AG (Innsbruck, Austria), que permiten determinar por LC-MS/MS más de 500 metabolitos 

pertenecientes a 26 clases diferentes. Estos kits se han empleado para estudios en la población 

neonatal21,22.      

En cualquiera de sus modalidades, el análisis metabolómico aplicado a la población 

neonatal presenta una serie de peculiaridades que lo hacen especialmente delicado. En primer 

lugar, la obtención de cantidades suficientes de muestra suele ser complicado debido a que los 

procedimientos invasivos (venopunción, sondaje, canalización, entre otros) tienen mayores 

implicaciones en el neonato frente a una persona adulta. Y, además, hay que tener en cuenta 

que el momento del muestreo en muchas investigaciones se produce en situaciones 

extremadamente complejas, como puede ser un complicado ingreso en una unidad de cuidados 

intensivos neonatal (UCIN), en la camilla de reanimación del paritorio o durante complejos 

tratamientos como la hipotermia terapéutica o la oxigenación por membrana extracorpórea. 

Todo ello hace que el desarrollo de métodos analíticos ad hoc sea imprescindible para poder 

llevar a cabo validaciones satisfactorias.  

De entre todas las patologías que son objeto de estudio en neonatología, en una de las 

que la metabolómica más se ha abierto paso es en la encefalopatía hipóxico-isquémica 

(EHI)4,5,7–9,23. La encefalopatía neonatal consecuencia de un evento intraparto, y más en 

concreto la EHI cuando existe una relación causal con un evento hipóxico isquémico, es una 

de las principales causas de morbimortalidad neonatal hoy en día24. Los procesos que 

desencadenan la EHI son complejos y pueden estudiarse sendas fases diferenciadas en las 

cuales suceden una serie de fallos en el metabolismo energético que pueden desembocar en 

necrosis y apoptosis de tejido neuronal25. El sistema nervioso central (SNC) junto con el 

miocardio puede considerarse tejidos oxireguladores en tanto en cuanto dependen del 

metabolismo aerobio en una mayor extensión que el resto de los tejidos. A lo que respecta al 

SNC, el mantenimiento de su homeostasis tisular es especialmente crítico. Una disfunción en 

la circulación cerebral puede ocasionar una falta de oxígeno y glucosa que conlleva un rápido 

agotamiento de las reservas energéticas y la muerte celular en pocos minutos25. En el caso de 
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la EHI, la asfixia aguda que la antecede causa una disminución en la perfusión cerebral y 

desencadena la secuencia de daño. En una primera fase aguda, esta falta de oxígeno y glucosa 

conduce al metabolismo anaerobio, ocasionando un drástico descenso en la producción de 

adenosín trifosfato (ATP) y un incremento en las concentraciones de ácido láctico. El 

agotamiento del ATP conlleva un transporte transmembrana defectuoso lo que inicia el proceso 

de excitotoxicidad provocando necrosis y la activación de cascadas apoptóticas. En función de 

la duración del evento hipóxico-isquémico y de la intervención clínica, una recuperación 

parcial ocurre entre los 30 min y los 60 min después de la fase aguda. Esta recuperación marca 

el comienzo de la fase latente, que puede durar entre 1 a 6 horas y está caracterizada por un 

restablecimiento del metabolismo oxidativo y el consiguiente daño por reperfusión en el que 

se desencadenan los procesos de estrés oxidativo. Para los casos severos y moderados, una 

segunda fase de la EHI ocurre desde las 6 horas del evento hipóxico-isquémico hasta las 15 

horas. Esta segunda fase suele ser devastadora para el estado clínico del neonato, 

produciéndose un fallo energético secundario que se suma a los procesos iniciados en la fase 

latente, lo que supone la inactividad mitocondrial y muerte celular. En esta fase es cuando, con 

mayor frecuencia, ocurren las convulsiones. Por último, una tercera fase se describe para los 

días y meses posteriores al evento hipóxio-isquémico en la que aparece muerte celular tardía, 

una remodelación del cerebro dañado y astrogliosis25,26. En la actualidad, la EHI continúa 

siendo una de las causas más prevalentes de daño neurológico agudo y de afectación en el 

desarrollo suponiendo una mayor incidencia en parálisis cerebral, problemas cognitivos, 

retrasos en el crecimiento y epilepsia24,27–29. La magnitud de los fracasos en el metabolismo 

energético determina el daño histológico y la gravedad de la discapacidad neurológica 

posterior. El papel que juega la metabolómica y los biomarcadores en la EHI es, por un lado, 

mejorar el entendimiento de los procesos bioquímicos que ocurren en cada fase y, por otro, 

aportar información relevante que pueda guiar en el manejo clínico.  

La prematuridad es otro de los contextos clínicos neonatales en los que la determinación 

de biomarcadores y los estudios metabolómicos han experimentado un gran auge5,7. 

Actualmente la prematuridad es la principal causa de mortalidad neonatal en los países 

desarrollados y en cuanto a morbilidad a largo plazo, se ha relacionado con un peor 

neurodesarrollo, mayores tasas de ingresos hospitalarios y dificultades de aprendizaje y 

socioemocionales. Por lo tanto, la prematuridad supone un gran impacto económico en las 

familias y en los sistemas sanitarios alrededor de todo el mundo30.  Un nacimiento prematuro, 

según la Organización Mundial de la Salud, es aquél que ocurre antes de las 37 semanas de 

gestación o 259 días después del primer día del último periodo menstrual31. Adicionalmente, 

pueden clasificarse en diferentes categorías dependiendo de la edad gestacional como 

prematuros tardíos (entre 34 y 36+6/7 semanas), prematuros moderados (entre 32 y 33+6/7 

semanas), muy prematuros (menor de 32 semanas) y prematuros extremos o grandes 

prematuros (menor de 28 semanas)32, sin embargo no existen unos límites claros y coexisten 

diversas clasificaciones. En cualquier caso, incluso en el prematuro tardío, existe un mayor 

riesgo de complicaciones en comparación con un nacido a término. Este tipo de patologías 

incluyen al síndrome de distrés respiratorio, la broncodisplasia pulmonar, el ductus arterioso 
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persistente, la enterocolitis necrotizante, sepsis, la retinopatía del prematuro, la hemorragia 

intraperiventricular, la leucomalacia periventricular, y otras dolencias neurológicas junto con 

dificultades nutricionales, visuales y auditivas. Múltiples factores se han estudiado como parte 

de la etiología y la fisiopatología de la prematuridad entre los que destacan la susceptibilidad 

genética, el papel del estrés oxidativo, factores psicosociales y socioeconómicos, variables 

medioambientales al igual que infecciones. Sin embargo, en un gran número de nacimientos 

prematuros no puede encontrarse ningún factor claro30.  

Uno de los conceptos que por su papel clave más está siendo estudiado tanto en la EHI, 

la prematuridad y otros escenarios clínicos en el ámbito de la neonatología tales como la 

transición fetal-neonatal en sí misma, es el estrés oxidativo33–42. La definición más aceptada de 

este concepto es la elaborada por el Dr. Helmunt Sies que lo define como “un desbalance entre 

los oxidantes y los antioxidantes en favor de los oxidantes, conduciendo a una disrupción de la 

señalización redox y su control y/o a daño celular”43. Este desbalance, que no desequilibrio, 

supone una perturbación en los estados estacionarios redox. Tal y como se indica en la 

definición, se ha comprobado que el estrés oxidativo es parte de los mecanismos de 

señalización (p. ej. controla la expresión genética y la proliferación celular), pero que puede 

causar también daño a las biomoléculas induciendo apoptosis y afectando negativamente a los 

propios mecanismos de señalización redox44. Las especies reactivas oxidantes que participan 

en las reacciones redox biológicas pueden dividirse en especies reactivas de oxígeno (ROS, del 

inglés Reactive Oxygen Species); especies reactivas de cloro y bromo; especies reactivas de 

nitrógeno (RNS, del inglés Reactive Nitrogen Species); especies reactivas de azufre; carbonilos 

reactivos y especies reactivas de selenio. Las ROS son las más estudiadas y han sido las 

especies reactivas oxidantes por antonomasia. Estas especies se generan principalmente en la 

cadena de transporte electrónico y por la acción de diferentes enzimas oxidasas, pero también 

por el citocromo P450 microsomal y por la respuesta inmune. Las ROS comprenden un abanico 

de moléculas con diferente naturaleza química, desde los radicales libres (●OH, O2
●-, ●NO) a 

moléculas no radicalarias (HOCl, H2O2, O2 singlete) variando sus reactividades en hasta 11 

órdenes de magnitud43. Para mantener la homeostasis redox, las células emplean una compleja 

red de mecanismos que comprende aquellos enzimáticos y no enzimáticos. Desde una 

perspectiva clínica, las enzimas antioxidantes más importantes son la superóxido dismutasa 

(Superoxide Dismutase, SOD), la catalasa (CAT), la glutatión peroxidasa y la glucosa 6-fosfato 

deshidrogenasa (G6PD). En cuanto a las especies no enzimáticas que juegan un papel 

fundamental en los sistemas antioxidantes destacan el tripéptido glutatión (GSH), proteínas 

encargadas del transporte y almacenamiento del hierro como la transferrina y la ceruloplasmina 

junto con otras moléculas como el ácido úrico, la bilirrubina, y las vitaminas (p.ej. la vitamina 

A, E y C)45. Estos mecanismos antioxidantes maduran en las últimas etapas de la gestación y, 

por lo tanto, los prematuros tienen mermada su capacidad de responder a los eventos 

antioxidantes lo que les hace especialmente susceptibles al daño oxidativo33,34. En la 

Ilustración 2 se muestra un esquema de las diferentes implicaciones patológicas que se han 

descrito del estrés oxidativo en el prematuro.  
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Ilustración 2 Esquema con el desbalance antioxidantes/oxidantes y su impacto en el prematuro. 

El papel e impacto de los biomarcadores basados en moléculas pequeñas en el ámbito 

de la EHI, la prematuridad y el estrés oxidativo perinatales ha sido diverso, pero, sin embargo, 

hoy en día, únicamente unos pocos se utilizan sistemáticamente en la clínica. De hecho, en este 

contexto, los métodos dirigidos para determinar lactato y algunas vitaminas son los únicos que 

se encuentran implementados en IVDs y dispositivos médicos en los laboratorios clínicos. Esto 

contrasta con la ingente cantidad de métodos disponibles para evaluar diferentes biomarcadores 

basados en moléculas pequeñas que existen en la literatura, lo que pone de manifiesto el déficit 

de investigaciones traslacionales satisfactorias al respecto. Prueba de ello es que mientras existe 

un gran número de trabajos de revisión en los que se abordan estos biomarcadores desde un 

punto de vista clínico y bioquímico, los que lo hacen enfocados en una descripción y 

clasificación de la metodológica analítica son escasos.  

ii. Hipótesis y objetivos  

La hipótesis que se propone en la presente tesis doctoral es que el desarrollo de 

metodologías analíticas novedosas en el contexto neonatal permite mejorar la detección de 

diferentes biomarcadores de interés en diferentes biofluidos, facilitando su estudio en la toma 

de decisiones clínicas.  

Así, se han planteado dos objetivos principales para verificar nuestra hipótesis de 

trabajo. El primer objetivo es realizar dos revisiones bibliográficas, una primera centrada en 

biomarcadores basados en moléculas pequeñas de EHI y otra para biomarcadores de estrés 

oxidativo en el prematuro. El segundo objetivo es el desarrollo de diferentes métodos analíticos 

basados en LC-MS/MS, GC-MS y espectroscopía Raman amplificada por superficie (SERS, 
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del inglés Surface Enhanced Raman Spectroscopy) para la determinación de biomarcadores de 

EHI y estrés oxidativo perinatal. 

Los artículos que conforman la presente memoria de tesis doctoral por compendio de 

publicaciones se han dividido en dos secciones, introducida cada una de ellas por uno de los 

artículos de revisión y por sendos trabajos en los que se desarrollan distintos métodos 

analíticos.  

En una primera sección, titulada “Perinatal asphyxia biomarkers” los métodos 

incluidos son: 

• Un método mediante LC-MS/MS para la determinación cuantitativa de un panel 

de biomarcadores relacionados con la síntesis de fosfolípidos seleccionados a 

partir de estudios previos de metabolómica no dirigida. El método se emplea en 

el análisis de muestras de orina y plasma provenientes de un modelo animal de 

cerdo asfíctico.  

• Un método cuantitativo mediante GC-MS y su validación conforme a la guía de 

la FDA para el análisis de compuestos relacionados con el metabolismo 

energético. En el mismo trabajo se realiza la determinación de estos compuestos 

en muestras provenientes de un ensayo clínico fase III en el contexto de la EHI 

y en neonatos sanos. 

En una segunda sección, titulada “Oxidative stress assessment” se incluye los siguientes 

métodos: 

• Un método mediante LC-MS/MS para la determinación cuantitativa de 

biomarcadores de peroxidación lipídica en plasma sanguíneo de niños que han 

sufrido EHI y su validación analítica conforme a la guía de la FDA.  

• Un método mediante LC-MS/MS para el análisis semicuantitativo de una 

familia de biomarcadores de peroxidación del ácido adrénico en plasma y orina 

de prematuros.  

• Un método mediante LC-MS/MS para la determinación cuantitativa de una 

familia de biomarcadores de daño oxidativo a DNA y proteínas en leche 

materna mediante LC-MS/MS y su validación parcial conforme a la guía de la 

FDA.  

• Un método mediante SERS para la determinación directa de GSH en volúmenes 

muy pequeños (2 µL) de sangre de neonatos.  
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iii. Metodología 

 Obtención de las muestras: modelos animales y estudios clínicos 

Las muestras empleadas en los diferentes métodos desarrollados a lo largo de esta tesis 

se han obtenido de un modelo animal de cerdo asfíctico, de voluntarios sanos y de diferentes 

estudios clínicos en los que se reclutaron neonatos prematuros o a término en distintos 

contextos. En todos los casos, se contó con los requerimientos éticos correspondientes 

habiéndose recibido la aprobación de los comités de las instituciones implicadas.  

En el caso del modelo animal, se trata del consolidado modelo de cerdo recién nacido 

asfíctico del Departamento de Investigación Pediátrica del Hospital Universitario de Oslo 

(Noruega) cuyas características quirúrgicas se describen en el estudio de Andresen et al.46. En 

este modelo se emplean cerdos híbridos recién nacidos (12 a 36 horas) Noroc (LYxLD, es 

decir, híbrido Norwegian Landrace [L] ½, Yorkshire [Y] ¼ y Duroc [D] ¼)47. En el estudio del 

que obtuvimos las muestras, los animales tras haber sido anestesiados y estabilizados se 

dividieron en dos grupos: el grupo intervención (N = 26) y el grupo control (N = 6). A los 

cerdos del grupo intervención, se les produjo una hipoxia-isquemia ventilándolos con un 8% 

de O2 hasta que alcanzaron una presión arterial media <20 mmHg o un exceso de bases de <-

20 mM y, posteriormente, se les reanimó con O2 al 21% durante 30 minutos. El otro grupo, el 

grupo control, fue sometido a los mismos procedimientos que el grupo intervención (cirugía y 

duración del estudio) pero no se le indujo la hipoxia-isquemia. Las muestras de sangre de 

ambos grupos fueron obtenidas en tubos Vacutainer® con ácido etilendiaminotetraacético 

(EDTA) como anticoagulante a distintos tiempos durante el estudio: al inicio y al final de la 

hipoxia, antes de la reoxigenación y 2 y 9 horas después de la reoxigenación. Inmediatamente 

a la extracción de la sangre, se tomó una alícuota mediante capilar para realizar la 

determinación de gases sanguíneos y lactato y, del resto, se aisló el plasma por centrifugación 

y se conservó a -80 ºC hasta su análisis. Por su parte, las muestras de orina se obtuvieron 

mediante punción vesical a los mismos tiempos e igualmente fueron conservadas a -80 ºC hasta 

su análisis.  

 Las muestras empleadas en el estudio cuantitativo de biomarcadores del metabolismo 

energético por GC-MS se obtuvieron de los pacientes de una subpoblación del ensayo clínico 

multicéntrico español HYPOTOP (194 muestras) y de una cohorte de neonatos sanos al alta 

(19 muestras). En el estudio HYPOTOP se trata de un ensayo fase III diseñado para comprobar 

la eficacia de un fármaco, el topiramato, como adyuvante al tratamiento de hipotermia 

terapéutica en neonatos con EHI moderada y severa. Las muestras de sangre se extrajeron 

empleando jeringas heparinizadas a diferentes tiempos: al nacimiento (por lo tanto, antes de la 

hipotermia) y a las 24, 48 y 72 horas. Inmediatamente a la extracción de la muestra se obtuvo 

el plasma mediante centrifugación y se conservaron las muestras a –80 ºC hasta su análisis.  
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 Las muestras de plasma en las que se realizó la cuantificación de biomarcadores de 

peroxídación lipídica se obtuvieron, al igual que en el caso anterior, de un ensayo clínico de 

neonatos a término con EHI moderada y severa. El estudio se llevó a cabo en el Hospital 

Universitario de Carolina del Sur en Charleston (EE. UU.) y, en este caso, se trataba de un 

ensayo fase 0 para evaluar el tratamiento con N-acetilcisteína (NAC) y calcitriol como 

adyuvantes a la hipotermia terapéutica. Las muestras de sangre se recogieron en tubos con 

EDTA, y el plasma se obtuvo y se conservó de la misma manera que para el estudio anterior. 

Un total de 150 muestras de plasma de 20 neonatos se extrajeron a diferentes tiempos durante 

el tratamiento, durante la hipotermia y después de la hipotermia. 

 Las 75 muestras de plasma y 23 de orina empleadas en el estudio de los productos de 

oxidación a ácido adrénico se obtuvieron de una cohorte de prematuros moderados de entre 31 

y 33 semanas reclutados en el Rainbow Babies & Children's Hospital de Cleveland (EE. UU.). 

Las muestras de sangre para obtener el plasma se recogieron empleando EDTA como 

anticoagulante y las muestras de orina mediante el empleo de bolsas Hollister o impregnación 

y exprimido de algodón. Las muestras de plasma y orina se conservaron a -80 ºC hasta su 

análisis.  

 Las muestras de leche materna empleadas en el desarrollo del método de análisis de 

productos de oxidación a ADN y proteínas se obtuvieron de dos estudios diferentes. En un 

primer estudio, se trataban de 59 muestras de leche materna de 31 madres con parto prematuro 

de ≤32 semanas de la Comunidad Valenciana reclutadas en el Hospital Universitario y 

Politécnico La Fe de València. Las participantes en el estudio se extrajeron un mínimo de 20 

mL de leche (manualmente o con sacaleches) una vez por semana a partir del momento en el 

que se hubo establecido una nutrición enteral completa de aproximadamente 150 mL Kg-1      

dia-1 de leche materna. El segundo estudio del que se obtuvieron las muestras se trataba de una 

evaluación de la pasteurización. En este último caso se utilizaron un total de 13 mezclas de 

muestras de leche materna donada almacenadas en el banco de leche Aladina-MGU del hospital 

12 de octubre de Madrid antes y después de la pasteurización. Las muestras de ambos estudios 

se conservaron a -20 ºC hasta su análisis. 

 Las micromuetras de sangre (2 µL) recogidas para el desarrollo del método de 

determinación de GSH se obtuvieron de 20 adultos voluntarios, reclutados en el edificio de 

Investigación del Campus de Burjassot, mediante pinchazo en el dedo con lanceta. Para ese 

mismo estudio, también se emplearon 36 muestras de neonatos para realizar la comparación 

con el método de LC-MS/MS y para confirmar su desempeño con muestras neonatales. Para 

ello, se recogieron aproximadamente 60 µL de sangre sobrante de la prueba del talón de 

neonatos a término a 48 horas de nacimiento en el Hospital Universitario y Politécnico La Fe 

de València. De esas muestras, se tomaron 2 µL para realizar la determinación mediante SERS 

y 50 µL para la determinación por LC-MS/MS. El análisis mediante SERS se realizó 

inmediatamente y la muestra para el análisis mediante LC-MS/MS se conservó a -80 ºC tras 

adición de 10 µL de disolución acuosa de N-etilmaleimida (NEM) y dejar incubando a 

temperatura ambiente durante 5 minutos. 
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 Biomarcadores analizados  

En la Ilustración 3 pueden observarse las estructuras moleculares de los diferentes 

biomarcadores analizados en cada capítulo. Asimismo, en la Ilustración 4 se representan las 

estructuras de los compuestos empleados como patrones internos en cada una de las diferentes 

determinaciones. Estos compuestos puros fueron obtenidos de las casas comerciales Cayman 

Chemical (Ann Arbor, EE. UU.), Cambridge Isotope Laboratories Inc. (Tewksbury, EE. UU.), 

CDN Isotopes (Pointe-Claire, Canada), Toronto Research Chemicals (Toronto, Canada) o 

Merck (Darmstadt, Alemania). En cuanto a aquellos que no se encontraban disponibles 

comercialmente, fueron sintetizados por el grupo del Instututo de Biomoléculas Max 

Mousseron de Montpelier (Francia).  

 

Ilustración 3 Estructuras moleculares de los diferentes biomarcadores analizados en esta tesis doctoral. Nota: 

para los compuestos señalados con * se incluyeron los diasteroisómeros R y S de la mezcla indicada en el análisis. 
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Ilustración 4 Patrones internos utilizados en cada uno de los métodos desarrollados en esta tesis.  

 Preparación de las muestras y análisis 

Tal y como se ha indicado en i, las muestras provenientes de estudios clínicos centrados 

en el neonato presentan una serie de peculiaridades que resultan en la inaccesibilidad a grandes 

volúmenes de estas. Por ello, los métodos que se han desarrollado a lo largo de esta tesis han 

sido adaptados para trabajar con los menores volúmenes de muestra posibles, especialmente, 

en los análisis de plasma sanguíneo o sangre total. Asimismo, se han empleado diferentes 

preprocesados con el objetivo de hacer las muestras compatibles con las diferentes técnicas 

instrumentales empleadas. Dependiendo de la técnica, se ha requerido aumentar la 

concentración del analito, incrementar su estabilidad, adicionar patrones internos, eliminar la 

matriz u obtener al analito en una forma detectable por el sistema (p.ej. en forma iónica o 

neutra, en estado gaseoso, en disolución a un determinado pH, etc.). Para llevar esto a cabo se 

han empleado diferentes estrategias, las cuales se encuentran esquematizadas en la Ilustración 

5 para cada uno de los métodos desarrollados en los diferentes capítulos de la tesis. 
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Ilustración 5 Esquema de los diferentes procesados de muestra empleados en los métodos desarrollados en esta 

tesis. Nota: PI = patrón interno, MeOX = metoxiamina, MSTFA = N-metil-N-(trimetilsilil)trifluoroacetamida, 

TMSCl = cloruro de trimetilsililo, SPE = extracción en fase sólida. 

Uno de los pasos más utilizados en los procesados ha sido la desproteinización con 

disolvente orgánico o con disolución acuosa ácida como paso para eliminar parte de la matriz. 

Tal y como figura en el esquema de la Ilustración 5, para este propósito se ha empleado 

acetonitrilo (CH3CN), ácido fosfórico (H3PO4) o ácido perclórico (HClO4) seguido de 

centrifugación.  

En el método desarrollado para el estudio de biomarcadores de la síntesis de 

fosfolípidos (capítulo 2), la desproteinización es el único paso del procesado. Posteriormente 

las muestras se inyectaron en el sistema de LC-MS/MS Acquity UPLC - Xevo TQS® de la 

casa Waters (Milford, EE. UU.). La separación cromatográfica se realizó empleando una 

columna de cromatografía líquida de interacción hidrofílica (HILIC) y las transiciones de 

MS/MS se seleccionaron inyectando los patrones correspondientes. La cuantificación se llevó 

a cabo empleando una calibración mediante patrón interno. Como control de calidad en cada 

secuencia de análisis se incluyó, cada 10 muestras, una muestra representativa de todas 

(muestra quality control, QC) preparada a partir de un pequeño volumen igual de cada una de 

ellas y fortificada con una mezcla de estándares de los analitos. Mediante esa muestra QC se 

comprobó que los valores de precisión y exactitud se encontraban con una desviación estándar 

máxima del 25% y una recuperación en el rango 75-125%, respectivamente. En cuanto a la 

determinación de lactato realizada en el quirófano, se emplearon las muestras de sangre 

recolectadas en capilar y se inyectaron en el sistema autoanalizador Blood Gas Analyzer 860 

de Ciba Corning Diagnostics Corp. (Medfield, EE. UU). 
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Para el análisis de biomarcadores relacionados con el metabolismo energético por GC-

MS (capítulo 3), una vez desproteinizada la muestra, se utilizó una derivatización por 

metoximación-sililación para aumentar la volatilidad y estabilidad, condiciones sine qua non 

para el análisis mediante GC-MS. Las muestras se inyectaron en el equipo 6890GC-5973N 

equipado con una columna HP-5MS, todo ello de la casa Agilent (Santa Clara, EE. UU.). La 

cuantificación se realizó empleando calibración mediante patrón interno y se procedió a la 

validación de acuerdo con la guía de la FDA14. Se realizaron las pruebas de estabilidad en 

patrones y en muestra y se comprobó la precisión y exactitud mediante el análisis de 

disoluciones patrón y de muestra adicionada. Asimismo, como control de calidad se emplearon 

igualmente disoluciones QC.  

Por su parte, en el análisis de biomarcadores de peroxidación lipídica (capítulos 5 y 6) 

antes de la desproteinización se implementó un paso de hidrólisis tanto en las muestras de orina 

como en las de plasma para obtener los analitos en su forma analizable. En el caso del plasma 

se empleó una hidrólisis básica con KOH al 15% para obtener los analitos a partir de sus ésteres, 

es decir, una reacción de saponificación. Para las muestras de orina se empleó una hidrólisis 

enzimática mediante β-glucuronidasa para obtener los analitos a partir de sus glucurónidos. 

Tras la hidrólisis y desproteinización se sometieron las muestras a extracción en fase sólida 

(SPE, del inglés Solid Phase Extraction) empleando la fase estacionaria Discovery® C18 en 

su formato en placa de 96 pocillos, actualmente, de la casa comercial Merck (Darmstadt, 

Alemania). Las muestras se inyectaron en el sistema LC-MS/MS Acquity UPLC - Xevo TQS® 

de la casa Waters (Milford, EE. UU.). La separación cromatográfica se llevó a cabo empleando 

una columna BEH C18, también de Waters. Las condiciones cromatográficas y de 

espectrometría de masas se seleccionaron empleando patrones comerciales y de síntesis en el 

capítulo 5 y, en el capítulo 6, tras el análisis de una suspensión de ácido adrénico (AdA) oxidada 

in vitro con 2,2'-Azobis(2-amidinopropano) dihidrocloruro (AAPH). En el método cuantitativo 

del capítulo 5 la cuantificación se llevó a cabo empleando calibrados externos con patrón 

interno y se realizó una validación siguiendo la guía de la FDA14, tal y como se ha indicado 

anteriormente.  

El procesado de las muestras de leche (capítulo 7) resulta especialmente delicado por 

sus características de sistema coloidal. Para el método de análisis de biomarcadores de daño 

oxidativo a DNA y proteínas en esta matriz se ha empleado una combinación de 

centrifugaciones, una a baja velocidad (1200 g) y otra a alta (16000 g) junto con la 

desproteinización suave con H3PO4 al 5%. El sobrenadante resultante de este tratamiento se 

sometió a SPE empleando la fase estacionaria para compuestos polares ISOLUTE® ENV+ de 

la casa comercial Biotage (Uppsala, Suecia) en formato de placa de 96 pocillos, con el mismo 

objetivo que el indicado para el caso de los biomarcadores de peroxidación lipídica. El 

resultante se inyectó en el sistema LC-MS/MS Acquity UPLC - Xevo TQS® de la casa Waters. 

En la validación del método se siguió un esquema similar al del capítulo 5, seleccionando los 

parámetros instrumentales empleando disoluciones patrón y validando el método de acuerdo a 

la guía de la FDA14.  
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Por último, en la determinación directa de GSH en sangre (capítulo 8) se desarrolló un 

procesado de muestra muy sencillo que permite realizar todos los pasos del análisis en unos 

pocos minutos por muestra. En este método un microvolumen de sangre (2 µL) se desproteinizó 

con HClO4 al 10% y se le añadió un sustrato SERS de coloide de Ag sintetizado previamente 

mediante el método de Lepold et al.48. Esa mezcla con el coloide de Ag y muestra ácida 

desproteinizada se introdujo en el interior de un capilar de cuarzo transparente mediante 

capilaridad y se utilizó como celda de medida de la señal SERS empleando el microscopio 

Raman XploRA ONE de Horiba (Kioto, Japón). La determinación de la concentración se 

realizó mediante una calibración de patrón interno en la que tanto precisión como exactitud se 

evaluaron empleando réplicas de muestras adicionadas. Adicionalmente, un lote de muestras 

se analizó por este nuevo método y por un método de LC-MS/MS desarrollado anteriormente 

por nuestro grupo49, para realizar la comparación entre ambos. El procesado de las muestras 

para el análisis de GSH por LC-MS/MS consistió en la precipitación de las proteínas con 

HClO4 (empleando las alícuotas de 100 µL de sangre previamente tratadas con NEM) y en la 

dilución con H2O (0,1% HCOOH). 

 Análisis de los datos  

Para llevar a cabo el análisis de los datos generados en los diferentes experimentos, en 

primer lugar, se emplearon las diferentes suites de software de los equipos para realizar la 

integración de los cromatogramas, los calibrados y las interpolaciones en los métodos de LC-

MS/MS y GC-MS o la adquisición de los espectros en el método de SERS. Estos programas 

fueron: MassLynx™ de Waters, MassHunter Workstation™ de Agilent (Santa Clara, EE. UU.) 

y Labspec™ de Horiba.  

Para el resto de los cálculos se empleó la hoja de cálculo Microsoft Excel 2016 de 

Microsoft (Redmond, EE. UU.) y el sistema de cómputo numérico MATLAB de Mathworks 

(Natick, EE. UU) versiones 2015a-2017b a través de scripts y funciones desarrollas ad hoc y 

mediante el empleo de las funciones incluidas en el paquete PLS_Toolbox 8.0 de Eigenvector 

Research Inc. (Wenatchee, EE. UU.). Asimismo, exclusivamente para el cómputo de las curvas 

ROC multivariantes realizado en el capítulo 2, se empleó la herramienta en línea Metaboanalyst 

3.050. 

iv. Principales resultados  

En el análisis de biomarcadores en plasma en el modelo de cerdo asfíctico del capítulo 

2, se detectó un incremento significativo para la colina, la citidina y la uridina al comparar las 

concentraciones antes y después de la hipoxia y el valor de estos biomarcadores después de la 

hipoxia permaneció significativamente aumentado en comparación con el grupo control 

(prueba de la U de Mann-Whitney, α = 0.05). Interesantemente, esa diferencia significativa 

permaneció, para el caso de la colina, incluso 2 horas después de la reoxigenación. También se 
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observó que las concentraciones de todos los biomarcadores estudiados se redujeron 

significativamente (prueba de la U de Mann-Whitney, α = 0.05) tanto para el grupo 

intervención como para el grupo control al final del estudio (9 horas después de la 

reoxigenación. Para evaluar la capacidad de los diferentes biomarcadores para detectar la 

hipoxia se construyeron curvas ROC (del inglés, Receiver Operating Characteristic) para cada 

uno de ellos. Inmediatamente después de la hipoxia el área bajo la curva (AUC) para la colina, 

citidina y uridina resultó de >0.96 mostrando su poder predictor. También se construyeron 

curvas ROC multivariantes en las que se añadió las determinaciones de lactato realizadas en el 

quirófano y se observó una mejora en el poder predictor.  

En cuanto al método de análisis del metabolismo energético desarrollado en el capítulo 

3, se comprobó la resolución cromatográfica, los límites de cuantificación y la estabilidad de 

los patrones y muestras durante el análisis y almacenaje de estas, obteniéndose valores dentro 

de los márgenes de la guía de validación. Asimismo, del análisis de patrones y muestras 

adicionadas se calculó la precisión y exactitud obteniéndose igualmente valores adecuados. El 

análisis de las muestras de la cohorte HYPOTOP mostró como algunos metabolitos 

(acetoacetato, succinato, fumarato y α-cetoglutarato) permanecieron constantes a lo largo de 

los primeros días mientras que otros como el lactato, piruvato y β-hidroxibutirato disminuyeron 

y el maleato aumentó (prueba de la U de Mann-Whitney, α = 0.05). Cuando se compararon las 

concentraciones de los biomarcadores entre ambas cohortes (control e HYPOTOP) para el 

mismo tiempo de vida del neonato se encontró que lactato y piruvato estaban 

significativamente aumentados en la cohorte HYPOTOP, mientras que acetoacetato y el β-

hidroxibutirato se encontraban significativamente disminuidos en esa misma cohorte en 

comparación con la cohorte de niños sin EHI (prueba de la U de Mann-Whitney, α = 0.05).  

En el método desarrollado en el capítulo 5, de los 26 analitos incluidos en el análisis 

(ver Ilustración 3) se resolvieron 23 compuestos, sin embargo, fue imposible la resolución 

completa debido a la extremada similitud de los compuestos analizados. Aunque sí se 

consiguieron separar satisfactoriamente varios diasteroisómeros, mostrando la gran potencia 

de la técnica LC cuando se emplean columnas de alto rendimiento con tamaños de partícula <2 

µm. En cuanto a la validación del método, en el análisis de patrones la exactitud y precisión 

fue adecuada para la mayoría de los compuestos con algunas excepciones para 17(RS)-10-epi-

SC-Δ15-11-dihomo-IsoF, 1a,1b-dihomo-PGF2α y 15-E2t-IsoP a algunos niveles. Por su parte, 

en el análisis de disoluciones adicionadas se evaluaron conjuntamente los efectos de la SPE y 

la hidrólisis básica a partir de las recuperaciones correspondientes y se encontró que 15-E2t-

IsoP, 15-keto-15-E2t-IsoP, PGE2 y 15-keto-15-F2t-IsoP se degradaban completamente. De la 

observación de su estructura, hipotetizamos un mecanismo de degradación durante la hidrólisis. 

En cuanto a los 3 primeros, que comparten un sistema β-hidroxicetónico, proponemos una 

reacción de deshidratación del mismo, mientras que para el 15-keto-15-F2t-IsoP hipotetizamos 

que se degrada a partir de su sistema ẟ-hidroxi-α,β-instaurado. También se observaron 

recuperaciones insatisfactorias para algunos dihomo-IsoPs y dihomo-IsoFs cuya causa no 

pudimos identificar. En el análisis de las muestras de plasma de neonatos los niveles detectados 
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fueron muy bajos y en la mayoría de las muestras analizadas, la mayoría de los compuestos 

permanecieron por debajo de límite de cuantificación. Sin embargo, los que sí pudieron 

detectarse mostraron un perfil de concentraciones temporal compatible con las observaciones 

realizadas hasta ahora en este tipo de compuestos51,52.  

En el desarrollo del método de análisis semicuantitativo de biomarcadores de 

peroxidación del AdA (capítulo 6), se identificaron las transiciones MS/MS relacionadas con 

una generación in vitro de dihomo-IsoPs y dihomo-IsoFs creciente con el tiempo, basándonos 

en la masa atómica de sus estructuras. Tanto el procesado de la muestra y las condiciones del 

método LC-MS/MS pudieron seleccionarse de manera que fuesen compatibles con la 

determinación de isoprostanoides e isofuranoides en plasma y orina implementadas en los 

diferentes métodos desarrollados en el grupo51–55. La determinación semicuantitativa de los 

dihomo-IsoPs y dihomo-IsoFs empleando este enfoque se realizó en un total de 75 muestras de 

plasma y 23 de orina de recién nacidos prematuros. La orina resultó ser la matriz donde el 

mayor número de muestras estuvo por encima de un umbral de 10 veces el área del blanco con 

un 70% y un 100% para los dihomo-IsoPs y dihomo-IsoFs, respectivamente. En cuanto a las 

muestras de plasma, únicamente en el caso de los dihomo-IsoFs se detectó señal por encima de 

ese umbral para el 12% de las muestras.  

En el método desarrollado en el capítulo 7, para el análisis de biomarcadores de daño 

oxidativo a DNA y proteínas en leche materna, se cumplieron los requisitos de una validación 

parcial del método siguiendo los requerimientos de la guía de validación de la FDA. El valor 

de las recuperaciones sobre disoluciones de muestra fortificadas con analito estuvieron en el 

rango 90-100% con una desviación estándar relativa <20%, excepto para algunos analitos en 

algunos niveles que resultó del 30%. Teniendo en cuenta la complejidad de la muestra, 

consideramos satisfactorios estos niveles de exactitud y precisión. El análisis de las muestras 

de leche materna de madres con parto prematuro (59 muestras) resultó de una sensibilidad 

adecuada para cuantificar todos los biomarcadores en >90% de las muestras. Asimismo, el 

análisis de 13 muestras de leche humana antes y después de la pasteurización permitió evaluar 

el efecto de la pasteurización sobre la estabilidad de los diferentes biomarcadores. No 

encontrándose diferencias estadísticamente significativas antes y después de la pasteurización 

(prueba de los rangos con signo de Wilcoxon, α = 0.05) para ningún biomarcador.  

A lo que respecta al método de cuantificación de GSH mediante SERS desarrollado en 

el capítulo 8, se consiguió una ampliación de la señal del orden de 103-104 veces respecto a la 

señal Raman sin SERS, lo cual supuso una mejora sustancial respecto a estudios anteriores56. 

Asimismo, el uso conjunto de una calibración de patrón interno isotópicamente marcado y el 

de una celda de medida capilar de cuarzo permitió obtener también una reproducibilidad 

mejorada. En cuanto a la calibración, se empleó el desplazamiento de la banda 1710 cm-1 a 

1765 cm-1 que aparece en el GSH-glicina13C215N como manera de detectar por separado las 

señales del patrón interno y analito en muestras y calibrado. Utilizando como respuesta la ratio 

entre la intensidad de la banda debida al GSH y la del patrón interno, se apreció una relación 

polinómica con la concentración, pero lineal con la fracción de analito respecto al total 
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analito+patrón interno. Esta relación lineal se empleó para construir los calibrados que 

mostraron una muy buena precisión inter- e intradía con una desviación estándar relativa <11%. 

La exactitud fue estimada mediante el cálculo de las recuperaciones en muestras fortificadas a 

diferentes niveles, resultando estas entre el 99 y el 103%. Por último, se analizó el GSH 

simultáneamente en muestras de neonatos a término mediante un método LC-MS/MS 

desarrollado previamente en nuestro grupo y mediante el nuevo método desarrollado por SERS 

no obteniéndose diferencias significativas entre ambos métodos. El resultado de ambas 

determinaciones, expresado como concentración media ± desviación estándar de GSH, fue de 

1400 ± 400 µM para el método SERS y de 1200 ± 400 µM para el de LC-MS/MS.  

v. Conclusiones y trabajo futuro  

A lo largo de esta tesis doctoral, se ha demostrado la aplicabilidad de diferentes técnicas 

analíticas para abordar el análisis de biomarcadores en biofluidos en el contexto neonatal. Del 

desarrollo y el empleo de los diferentes métodos hemos extraído diferentes conclusiones que 

se resumen a continuación: 

• En el plasma sanguíneo de un modelo animal de cerdo asfíctico pueden 

analizarse mediante LC-MS/MS la colina, la citidina, la uridina y la betaína y 

son un potencial biomarcador de EHI, que, combinadas con lactato, mejoran el 

poder predictivo del lactato solo.   

• Puede validarse un método basado en GC-MS para el análisis de biomarcadores 

del metabolismo energético en plasma sanguíneo de neonatos. Asimismo, 

empleando ese método es posible obtener los perfiles de concentración de estos 

compuestos en neonatos con EHI sometidos a hipotermia terapéutica y en 

neonatos sanos.  

• Es posible una validación completa, siguiendo las directrices de la FDA, de un 

método basado en extracción en fase sólida y LC-MS/MS para el análisis de un 

panel de isoprostanoides e isofuranoides en plasma de neonatos. Sin embargo, 

es necesario excluir del análisis los isómeros que sufren degradación durante el 

paso de hidrólisis en el procesado de la muestra. Este método permite el estudio 

del perfil de peroxidación lipídica en neonatos durante sus primeras semanas de 

vida. 

• El análisis de la oxidación in vitro del ácido adrénico se puede emplear para 

identificar las señales de LC-MS/MS selectivas a esta oxidación y así analizarlas 

en muestras de plasma y orina. Mediante este enfoque se han detectado 

productos de oxidación de este ácido graso poliinsaturado en muestras de orina 

de prematuros y en una pequeña fracción de muestras de plasma.   

• Es posible el análisis de biomarcadores de daño oxidativo a DNA y proteínas 

en muestras de leche materna empleando un método basado en LC-MS/MS y 

un preprocesado de extracción en fase sólida. Asimismo, hemos demostrado que 
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este método puede validarse de acuerdo con las directrices de la FDA. Con el 

método validado se ha estudiado el rango de concentración de estos compuestos 

en esas muestras y comprobado como la pasteurización de la leche no modifica 

significativamente la concentración de estos.  

• El empleo de un patrón interno isotópicamente marcado y el uso de un capilar 

de cuarzo como celda de medida es una estrategia útil para aumentar la precisión 

en la determinación de GSH mediante SERS. De esta manera se puede 

desarrollar un método que permita la cuantificación de GSH en micromuestras 

de sangre de neonatos. 

Además de los métodos analíticos, hemos realizado dos revisiones bibliográficas, una 

sobre los biomarcadores de EHI y otra sobre los de estrés oxidativo en prematuridad, con un 

enfoque más metodológico que clínico. Aportando a la literatura una información que creemos 

que todavía no había sido revisada en profundidad.  

 Por último, hay que destacar que también han ido surgiendo numerosos aspectos nuevos 

que han quedado abiertos, fruto de los trabajos de esta tesis y que están siendo objeto de estudio 

en la actualidad por nuestro grupo de investigación. Entre los que destacan: 

• El análisis simultáneo en muestras de neonatos de los biomarcadores propuestos 

como fruto de los estudios en el modelo animal y su validación clínica. Para 

ello, se ha propuesto el desarrollo de un método que combine los hallazgos que 

se han hecho en otros trabajos de nuestro grupo, como es el uso del score 

metabólico57.  

• El estudio del metabolismo energético mediante GC-MS, incluyendo análisis 

de metabolómica dirigida y no dirigida, en un modelo animal de asfixia extrema 

para caracterizar los cambios que ocurren en ese contexto. 

• El desarrollo de un método validado para los biomarcadores de peroxidación 

lipídica que solvente las limitaciones encontradas en la hidrólisis básica de la 

muestra, en el que se aumente la resolución cromatográfica y la sensibilidad. 

• Estudiar con detalle las reacciones de oxidación de los ácidos grasos 

poliinsaturados in vitro bajo condiciones de interés en neonatología. Desarrollar 

un modelo de membrana lipídica.  

• El desarrollo de un método de análisis a pie de cama (PoC, Point of care) de 

GSH basado en SERS en el que se pueda recolectar la muestra en papel (análisis 

de gota de sangre seca) y determinar el glutatión oxidado. 

• El desarrollo de un sensor basado en aptámeros para la detección de los 

diferentes biomarcadores que han demostrado útiles en los diferentes contextos 

neonatales.  
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Abstract 

The main motivation of this PhD thesis is the assessment of small molecule biomarkers 

with relevance in the neonatal period, and more specifically, in situations of perinatal asphyxia 

and oxidative stress of the newborn.  

Novel analytical methods have been developed and tailored to deal with the limitations 

of sampling in the neonatal population, employing minimally invasive approaches and small 

sample amounts. Different sample pre-processing steps are implemented within the workflows 

for the analysis of urine, blood, and human milk including Solid Phase Extraction and different 

deproteinizations. The employed analytical methods are based on Liquid Chromatography-

tandem Mass Spectrometry (LC-MS/MS) for the analysis of phospholipid synthesis-related 

biomarkers, DNA & protein oxidative damage compounds, and lipid peroxidation products; 

Gas chromatography-Mass spectrometry (GC-MS) for the analysis of biomarkers of the energy 

metabolism; and Surface Enhanced Raman Spectroscopy (SERS) for the analysis of 

glutathione.  

The different developed methods have been successfully applied in the early assessment 

of severity of perinatal asphyxia, the analysis of the energy metabolism-related compounds 

under therapeutic hypothermia treatment, the analysis of novel lipid peroxidation biomarkers 

after perinatal asphyxia, the analysis of oxidative stress in human milk, and the direct analysis 

of glutathione in blood microsamples. Therefore, it has been demonstrated the potential 

applicability of the advanced analytical technologies into the clinical decision-making. 

 





 

Hypothesis and objectives 

It was hypothesized that the development and implementation of novel analytical 

methods in the neonatal context offers an improved detection of biomarkers in biofluids, 

allowing their research in the clinical decision-making.  

To confirm this hypothesis this PhD thesis was focused on two complementary 

objectives. The first objective was the review of the literature regarding the small molecule 

biomarkers for hypoxic ischemic encephalopathy and preterm oxidative stress. The other 

objective was the development of different analytical methods based on LC-MS/MS, GC-MS, 

and SERS for the determination of small molecule biomarkers of HIE and perinatal oxidative 

stress. Presented as a compendium of publications, the different chapters are divided into two 

main sections. Each section is introduced with a review article which reflects the state-of-the-

art followed by articles corresponding to the different analytical methods developed during this 

PhD thesis within the scope of that section. 

The first section, entitled ‘Perinatal asphyxia biomarkers’ consists of the following 

methods: 

• LC-MS/MS determination of a panel of biomarkers related with the synthesis 

of phospholipids in urine and blood plasma from an animal model. These 

biomarkers were selected tacking into account the results of previous non-

targeted metabolomic studies.  

• Quantitative analysis by a validate GC-MS approach of energy metabolism-

related metabolites in plasma samples from neonates with HIE. 

The second section, entitled ‘Oxidative stress assessment’ includes:  

• A validated LC-MS/MS method for the quantification of a panel of lipid 

peroxidation biomarkers in blood plasma from neonates with HIE.   

• An LC-MS/MS approach for the semiquantitative analysis of lipid peroxidation 

products of adrenic acid in blood plasma and urine from preterm infants.  

• A validated LC-MS/MS method for the quantification of a panel of biomarkers 

of oxidative damage to DNA and proteins in human milk samples.  

• A novel method based on SERS for the quantification of GSH in blood 

microsamples from neonates. 





 

Section I. Perinatal 
asphyxia biomarkers  





 

Chapter 1 Small molecule biomarkers for neonatal 

hypoxic ischemic encephalopathy 

1.1 Abstract 

Hypoxic Ischemic Encephalopathy (HIE) is one of the most deleterious conditions in 

the perinatal period and the access to small molecule biomarkers aiding accurate diagnosis and 

disease staging, progress monitoring, and early outcome prognosis could provide relevant 

advances towards the development of personalized therapies. The emergence of metabolomics, 

the “omics” technology enabling the holistic study of small molecules, for biomarker discovery 

employing different analytical platforms, animal models and study populations has drastically 

increased the number and diversity of small molecules proposed as candidate biomarkers. 

However, the use of very few compounds has been implemented in clinical guidelines and 

authorized medical devices. In this work we review different approaches employed for 

discovering HIE-related small molecule biomarkers. Their role in associated biochemical 

disease mechanisms as well as the way towards their translation into the clinical practice are 

discussed. 

1.2 Introduction  

Neonatal encephalopathy (NE) following an intrapartum-related event is one of the 

leading causes of neonatal morbimortality worldwide. In situations where a causal relationship 

between NE and a hypoxic-ischemic insult is evidenced, it is referred to as perinatal hypoxic 

ischemic encephalopathy (HIE)24. Neonates that have suffered HIE have greater incidence of 

serious conditions such as cerebral palsy, cognitive impairment, growth restriction, and 

epilepsy24,27–29. Improvements in resuscitation58,59, including the understanding of the role of 

the oxidative stress (OS)-related mechanisms40,60, the introduction of therapeutic hypothermia 

(TH) as the standard-of-care treatment61, and the employment of novel monitorization tools 

and biomarkers, represent the main landmarks in HIE management28. However, there is still a 

continuing need for early, accurate HIE diagnosis and prognosis biomarkers to enable the 

transition towards personalized treatment strategies. 
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The FDA-NIH Joint Leadership Council defined the term “biomarker” in the BEST 

(Biomarkers, EndpointS, and other Tools) glossary as: “A defined characteristic that is 

measured as an indicor of normal biological processes, pathogenic processes, or responses to 

an exposure or intervention, including therapeutic interventions. Molecular, histologic, 

radiographic, or physiologic characteristics are types of biomarkers.”6. In this sense, 

biomarkers have helped in HIE assessment since the first half of the 20th century. Examples 

include the work of Eastman et al.3 that reports the discovery of blood lactate increase during 

neonatal hypoxia, or the well-known Apgar62 and more recent Sarnat63 scores. The analytical 

methods available for biomarker discovery at that time and until the late 20th century were 

very limited in terms of selectivity and sensibility and hence, the discovery of new molecular 

biomarkers was troublesome. With the development of powerful analytical platforms, the range 

of accessible compounds was expanded, but the discovery of new biomarkers remained 

subordinated to the existing evidence sources. With the emergence of “omics” techniques in 

the last decades, the paradigm has shifted to the holistic study of biological systems, allowing 

to exploit the full potential of the increased analytical capabilities. In this sense, metabolomics, 

which is dedicated to the comprehensive analysis of small molecules, has been increasingly 

applied to the study of HIE7,8,64,65. Since metabolomics began to emerge, the number of 

literature reports on HIE-related biomarkers has grown rapidly as shown in Figure 1.1. 

However, despite the increasing number of candidate biomarkers of HIE, none of the 

biomarkers discovered employing metabolomics has been clinically validated and 

implemented in the current clinical practice. This fact is a hot topic in the metabolomics 

community and has been recently discussed elsewhere66. The proper design of biomarker 

discovery studies, and the data quality assessment and employed statistical approaches have 

been highlighted as the main challenges in successful biomarker discovery and their 

implementation66,67. 

 

Figure 1.1 Percentage of the registered records in the Web of Science in the 1999–2018 period, for each 3-year 

interval. Databases: WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO. The boolean combinations employed 

were TS = (asphy* OR hypox* OR HIE OR anoxia) AND TS = (perinatal OR pediatric OR neonat* OR newborn) 

for all registers; biomarker, metabolomics, and omics (not metabolomics) fieldswere searched refining by 

biomarker, (metabolom or metabonom*), and ((genomics or transcriptomics or proteomics or lipidomics or 

epigenomics)), respectively. 
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We reviewed different approaches employed for small molecule biomarker discovery 

for HIE with a special focus on the most repeatedly reported compounds and their biochemical 

role in disease mechanisms. Furthermore, the clinical translation and how the candidate 

biomarkers fit into the recent U.S. Food and Drug Administration (FDA) and European 

Medicines Agency (EMA) programs and regulations were also discussed. 

1.3 Biomarker discovery and assessment methods 

A plethora of analytical techniques have been employed in pursuit of HIE small 

molecule biomarkers: classic titrations3; colorimetric reactions68,69; enzymatic assays and 

immunoassays with spectroscopic, electrochemical or radiometric detection68–73; binding 

assays74; nuclear magnetic resonance (NMR)23,75–86; Fourier-transform ion cyclotron 

resonance-mass spectrometry (FT-ICR MS)87; and separation techniques such as capillary 

electrophoresis (CE), liquid chromatography (LC, HPLC or UPLC), or gas chromatography 

(GC or GCxGC) coupled to different detectors including electrochemical detection (ECD), 

ultraviolet–visible (UV–Vis), or mass spectrometry (MS or MS/MS)21,22,57,69,88–101. The 

developed analytical methods can be divided into complementary metabolomics detection 

strategies, i.e. targeted, semi-targeted, and untargeted approaches. 

1.3.1 Targeted biomarker determination  

Targeted methods are optimized for the quantification of a relatively small number of 

biologically important metabolites with known chemical identities. Despite the limited number 

of metabolites that can be studied per experiment, employing targeted methods in human and 

animal studies several small molecules were discovered as relevant indicators for neonatal HIE. 

In 1931, lactate was the first described as a perinatal asphyxia biomarker3, determined in cord 

blood by using a laborious titration, followed by hypoxanthine in the 1970ies70. Literature 

reports on the first discovery of different small molecule biomarkers for neonatal HIE are listed 

in Table 1.1 in chronological order. 

The most widely accepted small molecule biomarkers of perinatal asphyxia and HIE 

were first discovered and tested employing targeted methods. The main advantage offered by 

targeted approaches is the possibility of optimizing the analytical methods taking into account 

the (bio-)chemical properties of the biomarker under study in the biospecimen of interest (e.g. 

stability, complexity of the mixture, concentration range). This is of key importance in the 

perinatal field, where the sample volumes are limited and non-invasive or minimally-invasive 

sampling is required. In fact, targeted methods are the best choice for the determination of 

biomarkers presenting stability issues like, e.g. glutathione (GSH)49,100,102 which is prone to 

enzymatic and nonenzymatic oxidation, or for biomarkers which are difficult to identify like, 

e.g. biomarkers of lipid peroxidation, where hundreds of molecules with highly similar 

structures can potentially be formed at concentrations in the nmol L−1 to pmol L−1 range51–53,103. 
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Furthermore, targeted assays are the method of choice for providing quantitative results and 

establishing reference concentration ranges. During method development, the analytical 

figures of merit are systematically studied providing information about accuracy, precision, 

reproducibility, and robustness and the available EMA and the FDA regulator validation 

guidelines14,15 are primarily focused on targeted methods. The main shortcoming of targeted 

methods is, however, their inherently limited potential for the discovery of previously unknown 

disease mechanisms and pathways and hence, new candidate biomarkers. 

Table 1.1 Biomarkers discovered in the “pre-metabolomics era” employing targeted methods. 

Biomarker (s) 

First discovery 

Main evidence 

source 
Finding Specie Matrix Method Reference 

Lactate 
Previous 

studies in adults 

Increases in 

hypoxia 
Human Blood Oxidation - titration 

Eastman NJ 

et al., 19313 

Hypoxanthine 

Studies of the 

purine 

catabolism, 

oxidative 

phosphorylation 

and xanthine 

oxidation 

Increases in 

hypoxia 
Human Blood 

Enzymatic - 

electrochemical 

Saugstad 

OD, 197570 

PGE2 and PGF2α 

Studies of PGE2 

and PGF2α in 

adult insults 

Increases in 

hypoxia 
Gerbil 

Brain 

tissue 
Radioimmunoassay 

Allen LG et 

al., 198271 

Glutamate, aspartate, 

γ-aminobutyric acid, taurine 

Pathological 

studies in 

newborn 

autopsies and 

studies of 

glutamate and 

aspartate in 

adult brain 

Increases in 

hypoxia 
Lamb 

Brain 

dialysates 

HPLC-(on-line 

derivatization)-

fluorescence detection 

Hagberg H 

et al., 198789 

Phosphocreatinine (PCr), 

inorganic orthophosphate 

(Pi), adenosine triphosphate 

(ATP) 

31P-NRM 

abnormalities 

indicating 

altered 

oxidative 

phosphorylation 

were detectable 

in the brain 

after birth 

asphyxia 

The reduced 

value of PCr/Pi 

indicates very 

poor prognosis 

and a reduction 

in ATP/total 

phosphorus 

indicates 

inevitable 

death 

Human 
Brain 

scan 
NMR 

Azzopardi 

D et al., 

198975 

N-acetylaspartate (NAA), 

choline (Cho), 

creatinine+phosphocreatinine 

(Cr) 

Findings in 

adults 

Low NAA/Cho 

and NAA/Cr 

after hypoxia 

Human 
Brain 

scan 
NMR 

Peden CJ et 

al., 199076 

Uric acid/creatinine 

Studies on the 

purine 

metabolism and 

their relation 

with 

hypoxanthine 

production 

Uric acid 

normalized by 

creatinine 

increases in 

hypoxia 

Human Urine 

Creatinine: 

colorimetric reaction. 

Uric acid: enzymatic – 

UV/Vis 

Bader D et 

al., 199568 
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Biomarker (s) 

First discovery 

Main evidence 

source 
Finding Specie Matrix Method Reference 

Hypoxanthine, xanthine, 

inosine, uric acid, 

malondialdehyde, 

hydroperoxides 

Studies of the 

purine 

metabolism and 

their 

relationship 

with oxidative 

stress 

Organic 

hydroperoxides 

(OHP) is a 

marker of free 

oxygen radical 

activity in the 

fetus and 

correlates with 

other 

evidences of 

hypoxia-

reperfusion 

injury 

Human Blood 

Purine metabolites: 

HPLC-UV/Vis. 

TBARS: Colorimetric 

reaction. OHP: 

enzymatic - UV/Vis 

Rogers MS 

et al., 199769 

Dopamine (DA), 3,4-

dihydroxyphenylacetic acid 

(DOPAC), homovanillic acid 

(HVA) 

Studies of the 

central nervous 

system showing 

the importance 

of dopamine-

containing 

pathways in the 

early brain 

development 

Immediately 

after birth DA, 

its metabolites, 

and amino acid 

levels were 

increased by 

mild asphyxia 

periods, but 

not by extreme 

asphyxia in 

substantia 

nigra and 

ventral 

tegmental area 

Rat 
Brain 

dialysates 

HPLC-electrochemical 

detection 

Chen Y et 

al., 199788 

o-tyrosine/Phenylalanine (o-

Tyr/Phe) 

Studies of 

oxidative stress 

in cell cultures 

and animal 

models 

An increase of 

o-Tyr/Phe was 

associated with 

oxygen 

treatment in 

neonates 

Human Urine 
HPLC-fluorescence 

detection 

Lubec G et 

al., 199797 

Coenzyme Q10, oxidized 

Coenzyme Q10 (CoQ10) 

Reported low 

levels of 

antioxidant 

protection in 

newborns 

compared with 

adults 

CoQ10 in 

infants with 

asphyxia was 

significantly 

elevated 

compared to 

normal infants 

Human Blood HPLC-ECD 
Hara K et 

al., 199998 

L-kynurenine, kynurenic 

acid, 3-hydroxy-kynurenine 

Studies of 

excitatory 

amino acids 

implications in 

hypoxia and 

their 

relationship 

with the 

kynurenine 

metabolism 

Time-

dependent 

increase of 

kynurenines 

and kynurenic 

acid levels, a 

moderately 

delayed 

increase of 3-

hydroxy-

kynurenine, 

and a trend for 

a decrease of 

L-kynurenine 

content during 

asphyxia 

Rats 
Brain 

tissue 

HPLC-fluorescence 

detection 

Baran H et 

al., 200199 
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Biomarker (s) 

First discovery 

Main evidence 

source 
Finding Specie Matrix Method Reference 

GSH/GSSG 

Studies of 

oxidative stress 

in animals and 

humans 

Neonates 

resuscitated 

with 100% 

oxygen exhibit 

protracted 

oxidative stress 

present even 

after 4 weeks 

of postnatal 

life 

Human Blood 

Dinitrofluorobenzene 

derivatization - HPLC-

fluorescence detection 

Vento M et 

al., 2001100 

15-F2t-IsoP 

Studies 

reporting 

changes in the 

CSF levels of 

F2-IsoPs, an 

index of lipid 

peroxidation, in 

very low birth 

weight infants 

with white 

matter injury 

15-F2t-IsoP 

predicts 

delayed 

behavioral 

disturbances 

Rats 
Brain 

tissue 
ELISA 

Calamandrei 

G et al., 

200472 

Serum free fatty acids (sFFA) 

sFFA studies in 

adult hypoxia-

ischemia 

Low 1-minute 

Apgar score is 

associated with 

elevated levels 

of cord sFFA 

Human Blood 
Fluorescent protein 

probe (ADIFAB2) 

Yuvienco 

JMS et al., 

200574 

NO2-tyrosine 

Animal 

experiments 

showing 

nitrosative 

stress during 

reperfusion 

NO2-tyrosine 

was found in 

brain tissue of 

full-term 

neonates, 

suggesting that 

nitric oxide 

toxicity might 

have a role in 

hypoxic-

ischemic brain 

injury at term 

Human Brain Immunohistochemistry 

Groenendaal 

F et al., 

200673 

1.3.2 Metabolic phenotyping 

Metabolomics, or metabolic phenotyping, is a top-down approach for studying complex 

systems defined as the description of all low-molecular-weight (< 1 kDa) components in a 

biological sample12,13. Untargeted metabolomic fingerprinting aims at the simultaneous 

detection of as many metabolites as is feasible, providing semiquantitative data, e.g. peak areas, 

rather than absolute concentrations19. The chemical identity of the measured metabolites is not 

necessarily known before the initiation of the experiment and identification is performed post 

hoc. In this scenario the analysis is hypothesis-free and limitations in terms of metabolome 

coverage are solely instrumental. 

Metabolomics has been employed for biomarker discovery in neonatal HIE taking full 

advantage of information rich datasets obtained from different analytical platforms such as 
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NMR, GC-MS, GCxGC-TOFMS or LC-TOFMS. For details on the use of metabolomics in 

clinical and experimental studies on perinatal asphyxia, the reader is referred to recent reviews 

from Denihan et al.64, Fattuoni et al.8, and Efstathiou et al.65. Table 1.2 outlines candidate 

biomarkers for HIE that have been repeatedly described in three or more metabolomics studies, 

arranged in decreasing order of repeatability. Lactate is leading the list, being this the most 

repeated biomarker reported in metabolomics studies across different sample types including 

brain tissue, blood, urine, and cerebrospinal fluid, as well as species (i.e. primate, lamb, piglet, 

rat, mouse, and human). Metabolites related to the energetic metabolism such as succinate, 

glucose, pyruvate, citric acid, and fumarate, have also been frequently suggested as biomarkers 

of HIE outcomes. Furthermore, amino acids including alanine, taurine, and valine are also 

highly ranked in Table 1.2, together with other compounds like choline or hypoxanthine. 

Within the field of metabolomics, semi-targeted assays act as an intermediate approach 

between untargeted and targeted methodologies. Here, a large panel of compounds with known 

chemical identity (i.e. low hundreds or metabolites) are targeted in one validated method. Semi-

quantitative measurements are carried out typically by employing one calibration curve and 

internal standard for determining approximate concentrations for several metabolites belonging 

to a compound class. A major milestone in this regard was the development of commercial kits 

for LC-MS/MS platforms that to date enable the quantification of up to >500 metabolites 

belonging to 26 biochemical classes (Biocrates AG, Innsbruck, Austria). Such semi-targeted 

assays have been used to study HIE in an asphyxiated piglet animal model21 and in human 

samples22, providing a shortlist of compounds as candidate biomarkers for HIE diagnosis, 

duration of hypoxia or monitoring of reanimation parameters (see Table 1.2). Intermediates of 

the energy metabolism, amino acids, and acylcarnitines have been proposed as biomarkers in 

both, animal and human studies21,22 employing semitargeted methods and these findings are in 

concordance with results obtained employing other approaches. 

Table 1.2 Metabolites suggested as biomarkers of HIE outcomes in three or more untargeted or semi-targeted 

metabolomics studies. Note: BR: brain tissue; CSF: cerebrospinal fluid; B: blood; U: urine. 

Biomarker Specie Sample Analytical platform References 

Lactate 
Primate, lamb, piglet, rat, mouse, 

human 

BR, CSF, B, 

U 

GCxGC-TOFMS, 

NMR, GC-MS, LC-MS/MS 
21,78–80,82–86,91–93 

Succinate Primate, piglet, mouse, human BR, B, U 
GCxGC-TOFMS, FT-ICR MS, 

NMR, GC-MS, LC-MS/MS 

21,78,80,82,84,87,91,92,

94 

Alanine Lamb, piglet, rat, mouse, human 
BR, CSF, B, 

U 
NMR, LC-MS/MS 22,78–80,84–86 

Choline Lamb, piglet, rat, mouse, human BR, CSF, B NMR, LC-TOFMS, CE-MS 79,80,84,86,90,96,104 

Taurine Rat, mouse, human BR, B, U NMR, GC-MS, LC-MS/MS 22,79–82,93 

Acylcarnitines Human B, U FT-ICR MS, NMR, LC-MS/MS 21,22,84,87,95 

Creatinine Primate, piglet, human B, U GCxGC-TOFMS, NMR 77,78,82,84,91 

Glucose Primate, piglet, human B, U GCxGC-TOFMS, NMR 78,82–84,91 

Hypoxanthine Lamb, piglet, human CSF, B, U FT-ICR MS, NMR, LC-TOFMS 23,82,86,87,96 

Pyruvate Piglet, rat, human BR, B, U NMR, CE-MS, LC-MS/MS 78,82,84,90,95 

Valine Piglet, rat, mouse, human BR, B, U NMR, LC-MS/MS 22,79,80,84,85 

Carnitine Piglet, rat, human BR, B, U CE-MS, LC-TOFMS, LC-MS/MS 21,90,94,96 
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Biomarker Specie Sample Analytical platform References 

Citric acid Primate, piglet, human B, U GCxGC-TOFMS, GC-MS, NMR 78,82,92,93 

Fumarate Primate, piglet, mouse B, U 
GCxGC-TOFMS, NMR, LC-

MS/MS 
21,80,85,92 

Glutamate Primate, rat, human BR, B, U 
GCxGC-TOFMS, NMR, LC-

TOFMS, FT-ICR MS 
79,87,91,94 

Isoleucine Rat, mouse, human BR, B NMR, LC-MS/MS 22,79,80,84 

Leucine Primate, rat, human BR, B 
GCxGC-TOFMS, NMR, LC-

MS/MS 
22,79,84,91 

Phenylalanine Lamb, human CSF, CB, U NMR, LC-MS/MS 22,84,86,95 

Tyrosine Lamb, rat, human 
BR, CSF, B, 

U 
NMR, LC-MS/MS 22,79,86,95 

Acetone Human B, U NMR, FT-ICR MS 82,84,87 

Betaine Piglet, human B, U NMR 82,84,85 

Glutamine Piglet, human B, U LC-TOFMS, NMR 82,94,96 

Glycerol Primate, human B 
GCxGC-TOFMS, NMR, FT-ICR 

MS 
84,87,91 

Malate Primate, mouse B GCxGC-TOFMS, NMR 80,91,92 

Myo-inositol Primate, human B, U GCxGC-TOFMS, NMR 82,84,91 

N-acetylaspartate Rat, mouse, human B, U NMR, LC-MS/MS 79,80,95 

1.3.3 Metabolic scores 

HIE is a heterogeneous, multi-faceted disease entity which passes through different 

stages after the hypoxic insult. In addition, and in contrast to animal experiments, in newborns 

with HIE, the exact timing and duration of hypoxia are unknown. Hence, it cannot be expected 

that the use of a single biomarker will provide high selectivity and sensitivity for predicting 

clinical outcomes. For achieving the required adaptability, metabolic scores combining several 

metabolites into one multi-factorial model have been proposed. 

A metabolic score based on LC-TOFMS measurements of plasma samples from an 

animal model was developed employing a partial least squares (PLS) multivariate model57. The 

plasma metabolic score combines the signals of three metabolites (choline, xanthine, and 

hypoxanthine) with lactate to estimate the duration of the hypoxic insult. Directly after an 

intense period of hypoxia its performance was similar as compared to lactate alone. However, 

an enhanced predictive capacity was provided 2 h after resuscitation. In another study involving 

human cord serum samples, the aim was to provide a direct and straightforward measure related 

to HIE severity employing NMR101. A “cord metabolite index”, y, defined as a quotient of 

signals of different metabolites, was established: 

𝑦 =
𝑠𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 ∗ 𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙

ℎ𝑦𝑑𝑟𝑜𝑥𝑦𝑏𝑢𝑡𝑦𝑟𝑎𝑡𝑒 ∗ 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑐ℎ𝑜𝑙𝑖𝑛𝑒
 (1.1) 

This metabolic score showed superior predictive capacity compared with other 

biochemical markers and could support clinical decision-making. 
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1.4 Biochemical mechanisms involving small molecule HIE 

To date, knowledge of the underlying metabolic mechanisms and complex interactions 

of individual metabolic pathways involved in HIE is limited. Current understanding of HIE 

injury indicates that it is a dynamic, multi-factorial disease where hypoxia-ischemia sets in 

motion a biochemical cascade of events, which can be divided into distinct clinical phases. For 

a detailed description of the distinct phases, the reader is referred to a recent review on this 

topic26. 

In the following, the main biochemical mechanisms involved in hypoxic-ischemic 

injury, that have been reported in the context of metabolomics and small molecule biomarker 

studies outlined in section 1.3, are discussed. This is not intended to be a comprehensive list, 

but rather to give an overview of pathways and mechanisms that have repeatedly been deemed 

important in diverse studies on HIE in experimental model organisms, as well as humans. 

1.4.1 Energy metabolism 

The energy supply necessary for cell survival largely depends on aerobic metabolism 

involving the cleavage of glucose, fatty acids and amino acids with the purpose of generating 

energy via adenosine triphosphate (ATP) synthesis105. The first phase of HIE is characterized 

by a reduction of the blood flow that leads to hypoxic acidosis and brain damage as a result of 

primary energy failure. Under these circumstances, the cell reverts to anaerobic metabolism 

producing lactate to compensate the lack of oxygen and depletion of ATP26,106. Unsurprisingly, 

levels of lactate21,78–80,82–86,91–93, and metabolites involved in the glycolysis pathway (e.g. glucose, 

pyruvate)78,82–84,90,91,95 as well as the tricarboxylic acid (TCA) cycle (e.g. succinate, citric acid, 

fumarate, malate)21,78,80,82,84,85,87,91–94 have been frequently reported to be altered in biomarker 

discovery studies. The TCA cycle is a central pathway of metabolism involved in a number of 

catabolic and anabolic reactions. Furthermore, intermediates of the TCA cycle can be replaced 

by amino acids and fatty acids through anaplerotic pathways. For example, glutamate is 

converted into α-ketoglurate, aspartate into oxaloacetate, and propionyl-CoA and amino acids 

are converted into succinyl-CoA via transamination107. Both, amino acid, and fatty acid levels, 

were also reported to be altered in HIE studies22,74,78–82,84–87,91,93,95. 

An alternative central energy production pathway is the oxidation of fatty acids to 

acetyl-CoA. Acetly-CoA is a key metabolic junction that fuels the TCA cycle and, in the heart, 

and liver fatty acids provide up to 80% of the energy needed in all physiological circumstances. 

Furthermore, in the liver acetyl-CoA can be converted into ketone bodies (i.e. acetoacetate and 

β-hydroxybutyrate), which are energy substrates transported to the brain and other tissues when 

glucose is not available108. In contrast to adults, where glucose is essentially the sole energy 

fuel for the brain, in neonates ketone bodies are thought to be equally important90,109,110. 
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1.4.2 Oxidative and nitrosative stress 

OS has a central role in the sequence of hypoxia-ischemia-derived perinatal injury60. 

The activation of oxidases, especially xanthine oxidase, leads to a burst of reactive oxygen 

species (ROS) that causes tissue damage. Purine metabolism has been repeatedly reported to 

be subjected to alterations in situations of hypoxia involving changing concentrations of 

xanthine, hypoxanthine, and uric acid among others23,68–70,82,86,87,96. In addition, nitric oxide 

formed in situations of OS can be combined with other reactive species forming reactive 

nitrogen species (RNS). ROS and RNS can attack lipids, proteins and nucleic acids and the 

resulting modifications can be detected and quantified60. For example, lipid peroxidation 

products (i.e. isoprostanes and isoprostanoids) were detected in tissue, plasma, and urine 

samples from animal models and infants with HIE51,53,60,69,72,73,103,111. Free-radical mediated 

protein oxidation products such as o-Tyr/Phe and NO2-Tyr were identified as biomarker 

candidates in human studies73,97. 

The imbalance of the redox status has led to changes in the concentration of 

thiol/disulfide pairs, e.g. the reduced to oxidized glutathione ratio (GSH/GSSG). In newborns 

GSH/GSSG has been used to aid the optimization of resuscitation parameters employed for 

asphyxiated term infants100. Changes in this parameter have an impact on signaling, protein 

structure, and enzyme regulation. Besides, redox mechanisms control pro-inflammatory 

pathways, cell proliferation, and apoptotic processes60. 

1.4.3 Compounds related to brain injury 

During HIE progression, a cascade of biochemical processes occurs including cellular 

bioenergetics failure followed by excitotoxicity, loss of mitochondrial activity, OS, and post-

ischemic inflammation. These events cause cell death in the central nervous system and release 

of neurotransmitters such as glutamate, dopamine, NAA, choline and others26,79,87,91,94. Several 

tryptophan catabolites of the kynurenine pathway (KP) have the ability to modulate 

glutamatergic and nicotinic receptors, to regulate the response of the immune system after 

inflammation and/or infection, and even to modify the generation of ROS112. Therefore, 

different compounds of the KP and neurotransmitters are affected in HIE and are detectable as 

candidate biomarkers. 

1.5 Validation and implementation into clinical practice 

Despite the expanding list of candidate biomarkers, none of the newly discovered 

biomarkers has been implemented in the clinical management of HIE. To the best of our 

knowledge, and according to the Devices@FDA catalog113, to date only medical devices for 

the analysis of lactate, creatinine, and uric acid have been approved by the FDA. We suggest 

that the main reasons for this are: 1) the lack of validation studies and clinical evidence of some 
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of the novel biomarkers and, 2) the absence of portable and validated analytical tools. The first 

shortcoming should be addressed in the forthcoming years by more powerful and better 

designed studies once quality standards are fully implemented in metabolomics studies66. 

Furthermore, regulators have also established biomarker qualification programs114,115 to 

provide a framework for the review of biomarkers for use in regulatory decision-making. 

Regarding the second drawback, the use of spectroscopic tools (e.g. Raman spectroscopy116,117) 

could help to develop point of care devices (PoC) that can circumvent compound stability 

issues and might enable the performance verification of some biomarkers in the clinical 

scenario. 

1.6 Conclusions 

During the last years the number of proposed small molecule biomarkers for HIE 

reported in the literature has been growing without affecting the number of clinically exploited 

biomarkers. It is time to incorporate strict standards in study design and data quality assurance 

in the biomarker discovery stage. We identify a need for developing scalable methodologies 

and incorporate HIE biomarkers into regulator programs such as the FDA and EMA 

qualification programs, as well as medical devices to assure that the technical advances can be 

translated from the bench to the bedside and ultimately contribute to benefit the patients. 

 





 

Chapter 2  Assessment of phospholipid synthesis 

related biomarkers for perinatal asphyxia: a piglet 

study 

2.1 Abstract 

The prompt and reliable identification of infants at risk of hypoxic-ischemic 

encephalopathy secondary to perinatal asphyxia in the first critical hours is important for 

clinical decision-making and yet still remains a challenge. This work strives for the evaluation 

of a panel of metabolic biomarkers that have been associated with the hypoxic-ischemic insult 

in the perinatal period. Plasma and urine samples from a consolidated newborn piglet model of 

hypoxia and withdrawn before and at different time points after a hypoxic insult were analyzed 

and compared to a control group. Time-dependent metabolic biomarker profiles were studied 

and observed patterns were similar to those of lactate levels, which are currently considered 

the gold standard for assessing hypoxia. Class prediction performance could be improved by 

the use of a combination of the whole panel of determined metabolites in plasma as compared 

to lactate values. Using a multivariate model including lactate together with the studied 

metabolic biomarkers allowed to improve the prediction performance of duration of hypoxia 

time, which correlates with the degree of brain damage. The present study evidences the 

usefulness of choline and related metabolites for improving the early assessment of the severity 

of the hypoxic insult. 

2.2 Introduction 

Both in the late preterm and term neonate, hypoxic-ischemic encephalopathy (HIE) 

secondary to perinatal asphyxia is a leading cause of mortality and acquired long-term 

neurologic co-morbidities. The overall incidence varies notably: while in developed countries 

between 1 and 8 per 1000 live births are affected, in low income areas it may account for 26 

per 1000 live births118.  
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Perinatal asphyxia is defined as the interruption of blood flow or blood gas exchange 

to and from the fetus in the perinatal period119. Hypoxic-ischemic injury is characterized by its 

evolution over time. The primary phase (i.e. the hypoxic insult) is followed by a partial 

recovery during reperfusion; however, in moderate to severe HIE a temporal sequence of injury 

is set in motion in the latent phase (from ~1–6 h) and the subsequent secondary phase (from ~6 

h to > 3 days)25,26. 

Perceived prognosis greatly affects clinical management. The most successful 

intervention for the treatment of moderate to severe HIE is moderate whole body hypothermia. 

However, treatment has to be initiated within 6 hours from birth. Yet, as the clinical severity 

of HIE varies over time after the insult, assessments used for diagnosis are time-dependent and 

their accuracy may be reduced the earlier they are performed119. The prompt identification of 

infants who are most at risk of developing moderate to severe HIE in the critical first hours is 

desirable as it would help to guide clinical decision making and/or establish a prognosis. Yet, 

this still remains a challenge. 

To date, the diagnosis of an asphyctic process that evolves to HIE is based on prenatal 

clinical information (sentinel events), and postnatal evaluation using serial Apgar score 

determinations with special emphasis on neurological assessment and cord blood gas analysis 

reflecting metabolic acidosis and increased lactate concentration6. Amplitude-integrated 

electroencephalography (EEG), brain magnetic resonance imaging (MRI) and multichannel 

EEG later on further confirm the diagnosis and the degree of severity26,119. A number of 

biochemical markers such as proteins apparently specific for neuronal tissue (creatine kinase 

brain band, protein S100B, neuron-specific enolase) and proteins involved in the pathogenesis 

of traumatic brain injury (e.g. glial fibrillary acidic protein, ubiquitin carboxyl-terminal 

hydrolase L1, phosphorylated axonal neurofilament heavy chain) as well as circulating pro-

inflammatory cytokines (interleukin 1β and 6) and circulating mRNAs, among others, have 

been studied26,119–122. In most cases their usefulness has only been shown in pilot studies and 

currently none has entered into routine clinical use122,123. Furthermore, issues about the 

specificity of the reported markers have been raised122 and information on correlation with long 

time outcomes is lacking119. 

Animal studies seeking after novel biomarkers which are able to provide improved 

performance have been carried out8. In a previous targeted metabolomic study in newborn 

piglets plasma it was shown that the duration and intensity of hypoxia were more accurately 

reflected by ratios of alanine to branched-chained amino acids (BCAA) and glycine to BCAA 

than by the traditionally employed plasma lactate concentration21. With the aim of discovering 

early biomarkers Solberg et al.104 carried out an untargeted metabolomics study involving the 

analysis of retinal tissue samples from a piglet model of perinatal asphyxia. Retina is an integral 

neural tissue with a high metabolic demand for oxygen supported by an efficient vascular 

supply in which, under hypoxic conditions, a series of adaptive responses are induced including 

changes in the blood flow, angiogenesis, and protective metabolic adaptations124. After the 

hypoxic insult, elevated levels of CDP-choline, the limiting intermediate compound in the 
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major pathway of phosphatidyl-choline biosynthesis (i.e. the Kennedy pathway)125 were found 

with concentrations correlating with the intensity of retinal hypoxia. In parallel, in vivo mouse80 

and rat models90, revealed increased choline levels in brain tissue after hypoxia-ischemia in 

comparison to sham-controls. Earlier, in an ex-vivo rat model a decrease of choline in brain 

tissues after oxygen-glucose deprivation has been reported comparing hypothermia and 

normothermia groups79. 

Based on these findings in neuronal tissue, studies in minimal-invasively obtained 

biofluids were carried out. Choline and cytidine, two of the precursors of CDP-choline, were 

found among a set of 21 metabolites showing significant changes in a liquid chromatography-

time-of-flight-mass spectrometry (LC-TOF-MS) untargeted metabolomics study on plasma 

samples from piglets subjected to hypoxia and reoxygenation in comparison to a non-

asphyxiated control group96. Skappak et al.85 found elevate levels of betaine, which is 

metabolically related to choline, in urine samples obtained from asphyxiated piglets vs. non-

asphyxiated controls after 6 h of hypoxic insult. In concordance with the discussed results, a 

study involving the analysis of umbilical cord serum from newborns revealed an increase in 

choline and/or betaine levels in conditions of asphyxia and HIE84. 

Based on the above-cited observations a target study of three precursors of CDP-choline 

(choline, cytidine and uridine), together with betaine was incentivized. This work strives for 

the validation of candidate biomarkers in plasma and urine that have been associated with the 

hypoxic-ischemic insult in the perinatal period as they could potentially be of importance for 

grading the intensity and duration of tissue hypoxia in the clinical setting helping to stratify 

patients that could benefit from early moderate therapeutic hypothermia. 

2.3 Material and methods 

2.3.1 Animal model 

Thirty-two 32 newborn Noroc (LYxLD) pigs aged between 12 h and 36 h, with 

hemoglobin (Hb) levels > 5 g dL−1 and good general conditions were included in the study. 

Anesthesia was induced with sevofluran 5%, then an ear vein was cannulated, sevofluran was 

disconnected and the piglets were given pentobarbital sodium 20 mg kg−1 and fentanyl 50 mg 

kg−1 intra venous (IV) as bolus injections. Continuous infusion of fentanyl (50 μ g kg−1 h−1) 

and midazolam (0.25 mg kg−1 h−1) was employed to maintain anesthesia. The piglets were 

orally intubated, ventilated and surgically prepared as described by Andresen et al.46. At the 

end of the observation time, the animals were given an overdose of pentobarbital (150 mg kg−1 

h−1 IV). 

After 1 h of stabilization, the piglets were randomly assigned either to the hypoxia and 

reoxygenation group (intervention group, n = 26) or the control group (n = 6) without exposure 
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to hypoxia, but maintaining the same procedures and observation times (anesthesia, surgery, 

ventilation and sample collection). In the intervention group, hypoxemia and subsequently 

hypoxia-ischemia was achieved by ventilation with a gas mixture of 8% O2 in N2 until either 

the mean arterial blood pressure (MABP) decreased to < 20 mmHg or the base excess (BE) 

reached − 20 mM L−1. CO2 was added during hypoxemia aiming at a pCO2 of 8.0–9.5 kPa (60–

71.3 mmHg) in order to imitate perinatal asphyxia. After 30 min of reoxygenation employing 

room air (21% O2, n = 12) or 2.1% H2 gas mixed into synthetic air (n = 14) all animals were 

kept normocapnic with pCO2 between 4.5 and 5.5 kPa (33.8–41.3 mmHg) during 9 hours 

receiving room air. Continuous surveillance of blood pressure, saturation, pulse, temperature, 

and blood gas measurements were performed. In this study both reoxygenation groups were 

merged together (intervention group, n = 26) as no statistically significant differences could be 

found between animals from both groups in a previous untargeted metabolomics study96. 

Whole blood samples from piglets included in the hypoxia group were taken in 

ethylenediaminetetraacetic acid (EDTA) Vacutainer® blood collection tubes before start of 

hypoxia (t0), at the end of hypoxia (t1), after reoxygenation (t2) and 2 and 9 hours after 

reoxygenation (t3 and t5, respectively). Blood volumes drawn for testing were replaced by 1.5× 

of saline. Plasma was obtained immediately after sampling by centrifugation of whole blood 

samples at 2000 × g for 10 min at 4 °C. For those piglets included in the control group plasma 

were also collected after 1 h stabilization. Besides, control plasma samples were collected at 

time points matching the mean values of the end of hypoxia (t1), t3 and t5 for the comparison 

of the metabolic profiles in both groups of samples. Urine samples were withdrawn from piglets 

included in the hypoxia group 5 and 9 hours after reoxygenation (t4 and t5). Urine samples from 

piglets included in the control group were also collected at the same time point for the analysis 

of the effect of hypoxia and reoxygenation in the urinary metabolic profiles. Plasma and urine 

samples were stored at −80 °C until analysis. The experimental study design and sample 

collection time points are visualized in Figure 2.1. 

 

Figure 2.1 Overview of the study design. Note: P stands for plasma, U stands for urine; no plasma samples have 

been collected from animals included in the control group at t2. 
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2.3.2 Chemical and reagents  

Solvents of LC-MS grade and were purchased from Scharlau (Barcelona, Spain). Pure 

analytical standards (choline bitartrate, betaine, cytidine and uridine) and ammonium formate 

with purities ≥ 98% were from Sigma-Aldrich Química SA (Madrd, Spain) and betaine-D11 

(98%) from Cambridge Isotope Laboratories Inc. (Tewksbury, MA, USA). 

2.3.3 Sample preparation 

Samples were thawed on ice and homogenized. 190 μL of cold acetonitrile (4 °C) and 

10 μL of internal standard solution (betaine-D11) at a concentration of 10 μM were added to 

10 μL of plasma or urine. Samples were centrifuged at 10000 × g for 10 min at 4 °C. 100 μL 

of supernatant were collected and transferred to a 96 well plate for LC-MS/MS analysis. During 

sample processing, samples were maintained on ice to prevent sample degradation. Blanks 

were prepared by replacing the sample volume with H2O. Quality control (QC) samples for 

plasma and urine were prepared by mixing 5 μL of each sample. QCs were processed as 

described for samples. 

In urine samples creatinine levels were determined for normalization of biomarker 

concentrations employing a MicroVue Creatinine Assay Kit from Quidel Corporation (San 

Diego, CA, USA). 

2.3.4 Quantitative ultra-performance liquid chromatography coupled to 

tandem mass spectrometry (LC-MS/MS) analysis 

Quantitative analysis of choline, betaine, cytidine and uridine was performed 

employing an Acquity UPLC system coupled to a Xevo-TQ triple quadrupole MS detector 

operating in the positive electrospray ionization mode (ESI+) (Waters, Manchester, UK). With 

a total runtime of 5 min, isocratic elution was performed using a Kinetex HILIC column (100 

× 2.1 mm, 1.7 μm, 100 Å) from Phenomenex (Torrance, CA, USA) and a 30:70 v/v 

H2O:CH3CN mobile phase at pH 7 containing 5 mM ammonium formate. Flow rate, column 

temperature and injection volume were set at 0.4 ml min−1, 30 °C and 5 μL, respectively. 

Detection conditions were set as follows: capillary voltage to 3.5 kV, source temperature to 

120 °C and the cone, desolvation and collision gas flows were 50 L h−1, 700 L h−1 and 0.2 mL 

min−1, respectively. Dwell time was set to 5 ms ensuring a minimum of 10 data points per peak. 

Stock solutions of standards were prepared in water by direct weighing. A set of 12 

standard solutions was obtained by serial dilution of the stock solution in mobile phase 

covering the concentration ranges indicated in Table 2.1. For quantification, tandem MS 

detection was carried out by multiple reaction monitoring (MRM) applying the acquisition 

parameters shown in Table 2.1. Individual standard solutions at a concentration of 10 μM were 
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used for optimizing ionization and fragmentation parameters as wells as for confirming the 

absence of spectral interferences between the studied compounds. 

Table 2.1 LC-MS/MS measurement conditions 

Analyte 
Cone 

[V] 

CE 

[eV] 
MRM 

RT [min] 

(mean ± std) 

Calibration 

range 
R2 

Choline 40 15 104.1 > 60.2 2.318 ± 0.011 0.05-49 0.990 

Betaine 30 20 118.0 > 59.0 1.528 ± 0.007 0.2-49 0.992 

Cytidine 35 10 244.0 > 112.0 0.769 ± 0.011 0.06-15 0.950 

Uridine 35 10 245.0 > 113.0 0.671 ± 0.008 0.11-15 0.990 

Betaine-D11 10 25 129.0 > 66.0 1.530 ± 0.006 - - 

An initial system suitability test was carried out at the beginning of each batch involving 

the analysis of blank samples and solvent blanks to assure appropriate sensitivity levels and 

reproducible retention times (± 0.2 min). QC samples spiked with the stock solution were 

intercalated in the sample batch measurement to detect deficiencies in accuracy and precision 

levels prior to the release of results. Accordingly, at least 75% of the values found for the QC 

standards should be within ± 25% of their respective nominal values to accept the batch. 

2.3.5 Data processing 

Raw data were acquired and processed using MassLynx 4.1 and QuanLynx 4.1 (Waters, 

Milford, MA, USA), respectively. Linear response curves were obtained from UPLC-MS/MS 

peak area measurements employing betaine-D11 as internal standard. Further data processing 

was carried out in Matlab 2015a from Mathworks Inc. (Natick, MA, USA) using the PLS 

Toolbox 8.0 from Eigenvector Research Inc. (Wenatchee, WA, USA) and in-house written 

functions. ROCs and AUCs were computed employing MetaboAnalyst 3.050. Missing values 

were estimated using k-nearest neighbors and data were autoscaled. For multivariate ROC 

curve based exploratory analysis all available features at each time point were employed. 

Feature ranking was based on univariate AUC values and random forests were used as a 

classification method. ROC curves were generated by Monte-Carlo cross validation (MCCV) 

using balanced subsampling where in each MCCV two thirds of the samples were used to 

evaluate the feature importance. Then, the model was validated using one third of the samples 

that were left out during model generation. For the calculation of the confidence interval (CI), 

this procedure was repeated 500 times. 

2.4 Results 

2.4.1 Characterization of the study cohorts 

The experimental study design and sample collection time points are shown in Figure 

2.1. Table 2.2 summarizes parameters and variables continuously monitored during the animal 

experiments including hemoglobin, base excess (BE), mean arterial blood pressure (MABP), 
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partial O2 arterial pressure (pO2) and partial arterial CO2 pressure (pCO2). No differences 

between control and hypoxia groups were found neither for the basic biologic characteristics 

nor the clinical parameters after 1 h of stabilization. However, at the end of hypoxia in the 

intervention group significantly lower pH, BE, and MABP levels were found, while no 

difference in heart rate was observed (see Table 2.2). Resuscitation with room air rapidly 

improved clinical variables in the intervention group and at the end of resuscitation both groups 

showed comparable levels of pO2, pCO2 and MABP. 

Table 2.2 Physiological background data. Characterization of the study cohort (intervention group) before (t0), 

directly after asphyxia (t1) and after reoxygenation (t2–t5) and at corresponding time points for the control group. 

Values are presented as mean ± standard deviation. Hb = hemoglobin; BE = base excess, MABP = mean arterial 

blood pressure; pO2 = partial O2 pressure; pCO2 = partial CO2 pressure. 

Parameter Time 
Control 

group 

Intervention 

group 

Weight [kg] All times 1.81 ± 0.17 1.90 ± 0.13 
Age [h] All times 29 ± 3 26 ± 4 

Gender [male/female] All times 3/3 12/14 

Hypoxia time [min] All times 0 53 ± 17 

Hb [g/100mL] 
t0 7.2 ± 1.0 7.3 ± 1.1 

t5 6.7 ± 0.8 6.80 ± 0.05 

pH 

t0 7.41 ± 0.04 7.44 ± 0.07 

t1 7.42 ± 0.03 6.84 ± 0.07 

t2 7.44 ± 0.03 7.16 ± 0.07 

t3 7.46 ± 0.03 7.39 ± 0.08 

t4 7.42 ± 0.05 7.40 ± 0.09 

t5 7.44 ± 0.08 7.40 ± 0.09 

BE [mM] 

t0 2 ± 3 2 ± 3 

t1 2 ± 3 19 ± 2 

t2 2 ± 3 15 ± 2 

t3 2 ± 3 0 ± 4 

t4 1 ± 4 0 ± 5 

t5 0 ± 5 0 ± 5 

MABP [mmHg] 

t0 49 ± 5 54 ± 8 

t1 48 ± 7 23 ± 8 

t2 48 ± 7 42 ± 11 

t3 47 ± 6 48 ± 11 

t4 48 ± 8 44 ± 9 

t5 47 ± 13 46 ± 11 

Heart rate [b.p.m] 

t0 147 ± 11 140 ± 30 

t1 156 ± 20 160 ± 50 

t2 156 ± 20 200 ± 40 

pO2 [kPa] 

t0 9.9 ± 1.0 10.6 ± 1.7 

t1 10.3 ± 0.8 5.0 ± 0.6 

t2 10.3 ± 0.8 10.7 ± 1.4 

pCO2 [kPa] 

t0 5.4 ± 0.5 5.2 ± 0.8 

t1 5.1 ± 0.3 9.3 ±1.1 

t2 5.1 ± 0.3 4.7 ± 0.8 
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2.4.2 Effect of hypoxia on plasma and urine samples 

Choline, betaine, cytidine and uridine were determined in plasma and urine samples 

employing UPLC-MS/MS. Representative chromatograms of samples from the control and 

hypoxia group obtained directly after asphyxia (t1) are shown in Figure 2.2 Concentrations of 

the studied metabolites in plasma and urine samples as determined employing the UPLC-

MS/MS method at the different time points are represented in Figure 2.3 and Figure 2.4, 

respectively. In addition, the plasma lactate profile at the same time points is shown in Figure 

2.3 for the sake of comparison. In plasma no significant changes in concentrations were 

detected in the control group with the exception of a decrease in betaine and cytidine between 

2 and 9 h after reoxygenation (i.e. t3 and t5, respectively). In contrast, a highly significant, 

abrupt rise was observed in the intervention group for choline, cytidine and uridine levels when 

comparing plasmatic concentrations before and at the end of hypoxia (i.e. at t0 and t1, 

respectively) followed by a descent when comparing levels at the end of hypoxia to those found 

2 h and 9 h after reoxygenation (i.e. t3 and t5, respectively). Consequently, at the end of hypoxia 

the intervention group showed significantly increased concentrations of choline, cytidine and 

uridine (Wilcoxon rank sum, p-value < 0.05) as compared to the control group. This difference 

remained significant (Wilcoxon rank sum, p-value < 0.05) for choline even after 2 h of 

reoxygenation (t3). The profile of those three metabolites is similar to changes observed in 

lactate levels. For betaine a slightly different profile was obtained: the increase of betaine in 

the intervention group at t1 was not found to be significant; this was followed by a decrease at 

t2 and then an increase at t3 yielding significantly higher concentrations (Wilcoxon rank sum, 

p-value < 0.05) in the intervention group. Besides, a significant decrease in the plasmatic 

concentrations was observed for both control and hypoxia groups in samples withdrawn 9 hours 

after reoxygenation (t5). In urine samples no statistically significant changes were observed. 

However, choline concentrations in the intervention group showed a trend to higher 

concentrations and higher between-individuals variability. 
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Figure 2.2 Representative chromatograms of plasma (left) and urine (right) samples from control and intervention 

(hypoxia) groups. 

 

Figure 2.3 Concentrations of metabolites in plasma samples at different studied time points. Note: * and ** 

indicate significant differences (p-value < 0.05 and 0.01, respectively) between samples from the control (black 

line) and intervention groups (red line). 
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Figure 2.4 Boxplots representing concentrations of metabolites in urine. Note: Case = intervention group; Ctrl = 

control group; concentrations were normalized by creatinine. 

2.4.3 Prognostic capacity of the studied metabolites 

With the aim of assessing the prognostic capacity of the studied biomarkers, receiver 

operating characteristics (ROC) curves and areas under the ROC curve (AUC) were calculated 

for lactate, choline, cytidine, uridine and betaine comparing control vs intervention groups at 

each studied time point in urine and plasma samples126. The obtained AUC values and their 

95% CI are listed in Table 2.3. In plasma collected before initiating hypoxia (t0), no statistically 

significant models were obtained. Directly after hypoxic insult (t1) choline, cytidine and uridine 

showed AUC values ≥0.969. As anticipated from the concentration profiles discussed above, 

the prognostic power was smaller 2 h after reoxygenation (t3); however, for choline and 

cytidine, as well as lactate AUC of ≥ 0.814 were obtained. The effect of hypoxia on the studied 

metabolites 9 h after reoxygenation (t5) was negligible and none of the calculated AUC values 

showed a better prediction performance than random models in both studied biofluids. In 

addition, choline concentrations determined in urine samples at t4 showed a statistically 

significant prediction power. 

Additionally to univariate ROC curves, multivariate ROC curves were calculated for 

each time point and biofluid using data from all available metabolites, thereby yielding 

optimum prediction properties. AUC (95% CI) values are shown in Table 2.3. Statistically 

significant models were obtained directly after asphyxia (t1) and 2 h after reoxygenation (t3). It 

is noteworthy that the predictive power 2 h after reoxygenation could be improved by the 
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multivariate approach. Figure 2.5 shows ROC curves of multivariate models calculated for t0, 

t1, t3 and t5 in plasma samples. This figure illustrates the changing prediction power in 

dependence of the timing of blood sample collection. 

Table 2.3 AUC (CI 95%) for biomarkers for hypoxia comparing control vs. intervention groups. Note: Lactate 

was not determined in plasma samples from the control group at t1 and in urine samples. 

Metabolite Plasma at t0 Plasma at t1 Plasma at t3 Plasma at t5 Urine at t4 Urine at t5 

Lactate 
0.518 

(0.306–0.736) 
̶ 

0.989 

(0.746–0.992) 

0.561 

(0.301–0.816) 
̶ ̶ 

Choline 
0.615 

(0.276–0.926) 

1 

(1–1) 

0.814 

(0.614–0.955) 

0.577 

(0.356–0.792) 

0.829 

(0.612–0.961) 

0.630 

(0.379–0.815) 

Cytidine 
0.679 

(0.394–0.926) 

0.969 

(0.892–1) 

0.826 

(0.568–1) 

0.574 

(0.393–0.765) 

0.592 

(0.296–0.823) 

0.713 

(0.481–0.713) 

Uridine 
0.641 

(0.372–0.878) 

1 

(0.969–1) 

0.629 

(0.326–0.909) 

0.667 

(0.429–0.866) 

0.632 

(0.414–0.842) 

0.500 

(0.231–0.787) 

Betaine 
0.615 

(0.308–0.843) 

0.708 

(0.334–0.973) 

0.788 

(0.439–0.981) 

0.673 

(0.413–0.898) 

0.671 

(0.296–0.947) 

0.602 

(0.345–0.852) 

Multivariate 
0.549 

(0.229–0.871) 

0.976 

(0.957–1) 

0.932 

(0.806–1) 

0.525 

(0.116–0.947) 

0.815 

(0.389–1) 

0.463 

(0.115–0.728) 

2.4.4 Correlation with time of hypoxia 2h after reoxygenation (t3) 

The correlation of lactate levels in blood with the duration of hypoxia has been studied 

(see Figure 2.6, left) obtaining a coefficient of correlation (R) of 0.64, a slope significantly 

different from zero (p-value < 0.01) and a standard deviation of the residuals of ± 33 min. This 

result was compared to the performance of a Partial Least Squares (PLS) model using the 

plasma levels of lactate with choline, cytidine, uridine and betaine and 1 latent variable (LV) 

(see Figure 2.6, right). For the PLS predicted vs measured hypoxia time an R of 0.77 was 

obtained with a slope significantly different from zero (p-value < 0.01) and a standard deviation 

of the residuals of ± 14 min. 

2.5 Discussion 

Assessing the degree of perinatal asphyxia in the immediate postnatal period still 

remains a challenge. However, this information would be extremely valuable for optimizing 

therapy and reliably predicting short-and/or-long term outcomes especially in low-income 

countries with little access to hypothermia therapy. 

An ideal biomarker is one that is easily and rapidly performed, its concentration is 

proportionately changed in the course of the disease according to the degree of injury and thus 

it can be used as an early predictor of long-term outcomes. Data presented in Table 2.2 

demonstrate that physiological variables do not provide sufficient predictive capacity as they 

return to normal values during resuscitation. In this study we assessed and compared the 

evolution of four metabolites, namely choline, betaine, cytidine and uridine, which have been 

identified as potential biomarkers of hypoxia in previous studies84,85,96,104. Levels of lactate, 
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which are currently considered the gold standard for assessing asphyxia in the clinics, were 

used throughout this work as reference for comparison. 

 

Figure 2.5 Multivariate ROC curves comparing cases and controls at t0 (left, top), t1 (right, top), t3 (left, bottom) 

and t5 (right, bottom). 
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Figure 2.6 Correlation of lactate levels in blood with the duration of hypoxia (left) and predicted vs measured 

hypoxia time using a PLS multivariate model based on the levels of lactate, choline, cytidine, uridine and betaine 

(right) at t3. 

The present study shows significant transient changes in plasmatic levels of the studied 

metabolites in a piglet model of hypoxia-reoxygenation (see Figure 2.3). Whereas choline, 

cytidine and uridine followed a similar profile as compared to lactate levels, betaine, showed a 

slightly different pattern (see Figure 2.3). In urine samples collected 5 h after the insult (t4), 

less pronounced differences in choline concentrations were found (see Figure 2.4). Choline is 

involved in a number of physiological processes. Hence, it is converted into betaine in a two-

step enzymatic reaction taking place in the mitochondria of liver and kidney where it acts as 

an osmolyte to control physiologic osmotic pressure127,128. In the brain, choline together with 

the pyrimidines cytidine and uridine is incorporated into phosphatidylcholine following the 

cytidine 5-diphosphocholine pathway discovered by E.P. Kennedy in 1954129. Their uptake 

from the circulation into the brain’s extracellular fluid is carried out by means of nucleoside 

transporters located at the blood-brain-barrier (BBB). The rate at which uptake occurs 

constitutes a major factor determining phosphatide synthesis130. Hence, these metabolites are 

precursors for the synthesis of membrane phospholipids including phosphatidylcholine, and 

thereby affect signaling and transport across membranes125,128. 

In newborns, both, the endogenous biosynthesis of phosphatidylcholine and the uptake 

from mother’s milk have been studied131. In addition, choline’s function as a part of the 

neurotransmitter acetylcholine has been discovered at the beginning of the 20th century132,133. 

Previous observations of elevated CDP-choline levels in retinal tissue support the alteration of 

the Kennedy pathway rather than the formation of acetylcholine as acetylcholine levels in the 

studied neuronal tissue remained unaffected during hypoxia-reoxygenation104. 

The evolution of the plasmatic profiles of these metabolites could potentially be related 

with the alteration of the Kennedy pathway together with the disturbance of the function of the 
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BBB which has been reported during HI insults in neonates134. In addition, a recent study on 

neonatal mouse brain has revealed the transient opening of the BBB within early hours after 

the insult135. Future studies will focus on the elucidation of the mechanism behind the reported 

observations. 

Poor predictive capacity was observed before hypoxia (t0) and 9 h after reoxygenation 

(t5), whereas directly after asphyxia (t1) and 2 h after reoxygenation (t3) (in plasma) and at 5 h 

after reoxygenation (t4) (in urine) significant models for the prediction of hypoxia were 

obtained (see Table 2.3 and Figure 2.5). In view of the clinical applicability as valuable 

biomarkers of these metabolites, the time-course is of great importance. In the clinical setting, 

there is no access to blood samples before hypoxic insult for the sake of a relative comparison 

of metabolic changes. Hence, in this study all ROC curves were constructed comparing control 

and intervention groups at each time point. Furthermore, the selection of the most appropriate 

therapeutic strategy is limited by the therapeutic window of 6 h from birth for hypothermia 

treatment. At present, the gold standard of metabolic biomarkers for assessing the severity of 

hypoxia is lactate. In this study, lactate showed a good predictive power in plasma collected 2 

h after reoxygenation (t3) (see Table 2.3). However, it is noteworthy that the performance could 

be improved (AUC from 0.898 to 0.932 and CI reduced by > 20%) by the use of a combination 

of the whole panel of determined metabolites. An interesting finding from the viewpoint of a 

potential clinical application of these biomarkers is that the perturbation persists during at least 

a couple of hours in plasma and even longer in urine. 

This offers the possibility to carry out serial determinations within the first hours of life, 

which could help to guide clinical decisions on treatment providing complementary 

information to other available diagnostic tools in the delivery room. 

Another interesting finding of the present study is the prediction performance of choline 

in urine samples collected 5 h after reoxygenation (t4) which to date, to the best of our 

knowledge, has not yet been reported in scientific literature. This finding is of special interest 

for the clinics, due to the non-invasive character of urine samples. However, metabolic 

fluctuations in urine reflect a much longer time span as compared to plasma samples and 

therefore, their interpretation and significance in the context of an acute process is more 

complex. 

The duration of hypoxia is known to be directly proportional to the degree of brain 

damage70. Hence, the correlation of the studied biomarkers with the measured time of duration 

of hypoxia was assessed. By combining choline and its related metabolites with lactate levels 

measured 2 h after reoxygenation (t3), the coefficient of correlation could be improved by > 

20% from 0.64 to 0.77 as proven in Figure 2.6. Furthermore, the standard deviation of the 

residuals was reduced from 33 to 14 min thereby improving the prediction precision by 58%. 

This corroborates the usefulness of the described biomarkers for the clinical diagnosis within 

the first hours of life. 
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To summarize, the present study showed the potential of choline and related metabolites 

as biomarkers for hypoxia. The selected panel of metabolites was able to improve the predictive 

performance of lactate and further helped to improve the prediction precision of the duration 

of hypoxia. Their applicability for clinical diagnosis is to be confirmed in multicenter trials 

involving the analysis of blood and urine samples from newborns suffering from HIE. These 

studies will also focus on the assessment of their correlation with long-term 

neurodevelopmental outcomes. 

 

 

 

 





 

Chapter 3 Evolution of Energy Related Metabolites 

in Plasma from Newborns with Hypoxic-Ischemic 

Encephalopathy during Hypothermia Treatment 

3.1 Abstract 

Therapeutic hypothermia (TH) initiated within 6 h from birth is the most effective 

therapeutic approach for moderate to severe hypoxic-ischemic encephalopathy (HIE). 

However, underlying mechanisms and effects on the human metabolism are not yet fully 

understood. This work aims at studying the evolution of several energy related key metabolites 

in newborns with HIE undergoing TH employing gas chromatography – mass spectrometry. 

The method was validated following stringent FDA requirements and applied to 194 samples 

from a subgroup of newborns with HIE (N = 61) enrolled in a multicenter clinical trial 

(HYPOTOP) for the determination of lactate, pyruvate, ketone bodies and several Krebs cycle 

metabolites at different sampling time points. The analysis of plasma samples from newborns 

with HIE revealed a decrease of lactate, pyruvate and β-hydroxybutyrate concentrations, 

whereas rising malate concentrations were observed. In healthy control newborns (N = 19) 

significantly lower levels of pyruvate and lactate were found in comparison to age-matched 

newborns with HIE undergoing TH, whereas acetoacetate and β-hydroxybutyrate levels were 

clearly increased. Access to a validated analytical method and a controlled cohort of newborns 

with HIE undergoing hypothermia treatment for the first time allowed the in-depth study of the 

evolution of key metabolites of metabolic junctions in this special population. 

3.2 Introduction 

Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia is a major 

cause of mortality and long-term neurologic co-morbidities especially occurring in the term 

neonate. Every year worldwide one million infants die and one million survive with 

neurological impairment. However, the overall incidence varies notably. Hence, while in 

developed countries the incidence of HIE ranges between 1 and 2 per 1000 live births, in low 

income areas it may account for 26 per 1000 live births106. 
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Therapeutic hypothermia (TH) initiated within 6 hours from birth119 was introduced to 

resuscitation guidelines in 2010136 and involves a core temperature reduction to 33.5 ± 0.5°C 

for 72 h. Since then hypothermia treatment is standard of care for infants with HIE. To date 

this is the only treatment that has shown to reduce death and long-term disability for infants 

especially with moderate encephalopathy. However, in severe cases the combined outcome of 

death and/or severe disability has not been as successful and still affects around 45% of 

babies137. Therefore, in order to improve outcome of severely affected neonates, new 

synergistic therapies are being explored26,138. To this end, the HYPOTOP trial (EudraCT 

#2011-005696-17), a randomized, multicenter, double blinded placebo-control trial, aiming at 

the evaluation of the neuroprotective effect of topiramate (TPM) in addition to moderate total 

body hypothermia in patients with HIE, has been carried out. The HYPOTOP trial aimed at 

reducing the hyperexcitability component of HIE which leads to increased neuronal apoptosis. 

TPM has rendered good results in this regard in previously launched pilot studies139. New 

anticonvulsant drugs such as TPM or levetiracetam have shown not to foster apoptosis and 

even inhibit cascades of damage activated after hypoxic-ischemic insults at paediatric doses, 

indicating that they potentially act as neuroprotectors in addition to their antiseizure effects140. 

Both, early assessment of the severity of cerebral injury and the prediction of 

neurological outcomes are crucial for parental counselling, selection of the most appropriate 

early neuroprotective strategies and/or establishment of multidisciplinary interventions to 

lessen the severity of chronic morbidities. The diagnosis of an asphyxia process that evolves to 

HIE is based on prenatal clinical information (sentinel events), Apgar scores with special 

emphasis on neurological assessment of tone, response to stimuli or reflexes and cord blood 

gas analysis reflecting metabolic acidosis and increased lactate concentration. Amplitude-

integrated electroencephalography (aEEG) in the first hours after birth and magnetic resonance 

imaging (MRI) of the brain and multichannel EEG (mchEEG) later on may further confirm the 

diagnosis26. 

Little is known about the evolution of most biochemical markers in newborns with HIE 

during TH. The secondary phase of injury is characterized by a failure of oxidative metabolism, 

which is associated with exhaustion of ATP reserves leading to cytotoxic edema, 

hyperexcitability, cerebral reperfusion and ultimately, cell death by necrosis and/or apoptosis. 

Clinical neurodevelopmental outcomes at 1 and 4 years of age are closely correlated with the 

severity of the secondary failure of oxidative metabolism at 15 h after birth122. Hence, the 

classical biochemical evaluation of the severity of asphyxia in the first hours of life is based on 

serial determinations of arterial pH, base deficit (BD) and blood lactate141. In practice, they 

showed reasonable precision for correctly identifying absent versus severe HIE. However, due 

to its remarkable ability to adapt to profound and prolonged hypoxia, the healthy foetus 

frequently is capable of tolerating such insults even without evidence of injury. Hence, BD and 

lactate provide rather imprecise relationship with neonatal encephalopathy for the intermediate 

group122. 
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This study reports the evolution of eight metabolites including lactate, pyruvate, 

metabolites from the Krebs cycle and ketone bodies in plasma from newborns with HIE 

undergoing hypothermia treatment in comparison to a control group of samples collected from 

healthy term newborns. A gas chromatography – mass spectrometry (GC-MS) analytical 

method was developed and successfully validated, allowing the simultaneous quantification of 

the studied metabolites employing a sample volume of only 50 μL, thus enabling serial 

determinations from small volume blood samples. The availability of sound data from a 

controlled cohort of infants clears the way for studying the role of each metabolite in the clinical 

context of TH in newborns with HIE. 

3.3 Material and methods 

3.3.1 Standards and reagents 

Sodium pyruvate, sodium lactate, lithium acetoacetate, sodium β-hydroxybutyrate, 

disodium succinate, sodium fumarate dibasic, malic acid and α-ketoglutaric acid potassium salt 

with purities >98%, as well as heparin sodium salt, methoxyamine hydrochloride (98%), 

pyrimidine (≥98%) and N-methyl-N-(trimethylsilyl)trifluoroacetamide with 1% 

trimethylchlorosilane (MSTFA + 1% TMCS), pyruvate-13C (Pyr13C) (99%) and 3,4-

dimetoxibenzoic acid (DMBA) (99%) were purchased from Sigma-Aldrich Química SL 

(Madrid, Spain). Pyr13C and DMBA were used as internal standards (IS). Mixture of C7–C40 

n-alkanes, each at 1000 g L−1 were acquired from Sigma-Aldrich Química SL (Madrid, Spain). 

Acetonitrile (analytical grade) and hexane (analytical grade) were obtained from J.T. Baker 

(Center Valley, USA) and Scharlau (Barcelona, Spain), respectively. Ultrapure H2O was 

generated with a Milli-Q purification system from Merck Millipore (Darmstadt, Germany). 

3.3.2 Population 

A subgroup of newborns (N = 61) enrolled in the HYPOTOP trial (EU Clinical Trials 

Register: EudraCT 2011-005696-17, start date: 2013-06-18) was included in this study. The 

flow diagram presented in Figure 3.1 summarizes the study protocol. Eligible patients were 

infants >36 weeks’ gestational age that fulfilled the following criteria: (1) prenatal signs 

compatible with hypoxia-ischemia such as alterations of foetal cardiac monitoring, abnormal 

foetal scalp pH (<7.2) or sentinel events such as abruptio placenta, meconium stained amniotic 

fluid or cord prolapse; (2) objective assessment of postnatal depression which included: Apgar 

≤5 at 5 min, need for resuscitation with positive pressure ventilation for >10 min after birth, 

cord pH ≤ 7.0 and BE ≥ −16 mEq L−1 in the worst blood gases obtained in the first 60 min after 

birth; (3) moderate to severe neurological status according to a modified Sarnat & Sarnat 

scale63. Exclusion criteria included gestational age < 36 weeks, birth weight < 2500 g, severe 

congenital malformations, chromosomopathies, or moribund status. 
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Figure 3.1 Flow diagram of the HYPOTOP trial. 

A total of 194 plasma samples were withdrawn at birth (0 h, corresponding to umbilical 

cord blood or, if not available, the first extracted blood sample, N = 41) and 24 h (N = 51), 48 

h (N = 51) and 72 h (N = 51) after the administration of the first dose of TPM or placebo. For 

plasma collection, 0.5 mL of blood was drawn by venipuncture employing a heparinized 

syringe (1% sodium heparin). Plasma was obtained immediately thereafter to avoid sample 

degradation, centrifuging the samples at 1800 g during 10 min at 20°C. Supernatants were 

immediately collected and stored at −80 °C until analysis. As a control group (N = 19), excess 

volumes from blood samples extracted 53 ± 13 h after birth for routine neonatal screening from 

healthy term newborns before hospital discharge were employed and plasma was extracted 

following the same protocol as described above. Patient characteristics are summarized in 

Table 3.1. The Ethics Committee for Biomedical Research of the Health Research Institute La 

Fe (Valencia, Spain) approved the study protocol. Informed consent was obtained from parents 

of all participants. All methods were performed in accordance with the relevant guidelines and 

regulations. 

Table 3.1 Patients’ characteristics. Note: p-value was computed employing a Mann–Whitney U test.  

Parameter Control (N=10) 
HYPOTOP 

(N=61) 
p-value 

Gestational age (weeks, mean ± s) 38 ± 1 39 ± 2 >0.05 

Gender (% male/female) 53/47 54/46 >0.05 

Birth weight (g ± s) 3200 ± 500 3300 ± 600 >0.05 

Type of delivery 

(% vaginal/C-section) 
79/21 44/56 >0.01 

Apgar 1 min (median (min–max)) 10 (9–10) 1 (0–5) >0.01 

Apgar 5 min (median (min–max)) 10 (10–10) 3 (0–8) >0.01 

Cord pH (mean ± s) 7.31 ± 0.06 6.8 ± 1.0 >0.01 

Cord BE (mEq L−1, mean ± s) −2.00 ± 0.04 −16 ± 7 >0.01 

Cord lactate (mmol L−1, mean ± s) 4.5 ± 1.6 14 ± 4 >0.01 

Positive pressure ventilation (% Yes/No) 0/100 98/2 >0.01 

O2>21% (% Yes/No) 0/100 97/3 >0.01 

Cardiac Massage (% Yes/No) 0/100 56/44 >0.01 

Adrenalin (% Yes/No) 0/100 49/51 >0.01 
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3.3.3 Preparation of stock, working and standard solutions 

Five mL of individual stock solutions of pyruvate, lactate, acetoacetate, β-

hydroxybutyrate, succinate, fumarate, malate and α-ketoglutarate at a concentration of 1 mmol 

L−1 were prepared in H2O by weighing of pure solid analytical standards in volumetric flasks. 

1 mL aliquots of each standard solution were stored at −20 °C in order to avoid freeze-thawing 

of standard solutions. 500 μL of a working solution containing 1000 μmol L−1 of lactate, 100 

μmol L−1 of pyruvate, acetoacetate, and β-hydroxybutyrate and 25 μmol L−1 of succinate, 

fumarate, malate and α-ketoglutarate was prepared in H2O:CH3CN (1:4 v/v). 10 standard 

solutions were obtained by serial dilution from the working solution with H2O: CH3CN (1:4 

v/v). Concentrations were ranging between 3.9 and 1000 μmol L−1 for lactate, 0.4 and 100 μmol 

L−1 for pyruvate, acetoacetate and β-hydroxybutyrate and 0.1 and 25 μmol L−1 for succinate, 

fumarate, malate and α-ketoglutarate. On each of the three validation days, 500 μL of spiking 

solution was prepared in H2O:CH3CN (1:4, v/v) containing 10 mmol L−1 of lactate, 800 μmol 

L−1 of pyruvate, 400 μmol L−1 of acetoacetate and β-hydroxybutyrate and 80 μmol L−1 of 

succinate, fumarate, malate and α-ketoglutarate. 

3.3.4 Biomarker analysis of plasma samples  

Prior to analysis, standards and samples were derivatized in a two-step oximation-

silylation procedure. Blanks were prepared in the same way as plasma samples, replacing the 

plasma volume with H2O.  

Plasma samples were thawed on ice and homogenized on a vortex mixer during 30 s. 

250 μL of cold (4 °C) CH3CN were added to 50 μL of plasma. Samples were maintained on 

ice during 5 min followed by centrifugation at 11000 g during 10 min at 4 °C. 200 μL of 

supernatant or standard solution were transferred to an Eppendorf® tube and 8 and 4 μL of 

Pyr13C and DMBA, both at a concentration of 1 mM were added, respectively. For the recovery 

test, spiked samples at three concentration levels (i.e. low, medium and high) were prepared by 

adding 2.5, 5 or 10 μL of spiking solution in addition to the IS. Samples and standards were 

evaporated on a SpeedVac concentrator from Genevac Ltd (Ipswich, UK) at 40 °C. Dry 

residues were suspended in 20 μL of a freshly prepared 4% (w/w) methoxyamine solution in 

pyridine. Samples and standards were incubated during 90 min at 30 °C on a thermomixer 

(MKR 13, Ditabis) under agitation. Then, 20 μL MSTFA + 1% TMCS were added. After 30 

min of reaction time at 37 °C under agitation, samples and standards were diluted with 40 μL 

of hexane and placed in capped glass vials for GC-MS analysis. Samples were re-analysed after 

1:10 dilution with hexane in case analyte concentrations exceed the established quantification 

range. 

A 6890GC-5973N gas chromatography electron impact quadrupole mass spectrometric 

(GC-(EI)-Q-MS) system equipped with an autosampler and a HP-5MS column (0.25 mm × 30 
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m, film thickness 0.25 μm (5% Phenyl)-methylpolysiloxane) from Agilent Technologies (Santa 

Clara, CA, USA) were employed for sample analysis. The GC was operated at a constant He 

carrier gas flow at a flow rate of 1.2 mL min−1. The injector temperature was set to 260 °C and 

1 μL of sample was injected at a split ratio of 5:1. The oven temperature was maintained at 60 

°C during 1 min followed by a linear gradient of 10 °C min−1 until reaching 310 °C which were 

held during 10 min. The total runtime was 36 min. 

3.4 Results 

3.4.1 Characteristics of the study population  

Characteristics of the studied sub-population of the HYPOTOP trial as well as the 

control group are shown in Table 3.1. Between both groups, no significant differences were 

found for the gestational age, gender and birth weight. In the control group, the percentage of 

C-section was significantly lower. For all parameters used for the diagnosis of HIE in the 

delivery room (i.e. Apgar scores, cord pH, BE and lactate), highly significant differences were 

found as expected. Likewise, for treatments related to the resuscitation procedure (i.e. positive 

pressure ventilation, cardiac massage and use of O2 and adrenalin) significant differences 

between both studied populations were obtained. 

3.4.2 Quantification of metabolites in plasma samples 

Full scan spectra of individual standard solutions were recorded during method 

optimization. Based on the results (data not shown), selected ion monitoring (SIM) parameters 

listed in Table 3.2 were carefully chosen. Two m/z were recorded for each metabolite for 

quantification and confirmation. 

After completing method optimization, analytical figures of merit were assessed during 

method validation including precision, selectivity, lower limit of detection (LLOD), lower limit 

of quantification (LLOQ), sample dilution, carry-over as well as sample and standard 

stabilities. Method validation was carried out following the recommendations of the US Food 

and Drug Administration (FDA) guidelines for bioanalytical method validation15. However, 

since the FDA guideline aims at the quantitative analysis of drugs and their metabolites it 

cannot be directly applied for the measurement of endogenous metabolites due to the lack of 

blank matrices. This drawback has been circumvented applying recovery tests of spiked plasma 

samples. 

Table 3.2 summarizes the characteristics of the obtained calibration lines for each 

studied metabolite. When possible, linear regression was employed for calibration lines. 

However, for acetoacetate, succinate and α-ketoglutarate the use of a second order polynomial 

fit was necessary in order to cover a sufficiently wide concentration range. With the exception 
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of lactate, signal normalization employing an IS was necessary. All calibration curves had a 

coefficient of determination (R2) of ≥0.990. 

Figure 3.2 shows SIM chromatograms obtained during the analysis of a representative 

sample before and after spiking. It can be observed that in this plasma sample, all studied 

metabolites were detected with the exception of fumarate. Chromatographic resolution >1 from 

other unknown matrix compounds was achieved for all metabolites with the exception of 

malate. High retention time stability (see Table 3.2) combined with the use of two 

characteristic m/z was used to assure the specificity of the signal. In addition, the Retention 

Index reported in Table 3.2 was determined for each metabolite and results fitted well with 

values reported in literature142. LLOQs listed in Table 3.2 were established as the concentration 

of analyte that can be measured with an imprecision of less than 20% and a deviation from 

target of less than 20% and taking into account the preconcentration factor of 2.4 achieved 

during sample processing. The LLOQ was defined as three times the LLOD. 

Table 3.3 shows intra- and inter-day accuracy and precision levels given as % 

recoveries ± standard deviations(s) obtained for standard solutions as well as spiked samples 

at low, medium and high concentration levels. For standard solutions, imprecision determined 

at each concentration level did not exceed 15%, except for the LLOQ, where it did not exceed 

20%, while at the same time a deviation from the target concentration of less than 15% (20% 

at the LLOQ) was achieved. Results from the recovery study carried out with spiked plasma 

samples revealed the magnitude of matrix effect for each studied metabolite. No significant 

matrix effect was observed for pyruvate, succinate, malate and α-ketoglutarate. In case of the 

remaining metabolites, recoveries were ranging in a ±30% interval for precision as well as 

accuracy. 

The stability of the studied metabolites in standards and samples was assayed under 

different conditions and compared to freshly prepared standards and samples. After three cycles 

of freeze-thawing, concentrations found in standards and samples remained unchanged with 

recoveries ranging between 81 and 120 and 80 and 114%, respectively. After 24 h at 4 °C, 

which are typical autosampler conditions, metabolites were stable in standards and plasma 

samples with recoveries of 86 to 112 and 93 to 115%, respectively, indicating that injection 

sequences of up to 24 h will not alter the obtained results. No alteration of the measured 

concentrations was observed (recoveries between 86 and 113%) from the analysis of individual 

aqueous standard solutions stored during 30 days at −20 °C. Analysis of samples collected and 

stored at −80 °C for at least two months did not show significant changes in determined 

concentrations (N = 5, p >0.05), indicating that sample storage under the assayed conditions 

was appropriate, facilitating the application of the method in clinical trials as well as research 

studies. 
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Table 3.2 Data acquisition parameters and main figures of merit of the quantification method. Note: RT, Standard Error of Residuals (SER) measured on Day 1; LLOQs were 

established as the concentration of analyte that can be measured with an imprecision of less than 20% and a deviation from target of less than 20% and taking into account the 

preconcentration factor of 2.4 achieved during sample processing. The LLOQ is defined as three times the LOD. RI stands for Retention Index calculated as RI = 100 × n + 

100 × (tc − tn)/(tn+1 − tn), where c stands for compound of interest, n stands for alkane with n carbon atoms eluting before compound c and n + 1 stands for alkane with n + 1 

carbon atoms eluting after compound c. tc, tn and tn+1 represent their respective retention times. 

Analyte IS m/z Quantification m/z Confirmation RT±s [min] Calibration Range [µM] 
y=ax2+bx+c 

SER LLOD [µM] 
LLOQ 

[µM] a ± s b ± s c ± s 

Pyruvate Pyr-13C 174  6.00 ± 0.02 0.8-100 - 1.02 ± 0.04 0.0111 ± 0.0016 3 0.11 0.3 

Lactate - 191 117 6.20 ± 0.02 3.9-1000 - 12000 ± 2000 90000 ± 20000 0.3 0.5 1.6 

Acetoacetate DMBA 188 89 7.260 ± 0.003 3.1-100 0.011 ± 0.003 0.018 ± 0.008 -0.0007 ± 0.0005 0.003 0.4 1.3 

β-hydroxybutyrate DMBA 191 117 7.640 ± 0.008 0.4-100 - 0.4 ± 0.3 -0.0001 ± 0.0008 0.7 0.06 0.2 

Succinate DMBA 247 147 9.770 ± 0.002 0.1-25 0.17 ± 0.06 0.310 ± 0.014 0.00090 ± 0.00003 0.08 0.014 0.04 

Fumarate DMBA 245 147 10.200 ± 0.002 0.1-25 - 1.4 ± 0.7 0.0002 ± 0.0002 0.00007 0.014 0.04 

Malate DMBA 147 233 12.130 ± 0.002 0.1-25 - 1.18 ± 0.02 0 ± 0 0.02 0.014 0.04 

α-ketoglutarate DMBA 198 204 13.20 ± 0.05 0.1-25 0.1536 ± 0.0003 0.19 ± 0.04 0 ± 0 0.015 0.014 0.04 

Pyr-13C - 175 - 6.00 ± 0.02 - - - - - - - 

DMBA - 239 - 14.700 ± 0.004 - - - - - - - 
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Table 3.3 Back-calculated accuracy and precision of standard solutions and plasma sample at three spiking levels. Note: Values within brackets indicate the concentration of 

each metabolite in the standard solution/spiking concentration. *Measured in 1:10 diluted sample. 

Analyte 

Standard solutions - % Accuracy±s (conc µM) Spiked plasma samples - % Accuracy ± s (conc µM) 

Intra-day (N=3) Inter-day (N=3) Intra-day (N=3) Inter-day (N=3) 

Low Medium High Low Medium High Low Medium High Low Medium High 

Pyruvate 
94 ± 20 

(0.8) 

109.4 ± 1.1 

(25) 

96.8 ± 0.12 

(100) 

90 ± 6 

(0.8) 

105 ± 4 

(25) 

96 ± 3 

(100) 

92 ± 10 

(20) 

92 ± 4 

(40) 

85 ± 1.0 

(50) 

94 ± 7 

(20) 

97 ± 5 

(40) 

89 ± 3 

(50) 

Lactate 
115 ± 18 

(3.9) 

93 ± 7 

(250) 

97 ± 11 

(1000) 
114 ± 3 (3.9) 

96 ± 3 

(250) 

99 ± 4 

(1000) 

69 ± 10 

(250) 

96 ± 14 

(50)* 

95 ± 5 

(100)* 

83 ± 14 

(250) 

120 ± 30 

(50)* 

100 ± 30 

(100)* 

Acetoacetate 
108 ± 7 

(3.1) 

96 ± 4 

(25) 

100.9 ± 1.8 

(100) 

107.3 ± 0.5 

(3.1) 

102 ± 8 

(25) 

100.2 ± 1.6 

(100) 

70 ± 50 

(10) 

72 ± 18 

(20) 

69 ± 7 

(50) 

90 ± 20 

(10) 

68 ± 18 

(20) 

71 ± 14 

(50) 

β-hydroxybutyrate 
112.6 ±1.8 

(0.4) 

103 ± 6 

(25) 
97 ± 4 (100) 

103 ± 9 

(0.4) 

104 ± 3 

(25) 

97.8 ± 0.4 

(100) 

65 ± 17 

(10) 

69 ± 3 

(20) 

63 ± 3 

(50) 

77 ± 12 

(10) 

80 ± 30 

(20) 

74 ± 13 

(50) 

Succinate 
119 ± 12 

(0.1) 

100 ± 2 

(6.3) 

97.9 ± 0.8 

(25) 

118 ± 9 

(0.1) 

102 ± 4 

(6.3) 

97.2 ± 0.6 

(25) 

85 ± 10 

(2) 

93 ± 7 

(4) 

87.0 ± 0.8 

(10) 

99 ± 16 

(2) 

100 ± 20 

(4) 

95 ± 11 

(10) 

Fumarate 
96 ± 2 

(0.1) 

87 ± 2 

(6.3) 

105.9 ± 0.9 

(25) 

103 ± 6 

(0.1) 

95 ± 7 

(6.3) 

102 ± 3 

(25) 

74 ± 8 

(2) 

80 ± 6 

(4) 

62.2 ± 0.17 

(10) 

80 ± 30 

(2) 

100 ± 30 

(4) 

80 ± 30 

(10) 

Malate 
94 ± 3 

(0.1) 

87 ± 2 

(6.3) 

104.5 ± 0.7 

(25) 

109 ± 13 

(0.1) 

94 ± 7 

(6.3) 

103 ± 3 

(25) 

82 ± 11 

(2) 

87 ± 7 

(4) 

97 ± 0.5 

(10) 

94 ± 17 

(2) 

100 ± 30 

(4) 

103 ± 17 

(10) 

α-ketoglutarate 
93 ± 16 

(0.1) 

105 ± 3 

(6.3) 

96.5 ± 1.1 

(25) 

100 ± 7 

(0.1) 

107.6 ± 1.7 

(6.3) 

99 ± 2 

(25) 

97 ± 11 

(2) 

103 ± 9 

(4) 

98 ± 0.9 

(10) 

111 ± 12 

(2) 

111 ± 10 

(4) 

114 ± 17 

(10) 
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Figure 3.2 Chromatograms acquired during the injection of a plasma sample (blue line) and a spiked plasma 

sample (red line). Note: for lactate the 1:10 diluted sample is depicted. 

3.4.3 Survey of clinical samples  

The validated GC-MS method was applied for the analysis of 194 plasma samples 

drawn after birth at different points in time from newborns enrolled in the HYPOTOP trial. 

Figure 3.3 represents metabolite concentrations at different sampling time points. Whereas 

some metabolites (i.e. acetoacetate, succinate, fumarate and α-ketoglutarate) remained constant 

throughout the first three days of life, others showed significant changes (two-tailed Wilcoxon 

rank sum test for equal medians, α = 0.05, p-value for each metabolite shown in Figure 3.3) 

with time. Accordingly, lactate, pyruvate and β-hydroxybutyrate concentrations decreased, 

whereas rising malate concentrations were observed. When comparing metabolite 

concentrations of newborns treated with TPM or placebo stratified by sampling time points, no 

significant differences were observed at 24 h, 48 h or 72 h after the administration of the first 

dose (data not shown). 

Furthermore, plasma samples from healthy, term newborns were collected and analysed 

for the sake of comparison. Main descriptors of the distribution of plasma metabolite 

concentrations of the control group in comparison to newborns subjected to hypothermia 

treatment 48 h after the administration of the first dose of TPM are summarized in Table 3.4. 

Significantly lower levels of pyruvate and lactate were found in healthy control newborns, 

whereas acetoacetate and β-hydroxybutyrate levels were clearly increased (two-tailed 

Wilcoxon rank sum test for equal medians, α = 0.05, p-value for each metabolite shown in 

Table 3.4). 
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Figure 3.3 Boxplots of metabolite concentrations in plasma samples from newborns included in the HYPOTOP 

trial. Note: acetoacetate, succinate, malate and α-ketoglutarate detected in 77, 95, 92 and 60% and other analytes 

in 100% of samples, concentrations < LLOQ were set to ½ LLOQ; p-values calculated employing the two tailed 

Wilcoxon rank sum test for equal medians. 
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Table 3.4 Main descriptors of the distribution of concentrations (μmol L−1) in plasma samples collected from the 

control group (N = 19) and newborns enrolled in the HYPOTOP trial 48 h after the administration of the first dose 

of TPM. Note: p-value calculated employing the two-tailed Wilcoxon rank sum test for equal medians (α = 0.05). 

Metabolite 

Control Group HYPOTOP (48 h) 

p-value Range 

P10-P90 

Median 

[µmol L-1] 

Mean ± s 

[µmol L-1] 

>LLOQ 

(%) 

Range 

P10-P90 

Median 

[µmol L-1] 

Mean ± s 

[µmol L-1] 

>LLOQ 

(%) 

Pyruvate 6-5 11 100 ± 200 100 12-200 40 100 ± 200 100 1.6 × 10−5 

Lactate 300-1000 700 700 ± 400 100 500-3000 1000 1600 ± 2000 100 0.002 

Acetoacetate 20–700 100 300 ± 300 100 0.7-30 7 35 ± 130 82 1.7 × 10−8 

β-Hydroxybutyrate 13–700 150 300 ± 300 100 4-15 8 9 ± 5 100 4.9 × 10−8 

Succinate 0.13–0.7 0.3 0.4 ± 0.3 95 0.11-0.8 0.5 0.4 ± 0.2 100 0.235 

Fumarate 0.5–1.1 0.7 0.7 ± 0.2 79 0.3-1.3 0.6 0.8 ± 0.8 100 0.234 

Malate 1.0–8 1.2 3 ± 4 100 0.7-5 2 3 ± 4 92 0.535 

α-Ketoglutarate 0.5–2 1.2 1.3 ± 0.6 74 0.02-7 1.2 2 ± 4 81 0.672 

 

 

Figure 3.4 Relative changes of metabolites as a function of age of newborns with HIE enrolled in the HYPOTOP 

trial. Note: median values as a relative measure to median values at t0; letter size proportional to concentration 

levels; arrows indicate tendencies. 

3.5 Discussion 

Evidence linking systemic aerobic metabolism and neurological disease in perinatal 

asphyxia and subsequent HIE has been reported in animal models21,91 and in clinical 

studies22,84. Undoubtedly, whole body moderate hypothermia has substantially increased 

sequel free survival of newborn infants with moderate to severe HIE. A key beneficial 

physiologic effect of TH after perinatal asphyxia is the associated reduction in cerebral and 

whole-body metabolic rates by 5–8% for every 1 °C reduction of core temperature. Yet, a 
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decrease in corporal temperature does not simply provoke a slowdown of the metabolism, but 

alters diverse functions of many macromolecules simultaneously, including enzyme activities 

and transport efficiency, suggesting that cooling leads to coordinated effects on multiple 

regulatory processes90. It can therefore be considered to be of utmost importance to study the 

evolution of key metabolites of metabolic junctions in newborns with HIE undergoing TH in 

order to gain a better understanding of the physiological response of these babies for optimizing 

clinical monitoring and treatment. This work aimed at shedding light into the evolution of 

several key metabolites related to energy metabolism, including lactate, together with pyruvate, 

the ketone bodies acetoacetate and β-hydroxybutyrate as well as several Krebs cycle 

intermediates, in newborns with HIE receiving TH during the first 72 hours of life (see Table 

3.4). 

In recent years, several techniques have emerged that allow covering several of those 

metabolites in a single analysis in biological samples providing appropriate levels of 

sensitivity, accuracy and precision. In the literature, mainly GC-MS based methods have been 

reported143–146. Alternatively, nuclear magnetic resonance84, liquid chromatography with 

fluorescence147 or MS detection148,149 or capillary electrophoresis-MS150,151 have been 

employed. Here, a GC-MS based approach was developed for the quantification of metabolites 

in plasma samples from newborns. The validation study proved that the achieved levels of 

accuracy and precision were adequate for the simultaneous quantification of the set of 

metabolites in a sample volume of 50 μL. 

Concerns about stability of ketone bodies and lactate in plasma samples have been 

raised and some authors propose the use of stabilizing agents for storage109,152,153. In this study 

metabolite stability in standards and samples was assessed and no significant alterations of 

concentrations were detected under the tested conditions. Hence, it can be concluded that the 

addition of stabilizing agents was not necessary and helps simplifying the sample collection 

process. 

Under aerobic conditions glucose is metabolized through the glycolytic pathway and 

penetrates in the mitochondria where pyruvate is converted to acetyl coenzyme A, enters the 

tricarboxylic acid cycle and couples to the respiratory chain yielding energy in the form of 

adenosine triphosphate through oxidative phosphorylation45. In capillary blood drawn on day 

4 from healthy full-term newborns, lactate and pyruvate were reported to range between 367 

and 3245 and 10 and 141 μmol L−1, respectively154. In this study, for healthy term newborns at 

two days of age ranges (percentile 10 to 90) between 300 and 1000 and 6 and 50 μmol L−1 (see 

Table 3.4) were obtained for lactate and pyruvate, respectively. During hypoxia-ischemia 

decreased cerebral perfusion reduces the delivery of oxygen and glucose to the brain. Oxidative 

phosphorylation is blocked and pyruvate is converted into L-lactate through the anaerobic 

metabolism26,155. Anaerobic metabolism is by far less energy efficient than aerobic metabolism 

leading to energy exhaustion in brain cells. Initial lactate levels are a useful biochemical marker 

to assess the degree of birth asphyxia122,155,156. It has been demonstrated that lactate levels took 
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longer to normalize in asphyxiated newborns with moderate to severe neonatal encephalopathy 

compared with newborns with mild neonatal encephalopathy157. In a retrospective case series 

Balushi et al.155 suggest that lactate levels during the first 4 days of life should be carefully 

monitored in asphyxiated term newborns treated with hypothermia in order to optimize 

handling of those patients and alleviate brain injury. Furthermore, during hypothermia 

peripheral perfusion is significantly decreased and lactate production may indicate hypoxia at 

tissue level even in the absence of metabolic acidosis158. This study for the first time reports 

ranges and evolution of lactate values in newborns with HIE during TH. This knowledge is 

important for the interpretation of lactate values of babies during TH monitored in the neonatal 

intensive care unit. In the cohort studied in this clinical trial an increase in lactate levels was 

found in the acute stage and a decreasing tendency with time was observed as expected, 

revealing a partial restoring of aerobic metabolism upon clinical stabilization as a consequence 

of the energy saving mechanisms triggered by TH. 

Pyruvate showed increased levels during the whole examined time period and 

concentrations also decreased with time although remaining elevated as compared to the 

control group at 48 h of life (see Figure 3.3). In rat brain tissue, the activation of the anaerobic 

flux during hypoxia-ischemia and increased glycolysis has been reported with all rate-limiting 

enzymes activated, being the transport of glucose across the blood-brain barrier the major rate-

limiting step of this process. Consequently, the authors found increased pyruvate and lactate 

levels in brain during hypoxia-ischemia159. Here, reported results corroborate the accumulation 

of pyruvate during hypoxia-ischemia and show the evolution of its concentration profile during 

TH. 

Whereas in adults glucose is essentially the sole energy fuel for the brain, in neonates 

the ketone bodies acetoacetate and β-hydroxybutyrate derived from ketogenesis in the liver are 

likely to be as important90,109,110. Furthermore ketones have been found to act as 

neuroprotectors160. In neonates suffering from severe HIE depletion of ketones has been 

reported suggesting that systemic metabolic responses such as ketogenesis may play a key role 

in preventing neurological injury during asphyxia143. Here, significantly higher levels of both 

metabolites were found in newborns from the control group presumably due to the high fat 

content of mother’s milk consumed by healthy babies. In newborns with HIE, both metabolites 

showed a decrease with time (although not statistically significant for acetoacetate), which 

might probably be attributed to their consumption as energy fuels. A recent study90 revealed 

that, hypothermia achieves its neuroprotective effects by mediating the cellular acetylation 

status through a coordinated suppression of acetyl-CoA, a metabolite that resides in metabolic 

junctions of glycolysis, amino-acid catabolism and ketosis. Both pyruvate and ketone bodies 

are major sources for acetyl-CoA and were found to decrease under hypothermia conditions in 

rat brain. 

Succinate accumulation has been associated with severe HIE, possibly evidencing HIF-

1α mediated neurological injury84. Chouchanie et al. showed that the malate/aspartate shuttle 

and purine nucleotide cycle pathways increase fumarate production, which is then converted 
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to succinate by succinate dehydrogenase reversal. The selective accumulation of succinate has 

been described as a universal metabolic signature of ischemia in a range of mouse and rat 

tissues and is thought to be responsible for mitochondrial ROS production that initiate 

ischemia-reperfusion injury161. 

The evolution of intermediates of the Krebs cycle has been studied in the HYPOTOP 

cohort. Determined levels of succinate, fumarate, malate, and α-ketoglutarate did not show 

statistically significant alterations in comparison to normal control babies. Malate showed an 

increasing tendency with time, although levels found at 48 h were not different from those 

found in the control group. 

The HYPOTOP trial aimed at the assessment of the neuroprotective effects of the 

administration of TPM as compared to a placebo. Results presented in this study regarding 

metabolites involved in central metabolic pathways did not reveal any effect of the 

administration of TPM on metabolite levels. Ongoing studies will focus on the evaluation of 

the effect of TPM on other metabolic pathways as well as imaging (MRI) and short-and long-

term clinical outcomes of the babies enrolled in the HYPOTOP trial. 

This study has some limitations. Hypothermia for HIE has become a universally 

accepted standard of care. Therefore, energy metabolism derived metabolites in asphyxiated 

patients without cooling could not be studied and compared to patients undergoing 

hypothermia treatment. Moreover, patients are recruited shortly after birth in a severe clinical 

condition and submitted to acute resuscitation manoeuvres and cooled within 6 h after birth. 

Intriguingly, we did not find changes in energy-linked metabolites of the tricarboxylic cycle. 

Remarkably, most experimental models lack an active intervention to overcome asphyxia-

derived damage. However, in our study human newborns were treated with hypothermia, 

sedation, analgesia and energy supplies in the form of parenteral nutrition to overcome the 

negative consequences of HIE. Altogether these interventions attenuated the rate of ATP 

consumption and enhanced its synthesis during the secondary energy failure phase. This 

allowed a satisfactory recovery of most organs of the body such as heart, kidney, intestine, 

muscle, and liver, while brain recovery depended on the initial degree of brain damage during 

primary energy failure. Determinations were carried out in plasma samples reflecting whole 

body dynamics and not specifically the brain. However, the value of the present study relates 

to the possibility of studying a big number of patients exquisitely controlled in a randomized 

controlled trial and opens a very valuable window for future studies. 

In conclusion, this work presents data from a validated analytical approach for the 

determination of eight metabolites in small volume plasma samples. Furthermore, it reports for 

the first time the evolution of metabolite levels of newborns suffering from HIE with time 

during TH. The findings were discussed in the context of previously reported studies in animals 

and humans shedding light into the effect of TH on metabolite levels in newborns with HIE. 
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Chapter 4 Oxidative stress biomarkers in the 

preterm infant 

4.1 Abstract 

Oxidative stress (OS) has a key role in the pathophysiology of the preterm infant and 

its proper assessment is an analytical challenge that has been partially addressed during the last 

decades. A plethora of approaches has been developed and applied to preterm biofluids 

showing the link between postnatal conditions of preterm infants and OS, giving rise to a set 

of widely employed biomarkers. However, the vast number of different analysis methods 

employed hampers the comparison of OS-related biomarkers between studies. In this chapter, 

we discuss approaches for the study of OS in prematurity considering methodological 

constraints, the metabolic source of the different biomarkers, and their role in clinical studies. 

4.2 Introduction 

Preterm birth, as defined by the World Health Organization (WHO), is any delivery 

that occurs before 37 completed weeks of gestation or fewer than 259 days from the first day 

of a woman’s last menstrual period31. Hence, prematurity is a condition that is defined by the 

failure of gestation to reach a certain duration rather than by the presence of any specific 

symptoms. The estimated global preterm birth rate for 2014 was 10.6%, ascending to almost 

15 million live preterm births worldwide162. Although preterm birth is a major complication of 

pregnancy, even in healthy women with low-risk pregnancies, a fraction of deliveries can be 

expected to take place preterm and the incidence varies geographically163,164. The highest 

regional preterm birth rates were found in North America, and the lowest in Europe while in 

absolute numbers, the vast majority of preterm babies were born in Asia and sub-Saharan 

Africa. The burden of preterm birth is therefore substantial and the incidence of preterm births 

is increasing162,165. 

For the newborn, preterm birth is a risk factor with an impact on health, welfare, and 

development even in adult life. On a global scale, preterm birth was the leading cause of death 

in children younger than 5 years accounting for approximately 16% of all deaths in this age 

group in 2018 and among newborns, prematurity was responsible for even 35% of deaths 
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according to the latest UNICEF report166. Moreover, prematurity in high-income countries is 

the leading cause of early neonatal death defined as deaths occurring during the first week after 

birth106.  Neonatal outcomes are closely related to the gestational age at delivery and as such, 

preterm infants can be further classified as late preterm (between 34 and <36 and 6/7 weeks of 

gestation), moderate preterm (between 32 and <33 and 6/7 weeks of gestation) and early 

preterm (<32 weeks of gestation)32. Also, for gestations <28 weeks the term extreme preterm 

is generally employed.  Even the late preterm has a significantly higher risk of adverse 

outcomes compared to term infants. Neonatal complications include increased risks of acute 

(Respiratory Distress Syndrome, RDS) or chronic (Bronchopulmonary Dysplasia, BPD) 

respiratory conditions, patent ductus arteriosus, necrotizing enterocolitis (NEC), sepsis, 

retinopathy of prematurity (ROP), intra-periventricular hemorrhage and periventricular 

leukomalacia and other neurological conditions, as well as feeding difficulties and visual and 

hearing problems. On the long term, prematurity has been linked to poorer neurodevelopmental 

outcomes, higher rates of hospital admissions as well as behavioral, socio-emotional, and 

learning difficulties in childhood. Furthermore premature birth also generates significant health 

system costs and it causes considerable psychological and financial hardship for affected 

families30. 

Multiple factors are involved in the etiology of preterm birth. Genetic susceptibility, 

race and ethnic origin, psychosocial and socio-economic factors, environmental and behavioral 

factors, as well as infections have all been associated with the development of preterm labor. 

Despite the myriad of reported risk factors, in most cases, preterm births cannot be associated 

with a single, specific risk factor, underlining the pathophysiologic heterogeneity of this 

complex syndrome30. Oxidative stress (OS) is thought to underlie several pathological 

processes relevant to preterm labor, including infection and vascular placental disease167,168 and 

it has been repeatedly associated with preterm delivery168 and pathologies of the preterm 

infant169. Although identifying associations between OS measurements and perinatal outcomes 

has become popular, knowledge-gaps in describing exact pathways involved in preterm birth 

and perinatal complications persist. 

OS is defined as “the imbalance between oxidants and antioxidants in favor of the 

oxidants, leading to a disruption of redox signaling and control and/or molecular damage”43. 

The biological redox steady state is a nonequilibrium characterized by a flux through reactions 

with a specific set point of the redox potential of a given reaction at a certain location within 

the cell. Deviations from the set point in metabolic steady states are utilized for redox signaling 

(e.g. controlling gene expression and cell proliferation), while more pronounced deviations 

towards oxidation may ultimately cause damage to biomolecules or induce apoptosis, and 

hence modulate, and even disrupt physiological redox signaling44,170. 

Oxidation-reduction reactions in biological systems are mediated by reactive species 

acting as oxidizing agents, including reactive oxygen species (ROS), reactive chlorine and 

bromine species, reactive nitrogen species (RNS), reactive sulfur species, reactive carbonyl 

species, and reactive selenium species. More specifically, ROS are generated from metabolic 
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redox reactions mostly by the respiratory chain and oxidases, but also by the microsomal 

cytochrome P450 system and by the immune response171. Within ROS, molecules of different 

chemical nature are comprised, ranging from free radicals (e.g. the hydroxyl radical, ●OH; 

superoxide anion, O2
●-; nitric oxide, NO) to non-radicals (e.g. hypochlorous acid, HOCl; 

singlet molecular oxygen; and hydrogen peroxide, H2O2), with chemical reactivities that vary 

by up to eleven orders of magnitude when assayed against a given target molecule43. 

To attain redox homeostasis, oxidant and antioxidant activities are interacting in 

complex networks. Living cells and organisms counteract oxidative challenge employing 

multiple strategies, jointly termed ‘antioxidant defenses’, that can be divided into three distinct 

protection mechanisms, i.e. prevention, interception and repair. The ensemble of antioxidant 

defense mechanisms involves enzymatic and nonenzymatic antioxidants, with the former 

preliminary countering the burden43. From a clinical perspective, the most important 

antioxidant enzymes are superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 

(GPx), and glucose 6-phosphate dehydrogenase (G6PD). The most abundant cytoplasmic non-

enzymatic antioxidant is glutathione (GSH), a ubiquitous tripeptide (γ-glutamyl-

cysteinylglycine). Other relevant non-enzymatic antioxidants are certain proteins (e.g. 

transferrin and ceruloplasmin), small molecules (e.g. uric acid and bilirubin), and vitamins (e.g. 

vitamins A, E, and C)45. Both, enzymatic and non-enzymatic antioxidant defense mechanisms 

mature late in gestation and hence, preterm infants are characterized by a limited capacity of 

response to a pro-oxidant aggression placing these infants at much higher risk of injury33,34. In 

fact, the antioxidant enzyme system is upregulated during the last 15% of gestation, while at 

the same time non-enzymatic antioxidants are crossing the placenta in increasing amounts. 

These developmental changes prime the infant for the transition from the relative hypoxia of 

intrauterine to the oxygen-rich extrauterine environment. 

The transition from the intrauterine to the extrauterine world is characterized by a 

substantial increase in oxygen availability. At birth, placental gas exchange is abruptly 

interrupted and with the initiation of air breathing, arterial partial pressure of oxygen (PaO2) 

rises gradually from 25 to 30 mm Hg (3.3 kPa) in the fetus to 75 to 85 mm Hg (10.5 kPa) in 

the newborn within the first minutes of life. This adaptation process has been studied in the 

delivery room employing non-invasive monitoring of the arterial oxygen saturation (SpO2) 

with pulse oximetry and it has been shown that healthy term and near-term infants needed 

several minutes for achieving stable SpO2 of ≈90%, with a high inter-individual variability. In 

comparison, late and moderate preterm infants need more time to achieve similar levels of 

SpO2, while to date no target ranges for oxygen saturation are available for very preterm 

infants36,37. Physiologic OS caused by the burst of ROS due to an abrupt postnatal increase in 

oxygen availability is inherent to the normal fetal-to-neonatal transition. Oxidatively modified 

biomolecules can act as signaling molecules interfering in different pathways. For example, 

moderate OS at birth acts as a signal to up-regulate γ-cystathionase expression, which is the 

limiting enzyme involved in the synthesis of L-cysteine, a GSH precursor38. 
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Preterm infants frequently need positive pressure ventilation with supplemental oxygen 

which adds to the risk of suffering from oxidative injury and associated health complications. 

Recent resuscitation guidelines for asphyxiated infants today no longer recommend the use of 

100% O2 for the resuscitation term and preterm infants39, and experts rather recommend an 

initial inspired fraction of oxygen (FiO2) ranging between 0.21 and 0.3 in dependence of the 

gestational age of the infant. The FiO2 should be titrated to achieve target SpO2 between 80 

and 90% at 5 min after birth40,41. Controlling FiO2 and SpO2 seems to be important as 

hyperoxia, intermittent hypoxia as well as prolonged hypoxia followed by reoxygenation, 

especially using high FiO2, are known to generate excessive amounts of ROS and hence, cause 

oxidative damage to cell structures42. Figure 4.1 illustrates how the interplay of pro- and 

antioxidant conditions affects the oxidative balance of the preterm infant, as well as the 

consequences of pathologic levels of OS. 

 

Figure 4.1 The impact of pro- and antioxidant conditions on the oxidative balance and their consequences for the 

preterm infant. 

This chapter will give a comprehensive overview of available molecular biomarkers 

that have been proven useful for the monitoring of molecular damage and OS in in-vitro and 

in-vivo studies. Furthermore, current applications of biomarkers and their potential for control 

and assessment of events leading to a pro-oxidant status as well as interventions aiming at the 

reduction of OS in preterm infants will be discussed. Finally, the importance of OS biomarkers 

in the context of OS-related pathologies observed in the preterm infant will be reviewed. 

4.3 Biomarkers and methods for the assessment of OS 

Since the significance of OS —also referred to as oxygen toxicity prior to the definition 

of the term OS— in pulmonary, ophthalmologic and cerebral conditions of the preterm infant 
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was evidenced, OS assessment in prematurity has been carried out adopting different 

approaches172–174. Early clinical and histopathological studies were succeeded in the following 

decades by an in-depth study of oxygen physiology and biochemistry. Literature reports 

focused on antioxidant enzymes, non-enzymatic antioxidants, iron and purine metabolisms, 

and the damage to biomolecules promoted by OS175,176, thereby expanding the number of 

described OS biomarkers. Different analytical methods have been employed according to the 

type of biofluid and studied biomarkers. Preterm biofluids commonly drawn for OS assessment 

are blood-derived (BD) samples (i.e. whole blood, plasma, serum, hemolysate, and isolated 

blood cells), urine, and bronchoalveolar lavage fluid (BALF), with each biofluid providing its 

characteristics regarding composition and stability. BD samples are more delicate in terms of 

stability as compared to urine samples, and their obtention is considered minimally invasive. 

Furthermore, in the preterm infant, the blood volume available for laboratory examinations is 

limited and repeated assessments are troublesome. BALF samples are no longer routinely 

collected for the assessment of OS in preterm infants and are not accessible, unless excess 

volumes of complementary examinations are available. In contrast, the non-invasive collection 

of several milliliters of urine is feasible using sterile plastic bags attached to the skin or cotton 

pads placed inside the diaper. The availability of higher sample volumes widens the range of 

pre-analytical procedures that can be employed for clean-up and biomarker preconcentration, 

thereby enhancing the analytical sensitivity given by the method’s limit of detection (LOD). 

Moreover, the information provided by each biofluid is different: whereas BD samples allow 

to assess rapid changes occurring, e.g., during acute hypoxia or medical interventions such as 

resuscitation procedures, urine samples reflect the product of metabolism in a wider time 

window. Figure 4.2 gives an overview of the biomarkers discussed in this chapter also 

indicating the most common biofluid(s) employed for the analysis of each compound. 

The approaches available for the study of OS have gradually increased in number and 

diversity, but to date, no gold standard for OS assessment in preterm infants has been 

established and the evaluation of OS is not included in standard clinical analysis panels due to 

the lack of regulatory approval for their use as an in vitro diagnostic (IVD) test. Table 4.1 gives 

an overview of diverse methods that have been repeatedly reported in the literature claiming a 

reliable OS evaluation in the context of prematurity. These methods, many of them available 

as commercial kits, have enabled a widespread use of OS-related parameters in clinical studies. 

However, in many literature reports the analytical procedures are a black box obviating 

methodological details and limitations. In contrast, other works present detailed descriptions 

of the optimization and analytical validation of specific OS biomarkers. 

With the aim of discussing the present state-of-the-art of methods available for OS 

assessment in prematurity, in this chapter the diverse methodological approaches are detailed. 

According to the common classification in the OS-related literature177, the methods are divided 

into two groups: the assessment of the redox steady state and the detection of biomolecule 

modifications promoted by OS. 
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4.3.1 Redox steady state assessment  

The evaluation of the redox steady state involves the measurement of oxidant and 

antioxidant species. The accurate determination of oxidant species in biological matrices is 

certainly the most challenging OS-related analysis. The main reason is that these molecules are 

highly reactive, with very short half-lifes (t1/2) and extremely low steady-state 

concentrations178. Notwithstanding these difficulties, employing electron paramagnetic 

resonance (EPR), chemical probes, and colorimetric reactions it is possible to detect and 

quantify ROS and RNS in biological samples179. However, the determination of ROS or RNS 

concentrations per se without an evaluation of their counterparts, i.e. the antioxidants, does not 

provide the full picture of the redox steady state. On the other hand, the determination of 

antioxidant species (i.e. antioxidant enzymes, cofactors, and small molecule antioxidants) is 

comparatively straightforward. These compounds are several orders of magnitude more stable 

than oxidant species and their concentrations are higher and hence, they are easily detectable 

employing different techniques as shown in Table 4.1 and Figure 4.2. 

 

Figure 4.2 Compounds employed in the preterm oxidative stress assessment discussed in this chapter classified 

by the most usual biofluid employed in their analysis.  

 

 

 



Oxidative stress biomarkers in the preterm infant 65 

 

Table 4.1 Analytical techniques and assays employed for the evaluation of OS and related compounds. 

Type of analytical technique 
Analytical 

technique/assay 

Type of OS 

assessment 
Detected compounds 

Examples of 

applications 

Spectroscopic 

EPR 
Redox 

steady state 
Ascorbyl radical 180 

UV/Vis 
Damage to 

biomolecules 
AOPP 181–186 

Colorimetric 

DMPO trapping-EPR 
Redox 

steady state 
●OH 187 

TAC (ABTS)-

UV/Vis 

Redox 

steady state 
ABTS reacting antioxidants 188–192 

DPPH-UV/Vis 
Redox 

steady state 
DPPH reacting antioxidants 193 

FRAP-UV/Vis 
Redox 

steady state 
Fe3+-TPTZ reacting antioxidants 191,193 

BAP-UV/Vis 
Redox 

steady state 

Fe3+ thiocyanate reacting 

antioxidants 
194,195 

FOX-UV/Vis 
Redox 

steady state 
Fe2+ reacting oxidants (ROOH) 196 

TOS-UV/Vis 
Redox 

steady state 

Fe2+–o-dianisidine reacting oxidants 

(ROOH) 
188 

d-ROMs-UV/Vis 
Redox 

steady state 

N,N-Diethyl-p-phenylenediamine 

reacting oxidants (ROOH) 
181–183,194,195,197 

DNPH-UV/Vis 
Damage to 

biomolecules 
Protein carbonyls 198–200 

Fluorometric 

Bleomycin-TBA-

fluorescence 

Redox 

steady state 
Free iron 201 

DHR probe-

fluorescence 

Redox 

steady state 
DHR probe reacting oxidants 202 

TBA-fluorescence 

(TBARS) 

Damage to 

biomolecules 
TBARS 198,203,204 

Comet assay 
Damage to 

biomolecules 
DNA damage 203 

Enzymatic 

Kinetic – UV/Vis 
Redox 

steady state 
SOD, CAT, GPx, GST 33,198,203–206 

Enzymatic – UV/Vis 
Redox 

steady state 
GSH/GSSG 207–210 

FIA-enzymatic assay 
Redox 

steady state 
GSH/GSSG 211,212 

Enzymatic-

electrochemical 

Redox 

steady state 
Hypoxanthine 70 

Immunoassay 

ELISA 
Damage to 

biomolecules 
IsoPs, 8-OHdG, AOPP 180,213 

DNHP derivatization 

- ELISA 

Damage to 

biomolecules 
Protein carbonyls 214–216 

Hyphenated separation techniques 

LC-UV/Vis 
Redox 

steady state 
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4.3.1.1 Antioxidant enzymes 

The measurement of enzyme activity in BD samples has been the most frequently 

studied parameter for assessing antioxidant enzymes in prematurity. The enzyme activity is a 

biologically meaningful parameter as it yields a snapshot of the enzyme expression, amount, 

and integrity. However, since the units of activity (i.e. units [U] or katals [kat] in the 

International System of Units) are defined according to the analytical method employed, the 

comparability of the obtained quantitative information between experiments is limited. 

In early determinations of SOD, GPx, glutathione S-transferase (GST), and CAT in 

samples from preterm infants, classic kinetic colorimetric assays were employed. In these 

assays, the reaction between the enzymes and selected substrates are spectrophotometrically 

monitored (i.e. UV/Vis detection)232,233. In the SOD activity assay, after the generation of O2
•- 

in the presence of an oxidizable substrate with colored oxidized form (e.g. Cyt+3c or 

epinephrine), the rate of inhibition of the oxidation reaction is monitored at the corresponding 

wavelength, i.e. SOD competes with the oxidizable substrate for the O2
•-. For CAT, the activity 

is determined by measuring the rate of disappearance of H2O2 by monitoring the decrease in 

the absorbance at 240 nm. GPx activity is assessed coupling the reaction of glutathione 

reductase (GR) to the GPx reaction. GR consumes NADPH to reduce oxidized glutathione 

(GSSG) formed by GPx, and therefore the decrease of the NADPH absorbance signal at 340 

nm is proportional to GPx activity. The classical method employed for the determination of 

GST activity is based on the S-conjugated formation between GSH and 1-chloro-2,4-

dinitrobenzene (CDNB) that absorbs at 340 nm232,234,235. Furthermore, all these enzymatic 

assays have been improved to increase their sensitivities and specificities modifying the 

reactions with different substrates, probes, and dyes. The improved methods have been applied 

in clinical studies involving preterm infants following the published protocols or employing 

commercial kits33,198,203,205,206. Nevertheless, other recent studies in the preterm population 

employ some of the classical methods204,205 demonstrating that there is no gold standard for 

antioxidant enzyme activity assessment. The choice of the method is mainly based on the 

laboratory’s resources and experience rather than method performance. 

4.3.1.2 GSH and glutathione disulfide (GSSG) 

The analysis of redox pairs (i.e. couples of oxidized/reduced compounds) in biofluids 

has been employed for the evaluation of the oxidative status of preterm infants with the aim of 

measuring the overall redox potential. The thiol-disulfide pair GSH/GSSG is the most 

frequently employed biomarker. However, it should be noted that the primary antioxidant 

defense is not provided by small molecular antioxidants, but the enzymatic systems43. 

Therefore, the interpretation of the alteration of the GSH/GSSG should be discussed in the 

context of GSH metabolism and redox steady state. As emphasized elsewhere43,236, the redox 

metabolism of the redox cells depends on kinetic instead of thermodynamic constraints. For a 
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detailed discussion on GSH metabolism, we encourage the readers to inquire a recent review 

article by Deponte et al.236. 

In early reports on preterm OS assessments, GSH was employed individually or as a 

sum of oxidized and reduced forms, inaccurately called ‘total GSH’207. Once sensitivity and 

selectivity of the employed methods were improved, determinations were extended to the redox 

pair. GSH and GSSG are relatively stable compared to ROS or RNS, but they are paradigmatic 

examples of the challenges of OS-related determinations. GSH suffers enzymatic and non-

enzymatic degradation during sample handling and storage and it is present in cells and fluids 

with high compartmentalization with its concentration differing several orders of magnitude 

depending on the cellular compartment236,237. For example, in blood, GSH is contained mainly 

inside the erythrocytes, whereas in plasma GSH is 200 times less concentrated. In whole blood 

samples, it has been shown that GSSG is 100 times less concentrated than GSH, and without 

proper sample treatment, GSH in blood hemolysate is oxidized to GSSG within minutes237. 

GSSG artifacts due to GSH oxidation were first addressed cleverly by Güntherberg et al. 

employing the Michael addition reaction for the alkylation of the SH group of GSH with N-

ethylmaleimide (NEM)238. Alternative approaches for an accurate analysis of GSH and GSSG 

have been proposed elsewhere237. However, these procedures are difficult to apply in the 

clinical scenario, and they are very far from being implemented in a routine laboratory analysis. 

Even employing the most sophisticated methods, the ranges reported in similar preterm 

populations differ substantially. The actual evidence stands that an unbiased analysis of 

GSH/GSSG in blood samples is only possible if NEM is added instantly during the process of 

sample collection239.  

There are mainly three classes of analytical methods for the determination of GSH 

including (i) enzymatic methods with spectrophotometry detection, (ii) the use of a separation 

technique, i.e. liquid chromatography (LC) or capillary electrophoresis (CE), coupled to 

spectrophotometry or mass spectrometry (MS) detection, and (iii) direct spectroscopic 

methods. The preferred samples are blood hemolysate and the red blood cell fraction. Also, 

other samples like BALF have been employed for GSH analysis in preterm infants207. 

The first GSH determinations in preterm infants were based on the enzymatic method 

called recycling assay. The recycling assay is the most popular enzymatic method for GSH 

determination and was developed by Tietze in the 1960ies240. This method, with several 

modifications, is implemented in most of the available commercial kits for the determination 

of GSH and GSSG. The enzyme recycling assay exploits the Ellman’s reagent (5-5’-dithiobis 

[2-nitrobenzoic acid], DTNB) and the enzyme GR. First, DTNB reacts with two moles of GSH 

generating the yellow compound 5-thionitrobenzoic acid (TNB) (max. absorption at 415 nm) 

and the glutathione-TNB adduct (GS-TNB). GS-TNB is now ‘recycled’ back to GSH by GR 

in the presence of NADPH increasing the assay’s sensitivity. With this set-up, the rates of 

formation of DTNB are proportional to the GSH + GSSG content since GSSG reacts with GR 

too, yielding 2 moles of GSH. In the original work of Tietze it is also described how to measure 

the GSSG content by employing NEM to derivatize GSH to GS-NEM thereby avoiding its 
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participation in the reaction. However, a tedious extraction of the NEM excess is mandatory 

before carrying out the enzymatic reaction. 

The recycling assay has been improved during the years and applied to the 

determination of GSH and GSSG in preterm infants207–211. Modern implementations allow to 

measure GSSG without extraction by replacing NEM by 2-vinylpyridine and additives such as 

sulfosalicylic acid (SSA) have been used in order to prevent enzymatic GSH oxidation237. Also, 

a dedicated flow injection analysis (FIA) method was developed based on the improved 

recycling assay and successfully employed to measure GSH and GSSG in preterm blood211,212. 

This FIA approach allows a straightforward automatization and hence, the measurement of 

large sample batches. 

CE and LC coupled to different detection systems have been employed in several 

methods for the determination of redox pairs and applied successfully to the determination of 

GSH/GSSG in preterm biospecimens33,223,225. CE-UV has been employed for the analysis of 

preterm blood samples by Mohamed et al. In this method, whole blood is hemolyzed with 

metaphosphoric acid and subjected to CE analysis without derivatization detecting GSH and 

GSSG at 220 nm225. In LC methods with spectroscopic detection (absorbance and 

fluorescence), 2,4-dinitrofluorobenzene (FDNB) or monobromobimane are the most widely 

employed derivatizing agents102,241. The derivatization step is laborious and the stability of 

GSH, despite attempts of employing NEM or iodoacetic acid102,241, is adversely affected237. 

LC coupled to tandem MS (MS/MS) is currently the most powerful technique for the 

determination of GSH and GSSG and their related compounds. LC-MS/MS provides adequate 

selectivity and sensitivity for a simultaneous multianalyte analysis. As an example, the analysis 

of a panel of different redox pairs (i.e. cysteine/cystine and homocysteine/homocystine) can be 

achieved in one analytical run from 100 µL of whole blood employing a recent method 

validated according to Food and Drug Administration (FDA) guidelines49. In this approach, 

samples are collected in NEM tubes, deproteinized and hemolyzed immediately with perchloric 

acid followed by centrifugation and stored at –80 °C with tested stability. Finally, samples are 

analyzed by LC-MS/MS after thawing and dilution in an isotopically labeled internal standard 

mixture.  

Direct spectroscopic assessment has been proposed for the quantification of GSH. 

Employing Surface Enhanced Raman Spectroscopy (SERS) with a silver colloid and an 

isotopically labeled internal standard, it is possible to quantify GSH in 2 µL of blood from term 

newborns116. In this set-up, samples are collected in tubes with internal standard and 

deproteinized and hemolyzed with perchloric acid. Then, the silver colloid is added, and the 

samples are transferred to a quartz capillary for Raman measurements. This methodology is 

potentially applicable to the preterm population. Furthermore, it could be tailored to a point-

of-care method allowing in-situ GSH determinations in preterm infants.   
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4.3.1.3 Hypoxanthine and purine metabolites 

Hypoxanthine has been assessed repeatedly in order to evaluate OS during hypoxia-

reoxygenation4,217,242,243, as it is an ATP-breakdown product that increases its concentration in 

situations of oxygen limitation (i.e. hypoxic insult). Accumulated hypoxanthine is a potential 

generator of oxygen free radicals via endogenous enzymatic reactions, e.g. the conversion of 

hypoxanthine to xanthine and uric acid by xanthine oxidase, a form of the 

molybdoflavoenzyme xanthine oxyreductase35,242. Cord plasma is the preferred sample type 

for hypoxanthine determinations, since hypoxanthine assessment has been mainly employed 

during the study of neonatal resuscitation. Also, hypoxanthine has been monitored to study the 

inhibition of xanthine oxidase during the administration of purine analogues (e.g. 

allopurinol)218.  

The relevance of hypoxanthine in the perinatal context was first assessed by Saugstad 

et al.70 in 1975 employing an enzymatic assay with electrochemical detection. At that time, this 

method provided a high advantage over other existing methods since only 150 µl of blood were 

necessary. Thereafter, different analytical approaches have been used for the analysis of 

hypoxanthine. The selectivity of enzymatic methods is very limited, and therefore, validated 

commercial kits available allow the determination of the “hypoxanthine/xanthine” parameter 

via consecutive enzymatic reactions hyphenated with colorimetric/florescence probes. LC-

UV/Vis methods have been developed and validated for the analysis of hypoxanthine, xanthine, 

uric acid, and other purines in plasma and urine samples from preterm infants175,181–183,217–222. 

In general, the sample processing workflow consists in a centrifugation step followed by 

dilution prior the LC separation with UV detection of the chromatographic peaks being 

performed at different wavelengths (i.e. depending on the work considered) in the 220-260 nm 

interval. 

Despite the availability of quantitative methods for hypoxanthine determination, some 

of the most recent studies do not provide concentration ranges219,220. This fact could be 

explained by the lack of reference ranges and IVD methods and it suggests reproducibility 

issues. Detailed analytical validation studies in the preterm population are warranted in order 

to establish a gold standard for hypoxanthine determinations and to validate the corresponding 

reference ranges. 

4.3.1.4 Iron metabolism 

The bound-iron transport is altered during a hypoxic event resulting in an iron release 

causing free radical production (mainly via •OH Fenton reactions) in a cascade where other 

iron metabolism components are involved217,242,244. In addition, preterm infants are poorly 

endowed with metal transport proteins or they are dysfunctional and unable to keep transition 

metals bound. Free iron or other transition metals can be found circulating and the analysis of 

non-bound/bound iron and iron-binding proteins in BD samples have been employed for the 

assessment of the preterm oxidative status217,224,242,244–249. 
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The analysis of free iron was carried out in the preterm population using the bleomycin-

detectable iron (BDI) assay. In this method, the degradation of DNA promoted by bleomycin 

in the presence of iron is exploited. This reaction generates thiobarbituric acid reactive 

substances (TBARS) that can be quantified (for more information see section ‘Lipid 

peroxidation’) providing a signal proportional to the amount of non-protein bound iron (NPBI). 

The BDI assay has been replaced by more sensitive and selective determinations based on 

chelator agents and LC separations with UV/Vis detection. The latter approach has been 

employed for the development and validation of a method for free iron analysis in BD and 

BALF samples of preterm infants201. This analysis yields NPBI, also called non-transferrin 

bound iron (NTBI), employing a complexation in two steps: first with disodium nitryloacetic 

acid and, after filtration, with 3-hydroxyl-1-propyl-2-methyl-pyridin-4-one hydrochloride 

(CP22). The detection of the CP22-Fe complex is achieved by monitoring the absorbance at 

450 nm184,201,217,224.  

The serum total iron, transferrin, ferritin, ceruloplasmin, total iron-binding capacity 

(TIBC), unsaturated iron-binding capacity (UIBC), and transferrin saturation are common 

parameters analyzed in clinical laboratories. Clinical laboratories employ commercial 

autoanalyzers for these determinations which are validated according to the regulator’s 

requirements (i.e. approved as IVD test by FDA or European Medicines Agency). 

4.3.1.5 Vitamins and carotenes 

Within living organisms, the non-enzymatic interception of oxidant species is achieved 

by low-molecular-mass antioxidants such as vitamin A (retinol and carotenoids), vitamin C 

(water-soluble ascorbate), and vitamin E (α-tocopherol)43. These compounds have been 

analyzed repeatedly in preterm blood plasma and serum, especially in the context of nutrition, 

in order to evaluate the antioxidant status204,208,211,242,250–257. The first analysis of vitamins A, 

C, and E in preterm infants was carried out employing classical wet laboratory assays involving 

laborious sample treatments such as titrations and liquid-liquid extractions with visual, UV/Vis 

or fluorescence detection256–258. However, at present, those methods are considered obsolete 

and have been replaced by LC-UV/Vis or LC-fluorescence offering an increased sensitivity 

and specificity253–255,259. In fact, the separation of vitamins by LC is frequently employed with 

hundreds of methods available in the literature as it has been reviewed elsewhere259. In 

particular, the analysis of vitamins in clinical laboratories is carried out employing an LC-

UV/Vis method approved as IVD test (e.g. ClinRep® HPLC method from RECIPE Chemicals, 

Munich, Germany). 

Furthermore, the application of LC with MS detection to the analysis of vitamins is 

extended and several methods are also available, mainly circumscribed to the research context. 

Prior to LC-MS analysis for vitamin determination in biofluids, typically employed 

preprocessing steps aim at sample clean-up and analyte preconcentration. The most common 

approach is liquid-liquid extraction, but alternatives have been described such as ultrasonic 

assisted filtration, solid phase extraction (SPE), and deproteinization by solvent precipitation 
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and centrifugation259. Despite the myriad of available tools, there are recent clinical studies 

where classical methods for the determination of vitamins are still employed199, exemplifying 

the gap between analytical developments and clinical implementation. 

4.3.1.6 Total antioxidant assessment 

In order to circumvent drawbacks associated to the determination of specific 

antioxidants, different methods have been developed to evaluate the totality of all antioxidants 

present in a redox steady state, i.e. the measurement of the total antioxidant status (TAS) or 

total antioxidant capacity (TAC). In these approaches, antioxidants present in the sample react 

with an oxidizing agent coupled with a detection set-up. 

The 2,2’-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) assay, also known 

as the Trolox equivalent antioxidant capacity or Erel’s assay, is one of the most popular 

methods employed for the total OS assessment in the preterm population188–192. In this method, 

the oxidation of ABTS by H2O2 catalyzed by metmyoglobin yields an ABTS•+ cation that is 

measured by UV/Vis spectrophotometry (750 nm). In the presence of antioxidants originating 

from the biological sample, ABTS•+ is reduced to ABTS decreasing the absorbance indicating 

the TAS. In order to calibrate the ABTS assay, the Trolox® antioxidant (i.e. an analogue of 

vitamin E) is commonly employed. 

The 2,2-diphenyl-1-picryl-hydrazyl (DPPH•) assay is another method based on the 

landmark work of Blois260 that has been employed for the TAS evaluation in preterm infants203. 

For this analysis, the stable and colored (max. absorption at 520 nm) free radical DPPH• is 

reduced to yield a non-radical compound that does not present absorbance at 520 nm. 

Therefore, the amount of antioxidants that react with DPPH• is proportional to the decrease in 

the absorption indicating the TAS. The result is usually given as % of DPPH reduction203. 

Other methods for the TAS assessment employed in the preterm population are the 

ferric-reducing antioxidant power (FRAP)191,193 and the biological antioxidant potential 

(BAP)194,195. These methods exploit the redox properties of iron complexes. In the FRAP 

method, antioxidants present in the sample reduce the ferric tripyridyltriazine complex (Fe3+-

TPTZ) to the ferrous form Fe2+-TPTZ that absorbs light in the visible spectral range at 593 nm. 

Likewise, in the BAP method, a colored thiocyanate ferric complex with maximum absorbance 

at 505 nm is reduced in the presence of the sample’s antioxidants, thus decreasing the 

absorbance. Again, for calibration purposes Trolox or other antioxidants might be employed. 

However, in the case of FRAP, results are usually expressed as a Fe2+ equivalent 

concentration193. 

TAS methods have been implemented in several patented commercial systems261 and 

kits that have been employed in preterm studies194,195, but none of them has been approved as 

IVD test. 
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4.3.1.7 Radicals and other oxidant species 

Despite their short t1/2, the measurement of reactive oxidant species in biological 

samples has been demonstrated employing EPR, colorimetric reactions, and chemical 

probes179,188,202. In EPR, the interaction between the magnetic momentum of the unpaired 

electrons with an external magnetic field is exploited allowing the study of paramagnetic 

species (i.e. atoms or molecules with unpaired electrons) such as free radicals. This interaction 

generates different energy levels depending on the chemical environment of the electrons 

yielding a characteristic radiofrequency absorption pattern, proportional to the radical 

concentration. EPR has interesting advantages since it is partially non-destructive, sensitive, 

and only small sample volumes are required. However, the use of this technique is virtually 

limited to specialized laboratories and frequently it is outside of the researcher’s scope179. 

Consequently, only very few examples of applications are available describing the analysis of 

free radicals in preterm biofluids. The t1/2 of •OH, O2
•-, and •NO is too short to analyze those 

radicals directly in biospecimens but they can be “trapped” by specific molecules called spin-

trappers such as 5,5-Dimethyl-1-Pyrroline-N-Oxide (DMPO). Employing these trappers, the 

ability of a sample to generate certain radicals under defined conditions can be determined in-

vitro. For example, this has been applied to the analysis of bronchoalveolar secretions, where 

the increase of the •OH formation due to the Fenton reaction was determined187. This approach 

is more specific than total antioxidant assessment methods since it provides information about 

the antioxidant scavenger system in the presence of certain reactive species. Another 

application of the use of EPR is the determination of the long-lived paramagnetic species such 

as the ascorbyl radical (Asc•-) in preterm plasma. The Asc•- is the intermediate product of the 

antioxidant reaction of vitamin C (i.e. the ascorbate ion acts as a reducing agent). This radical 

is stable with a t1/2 of 30-60 minutes in physiological conditions and over longer periods in 

frozen samples262. The ascorbate ion reacts with almost all reactive species to yield Asc•-, 

therefore, its determination offers a specific assessment of the vitamin C scavenger power and 

the oxidative status of the sample179. 

Further approaches for the assessment of oxidant species employed in preterm infants 

are based on colorimetric reactions, namely ferrous oxidation of xylenol (FOX), total oxidant 

status (TOS), and the reactive oxygen metabolites (d-ROMs). In these analyses, in the opposite 

way to TAS, the oxidant species present in the sample react with reducing agents coupled with 

a detection system. These assays measure mainly hydroperoxides (ROOH), that are formed in 

most reactions involving oxidant reactive species and therefore, these methods are also called 

total hydroperoxide (TH) assays. In FOX, hydroperoxides react with Fe2+ to yield Fe3+ that in 

the presence of butylated hydroxytoluene (BHT), xylenol orange, and sulfuric acid produces a 

colored complex (absorbance max. at 560 nm) which is measured by spectrophotometry and 

expressed as tert-butyl hydroperoxide (TBH) or H2O2 equivalents after calibration with these 

substances196,197. The TOS assay is a modification of FOX employing the Fe2+–o-dianisidine 

complex instead of Fe2+ 188. The d-ROMs assay is based on the method of Carratelli patented 

in the 1990is (patent expired)263 and employs a N,N-Diethyl-p-phenylenediamine dye that 
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reacts with hydroperoxides182,194. It should be noted that some authors incorrectly refer to FOX, 

TOS, and d-ROMs as methods for the study of the impact of OS on biomolecules, since 

hydroperoxide can be formed during the reaction of ROS with structural molecules. However, 

these methods are unable to distinguish between hydroperoxide sources, and therefore, they 

cannot be considered specific biomarkers of molecular damage. 

Chemical fluorescent probes are alternative techniques for the direct assessment of 

oxidant species. Here, the interaction between the probe and certain oxidant species is coupled 

with a fluorescent signal that is assessed spectroscopically. One example of the utility of 

fluorescent probes is the “oxidative burst assay” that was applied to blood samples of preterm 

infants to evaluate the O2
•- production by neutrophils202. In this assay, whole blood is incubated 

with a dihydrorhodamine123 (DHR) probe and different oxidative burst generators such as E. 

coli or N-formyl-methionyl-leucyl-phenylalanine (fMLP) are added. The production of O2
•- 

oxidizes the probe producing the fluorescent dye rhodamine123 that is monitored by flow 

cytometry (488 nm excitation, 530 nm emission)264. 

4.3.2 Damage to biomolecules by OS 

Oxidant reactive species can react with lipids, proteins, nucleic acids, and 

carbohydrates resulting in damaged molecules with altered functions that may have an impact 

on signaling and other processes43. Consequently, the determination of damaged molecules is 

used as a measure of OS focused on its effects on metabolism. 

4.3.2.1 Biomarkers of lipid peroxidation 

The chemical mechanism of non-enzymatic lipid peroxidation has been studied and 

described in detail recently265,266. The main targets are polyunsaturated fatty acids (PUFAs), 

that have a key role because they are important structural elements of biological membranes 

where they are esterified within phospholipids. During PUFA peroxidation, the generation of 

hydroperoxides in a radical chain reaction yields labile bicyclic endoperoxides as one of the 

first products. These endoperoxides decompose in a plethora of compounds, some interspecific 

such as malondialdehyde (MDA), and others depending on the PUFA such as 

isoprostanes/isofurans (IsoPs/IsoFs), neuroprostanes/neurofurans (NeuroPs/NeuroFs), and 

dihomo-isoprostanes/dihomo-isofurans (dihomo-IsoPs/dihomo-IsoFs) deriving from 

arachidonic acid (AA), docosahexanoic acid (DHA), and adrenic acid (AdA), respectively265–

268. 

In order to analyze the products of lipid peroxidation in preterm infant samples, diverse 

approaches have been developed for different biofluids. The TBARS assay has been employed 

repeatedly in preterm studies198,203,204. In this method, thiobarbituric acid (TBA) is mixed and 

heated with the sample in the presence of an acid to form a pink and fluorescent compound 

(maximum absorbance and emission at 532 and 553 nm, respectively) after the reaction with 

MDA and other lipid peroxidation products. The analysis of TBARS has also been tailored to 
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an LC-fluorescence method, employing the TBA reaction as a derivatization step214. In both 

cases, with or without LC separation, the signal is calibrated with MDA and expressed as MDA 

equivalents. Despite its popularity, the TBARS assay is nonspecific and different substances 

can interfere266. Several attempts have been made to improve the TBARS assay including the 

use of antioxidants such as BHT in order to avoid sample oxidation during the assay, and n-

butanol extractions to increase the sensitivity and to eliminate interfering compounds203. 

A different approach for lipid peroxidation assessment is the direct analysis of 

isoprostanoids (i.e. IsoPs, NeuroPs, dihomo-IsoPs) and isofuranoids (i.e.  IsoFs, NeuroFs, 

dihomo-IsoFs). These compounds are the most valuable biomarkers since they are end products 

of lipid peroxidation and reasonably resistant to metabolism (i.e. stable compounds) compared 

to MDA or hydroperoxides266–268. Also, it has been reported that their relative formation is 

dependent on the oxygen tension since the isofuranoid generation increases at high oxygen 

concentrations267,268. This fact can be exploited measuring the corresponding ratios (e.g. IsoPs 

to IsoFs). However, the analysis of isoprostanoids and isofuranoids is challenging as in 

biofluids a vast number of stereo- and regioisomers is present at low concentrations53,269. 

Consequently, sample clean-up and preconcentration are necessary and SPE or affinity 

columns need to be employed. In fact, lipid peroxidation products can be determined in 

biofluids in their free forms, but they are mainly present in esterified forms in blood or as 

glucuronides in urine, thus requiring their enzymatic or chemical hydrolysis during sample 

preparation. The analysis of these compounds in preterm biofluids has been addressed 

employing enzyme-linked immunosorbent assays (ELISAs)262, GC-MS223, and LC-MS/MS51–

53,103. 

F2-isoprostanes derived from AA are the most studied isoprostanoids in preterm infant 

samples. ELISA methods allowing the determination of 15-F2t-Isoprostane (15-F2t-IsoP), also 

called 8-isoprostane or 8-iso-PGF2α, are popular since they are implemented in commercial 

kits and have been employed with preterm blood and urine samples262,270. However, ELISA 

methods present a considerable lack of selectivity due to cross-reactivity issues and therefore, 

reference methods for accurate IsoP determination rely on the use of GC-MS and LC-

MS/MS267. GC-MS was initially employed for the determination of IsoPs and IsoFs in preterm 

urine samples223 and it is still operational as shown in recent studies229. However, GC-MS 

requires tedious sample processing protocols including SPE extraction and pentafluorobenzyl 

(PFB)-ester/trimethylsilyl (TMS) derivatization. In contrast, LC-MS/MS methods do not 

require a derivatization step and they offer adequate selectivity and sensitivity in rapid 

chromatographic separations allowing the analysis of large batches of samples51–53,103. In 

addition, employing commercial and synthesized standards, quantitative determinations in 

urine and plasma samples have been satisfactorily developed and validated according to FDA 

guidelines52,53. On the other hand, a semi-quantitative analysis method has been developed for 

the measurement of total contents of isoprostanoids and isofuranoids51,103. It has been 

demonstrated that within the same analytical run it is feasible to obtain quantitative information 

of individual isoprostanoids and isofuranoids as well as relative levels of total contents 
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employing 100 µL of plasma or 600 µL of urine. The straightforward sample processing 

procedure includes a basic hydrolysis step employing KOH to hydrolyze the esters present in 

blood samples or an incubation with β-glucuronidase for the breakdown of glucuronides in 

urine samples. After hydrolyzation, SPE is applied and eluates are evaporated and re-dissolved 

in a small volume to preconcentrate the compounds before injection into an LC-MS/MS 

system51–53,103,230. 

4.3.2.2 Biomarkers of oxidative damage to DNA 

DNA repair mechanisms of preterm infants, and especially very preterm infants, are 

immature, and are therefore predisposed to life-long lasting DNA structure alterations if DNA 

gets damaged in the immediate postnatal period271. The main DNA modifications promoted by 

OS are DNA oxidation, DNA hydrolysis and DNA methylation. Regarding DNA oxidation, 

the guanine base from the deoxyribonucleoside deoxyguanosine (2dG) is the most susceptible 

DNA component to modification43. Hence, the main products of ROS damage to DNA are the 

oxidized base 8-oxoguanine and the corresponding deoxyribonucleoside 8-oxo-2'-

deoxyguanosine (8-oxo-dG) also known as 8-hydroxy-2'-deoxyguanosine (8-OHdG). LC 

coupled to electrochemical detection (ECD) was employed in the first characterization of 8-

OHdG as an OS biomarker272 and also in the analysis of preterm samples226. LC-ECD methods 

were improved employing column-switching techniques and they have been employed recently 

in the preterm population with adequate performance227,228. Alternatively, ELISA commercial 

kits were developed and they have become the most popular 8-OHdG determination method in 

blood, urine, tracheal aspirates, and other samples from preterm infants185,199,205,213,273–282. 

Recently, LC-MS/MS methods have emerged and have been validated according to FDA 

guidelines. These methods allow the analysis of 8-OHdG in conjunction with 2dG and other 

OS biomarkers such as protein oxidation products223,231,283,284 in a fast, specific, accurate, and 

straightforward manner, especially in urine samples, where sample processing only consists in 

a centrifugation and dilution step.       

The comet assay or single cell gel electrophoresis is a recently developed technique 

used for the evaluation of the total DNA integrity, and it has been employed in preterm infant 

samples203. Briefly, an electrophoresis of embedded, lysed cells is run in an agarose coated 

slide. After staining, the shape of the DNA migration is analyzed by an imaging software and 

related with the DNA integrity. The comet assay is not specific of oxidative damage, but it can 

be employed as a screening tool. 

4.3.2.3 Biomarkers of protein oxidation 

The oxidative damage to proteins is characterized by a variety of modifications of the 

amino acid side chains by different reactive species43. The formation of protein carbonyl 

derivatives is one of the main protein modifications by OS which may be produced by direct 

protein oxidation or by the reaction of proteins with previously oxidized compounds. The 
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protein carbonyl content has been employed as a general biomarker for oxidative damage to 

proteins285 and studied in preterm samples repeatedly198–200,214–216. The most extended 

analytical method for the measurement of the protein carbonyl content in blood is based on the 

Braddy’s test. In the classical implementation of this method, the reaction between 2,4-

dinitrophenylhydrazine (DNPH) with protein carbonyls generates hydrazones via a 

condensation reaction that can be monitored spectrophotometrically at 370 nm. The lack of 

specificity of the DNPH reaction, that can react with other carbonyls present in the sample, as 

well as the low sensitivity of the method should be highlighted286. In order to improve the 

assay, extractions, filtrations, and washing steps have been included in sample processing 

protocols. Moreover, the Braddy’s test can be used as a preprocessing step of a more sensitive 

ELISA method for the determination of protein carbonyls which is available in commercial 

kits. The latter approach has been employed for the determination of protein carbonyls in 

preterm blood samples214–216. 

The advanced oxidation protein products (AOPP) also called ‘dityrosine containing 

cross-linked protein products’ is another parameter employed to evaluate oxidative damage to 

proteins. The AOPP assessment is based on the early inconclusive finding that certain plasma 

protein-like species (i.e. 60 and 600 kDa), that are generated under oxidative conditions (i.e. 

treatment with HOCl), present ultraviolet absorption at 340 nm in acidic medium287. According 

to the original work, these AOPP species can be expressed as chloramine-T equivalents 

employing the reaction between chloramine-T and iodide to yield iodine monochloride (ICl) 

that shows an absorbance maximum at 340 nm, like AOPP. This approach is straightforward 

and it has been applied widely for OS assessment, also in preterm infant samples181–186,213. 

However, due to the lack of specificity, AOPP analysis based on the spectrophotometry assay 

can be considered obsolete. More recently, it has been replaced by immunoassays, which 

employ antibodies generated against specific protein oxidation products288. Although AOPP 

remains as a global measure of OS damage to proteins with limited molecular selectivity, 

different ELISA implementations are available in commercial kits and have been employed for 

studying AOPP in preterm biofluids213. 

The determination of molecules that are specific to OS mediated protein damage is an 

alternative approach. It involves the quantitation of meta- and orto-tyrosine (m-Tyr and o-

Tyr)223,231, 3-chlorotyrosine (3-Cl-Tyr)231,289–292, 3-nitrotyrosine (3-NO2-Tyr)214,231,293, and 3-

nitro-4-hydroxyphenylacetic acid (NHPA)293. The m-Tyr and o-Tyr isoforms are produced via 

the non-enzymatic hydroxylation of phenylalanine (Phe) by different oxidative species, with 
•OH playing a key role294. 3-Cl-Tyr is generated from the reaction of hypochlorous acid 

originating from myeloperoxidase (MPO) reactions with para-tyrosine (p-Tyr) residues. 

Hence, 3-Cl-Tyr is an indicator of the activity of the neutrophils and monocytes that are present 

in MPO-containing cells292. On the other hand, 3-NO2-Tyr is generated by the nitration of p-

Tyr promoted by different free radical-based reactions of •NO-derived oxidants295. 

Furthermore, NHPA is generated by the metabolization of 3-NO2-Tyr and nitration of para-

hydroxyphenylacetic acid (PHPA), a metabolite of tyrosine. Thus, NHPA is also employed as 
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a biomarker of nitration in conjunction with 3-NO2-Tyr in preterm infant samples293. The 

analytical methods employed for the determination of m-Tyr, o-Tyr, 3-Cl-Tyr, 3-NO2-Tyr, and 

NHPA in preterm biofluids are mainly based on LC-MS/MS with straightforward sample 

processing, especially for urine. As for 8-OHdG, only centrifugation followed by dilution with 

isotopically labeled internal standard mixture is necessary prior injection into the LC-MS/MS 

system. Therefore, multianalyte methods have been developed to determine m-Tyr, o-Tyr, 3-

Cl-Tyr, and 3-NO2-Tyr in conjunction with other biomarkers such as 8-OHdG and their 

corresponding precursors such as p-Tyr, Phe, and 2dG in small amounts of urine 

samples223,230,231. 

4.4 Perinatal events promoting pro-oxidant status in preterm 

infants  

Preterm infants are exposed to events promoting a pro-oxidant status during, as well as 

after fetal-to-neonatal transition, that are intrinsically tied to their condition. Furthermore, 

external factors and medical interventions that need to be carried out in the delivery room and 

the neonatal intensive care unit do have a significant impact aggravating their pro-oxidant 

status. This is manifested in the presence of elevated levels of ROS, depletion of antioxidants 

and oxidative damage to structural molecules that can be assessed and measured employing 

the methods that have been described in the previous section. In the following, the main 

stressful perinatal events and the biomarkers employed for confirming the role of OS-related 

mechanisms in this context are outlined, including intermittent hypoxia and 

hypoxia/reperfusion, oxygen supplementation, infections, and preterm nutrition296. An 

overview of methods used for assessing the effect of perinatal events on OS and redox status 

in preterm infants is given in Table 4.2. 

4.4.1 Hypoxia, reperfusion, and oxygen supplementation 

It has been extensively studied that a deficiency in the amount of oxygen (hypoxia) or 

blood flow (ischemia) reaching the tissues can result in tissue damage and organ dysfunction. 

In addition, intermittent hypoxia in preterm infants is very common, as it is enhanced by an 

increased metabolic oxygen consumption and poor respiratory function297. Tissue damage is 

induced by the exhaustion of ATP and, consequently, an inactivation of the ATP-dependent 

ion pumps in the cells. The damage caused by this inactivation can be reduced by the restoration 

of blood flow (i.e. reperfusion). However, the expected benefits of early reperfusion on tissue 

recovery after ischemia have been questioned by several studies298,299, outlining an 

intensification of the ischemic injury followed by reperfusion (reperfusion injury). 
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Table 4.2 Parameters and biomarkers used for assessing the effect of perinatal events on OS and redox status in 

preterm infants. 

Implemented practice 
Clinical Trial1 

(phase, status) 

Targeted 

disease/event 
OS assessment References 

HYPOXIA, REPERFUSION, AND OXYGEN SUPPLEMENTATION 

Resuscitation with 21% 

O2 

NCT01697904 

(N/A, c) 
BPD 

Cord blood TH and BAP; 

oxidative balance ratio = 

BAP/TH 

195 

NCT00369720 

(N/A, c) 
Preterm delivery 

TAS 

Lipid peroxides 

 

300 

Resuscitation with 30% 

O2 

NCT00494702 

(III, c) 

OS, BPD, 

inflammation 

Blood GSH/GSSG; urinary o-

Tyr/Phe and 8-OH-dG/2dG; 

urinary IsoPs and IsoFs 

223 

iNO (2-10 ppm) 
NCT00390065 

(IV, c) 
HRF 

Plasma MDA and total GSH; 

intraerythrocyte GPx and GSR 

activity 

301 

NUTRITION 

Human milk fortifier 
NCT03214822 

(N/A, c) 
Prematurity Urinary F2-IsoPs 302 

Preterm formula 

- OS 
Urinary o-Tyr/Phe and 8-OH-

dG/2dG 
283 

- 
OS, ROP, IVH, 

CLD, NEC 
Urinary 8-OH-dG 303 

Donor human milk - Prematurity 
Urinary o-Tyr/Phe, 8-OH-

dG/2dG, IsoPs and IsoFs 
230 

Light-protection of TPN 

solutions 

NCT02694510 

(N/A, c) 

OS, BPD, sepsis, 

NEC, ROP 

Urinary peroxides 

Plasma GSH/GSSG 
304 

NCT00611546 

(N/A, c) 
CLD, NEC Urinary peroxides 196 

NCT00328419 

(N/A, c) 

BPD, ROP, Sepsis, 

IVH, PVH, NEC 
Urinary peroxides 305 

PN rich in ω-3 and ω-6 

fatty acids 
- Cholestasis, OS 

Plasma CAT, SOD, GPx 

activity; TBARS 
306 

PN rich in ω-3 fatty acids - OS Serum vitamin A and E; TAS 307 

Trace elements in PN 
NCT00611546 

(N/A, c) 
CLD, NEC, Sepsis Urinary peroxides 196 

PN rich in Se/ oral Se 

NCT02066610 

(N/A, c) 
Prematurity 

Plasma SOD and GPx activity; 

plasma amino acids 
308 

- CLD, ROP 
Plasma protein carbonyls, 

MDA, GPx and fatty acids 
309,310 

PN rich in cysteine 

ISRCTN82896385/ 

NTR243 

(NA/c) 

OS 
Total GSH; plasma and 

cysteine; GSH FSR and ASR 
311 

1 Phase: I, II, III, IV, not applicable (N/A). Status: completed (c). 

ROS in general are the main mediators of reperfusion injury due to an imbalance in the 

ratio between pro-oxidants and antioxidants in the cells and the poor antioxidant system of 

preterm infants. During reperfusion, the activation of oxidases that metabolize purine 

derivatives generated as a consequence of the ATP exhaustion, triggers a burst of superoxide 

and/or hydrogen peroxide that causes a pro-oxidant status. Depending on the tissue and organ 

of the body, reperfusion injury has a wide diversity of responses. Nevertheless, there are several 

shared characteristics between organs such as necrosis, apoptosis, impaired microvascular 

function, and edema35. The main sources of ROS in post-ischemic tissue are enzymatic, such 

as xanthine oxidase, NADPH oxidase, and the mitochondrial electron transport chain and the 

uncoupled nitric oxide synthase35. However, recent studies have been focusing on the 

interactive activity between enzymatic sources, rather than on a single source. This is supported 

by the evidence that hydrogen peroxide, the product of all enzymatic sources, can act as an 

intracellular messenger that mediates redox signaling between ROS production sources312. 
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The most frequently evaluated markers of hypoxia are plasma levels of TH, AOPP, 

hypoxanthine, xanthine, and uric acid. Several studies have shown that levels of these markers 

are higher in hypoxic preterm infants than in control term groups182,183,219, demonstrating that 

OS in hypoxic preterm infants is higher in this vulnerable population.  

As preterm infants frequently suffer from hypoxia due to respiratory insufficiency in 

the delivery room, they need oxygen supplementation and ventilatory support. In addition, their 

susceptibility to OS increases as lungs mature late in gestation313,314. Also, hyperoxia is 

associated with significant changes to genes related to the cell cycle, antioxidant defense 

enzymes, DNA repair, and inflammation315. Consequently, it is crucial to study the optimum 

amount of supplemental oxygenation that these infants require. In Table 4.2, different clinical 

trials regarding these interventions are summarized. FiO2, i.e. percentage of oxygen in the gas 

mixture administrated to newborn infants, ranges from 0.21 (air) to 1.0 (pure oxygen). Current 

indications in neonatal resuscitation emphasize the importance of starting respiratory support 

with a low initial oxygen concentration in order to reduce OS. Several clinical trials have been 

conducted in this regard (e. g. NCT01697904, NCT00369720, NCT00494702, 

NCT00355875). In this sense, Kapadia et al.195 observed that reducing the oxygen 

concentration for resuscitation in the delivery room (FiO2 = 0.21) decreased TH and increased 

BAP within 1 hour of administration with respect to pure oxygen (FiO2 = 1.0). Similarly, Vento 

et al.223 followed the effect of resuscitation with an initial FiO2 = 0.3 (low-oxygen group, Lox) 

vs FiO2 = 0.9 (high-oxygen group, Hox) on several OS markers on day 1 and 7. Resuscitation 

in the Lox group resulted in a decrease in urinary o-Tyr/Phe, as well as 8-OHdG/2dG. 

Similarly, GSH/GSSG in blood and the plasma inflammatory cytokines TNFα and IL-8 

decreased. However, on day 7, levels of lipid peroxidation markers (urinary IsoPs and IsoFs) 

were similar in both groups. Additionally, Lorente-Pozo et al.316 studied changes in the DNA 

methylation profile before and after resuscitation, showing that oxygen loads of >500 mL O2/kg 

modified the methylation pattern of different CpG sites involved in cell cycle progression, 

DNA repair, and oxidative stress. Despite new evidence, current resuscitation guidelines 

focusing on delivery room oxygen management do not provide clear recommendations for the 

optimum FiO2 in preterm infants317. Hence, further studies supported by the determination of 

specific OS-related biomarkers are encouraged. 

Alternatively, inhaled nitric oxide (iNO) is a pulmonary vasodilator that plays a major 

role in regulating vascular muscle tone. iNO therapy has emerged as a potential treatment for 

hypoxemic respiratory failure in newly born infants318, and its effects on death, BPD, 

intraventricular hemorrhage (IVH) or other serious brain injury and on adverse long-term 

neurodevelopmental outcomes have been reviewed elsewhere319. Although safety and efficacy 

of iNO therapy in the term and late-preterm infant has been demonstrated in two large multi-

center randomized clinical trials320, neonatologists remain cautious regarding its use, since its 

long-term effects have not been fully studied321. Hamon et al.301 measured plasma MDA, total 

plasmatic GSH, and intra-erythrocyte GPx and GR activity in infants with hypoxemic 

respiratory failure (HRF) before (T1) and 24 h after (T2) iNO treatment was initiated within 
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the first 72 h of life. A control and a reference group comprised of preterm infants with HRF 

but no iNO treatment, and without HFR, respectively, were enrolled for comparison. Levels of 

OS markers at T1 were similar in all three groups, whereas at T2 the rise in MDA was blunted 

in the iNO group compared with controls and was close to the reference infants and GSH was 

more stable in the iNO group, as there was no difference in GPx and GR activities. 

4.4.2 Infections 

Preterm infants are at particularly high risk of infections due to diverse factors, such as 

immaturity of the immune system, prolonged hospitalization, and frequent use of invasive 

procedures322. The activation of the immune system leads to a complex chain of redox 

processes known as the redox cascade323. Cytokines, mainly interleukin (IL)-6 and IL-8, are 

the compounds involved in the initiation of the sepsis redox cascade. These cytokines activate 

the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) that triggers the 

transcription of different genes that activate several stress-related pathways, leading to the 

generation of superoxide. Moreover, superoxide levels are increased due to the cytokine-

induced activation of the NADPH oxidase324. 

Preterm infants often exhibit ambiguous clinical signs that complicate the diagnosis of 

sepsis and, due to the lack of biomarkers that show enough diagnostic accuracy to rule out 

sepsis at the time of clinical suspicion, diagnosis still relies on time-consuming microbiological 

tests. With the aim of developing new diagnostic biomarkers, several studies have been carried 

out studying differences between septic and non-septic infants. A recent work has compilated 

the profile of circulating markers of OS and enzymatic and non-enzymatic antioxidant defenses 

during neonatal sepsis324. In septic newborns, circulating levels of TNFα and MDA were shown 

to be significantly increased in comparison to healthy controls325,326 along with the activity of 

the antioxidant enzymes, such as xanthine-oxidase, SOD, and GPx, while peroxidase and uric 

acid levels were suppressed325. In addition, both protein carbonyls and TBARS were increased 

along with IL-6 and IL-10 levels in patients with sepsis327.  

Interestingly, Cernada et al.328 analyzed the gut microbiota and mucosal gene 

expression in septic preterm dizygotic twins and their non-septic twin (control group) to 

provide with an integrative perspective of host-microbe interactions in neonatal sepsis, 

concluding that an induction of inflammatory and OS pathways caused dysbiosis in the gut 

microbiota with predominance of Enterobacteria and reduction of Bacteroides and 

Bifidobacterium, leading to a global reduction of beneficial anaerobic bacteria. 

4.4.3 Nutrition 

4.4.3.1 Preterm formula and donor human milk (DHM) 

Human milk is considered the gold standard for newborn nutrition and its short- and 

long-term benefits have been recognized worldwide. Regarding antioxidant defenses provided 
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through human milk, little is known about its OS and inflammatory profile and its impact on 

infant’s trajectory329,330. However, OS has been assessed comparing formula fed infants vs 

infants on a human milk diet. Ledo et al.283 compared urinary o-Tyr/Phe and 8-OHdG/2dG of 

stable preterm infants, that were either exclusively formula-fed or receiving human milk, with 

respect to a healthy breast-fed term control group. Higher levels of urinary oxidative 

metabolites in preterm groups than in term control group were found, but in the preterm 

formula-fed group, levels of o-Tyr/Phe and 8-OHdG/2dG were significantly higher than in the 

preterm group receiving human milk. These results were in agreement with the findings of 

Shoji et al.303 and support the partially protective effect of human milk in counteracting OS in 

this at-risk population as compared to preterm formula. 

On this behalf, Friel et al.302 compared the redox status between formula-fed preterm 

infants and those fed with mother’s milk fortified with a commercial human milk fortifier (i.e. 

Enfamil®). The second group was further subdivided according to human milk fortifier content 

into 0 –19, 20 – 49, and ≥50% groups. Urinary F2-IsoPs levels in formula-fed infants were 

higher than in infants receiving fortified mother’s milk, except for the ≥50% fortification group, 

which presented the highest levels of these compounds (e. g. NCT03214822). 

On the other hand, Parra-Llorca et al.230 conducted a prospective, longitudinal, 

observational study with the aim of comparing the protective role of own mother’s milk 

(OMM) vs donor human milk (DHM) against OS, as the latter is subjected to pasteurization. 

To this end, biomarkers of oxidative damage to DNA (8-OHdG/2dG) and proteins (o-Tyr/Phe), 

as well as individual and total free radical-mediated lipid peroxidation biomarkers (e.g. IsoPs, 

IsoFs, NeuroPs, NuroFs, dihomo-IsoPs, and dihomo-IsoFs) in urine samples from preterm 

infants exclusively fed either with OMM or DHM were measured. The results showed no 

significant differences in urinary OS biomarkers between groups, which reinforces human milk 

as a safeguard against OS, even if milk has undergone pasteurization. 

4.4.3.2 Parenteral nutrition 

Despite the fact that human milk is the best source of antioxidants for newborn infants, 

the inherent gastrointestinal immaturity of some premature infants requires the administration 

of parenteral nutrition (PN). Regardless of its benefits, PN is an important source of ROS and, 

therefore, it has been associated with OS331. Total parenteral nutrition (TPN) contains glucose, 

amino acids, lipids, vitamins and trace elements. These nutrients have the potential to influence 

the generation of oxidant molecules in the solution. The combination of lipids, which are strong 

electron donors, vitamin C, and dissolved oxygen acting as an electron acceptor, leads to the 

formation of lipid peroxides, dehydro-ascorbate, and the production of hydrogen peroxide45. 

Moreover, some of the light-sensitive molecules present in TPN, such as riboflavin, use energy 

from ambient light to accelerate the reaction between vitamin C and oxygen, increasing the 

formation of peroxides332,333. In this sense, light protection of TPN and coadministration of 

multivitamin preparations have been thoroughly evaluated in several clinical trials (e. g. 

NCT02694510, NCT00611546, NCT00328419) (see Table 2) in which urinary 
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peroxides196,304,305 and other OS markers (e. g. plasma GSH/GSSG ratio304) have been 

measured. General outcomes of these studies revealed the value of photoprotection of TPN 

bags reflected in decreasing OS biomarker levels in preterm infants. 

Compositional changes of TPN, such as the influence of trace elements, enrichment 

with ω-3 and ω-6 fatty acids, or cysteine enrichment, have been also studied. In order to assess 

the impact of these modifications on the antioxidant defenses, CAT, SOD, and GPx activity, 

lipid peroxidation products (TBARS), TAP, serum vitamin levels, and urinary peroxides have 

been measured in preterm infants196,306,307. In particular, for cysteine enrichment, total GSH 

and GSH synthesis rates were measured, but no significant changes were observed311. 

4.5 Interventions aiming at the reduction of OS in preterm 

infants 

Preterm infants have profoundly disturbed antioxidant profiles with low levels of both, 

enzymatic antioxidants such as SOD, CAT, and GPx, and non-enzymatic antioxidants such as 

vitamin A, C, E, selenium or GSH. Current therapeutic interventions are aiming to reduce 

impact and severity of OS in preterm infants and they include both, antenatal and postnatal 

interventions. The former usually consists in drug administration during pregnancy when 

preterm birth risk becomes evident, whereas different strategies can be established for the latter 

as discussed in this section. The outcomes of antioxidant interventions and their effect on global 

redox status have been assessed thoroughly employing different methods and OS biomarkers 

as summarized in Table 4.3. 

Table 4.3 Biomarkers used for assessing the effect of antioxidant interventions on OS and redoc status in preterm 

infants.  

Intervention 
Clinical Trial1 

(phase, status) 

Targeted 

disease/event 
OS assessment References 

ANTENATAL INTERVENTIONS 

Prenatal corticosteroids 

(betamethasone) 

NCT00791687 

(N/A, c) 

 

RDS, BPD, ROP, 

IVH 

Blood GSH/GSSG; Blood GPx, 

GSR, GST, SOD, and CAT 

activity; urinary o-Tyr/Phe and 

8-OHdG/2dG 

33 

NAC 
NCT03596125 

(II/III, r) 
Preterm delivery 

Plasma, RBCs, placenta and 

human milk GSH and related 

metabolites; 

- 

POSTNATAL INTERVENTIONS 

rh-SOD - BPD, CLD 
Plasma and urinary SOD 

activity and concentration 
334–336 

rh-EPO 

NCT00593801 

(N/A, c) 

Anemia of 

prematurity, BPD, 

IVH, ROP, NEC 

Plasma; RBCs SOD, CAT and 

GPx activity; plasma ferritin 
337 

- 
Anemia of 

prematurity 

Serum MDA and ferritin; SOD, 

CAT and GPx activity 
338 

Allopurinol - PVL Plasma hypoxanthine; TBARS 218 

Melatonin 

NCT04235673 

(N/A, not yet r) 
Brain impairment Plasma MDA - 

NCT03295162 

(I/II, c) 
Prematurity, Sepsis Serum MDA 339 

Vitamin A 
NCT00417404 

(IV, c) 
CLD 

Plasma vitamin A 340 

Serum vitamin A 341 
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Intervention 
Clinical Trial1 

(phase, status) 

Targeted 

disease/event 
OS assessment References 

Vitamin E 
NCT01193270 

(I, c) 
Prematurity, IVH Serum vitamin E 342 

Lutein 

NCT02068807 

(I/II, c) 
- Plasma TH, AOPP and BAP 343 

UMIN000007041 

(unk., c) 
TAS TAS 344 

Amino acids  - Plasma AOPP 345 

Surfactants  RDS Serum TAC and TOS 188 
1 Phase: I, II, III, IV, not applicable (N/A), unknown (unk.), pharmacokinetically assessment (p. a.). Status: completed (c), recruiting (r) 

4.5.1 Antenatal interventions 

4.5.1.1 Corticosteroids 

Antenatal steroid administration between 24 and 34 weeks of gestation is a routine 

protocol in pregnant women with risk of preterm delivery. The effectiveness in reducing the 

incidence and severity of many neonatal conditions such as RDS, BPD, ROP or NEC has been 

demonstrated. Vento et al.33 established a direct relationship between steroid administration 

and redox status (GSH/GSSG), antioxidant enzyme activity of SOD, CAT, and GPx, GSH 

redox cycle enzymes (GR and GST), and markers of oxidative damage to proteins (urinary o-

Tyr/Phe) and DNA (urinary 8-OHdG/2dG). Premature infants receiving prenatal 

corticosteroids had less OS reflected in higher GSH/GSSG, higher expression of SOD, CAT, 

and GSH redox cycle enzymes, and lower o-Tyr/Phe and 8-OHdG/2dG. 

4.5.1.2 N-acetylcysteine (NAC) 

NAC has antioxidant properties as it acts as an oxygen free radical scavenger through 

its thiol-reducing group and it is also a precursor for the synthesis of GSH. Pharmacodynamics 

and safety of NAC administration during pregnancy have been studied [196]. However, 

changes in OS markers in relation to NAC administration have not been explored to date. A 

randomized, single-blinded, placebo-controlled trial that aims to determine if NAC 

supplementation in women at risk of preterm labor (prior to 34 weeks of gestational age) may 

correct GSH deficiency in neonatal cord blood is ongoing (NCT03596125). In this study, GSH 

and related metabolites will be measured in plasma, blood, placenta, and human milk, together 

with metabolomic and lipidomic fingerprints. 

4.5.2 Postnatal interventions 

4.5.2.1 Superoxide dismutase (SOD) 

SODs are endogenous antioxidant enzymes entrusted with converting reactive 

superoxide radicals (O2
•-) to hydrogen peroxide (H2O2) and oxygen (O2). The effects of 

recombinant human CuZnSOD (rh-CuZnSOD or rh-SOD) administration to preterm infants on 

the incidence of BPD was studied by Davis and Rosenfeld throughout the 1990s334–336. After a 

single intratracheal administration of rh-SOD, an increase in both, concentration and activity 
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of the antioxidant enzyme in serum, tracheal aspirate fluid, and urine during the following two 

to three days was observed336. The authors concluded that rh-SOD administration was safe with 

no significant increase in any adverse outcome and the likelihood of an improved clinical status 

when measured at one-year corrected age was presented335. However, although cost-

effectiveness analysis of rh-CuZnSOD treatment (not commercially available) supports its 

potential economic benefits346, to date no results from follow-up studies are available347. 

4.5.2.2 Erythropoietin (EPO) 

EPO is a glycoprotein hormone directly involved in the prevention of OS by generating 

antioxidant enzymes, inhibiting NO production, and decreasing lipid peroxidation [202]. It has 

been postulated that EPO enhances erythropoiesis. Mobilization of non-heme iron by EPO 

could inhibit iron-catalyzed reactions, thus reducing OS. For optimal erythropoiesis, 

recombinant human EPO (rh-EPO) is usually administrated with iron supplementation aiming 

at reducing anaemia of prematurity348,349. 

Regarding OS markers assessed in studies administrating rh-EPO to preterm infants, 

Akisu et al.338 studied the effect on lipid peroxidation and the activity of erythrocyte antioxidant 

enzymes (e. g. SOD, CAT, and GPx). MDA levels were diminished in the rh-EPO group, but 

SOD, CAT and GPx activities were reported to be uncompromised. These results were 

confirmed by Loui et al.337, who reported no change in trace element values after rh-EPO 

treatment. Benefits of rh-EPO treatment, however, remain inconclusive to date350,351. 

4.5.2.3 Allopurinol 

As previously stated, allopurinol is a xanthine oxidase inhibitor, which is the enzyme 

involved in the production of superoxide radicals, especially during reperfusion damage. At 

high doses, allopurinol acts also as chelator agent of NBPI and as a direct free radical 

scavenger. The administration of allopurinol has been mainly focused on counteracting the 

neuronal damage of infants with hypoxic-ischemic encephalopathy (HIE). However, clinically 

important benefits of allopurinol administration for newborn infants with HIE remain 

unclear352. In this sense, a blinded randomized placebo-controlled parallel group multicenter 

phase III trial aiming at evaluating the effect of allopurinol as an adjuvant to therapeutic 

hypothermia in infants with moderate and severe encephalopathy is being carried out 

(NCT03162653)353. 

Regarding preterm infants, a randomized trial evaluated the effect of allopurinol on the 

incidence of periventricular leukomalacia in this population (24-32 weeks of gestation). In this 

study, hypoxanthine, oxypurine, allopurinol and its metabolite oxypurinol, as well as lipid 

peroxidation products (TBARS) were analyzed in plasma cord blood and on days 3 and 7. The 

results failed to show a protective effect of allopurinol against the prevention of periventricular 

leukomalacia, what the authors attributed to the concurrence of different factors218. Since then, 
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no additional studies involving allopurinol administration to preterm infants have been 

reported. 

4.5.2.4 Melatonin  

Melatonin is an endogenous pineal hormone with antioxidant properties due to its 

interaction with various ROS/RNS as well as organic radicals (e.g. •OH). Besides its ability to 

scavenge several radical species, melatonin stimulates the activity of antioxidant enzymes such 

as SOD and GPx, thus contributing indirectly to OS safeguard mechanisms354,355. Preterm 

infants are deprived of maternal melatonin secretion and for this reason, melatonin 

administration in this population is of clinical relevance356. Pharmacokinetic assessment of 

melatonin in preterm infants showed that the pharmacokinetic profile of this population differs 

from that of adults357. However, the effect of melatonin administration in infants with reference 

to OS markers has been scarcely studied358,359. Particularly, Gitto et al.359 observed significantly 

lower levels of serum inflammatory cytokines IL-6, IL-8, and TNFα as well as nitrite/nitrate 

levels in preterm newborns with RDS treated with melatonin in comparison with a non-treated 

control group. Similarly, El-Kabbany et al.339 studied the effect of melatonin administration by 

assessing the concentration of MDA at enrolment and 4 and 72 h after the administration of 

melatonin (e.g. NCT03295162). The concentration of MDA was doubled in the conventionally 

treated group while reduced in the melatonin treated group 72 h after intervention. 

Additionally, no side effects following melatonin administration were reported. All these data 

suggest that melatonin may be a promising drug against OS, which will be contrasted in further 

clinical trials (e. g. NCT04235673). 

4.5.2.5 Vitamins 

Vitamins A, C (ascorbic acid), and E (α, β, γ tocopherols) are essential nutrients 

considered as the most relevant antioxidant compounds obtained through the diet. Mechanisms 

of action and implications of vitamins are diverse360, and antenatal and postnatal administration 

of vitamins has been widely studied361–363. Relatively low vitamin levels found in preterm 

infants compared to term infants have been related with several OS markers (e.g. higher levels 

of MDA)204. However, interventional studies with vitamins in preterm infants lack the 

measurement of OS biomarkers and focus mainly on establishing vitamin levels in plasma or 

serum after the corresponding treatment340–342. 

4.5.2.6 Carotenoids  

Lutein, β-carotene, zeaxanthin or lycopene are dietary carotenoids with antioxidant 

properties present in human milk. In particular, the effectiveness of lutein to neutralize oxidants 

and to modulate inflammatory processes has been demonstrated in several experimental 

studies364. However, few data is available contrasting the effects of lutein supplementation on 

the antioxidant status of preterm infants365. In a pilot randomized trial, Perrone et al.343 



86 Pathologies of preterm infants associated to OS 

 

observed an enhancement on the BAP after lutein supplementation in healthy term infants, 

jointly with a reduced level of plasma TH. However, results of this trial involving premature 

infants are not available so far. In this regard, Romagnoli et al.366 observed that lutein was well-

absorbed in the preterm gut after oral administration and that mean plasma lutein increased, 

whereas zeaxanthin levels remained unchanged. Conversely, Costa et al.344 determined both, 

higher levels of plasma lutein and zeaxanthin in the test group with respect to a placebo group, 

although post-treatment mean changes were not different between groups. TAS was similar in 

both groups, but a significant positive correlation between TAS and plasma lutein, and between 

TAS and zeaxanthin was found. 

4.5.2.7 Others 

GSH constitutes an essential non-enzymatic antioxidant, whose inadequate sourcing is 

believed to contribute to the redox imbalance in preterm infants. In an attempt to stimulate 

GSH synthesis, te Braake et al.345 administrated a mixture of amino acids directly after birth 

and the degree of OS was assessed by measuring concentrations of AOPP and di-tyrosine. 

Although they observed an increase in the absolute synthesis rate of GSH, the greater 

availability of GSH did not decrease OS biomarkers. 

On the other hand, Dizdar et al.188 studied the effect of surfactant administration on preterm 

infants with RDS by evaluating TAC and total oxidant status (TOS) in blood before and 48 h 

after surfactant treatment. Based on higher TAC levels and TAC/TOS found in the treatment 

group, the authors concluded that the oxidant–antioxidant balance shifted in favor of the 

antioxidant system after surfactant administration. 

4.6 Pathologies of preterm infants associated to OS 

Preterm infants are especially susceptible to OS and its consequences. Their antioxidant 

defense mechanisms are immature while at the same time they are exposed to elevated levels 

of OS due to the premature fetal-to-neonatal transition and the frequent use of supplemental 

oxygen in cases of respiratory insufficiency296. Pathologic levels of OS can affect a wide 

variety of organs, often simultaneously, and are involved in the pathogenesis and 

pathophysiology of a series of diseases including HIE26, IVH367, ROP368, BPD369, persistent 

pulmonary hypertension of the newborn (PPHN)370, and NEC371. In this sense, biomarkers have 

been studied and applied in the context of OS-related diseases, thus providing diagnostic and 

prognostic information for clinicians enabling the monitoring of disease progression and the 

assessment of the efficacy of protective strategies and procedures in clinical trials. An array of 

different molecules such as tissue specific proteins, amino acids, lipid peroxidation products, 

and inflammatory markers have been proposed as candidate biomarkers in the principal 

diseases that relate preterm infants and OS. 
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4.6.1 Neonatal pulmonary vascular disease 

Preterm birth exposes the lung to ambient oxygen concentrations that are several folds 

higher than fetal levels and supplemental oxygen is frequently required to support breathing. 

The importance of the hypoxic intrauterine environment suggests a potential role of 

transcriptional factor HIF in the regulation of normal fetal and neonatal lung development. 

Under hypoxic condition, HIF-1α induces expression of several transcriptional factors related 

to vasoconstriction and angiogenesis such as post-transcriptional regulation of growth factors 

including vascular endothelial growth factors (VEGFs), EPO, placental growth factor (PGF), 

and angiopoietins 1 and 2372,373. Therefore, formation of the pulmonary vasculature is 

dependent on vasculogenesis and the formation of new vessels from preexisting ones. 

However, preterm infants switch prematurely from the intrauterine hypoxic environment to 

normoxic conditions at birth, affecting the biochemical regulation of angiogenesis, with the 

lung being one of the organs most affected by OS. 

BPD and PPHN are the most common conditions associated with lung development in 

preterm infants. BPD is a chronic respiratory disease and it is characterized by alveolar 

simplification on account of interruption of the lung maturation in the saccular and alveolar 

stage, loss of small pulmonary arteries and decrease of capillary density374. PPHN describes 

the failure of normal pulmonary vascular adaptation at birth and it is characterized by elevated 

pulmonary vascular resistance and right-to-left extrapulmonary shunting of deoxygenated 

blood that produces severe hypoxemia375. In both pathologies, endothelial nitric oxide synthase 

(eNOS) plays a critical role in the transition of pulmonary circulation by releasing NO376,377. 

This protein is the promoter of the growth of blood vessels in the pulmonary circulation in 

utero in response to VEGF. The exposure to hyperoxia increases lipid and protein oxidation 

products and disrupts normal parenchymal and vascular lung development. Moreover, the 

relevance of peroxynitrite in the generation of pulmonary vasoconstriction in PPHN via 

nitrosative stress has been described378. Under these circumstances, lipid peroxidation 

compounds (IsoPs, IsoFs, NeuroPs and NeuroFs) and Asc•- were employed as biomarkers of 

OS51,180,379,380. These studies demonstrated that levels of lipid peroxidation compounds and 

Asc•- were elevated in preterm infants who developed BPD or PPHN. Moreover, TAC and 

TOC were measured in a cohort of sixty-nine preterm infants with RDS before and 48 h after 

surfactant treatment. Hence, Dizdar et al.188 propose that low TAC/TOC in preterm infants 

could be associated with increased mortality. 

4.6.2 Retinopathy of prematurity 

ROP is a common disease of preterm infants which was originally described in 1942 

by Terry, who first connected the condition with premature birth381. This condition is the result 

of a two-phase injury characterized by an arrest of normal retinal vascular development 

associated with microvascular degeneration382,383. During the first physio-pathologic stage of 

ROP, preterm infants are exposed to increased oxygen tension after birth compared to in-utero 
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conditions. This hyperoxia suppresses VEGF and insulin growth factor-1 (IGF-1), which in 

turn inhibits normal vascularization. Therefore, the retinal vessel loss is generally attributed to 

hyperoxia inducing OS through the formation of ROS and the vaso-obliteration caused by 

apoptosis of vascular endothelial cells368. Subsequently, when blood vessel growth stops, the 

retina matures and the metabolic demand increases, which results in hypoxia and establishes 

the beginning of the second phase of ROP. In this phase, endothelial cells stimulate the 

expression of VEGF and EPO in the hypoxic retina, hence promoting a disorganized 

neovascularization. This pathological condition generates a chaotic growth of vessels, that 

produces a fibrous scar extending from the retina to the vitreous gel and lens383,384. Several 

parameters such as TOS, TAS, MDA and paraoxonase 1 (PON1) have been proposed as 

biomarkers of ROP385. This study showed that levels of OS correlated significantly with the 

development of ROP and according with the results, TOS and MDA have been proposed as 

candidate biomarkers for an early diagnosis of ROP. 

4.6.3 Hypoxic-ischemic encephalopathy  

The preterm brain is an oxyregulator tissue particularly vulnerable to OS. HIE 

associated with perinatal asphyxia is a leading cause of mortality and acquired long-term 

neurologic co-morbidities26. If preterm infants are subjected to periods of hypoxia and 

hyperoxia, this can produce OS affecting the developing brain through the activation of a 

cascade of biochemical processes. OS initiated by hypoxia/ischemia and reoxygenation 

produces irreversible damage to vital cellular structures in the brain. Cellular energy exhaustion 

is followed by excitotoxicity, OS, blood-brain barrier (BBB) dysfunction, neuroinflammation, 

and mitochondrial damage. Altogether these events cause neuronal cell death in the central 

nervous system and release neurotransmitters causing a burst of ROS386,387. As a result, a series 

of molecules may arise as possible candidates for biomarkers of HIE. OS biomarkers in preterm 

infants with HIE have been described in different studies. Buonocore et al.224 demonstrated 

that NPBI levels in cord blood were significantly higher in preterm infants with a poor 

neurodevelopmental outcome than in those with normal outcome. The results suggest that 

NPBI could be a new early and reliable indicator of HIE. An ongoing clinical trial involving 

preterm infants (NCT02550054) aims to evaluate the role of EPO to prevent HIE. This trial 

does also include the assessment of biomarkers of OS through the measurement of stromal cell-

derived factor (SDF-1), TNFα, and IL-1. 
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Table 4.4 Biomarkers of OS employed in preterm infants with different pathologies.  

Pathology Groups Biomarkers of OS References 

BPD and PPHN 

Preterm infants BPD or 

die (N = 29) vs. No BPD 

(N = 54) 

8-IsoPs and Asc•- 180 

254 preterm infants 

LowOx (N = 133) vs. 

HiOx (N = 120) 

IsoPs, IsoFs, NeuroPs and NeuroFs 51 

42 preterm infants PH (N 

= 21) vs. No PH (N = 21) 

Untargeted metabolomic approach and evaluation 

of oxylipins (PGE1, PGE2, PGF2a, 9- and 13-

HOTE, 9-and 13HODE and 9- and 13-KODE). 

379 

40 preterm infants with 

BPD (N = 24) and without 

BPD (N = 16) 

15-F2t-IsoP 380 

69 preterm infants with 

RSD 

TAC and TOC before and 48 h after surfactant 

treatment 
188 

ROP 

59 preterm infants with 

ROP (N = 18) and without 

ROP (N =41) 

TOS, TAS, MDA and PON1 385 

HIE 

384 newborns with GA 

from 24 to 42 weeks 
NPBI 224 

312 preterm infants 

(estimated) 
SDF-1, TNFα and IL-1 388 

IVH 

Preterm infants receiving 

antenals steroids (CORT) 

(N = 37) or not 

(NOCORT) (N = 20) 

GSH and GSSG, CAT, SOD, GST GPX and GSR 33 

NEC 

332 preterm infants with 

NEC (N = 29) and no 

NEC (N = 303) 

TH, AOPP, protein carbonyls, NPBI 389 

31 preterm infants with FI 8OHdG 277 

4.6.4 Intraventricular hemorrhage 

IVH in preterm infants is a common disease associated with neurodevelopmental 

consequences. The pathophysiology is not well defined, but IVH has been attributed to changes 

in cardiovascular stability and impaired coagulation due to the immature germinal matrix 

microvasculature and secondary periventricular venous infarction390–392. In cerebral tissue, 

cyclooxygenase (COX) and prostaglandins play an important role modulating the 

inflammatory response and blood flow393 and the expression of COX is induced by hypoxia, 

hypotension and inflammatory modulators including IL-6, IL-1β, TNFα, and NFκB394,395. 

These compounds lead to an increase of PUFA content, high O2 consumption and microglial 

activation that increase the generation of OS in the brain396. Protein and DNA damage and 

antioxidant activity were measured in cohorts of preterm infants. Both, o-tyr/Phe and 

8OHdG/2dG indicated that neonates receiving high oxygen levels generated more OS223. 

Moreover, in another cohort that aimed the association between antenatal steroids and 

antioxidant activity and postnatal oxidative stress, the GSH/GSSG was decreased significantly 

and correlates with hyperoxia and reoxygenation damage. Thus, expression of the antioxidants 

enzymes SOD and CAT was significantly increased in preterm infants receiving antenatal 

corticosteroids33. 
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4.6.5 Necrotizing enterocolitis  

Despite advances in perinatal and neonatal research, NEC is still the most devastating 

gastrointestinal neonatal disease and remains a leading cause of morbidity and mortality in 

premature infants with mortality rates reaching approximately 30%397. NEC occurs with a 

frequency of 1 to 3 per 1000 live births and almost 90% of cases affect premature infants371. 

NEC is a multifactorial disease closely related with intestinal tract immaturity. Intestinal 

mucosa lesions in preterm infants appear due to the contribution of several factor such as 

hypoxia and nutrition. Furthermore, immunologic studies indicate that Toll Like Receptor 4 

(TLR4) has a key role in the pathogenesis of NEC398–400. Preterm infants present immature 

intestinal epithelium, and therefore, excessive signaling in the epithelial TLR4 can occur in 

response to lipopolysaccharides produced by gram-negative bacteria in the gut401. This 

aggravated pathway activation leads to enterocyte and intestinal stem cell loss by apoptosis400. 

Altogether these events contribute to the release of bacteria and lipopolysaccharides into the 

blood flow, causing an increase in the production of proinflammatory cytokines, ROS, 

expression of induced nitric oxide synthase (iNOS) and deregulation of eNOS402,403. Hence, 

the pathogenesis of NEC is intrinsically tied to OS. In different studies, biomarkers of OS such 

as TH, AOPP, protein carbonyls, NPBI, and 8-OHdG were evaluated in cohorts of premature 

newborns277,389. Concentrations of AOPP, TH, and NPBI were markedly increased in preterm 

infants who developed NEC. Therefore, these studies could reaffirm the strong correlation 

between high levels of OS and the development of NEC. 

4.7 Conclusions and future applications 

During the last decades, an ample array of laboratory methods and commercial assays 

for the assessment of the redox state and OS damage to biomolecules have been developed. 

Many methods suit the needs of research studies and clinical trials in preterm infants helping 

to characterize the impact of pro-oxidant neonatal events and interventions aiming at the 

reduction of OS in this population. The available methods have also supported the study of 

common diseases in preterm infants that could be clearly associated to OS. However, due to 

the diversity of methods available employing different detection principles, the comparison of 

results between studies is challenging. For a transition from research to routine clinical use, an 

extensive analytical and clinical validation of laboratory methods and the approval of IVD 

methods is warranted. This would pave the way for establishing reference ranges in stable 

preterm infants and subsequently, the evaluation of the usefulness of OS measures as disease 

biomarkers in different conditions in a routine clinical setting. During this process, preference 

should be given to non-invasive tests, considering the special circumstances of preterm infants. 

 



 

Chapter 5 Novel free-radical mediated lipid 

peroxidation biomarkers in newborn plasma 

5.1 Abstract 

Oxidative stress derived from perinatal asphyxia appears to be closely linked to 

neonatal brain damage and lipid peroxidation biomarkers have shown to provide predictive 

power of oxidative stress related pathologies in situations of hypoxia and reoxygenation in the 

newborn. The objective of this work was to develop and validate of a comprehensive liquid 

chromatography tandem mass spectrometry approach for the quantitative profiling of 28 

isoprostanoids in newborn plasma samples covering a broad range of lipid peroxidation product 

classes. The method was developed taking into account the specific requirements for its use in 

neonatology (i.e. limited sample volumes, straightforward sample processing and high 

analytical throughput). The method was validated following stringent FDA guidelines and was 

then applied to the analysis of 150 plasma samples collected from newborns. Information 

obtained from the quantitative analysis of isoprostanoids was critically compared to that 

provided by a previously developed approach aiming at the semi-quantitative detection of total 

parameters of fatty acid derived lipid peroxidation biomarkers. 

5.2 Introduction 

Fetal life develops in a relatively hypoxic environment with an in utero arterial partial 

pressure of oxygen (paO2) of approximately 3.3 kPa. After birth and with the initiation of 

spontaneous respiratory alveolar-capillary gas exchange, the situation changes abruptly and 

paO2 saturation in the circulating blood stream rises to approximately 10.5 kPa within the first 

minutes of life170. During the fetal-to-neonatal transition, a burden of reactive oxygen species 

(ROS) causes physiologic oxidative stress (OS) essential for the activation of specific 

metabolic pathways which enable an adequate adaptation to the extra-uterine environment404. 

Perinatal asphyxia is characterized by intermittent periods of hypoxia-ischemia and is 

considered an important cause of early neonatal death and severe neurological sequel such as 

hypoxic ischemic encephalopathy (HIE) and cerebral palsy119. Both hypoxia and 

reoxygenation can generate ROS exceeding the levels observed under physiologic conditions 
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during the fetal-to-neonatal transition which may react with non-radical macromolecules such 

as DNA, proteins and lipids45. OS appears to play a key role in neonatal brain damage, with 

the neonatal brain being especially susceptible because of its high concentration of unsaturated 

fatty acids, high rate of oxygen consumption, low concentration of antioxidants, and high iron 

levels405. 

Isoprostanes (IsoPs) are non-cyclooxygenase (COX) derived, prostaglandin-like 

molecules generated by the free radical-induced peroxidation of arachidonic acid (AA)406. 

Initially IsoPs are produced in esterified form attached to phospholipids, and then released into 

body fluids in free form. Today, they are considered the gold standard for in vivo assessment 

of lipid peroxidation due to their stability, selectivity and specificity267,407. Following similar 

mechanisms of non-enzymatic oxygenation, neuroprostanes (NeuroPs) and dihomo-IsoPs are 

generated from docosahexaenoic acid (DHA) and adrenic acid (AdA), respectively. In addition, 

when conditions switch to high oxygen tensions, isofurans (IsoFs) and neurofurans (NeuroFs) 

may be preferentially produced from AA and DHA, respectively269,408. 

The role of lipid peroxidation in pathologies of the neonate has been reviewed217,409. It 

was found that preterm infants with high urinary IsoFs levels in the first days after birth are 

more prone to develop chronic lung conditions such as bronchopulmonary dysplasia as 

compared to a control group51. In a preliminary case study, the potential of lipid peroxidation 

byproducts as biomarkers for HIE have been studied and significantly increased concentrations 

of IsoPs were found for newborns with severe postnatal acidemia410. 

Literature reports three primary analytical techniques for the determination of 

isoprostanoids in biological fluids and tissue extracts including (i) immunological methods 

such as radioimmunoassay and enzyme linked immunosorbent assay, (ii) gas chromatography 

coupled to mass spectrometry (MS) and (iii) liquid chromatography coupled to MS (LC-MS). 

Results obtained from immunoassays might be potentially biased due to the use of polyclonal 

antibodies and the high structural similarities between IsoPs and COX-derived prostaglandins 

as well as other related molecules. 

Furthermore this technique is intrinsically limited as it does not allow differentiation 

between isomers. In contrast, MS-based assays are widely accepted as the most accurate 

methodologies267,411,412. LC coupled to tandem MS (LC-MS/MS) presents interesting 

advantages over GC-MS. It does not require long derivatization processes thus reducing the 

possibility of introducing additional sources of error. Moreover, the use of Ultra-high 

Performance Liquid Chromatography tandem mass spectrometry (UPLC-MS/MS) involves 

rapid chromatographic separations. UPLC-MS/MS offers suitable selectivity and sensitivity 

combined with a high sample throughput for which it has gained popularity recently in this 

field, especially for clinical applications51,55,413. 

In clinical studies, the choice of the biological fluid is of major concern. Urine samples 

are suitable for a long-term survey of lipid peroxidation biomarkers of up to several days or 
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weeks after an insult or intervention and allow repeated sampling, but the main pitfall is its 

limited time resolution and it might not be optimal when the objective is the analysis of early, 

fast responses in e.g. time-critical therapies. Conversely, blood reflects the dynamic metabolic 

response immediately improving time resolution. On the other hand, blood collection is an 

invasive procedure and the use of small volumes is mandatory, especially in the field of 

neonatology. 

The objective of this work was the development and validation of a comprehensive 

analytical approach for isoprostanoids profiling in human plasma samples covering a broad 

range of lipid peroxidation product classes derived from AA, DHA and AdA. The method was 

developed to fulfill specific requirements to enable its clinical application in neonatology such 

as addressing the challenge of limited sample volumes, straightforward sample processing and 

high analytical throughput. In order to assess the usefulness of the developed method, it was 

employed for the analysis of 150 plasma samples collected from newborns. Information 

obtained from quantitative analysis was critically compared to that provided by a previously 

developed approach aiming at the semi-quantitative of total parameters of IsoPs, IsoFs, 

NeuroPs and NeuroFs, proposed as disease associated biomarkers in clinical applications. 

5.3 Material and methods 

5.3.1 Standards and reagents 

Commercially available IsoPs (2,3-dinor-15-F2t-IsoP, 15-keto-15-E2t-IsoP, 15-keto-15-

F2t-IsoP, 15-epi-15-F2t-IsoP, 15-E2t-IsoP, 15-F2t-IsoP), prostaglandins (PGs) (PGE2, PGF2α, 

2,3-dinor-11β-PGF2α, 11β-PGF2α, 6-keto-PGF1a), dihomo-PG (1a,1b-dihomo-PGF2a) were 

purchased from Cayman Chemical Company (Ann Arbor, MI, USA), with purities of 95% as 

well as deuterated internal standards (IS, PGF2a-d4 and 15-F2t-IsoP-d4) with purities of 98% 

and incorporation of 99% deuterated form (d1-d4); <1% d0. 

Other analytical standards employed were F2-IsoPs (5-F2t-IsoP, 5-epi-5-F2t-IsoP, 15-

epi-2,3-dinor-15-F2t-IsoP), F4-NeuroPs (4-F4t-NeuroP, 4-epi-4-F4t-NeuroP, 10-epi-10-F4t-

NeuroP, 10-F4t-NeuroP, 14(RS)-14-F4t-NeuroP), F4-NeuroF (4(RS)-ST-Δ5-8-NeuroF), F2-

dihomo-IsoPs (17-F2t-dihomo-IsoP, 17-epi-17-F2t-dihomo-IsoP, Ent-7(RS)-F2t-dihomo-IsoP), 

and F2-dihomo-IsoFs (17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, 7(RS)-ST-Δ8-11-dihomo-

IsoF) synthesized at the Institut des Biomolecules Max Mosseron (Montpellier, France) 

according to previously published procedures414–421, with purities of 99% and all physical data 

reported in those published articles confirmed the new structures414–421.  

Potassium hydroxide (KOH) was from Sigma Aldrich Química SA (Madrid, Spain). 

LC-MS grade solvents (methanol CH3OH, ethanol, heptane and acetonitrile CH3CN) were 

purchased from J.T. Baker (Phillipsburg, NJ, USA). Formic acid (HCOOH, 98%) and ethyl 
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acetate (analytical grade) were from Panreac (Barcelona, Spain). Ultrapure H2O was generated 

on a milliQ system from Merck Millipore (Darmstadt, Germany). 

5.3.2 Preparation of stock, working, and standard solutions 

Individual stock solutions of solid pure analytical standards at a concentration of 1 

mmol L-1 were prepared in ethanol. Individual stock solutions of 15-epi-15-F2t-IsoP, 1a,1b-

dihomo-PGF2a, and 2,3-dinor-15-F2t-IsoP standards were purchased in methyl acetate or at 

concentrations of 2.8, 2.6 and 0.3 mmol L-1, respectively. A 5 mmol L-1 working solution of 

the set of target analytes was prepared by mixing adequate volumes of the individual stock 

solutions followed by evaporation to dryness and dissolution in H2O (0.1% v/v HCOOH, pH 

3):CH3OH (85:15 v/v). Likewise, an IS working solution containing both IS (PGF2a-d4 and 15-

F2t-IsoP-d4) at a concentration of 20 mmol L-1 each was prepared. Aliquots of the obtained 

stock and working solutions were stored in capped amber vials at -20 ˚C to avoid repeated 

freeze and thaw cycles. Standard solutions used for calibration were prepared on each 

measurement day from the working solution by serial dilution in H2O (0.1% v/v HCOOH, pH 

3):CH3OH (85:15 v/v). 

5.3.3 Population 

After obtaining informed consent, twenty neonates ≥35 weeks gestation with HIE who 

qualified for cooling were recruited in a dose-finding, phase 0 clinical trial of N-acetylcysteine 

(NAC) and calcitriol. This study was approved by the Institutional Review Board at the 

Medical University of South Carolina, Charleston. Neonates with stage 2 or 3 HIE were 

enrolled within 6 h of birth. They received hypothermia (33 ˚C rectal temperature) for 72 h and 

intravenous administration of NAC 25 or 40 mg/kg by infusion over 1 h, q 12 h, and calcitriol 

0.05 mcg/kg q 12 h from enrollment (3e6 h of age) until discharge or 10 days of life. Due to 

elevated ionized calcium in several subjects, calcitriol dose was decreased to 0.03 mcg/kg q 24 

h for subjects 11-20. Characteristics of the HIE neonates are presented in Table 5.1. 

Blood was collected in sodium EDTA tubes, centrifuged, and plasma was frozen at -80 

˚C within 15-20 min of collection. Samples were obtained before, 0.5 h, 1 h and 11.5 h after 

the 1st dose, and peak samples 1 h after the 3rd (24-30 h) dose during hypothermia. A second 

set of blood samples were obtained during normothermia before, and 0.5 h, 1 h and 11.5 h after 

the 10th or 11th NAC dose on day of life 5-6 (>24 h after rewarming). Aliquots of plasma 

remained frozen at -80 ˚C and shipped on dry ice without thawing until analysis. 
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Table 5.1 Characteristics of the studied population. 

Variable Value 

Male/female 11/9 

Mean gestational age ± s [weeks] 38.3 ± 1.7 

Mean birth weight ±s [g] 3300 ± 500 

Vaginal/C-section 5/15 

Mean cord pH ± s 6.9 ± 0.2 

Mean base excess ± s [mEqL-1] -17 ± 9 

Mean lactate ± s [mM] 9 ± 5 

Mean Apgar score ± s at 1 min 1 ± 1 

Mean Apgar score ± s at 5 min 3 ± 2 

Mean Apgar score ± s at 10 min 5 ± 2 

5.3.4 Processing of plasma samples 

Samples were processed following previously described methods51,52,54,55,422 with slight 

modifications. Briefly, 100 mL of plasma were thawed on ice, homogenized and 3 mL of IS 

working solution (20 mmol L-1) were added. For basic hydrolysis 100 mL of KOH (15% w/v) 

were added to each sample followed by incubation for 30 min at 40 ˚C with gentle agitation in 

a WSB-18 water bath from Witeg (Wertheim, Germany). Thereafter, samples were diluted with 

700 mL of H2O:CH3OH:HCOOH (82.6:14.6:2.8 v/v), homogenized on a Vortex mixer for 5 s 

and kept on ice for 10 min followed by centrifugation at 16000  g for 10 min at 4 ˚C.  

Solid phase extraction (SPE) employing Discovery® DSC-18 SPE 96-well plates from 

Sigma-Aldrich (St. Louis, MO, USA) was carried out as follows: SPE cartridges were 

conditioned with 1 mL CH3OH followed by 1 mL H2O (0.1% v/v HCOOH, pH 3) and then 

diluted samples were loaded into the SPE wells. The washing steps included rinsing of each 

well with 1 mL H2O (0.1% v/v HCOOH, pH 3) and 500 mL heptane. Cartridges were dried 

with room air and sample extracts were eluted with 4 100 mL ethyl acetate which were 

subsequently evaporated using a miVac centrifugal vacuum concentrator from Genevac LTD 

(Ipswich, UK). Sample extracts were dissolved in 60 mL of H2O (0.1% v/v HCOOH, pH 

3):CH3OH (85:15 v/v) prior to UPLCMS/MS analysis. 

5.3.5 UPLC-MS/MS analysis 

UPLC-MS/MS analysis was carried out employing an Acquity-Xevo TQS system from 

Waters (Milford, MA, USA) using negative electrospray ionization (ESI-). Instrumental 

conditions were selected as follows: capillary voltage was set to 2.9 kV, source temperature 

was 150 C, desolvation temperature was 395 ˚C and nitrogen cone and desolvation gas flows 

were set to 150 and 800 L h-1, respectively. Dwell time was set to ensure a minimum of 10 data 

points per peak. Separation conditions were selected to achieve appropriate chromatographic 

retention and resolution by using a Waters BEH C18 reversed phase column (2.1 100 mm,1.7 

mm) and a H2O (0.1% v/v HCOOH):CH3CN (0.1% v/v HCOOH) binary gradient. Flow rate, 

column temperature and injection volume were set at 450 mL min-1, 45 C and 9 mL, 

respectively. The gradient with a total run time of 7.0 minwas as follows: from 0.0 to 0.1 min 
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15% v/v CH3CN (0.1% v/v HCOOH) (i.e. channel B); from 0.1 to 5.0 min %B increased up to 

40%; from 5.0 to 6.0 min %B increased up to 75%; between 6.0 and 6.15 conditions were held 

constant at 75% B followed by the return to initial conditions (i.e. 15% B) between 6.15 and 

6.25 min; conditions were maintained for 0.75 min for system re-equilibration. 

MS detection was carried out by multiple reaction monitoring (MRM) employing the 

acquisition parameters summarized in Table 5.2. The UPLC-MS/MS system was operated 

employing MassLynx software version 4.0 from Waters. Cone voltages and collision energy 

values were optimized by analysis of individual 1 mM standard solutions in the UPLC-ESI-

MS/MS system. For quantification, linear regression curves with 1/x weighting were calculated 

including signal normalization with an IS. Concentrations found in plasma samples falling 

outside the calibration range or showing a shift in retention time bigger than ±0.05 min in 

comparison to standard solutions were not further considered. For total parameters (total IsoPs, 

IsoFs, NeuroPs and NeuroFs), MRM detection was carried out as previously described51. Here, 

relative signal intensities normalized using the IS signal were determined instead of absolute 

concentrations in order to avoid the need of pure analytical standards. Total parameters were 

considered when the area was >3 times the signal of a blank. 

On each measurement day, prior to the launch of the analytical sequence, a system 

suitability test was carried out including the following criteria: (i) a backpressure ripple <2% 

at the beginning of the chromatographic run; (ii) absence of the IS peak in a non-spiked plasma 

sample; (iii) absence of analyte peaks during a blank injection (i.e. H2O (0.1% v/v COOH)); 

(iv) appropriate sensitivity and precision during triplicate analysis of a standard solution at the 

LOQ. Accordingly, %RSD of peak area values should be ≤ 25% and the signal-to-noise ratios 

≥9 for each studied analyte; and (v) retention times within ±0.05 min between consecutive 

batches.  

Blank samples and solvent blanks were analyzed at the beginning of the sample batch, 

after a high concentration standard and repeatedly along the batch in order to check for 

contamination of the analytical system (i.e. column, mobile phase additives etc.), carryover and 

cross contamination. A representative quality control (QC) plasma sample was analyzed 

repeatedly throughout sample batches to detect deviations in accuracy and/or precision. An 

analysis batch was accepted if at least 75% of the values found for the QC standards were 

within ±25% of their respective nominal values. 

5.3.6 Method validation 

During method validation, figures of merit of the sample preparation and measurement 

procedure including the linearity range, precision, accuracy, selectivity, limit of detection 

(LOD), limit of quantification (LOQ) and carry-over were assessed. The method validation 

was based on the US Food and Drug Administration (FDA) guidelines for bioanalytical method 

validation15. However, the FDA guideline aims at the quantitative analysis of drugs and drug 

metabolites in biological matrices and it cannot be directly applied to the analysis of 
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endogenous metabolites due to the lack of blank matrices. To circumvent this, accuracy and 

precision of the method were established by calculating relative recovery values. Therefore, a 

non-spiked pooled plasma sample was analyzed by triplicate on each validation day. Duplicate 

analysis of standards at three concentration levels and triplicate analysis of plasma samples 

spiked before and after SPE at two concentration levels on two measurement days were carried 

out. The percentage of relative standard deviation (RSD) of replicate standards within one 

validation batch (intra-day) and between validation batches (inter-day) were calculated to 

assess precision. Inter-day and intraday extraction yields were calculated comparing absolute 

peak areas from samples spiked before and after SPE and the matrix effect was determined by 

comparing absolute peak areas of samples spiked after SPE to pure analytical standards. 

Furthermore, the method's overall accuracy and precision for the determination of the studied 

compounds in plasma were evaluated at two concentration levels by comparing the relative 

response of spiked samples and pure analytical standards. The LOD and LOQ levels were 

estimated as the concentrations providing a signal-to-noise ratio of 3 and 10, respectively also 

providing precision and accuracy levels within the FDA recommended ranges. Selectivity was 

evaluated by analyzing blanks and a non-spiked pooled plasma sample. The carry-over was 

determined from the analysis of a blank sample after to the measurement of a concentrated 

standard solution. 

5.4 Results and discussion 

5.4.1 UPLC-MS/MS method for the determination of lipid peroxidation 

biomarkers 

Ionization and fragmentation conditions for the MS/MS quantification for the set of 28 

analytical standards were optimized by analysis of 5 mmol L-1 individual standard solutions. 

Chemical structures of the studied compounds are shown in Supplementary figure AI.1.1 and 

the selected MS/MS acquisition parameters are summarized in Table 5.2. Chromatographic 

conditions were also optimized employing a 5 mmol L-1 working solution. Specificity of the 

MRM transitions was assessed by analyzing a set of individual standards employing the 

proposed LC-MS/MS procedure, which included the recording of 16 MRM transitions. Figure 

5.1 displays representative LC-MS/MS chromatograms extracted from the analysis of a spiked 

plasma sample. As shown in the figure, symmetric peak shapes were obtained for the total of 

23 resolved peaks, all eluting in a retention time window between 3.71 and 6.06 min. 

Nonetheless, due to high structural similarities, a reduced number of lipids showed a significant 

chromatographic and MS overlap that could not be resolved neither by MS/MS nor by changing 

the chromatographic conditions (see Table 5.2). 
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Figure 5.1 Chromatograms of lipid peroxidation products of AA+PGs (top, left), DHA (top, right), AdA (bottom, 

left) and IS (bottom, right) detected in a spiked plasma sample. Note: 1 = 5-F2t-IsoP + 5-epi-5-F2t-IsoP; 2 = 15-

epi-2,3-dinor-15-F2t-IsoP + 2,3-dinor-11β-PGF2α + 2,3-dinor-15-F2α-IsoP; 3 = 15-keto-15-F2t-IsoP; 4 = 15-epi-

15-F2t-IsoP; 5 = 15-F2t-IsoP; 6 = 11β-PGF2α; 7 = PGF2α; 8 = 15-E2t-IsoP; 9 = PGE2; 10 = 6-keto-PGF1α; 11 = 15-

keto-15-E2t-IsoP; 12 = 4-F4t-NeuroP + 4-epi-4-F4t-NeuroP; 13 = 10-epi-10-F4t-NeuroP; 14 = 10-F4t-NeuroP; 15 = 

14(RS)-14-F4t-NeuroP; 16 = 4(RS)-ST-Δ5-8-NeuroF; 17 = 17-F2t-dihomo-IsoP + 17-epi-17-F2t-dihomo-IsoP; 18 

= 1a,1b-dihomo-PGF2α; 19 = Ent-7(RS)-F2t-dihomo-IsoP; 20 = 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF; 21 = 

7(RS)-ST-Δ8-11-dihomo-IsoF; 22 = PGF2α-d4; 23 = 15-F2t-IsoP-d4; Chromatograms have been normalized to the 

maximum intensity of the highest detected peak; chromatograms have been shifted in the y-direction for a better 

visibility. 
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Table 5.2 Acquisition parameters and main figures of merit of the LC-MS/MS method. 

#a Analyte 

m/z 

Parent 

ion 

Cone 

[V] 

CE 

[eV] 

m/z 

Daughter 

Ions 

RT ± s (min) Calibration range (nM) R2 
LOD 

(nM) 

LOQ 

(nM) 

Internal 

standard 

1 5-F2t-IsoP + 5-epi-5-F2t-IsoP 353.20 35 30 115.00 5.09 ± 0.03 3.5 - 3562.5 0.991 0.6 2 PGF2α-d4 

2 

15-epi-2,3-dinor-15-F2t-IsoP + 

2,3-dinor-11β-PGF2α + 

2,3-dinor-15-F2α-IsoP 

325.27 40 13 237.00 3.71 ± 0.04 1.7 - 3562.5 0.998 0.3 1.0 15-F2t-IsoP-d4 

12 
4-F4t-NeuroP + 

4-epi-4-F4t-NeuroP 
377.32 20 19 271.12 5.70 ± 0.03 1.7 - 3562.5 0.996 0.3 1.0 PGF2α-d4 

13 10-epi-10-F4t-NeuroP 377.32 10 19 153.00 5.17 ± 0.03 0.6 - 1187.5 0.994 0.11 0.4 PGF2α-d4 

14 10-F4t-NeuroP 377.32 10 19 153.00 5.02 ± 0.03 0.6 - 1187.5 0.998 0.11 0.4 15-F2t-IsoP-d4 

15 14(RS)-14-F4t-NeuroP 377.32 50 19 204.89 5.33 ± 0.03 9.3 - 1187.5 0.993 2 6 PGF2α-d4 

16 4(RS)-ST-Δ5-8-NeuroF 393.60 40 35 123.19 5.78 ± 0.03 296.9 - 4750 0.973 53 178 PGF2α-d4 

17 17-F2t-dihomo-IsoP + 17-epi-17-F2t-dihomo-IsoP 381.30 20 25 337.15 5.80 ± 0.02 1.2 - 2375 0.997 0.2 0.7 PGF2α-d4 

19 ent-7(RS)-F2t-dihomo-IsoP 381.30 50 25 142.98 5.83 ± 0.02 0.6 - 1187.5 0.990 0.11 0.4 PGF2α-d4 

20 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 397.40 20 31 155.02 6.06 ± 0.01 0.6 - 1187.5 0.994 0.11 0.4 PGF2α-d4 

21 7(RS)-ST-Δ8-11-dihomo-IsoF 397.40 40 25 201.03 6.06 ± 0.01 148.4 - 4750 0.984 27 89 PGF2α-d4 

3 15-keto-15-F2t-IsoP 351.00 35 25 289.00 5.13 ± 0.04 1.2 - 1187.5 0.995 0.2 0.7 PGF2α-d4 

18 1a,1b-dihomo-PGF2α 381.30 20 25 337.15 6.01 ± 0.01 1.2 - 1187.5 0.994 0.2 0.7 15-F2t-IsoP-d4 

5 15-F2t-IsoP 353.00 35 30 193.00 4.83 ± 0.03 2.3 - 1187.5 0.997 0.4 1.4 15-F2t-IsoP-d4 

8 15-E2t-IsoP 351.00 35 30 271.00 5.35 ± 0.03 9.2 - 1187.5 0.990 2 6 PGF2α-d4 

6 11β-PGF2α 353.00 35 30 193.00 4.93 ± 0.03 1.2 - 1187.5 0.998 0.2 0.7 15-F2t-IsoP-d4 

4 15-epi-15-F2t-IsoP 353.00 35 30 193.00 4.76 ± 0.03 2.3 - 1187.5 0.998 0.4 1.4 15-F2t-IsoP-d4 

10 6-keto-PGF1α 369.00 40 35 245.00 3.97 ± 0.03 0.6 - 1187.5 0.997 0.11 0.4 15-F2t-IsoP-d4 

7 PGF2α 353.00 35 30 193.00 5.24 ± 0.03 0.6 - 1187.5 0.993 0.11 0.4 PGF2α-d4 

11 15-keto-15-E2t-IsoP 349.00 40 30 113.00 5.73 ± 0.03 2.3 - 1187.5 0.996 0.4 1.4 PGF2α-d4 

9 PGE2 351.00 35 30 271.00 5.42 ± 0.04 2.3 - 1187.5 0.992 0.4 1.4 PGF2α-d4 

22 PGF2α-d4 357.00 40 30 197.00 5.24 ± 0.03 - - - - - 
23 15-F2t-IsoP -d4 357.00 40 30 197.00 4.81 ± 0.03 - - - - - 
- Isoprostanes 353.20 35 30 115.00 4.0-6.3 - - - - PGF2α-d4 

- Isofurans 369.20 45 20 115.00 1.9-6.3 - - - - PGF2α-d4 

- Neuroprostanes 377.00 35 20 101.00 2.0-6.2 - - - - PGF2α-d4 

- Neurofurans 393.00 35 20 193.00 2.4-6.2 - - - - PGF2α-d4 

Note: a indicates the peak number according to Figure 5.1; LOQs were established as the concentration of analyte that can be measured with an imprecision of less than 20% and a deviation from target of less than 

20% and taking into account the preconcentration factor achieved during sample processing. The LOD is defined as 3/10*LOQ. 
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Table 5.3 Back-calculated intra- and inter-day accuracy and precision of standard solutions. 

 

 

 

 

 

 

 

#a Analyte 

Standard solutions - % Accuracy± RSD (conc nM) 

Intra-day (N=3) Inter-day (N=2) 

Low Medium High Low Medium High 

1 5-F2t-IsoP + 5-epi-5-F2t-IsoP 96 ± 6 (3.5) 110 ± 10 (111.3) 98 ± 9 (3562.5) 100.6 ± 7 (3.5) 107 ± 9 (111.3) 100 ± 7 (3562.5) 

2 

15-epi-2,3-dinor-15-F2t-IsoP + 

2,3-dinor-11β-PGF2α + 

2,3-dinor-15-F2α-IsoP 

89 ± 4 (1.7) 108 ± 2 (111.3) 101.8 ± 8 (3562.5) 93 ± 15 (1.7) 115 ± 8 (111.3) 98 ± 5 (3562.5) 

12 
4-F4t-NeuroP + 

4-epi-4-F4t-NeuroP 
80 ± 8 (1.7) 105 ± 5 (111.3) 97 ± 1 (3562.5) 82.6 ± 8 (1.7) 105 ± 5 (111.3) 98 ± 2 (3562.5) 

13 10-epi-10-F4t-NeuroP 110 ± 10 (0.6) 99.3 ± 5 (37.1) 101 ± 8 (1187.5) 111 ± 9 (0.6) 96 ± 5 (37.1) 104 ± 7 (1187.5) 

14 10-F4t-NeuroP 112 ± 12 (0.6) 103 ± 10 (37.1) 100 ± 5 (1187.5) 120 ± 14 (0.6) 100 ± 8 (37.1) 101.9 ± 7 (1187.5) 

15 14(RS)-14-F4t-NeuroP 110 ± 20 (9.3) 99 ± 2 (148.4) 98 ± 12 (1187.5) 109.4 ± 15 (9.3) 95 ± 7 (148.4) 102 ± 8 (1187.5) 

16 4(RS)-ST-Δ5-8-NeuroF 107 ± 10 (296.9) 95 ± 15 (1187.5) 94 ± 7 (4750) 109 ± 6 (296.9) 85 ± 14 (1187.5) 100 ± 13 (4750) 

17 17-F2t-dihomo-IsoP + 17-epi-17-F2t-dihomo-IsoP 90± 14 (1.2) 97 ± 6 (74.2) 101 ± 3 (2375) 103 ± 12 (1.2) 95 ± 1 (74.2) 103 ± 3 (2375) 

19 ent-7(RS)-F2t-dihomo-IsoP 86± 20 (0.6) 98 ± 10 (37.1) 101 ± 13 (1187.5) 99.1 ± 11 (0.6) 98 ± 7 (37.1) 101.8 ± 9 (1187.5) 

20 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 120 ± 20 (0.6) 87 ± 8 (37.1) 107 ± 14 (1187.5) 130 ± 17 (0.6) 86 ± 5 (37.1) 106 ± 9 (1187.5) 

21 7(RS)-ST-Δ8-11-dihomo-IsoF 88 ± 15 (148.4) 88 ± 13 (1187.5) 112 ± 12 (4750) 95 ± 15 (148.4) 85 ± 12 (1187.5) 104 ± 11 (4750) 

3 15-keto-15-F2t-IsoP 99.1 ± 18 (1.2) 106 ± 5 (37.1) 98 ± 3 (1135.2) 103 ± 20 (1.2) 104 ± 5 (5.1) 100 ± 4 (1187.5) 

18 1a,1b-dihomo-PGF2α 108 ± 20 (1.2) 80 ± 10 (10) 106 ± 1 (1187.5) 118 ± 15 (1.2) 81 ± 6 (37.1) 107 ± 3 (1187.5) 

5 15-F2t-IsoP 108 ± 18 (2.3) 108 ± 6 (37.1) 102 ± 4 (1187.5) 90± 20 (1.2) 107 ± 4 (37.1) 100 ± 4 (1187.5) 

8 15-E2t-IsoP 88 ± 2 (9.3) 97 ± 3 (74.2) 101 ± 4 (1187.5) 100 ± 20 (1.2) 102 ± 20 (74.2) 100 ± 3 (1187.5) 

6 11β-PGF2α 103 ± 1 (1.2) 100 ± 2 (37.1) 103 ± 3 (1187.5) 93 ± 12 (1.2) 104 ± 5 (37.1) 100 ± 3 (1187.5) 

4 15-epi-15-F2t-IsoP 115 ± 1 (2.3) 101 ± 7 (74.2) 100 ± 2 (1187.5) 115 ± 17 (2.3) 100 ± 7 (74.2) 101 ± 2 (1187.5) 

10 6-keto-PGF1α 82 ± 6 (0.6) 101 ± 3 (37.1) 102 ± 1 (1187.5) 84 ± 15 (0.6) 105 ± 5 (37.1) 100 ± 3 (1187.5) 

7 PGF2α 112 ± 8 (9.3) 100 ± 1 (148.4) 97 ± 2 (1187.5) 120 ± 12 (9.3) 97 ± 3 (148.4) 99 ± 3 (1187.5) 

11 15-keto-15-E2t-IsoP 118 ± 9 (2.3) 102 ± 3 (74.2) 102 ± 4 (1187.5) 110 ± 20 (2.3) 104 ± 5 (74.2) 100 ± 4 (1187.5) 

9 PGE2 90 ± 12 (2.3) 98 ± 4 (74.2) 98 ± 2 (1187.5) 88 ± 8 (2.3) 102 ± 15 (74.2) 97 ± 2 (1187.5) 

Note: Values within brackets indicate the added concentration of each metabolite; a indicates the peak number according to Figure 5.1 
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Table 5.2 summarizes the main analytical figures of merit obtained for the 

quantification of the selected set of compounds. Highly reproducible retention times with a 

standard deviation ≤0.04 min were observed for the set of metabolites and IS. Linear calibration 

lines calculated using either PGF2a-d4 or 15-F2t-IsoP-d4 as IS generally covering two to three 

orders of magnitude were obtained with coefficients of determination (R2) >0.97 and 

homoscedastic residuals as assessed by visual inspection. LOD and LOQ expressed as nmol L-

1 of plasma were in the 0.11-53 and 0.4-178 range, respectively. No carry-over was observed 

with peak areas of the blank injection remaining below 5% of the signal of the standard at the 

LOD. 

Table 5.3 shows back-calculated recovery values in standard solutions for assessment 

of accuracy and precision. Adequate accuracies were obtained in standard solutions with the 

exception of 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF and 1a,1b-dihomo-PGF2a. Precision 

levels remained <20% at the LOQ and <15% for higher concentrations, with the exception of 

the intra-day precision obtained for 15-E2t-IsoP. In Table 5.4 the method's performance was 

further assessed by the analysis of spiked plasma samples and calculated recovery values taking 

into account the concentrations found in the non-spiked sample. The extraction yields were 

used for jointly assessing the effect of the KOH digestion procedure and the solid phase 

extraction sample clean-up. Good inter- and intraday extraction yields ranging between 82 and 

115% and 79 and 131% were found for lipid peroxidation products derived from AA and DHA 

with the exception of four metabolites derived from AA (i.e. 15-keto-15-F2t-IsoP, 15-E2t-IsoP, 

15-keto-15-E2t-IsoP and PGE2), which were not detected. It is suspected that during sample 

hydrolysis these analytes suffer dehydration within the β-hydroxy keto system in the 

cyclopentane ring (i.e. cyclopentenone PGs)267 while the ẟ-hydroxy-α,β-unsaturated-keto 

system of 15-keto-15-F2t-IsoP is degrading into a reactive conjugated keto-diene system. AdA 

derived lipid peroxidation products showed lower extraction yields ranging between 52 and 

100% and 60 and 95% for inter- and intra-day accuracy, indicating that those compounds are 

either partially degraded during the digestion step or not completely recovered during the SPE. 

As observed from Table 5.4, for a total of seven compounds a notable matrix effect was 

observed whereas for the remaining compounds intra- and inter-day recoveries ranged between 

78-129% and 75-123%, respectively. No pattern between different lipid peroxidation classes 

could be detected with respect to the matrix effect. Moreover, the overall accuracy and 

precision of the developed method was assessed for all metabolites which were not degraded 

during the hydrolysis procedure by means of relative recovery values employing deuterated 

ISs. For AA and DHA derived lipid peroxidation products obtained intra- and inter-day 

accuracy levels ranged between 79 and 120% and 80 and 113%, respectively, with the 

exception of 4(RS)-ST-Δ5-8-NeuroF for which only a semiquantitative determination was 

achieved despite the use of an IS. Due to the low extraction yields observed for dihomo-IsoPs 

and dihomo-IsoFs a semiquantitative determination was proposed to enable the comparison of 

samples analyzed and extracted under the same conditions. 
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Table 5.4 Back-calculated intra- and inter-day accuracy and precision in spiked plasma samples. 

#a Analyte 

Extraction yield 

Accuracy ± RSD (conc nM) 

Matrix effect 

% Accuracy ± RSD (conc nM) 

Method 

Accuracy ± RSD (conc nM) 

Intra-day (N=3) Inter-day (N=2) Intra-day (N=3) Inter-day (N=2) Intra-day (N=3) Inter-day (N=2) 

Low High Low High Low High Low High Low High Low High 

1 5-F2t-IsoP + 5-epi-5-F2t-IsoP 104 ± 13 (15) 91 ± 14 (1800) 93 ± 16 (15) 87 ± 7 (1800) 83 ± 11 (15) 86 ± 13 (1800) 95 ± 20 (15) 109 ± 3 (1800) 110 ±  4 (15) 105 ± 4 (1800) 110 ±  4 (15) 105 ± 4 (1800) 

2 

15-epi-2,3-dinor-15-F2t-IsoP + 

2,3-dinor-11β-PGF2α + 

2,3-dinor-15F2α-IsoP 

110 ± 13 (15) 95 ± 8 (1800) 98 ± 17 (15) 93 ± 2 (1800) 79 ± 9 (15) 92 ± 8 (15) 96 ± 20 (15) 100 ± 11 (1800) 95 ± 3 (15) 95 ± 4 (1800) 95 ± 8 (15) 97 ± 10 (1800) 

12 
4-F4t-NeuroP + 

4-epi-4-F4t-NeuroP 
89 ± 12 (15) 103 ± 18 (1800) 81 ± 14 (15) 94 ±14 (1800) 100 ± 15 (15) 89 ± 17 (1800) 109 ± 15 (15) 104 ± 20 (1800) 109 ± 5 (15) 119 ± 7 (1800) 100 ± 20 (15) 113 ± 12 (1800) 

13 10-epi-10-F4t-NeuroP 87 ± 13 (5) 95 ± 15 (600) 81 ± 9 (5) 91 ± 6 (600) 102 ± 19 (5) 96 ± 15 (600) 120 ± 20 (5) 109 ± 18 (600) 98 ± 14 (5) 116 ± 12 (600) 94 ± 17 (5) 113 ± 15 (600) 

14 10-F4t-NeuroP 90 ± 20 (5) 95 ± 15 (600) 81 ± 16 (5) 90 ± 8 (600) 83 ± 17 (5) 94 ± 16 (600) 97 ± 18 (5) 109 ± 19 (600) 87 ± 9 (5) 101 ± 3 (600) 89 ± 11 (5) 106 ± 13 (600) 

15 14(RS)-14-F4t-NeuroP 71 ± 30 (5) 94 ± 15 (600) 110 ± 51 (5) 89 ± 7 (600) 70 ± 30 (5) 86 ± 4 (600) 50 ± 27 (5) 80 ± 10 (600) 106 ± 41 (5) 94 ± 4 (600) 89 ± 36 (5) 90 ± 9 (600) 

16 4(RS)-ST-Δ5-8-NeuroF <LOD (5) 105 ± 16 (600) <LOD (5) 131 ± 30 (600) <LOD (5) 70 ±30 (600) <LOD (5) 80 ± 20 (600) <LOQ (5) 70 ± 20 (600) <LOQ (5) 110 ± 40 (600) 

17 
17-F2t-dihomo-IsoP + 17-epi-17-F2t-

dihomo-IsoP 
64 ± 9 (10) 73 ± 15 (1200) 61 ± 8 (10) 72 ± 2 (1200) 114 ± 14 (10) 90 ± 18 (1200) 123 ± 14 (10) 100 ± 16 (1200) 78 ± 8 (10) 85 ± 8 (1200) 67 ± 20 (10) 85 ± 9 (1200) 

19 ent-7(RS)-F2t-dihomo-IsoP 70 ± 11 (5) 81 ± 14 (600) 64 ± 12 (5) 76 ± 9 (600) 89 ± 18 (5) 82 ± 14 (600) 92 ± 13 (5) 92 ± 15 (600) 65 ± 6 (5) 88 ± 8 (600) 59 ± 11 (5) 85 ± 9 (600) 

20 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 78 ± 19 (5) 90 ± 15 (600) 73 ± 11 (5) 86 ± 7 (600) 110 ± 30 (5) 94 ± 17 (600) 116 ± 20 (5) 107 ± 18 (600) 83 ± 32 (5) 108 ± 9 (600) 78 ± 30 (5) 106 ± 11 (600) 

21 7(RS)-ST-Δ8-11-dihomo-IsoF 87 ± 17 (5) 100 ± 17 (600) <LOD (5) 95 ± 6 (600) <LOD (5) 116 ± 20 (600) <LOD (5) 131 ± 30 (600) <LOQ (5) 65 ± 20 (600) <LOQ (5) 84 ± 30 (600) 

3 15-keto-15-F2t-IsoP <LOD (5) <LOD (600) <LOD (5) <LOD (600) <LOD (5) 85 ± 13 (600) <LOD (5) 101 ± 20 (600) <LOQ (5) <LOQ (600) <LOQ (5) <LOQ (600) 

18 1a,1b-dihomo-PGF2α 52 ± 11 (5) 62 ± 11 (600) <LOD (5) 60 ± 5 (600) 150 ± 40 (5) 107 ± 20 (600) 180 ±40 (5) 120 ± 20 (600) 33 ± 6 (5) 72 ± 5 (600) 38 ± 13 (5) 77 ± 11 (600) 

5 15-F2t-IsoP 82 ± 16 (5) 97 ± 11 (600) 79 ± 5 (5) 87 ± 16 (600) 95 ± 20 (5) 86 ± 10 (600) 101 ± 15 (5) 101 ± 18 (600) 87 ± 15 (5) 99 ± 1 (600) 86 ± 18 (5) 99 ± 9 (600) 

8 15-E2t-IsoP <LOD (5) <LOD (600) <LOD (5) <LOD (600) <LOD (5) 83 ± 15 (600) <LOD (5) 130 ± 9 (600) <LOQ (5) <LOQ (600) <LOQ (5) <LOQ (600) 

6 11β-PGF2α 100 ± 20 (5) 96±14 (600) 80 ± 30 (5) 88 ± 13 (600) 100 ± 20 (5) 89 ± 14 (600) 120 ± 30 (5) 104 ± 19 (600) 89 ± 6 (5) 99 ± 1 (600) 84 ± 13 (5) 100 ± 10 (600) 

4 15-epi-15-F2t-IsoP 101 ± 15 (5) 106 ± 17 (600) 90 ± 20 (5) 95 ± 15 (600) 87 ± 10 (5) 125 ± 2 (600) 75 ± 15 (5) 100 ±20 (600) 111 ± 12 (5) 96 ± 5 (600) 102 ±13 (5) 101 ± 13 (600) 

10 6-keto-PGF1α 107 ± 16 (5) 87 ± 13 (600) 95 ± 18 (5) 87 ± 1 (600) 97 ± 17 (5) 100 ± 2 (600) 85 ± 17 (5) 92 ± 10 (600) 79 ± 12 (5) 91 ± 2 (600) 80 ±8 (5) 94 ± 10 (600) 

7 PGF2α 115 ± 11 (5) 94 ± 15 (600) 106 ± 12 (5) 86 ± 14 (600) 34 ± 8 (5) 82 ± 10 (600) 32 ± 10 (5) 100 ± 20 (600) 120 ±16 (5) 103 ± 6 (600) 100 ±18 (5) 102 ± 10 (600) 

11 15-keto-15-E2t-IsoP <LOD (5) <LOD (600) <LOD (5) <LOD (600) 119 ± 16 (5) 129 ± 1 (600) 110 ± 20 (5) 100 ± 30 (600) <LOQ (5) <LOQ (600) <LOQ (5) <LOQ (600) 

9 PGE2 <LOD (5) <LOD (600) <LOD (5) <LOD (600) 90 ± 20 (5) 78 ± 11 (600) 100 ± 20 (5) 93 ± 17 (600) <LOQ (5) <LOQ (600) <LOQ (5) <LOQ (600) 

Note: Values within brackets indicate the added concentration of each metabolite added to the plasma sample; a indicates the peak number according to Figure 5.1 
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Complementary approaches such as including isotopically labelled analogues of 

dihomo-IsoPs and dihomo-IsoFs as surrogates to improve the accuracy of the method are being 

evaluated. In summary, data shown in Table 5.4 prove that the developed method is highly 

reproducible for the analysis of the majority of compounds while it gives insights in the 

analytical challenges for several other compounds which might be affected during sample 

processing and measurement. 

5.4.2 Quantitative analysis of lipid peroxidation biomarkers in newborn 

plasma samples 

Lipid peroxidation biomarkers were determined in 150 plasma samples from 20 term 

newborns suffering from HIE secondary to birth asphyxia (see Table 5.1) at 10 sampling time 

points covering from 3 h to 6 days after birth. Table 5 shows the main descriptors of the 

distribution of concentrations of the lipid peroxidation products found in the studied samples 

excluding the four metabolites which were not stable during the sample KOH hydrolysis 

process (i.e. 15-keto-15-F2t-IsoP, 15-E2t-IsoP, 15-keto-15-E2t-IsoP and PGE2). From the 17 

remaining parameters, 11 (corresponding to 16 individual isoprostanoids) were detected in the 

studied samples. In addition to the determination of individual lipid peroxidation biomarkers, 

total relative IsoP, IsoF, NeuroP and NeuroF contents were measured following a procedure as 

described elsewhere51. Three out of the 11 compounds have been detected in a preliminary 

biomarker study involving a similar cohort of newborns (N = 20) [15]. In newborns with HIE 

undergoing TH concentrations determined were of the same order of magnitude as in this 

cohort with medians (IQRs) of 3 (12), 5(7) and 0 (3.4) for 5-F2t-IsoP, PGF2a and 1a,1b-dihomo-

PGF2a, respectively. 

Table 5.5 Main descriptors of the distribution of concentrations (nM) of the lipid peroxidation products in plasma 

samples with concentrations >LOQ from newborns with HIE. 

#a Analyte Range Median 
IQR (25-

75) 
Mean ± s >LOQ (%) 

1 5-F2t-IsoP + 5-epi-5-F2t-IsoP 0.5 – 8.6 3.2 1.9 3.5 ± 1.3 44 

2 

15-epi-2,3-dinor-15-F2t-IsoP + 

2,3-dinor-11β-PGF2α + 

2,3-dinor-15-F2α-IsoP 

- - - - 0 

12 
4-F4t-NeuroP + 

4-epi-4-F4t-NeuroP 
1.1 – 1.6 1.3 0.2 1.3 ± 0.2 7 

13 10-epi-10-F4t-NeuroP 0.4 – 0.8 0.4 0.1 0.5 ± 0.1 9 

14 10-F4t-NeuroP 0.4 – 0.8 0.5 0.09 0.53 ± 0.12 13 

15 14(RS)-14-F4t-NeuroP - - - - 0 

16 4(RS)-ST-Δ5-8-NeuroF - - - - 0 

17 17-F2t-dihomo-IsoP + 17-epi-17-F2t-dihomo-IsoP 0.5 – 1.1 0.8 0.1 0.8 ± 0.2 5 

19 ent-7(RS)-F2t-dihomo-IsoP 0.3 – 1.0 0.5 0.1 0.5 ± 0.2 4 

20 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 0.4 – 3.2 0.6 0.4 0.8 ± 0.6 61 

21 7(RS)-ST- Δ8-11-dihomo-IsoF 89.9 – 900.7 174.5 151.7 240 ±170 74 

18 1a,1b-dihomo-PGF2α 0.8 -2.9 1.1 0.45 1.2 ± 0.4 37 

5 15-F2t-IsoP - - - - 0 

6 11β-PGF2α - - - - 0 

4 15-epi-15-F2t-IsoP - - - - 0 

10 6-keto-PGF1α 0.4 – 0.8 0.5 0.1 0.6 ± 0.1 3 

7 PGF2α 0.8 – 10.8 2.5 1.2 2.6 ± 1.1 98 

- Isoprostanesb - - - - 0 

- Isofuransb 19.8 – 184.5 52.1 50 70 ± 40 76 
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#a Analyte Range Median 
IQR (25-

75) 
Mean ± s >LOQ (%) 

- Neuroprostanesb 20 – 114 50.3 23 50 ± 20 29 

- Neurofuransb 8 – 27 14.5 7 15 ± 4 69 

Note: a indicates the peak number according to Figure 5.1; b Values in area/area of internal standard x 1000. 

Figure 5.2 shows boxplots of the results of isoprostanoids which were detected in more 

than 25% of samples. The results are stratified by two collection time windows, the first one 

comprising the first 30 h after birth during hypothermia and the second including samples 

collected on day 5-6 during normothermia. Interestingly, not all metabolites showed the same 

behavior with time. In a previous study the levels of total IsoPs, IsoFs, NeuroPs and NeuroFs 

were monitored in preterm infants throughout the whole neonatal period and nomograms of 

relative contents were established revealing the underlying changes of biomarker levels as a 

function of the infant's age51. This might be an important aspect to be taken into account during 

the experimental design of clinical studies as well as during the interpretation of the results. 

Here, a significant decrease with time was detected for some metabolites (i.e. 5-F2t-IsoP þ 5-

epi-5-F2t-IsoP, PGF2a, total NeuroFs), whereas others increased (i.e. 17(RS)-10-epi-SC-Δ15-11-

dihomo-IsoF, 7(RS)-ST-Δ8-11-dihomo-IsoF, total NeuroPs) or remained unchanged (1a,1b-

dihomo-PGF2a, total IsoFs). This application illustrates the strengths of a detection method 

which is able to detect and quantify specific isomers as compared to the determination of total 

parameters. Also, the specific detection of isomers enables an absolute quantification, which 

at the same time improves the method's sensitivity. This is also demonstrated in the present 

study by the detection of IsoPs: whereas for total IsoPs the concentratons remained below the 

LOQ, some individual IsoPs could still be detected (i.e. 5-F2t-IsoP and 5-epi-5-F2t-IsoP).  

Conversely, for IsoFs no analytical standard solutions were available and the 

determination of total IsoFs enabled the detection of these metabolites in plasma samples. 

Likewise, in case of NeuroPs and NeuroFs, individual isomers could not be detected in the 

majority of samples, whereas for the total parameters levels above the LOQ were found, 

indicating that the individual isomers included in this method might not be those which were 

formed primarily. Hence, the simultaneous determination of both, individual isomers and total 

parameters is recommended for studying lipid peroxidation biomarkers in biofluids. Whereas 

the individual isomers give a more detailed information on the lipid peroxidation process 

providing insight into the underlying mechanisms of action, total parameters are a 

straightforward alternative when no pure analytical standard solutions are available. Moreover, 

even if the determination of individual isomers was not limited by the availability of standards, 

it would not be feasible to resolve and determine all possible isomers in one analytical run. 

Therefore, it would first have to be established which lipid peroxidation biomarkers are of 

interest for monitoring in each study in dependence of the species, biofluid and 

pathophysiological situation. 
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Figure 5.2 Boxplots of isoprostanoids in plasma samples from newborns on days 1 and 5. Boxes indicate the 1st 

and the 3rd quartiles, the median is shown as a blue line, whiskers mark the 9th and 91st percentiles, red triangles 

represent mean concentrations and blue circles are outliers Note: Values below LOQ were replaced by ½ LOQ; 

** = p-value < 0.01 
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5.5 Conclusions 

This work presents the first validated LC-MS/MS method for the simultaneous quantification 

of 28 lipid peroxidation biomarkers in addition to four total relative parameters in small 

volumes (100 mL) of plasma samples. The access to a considerable panel of different isomers 

allowed an in-depth study of the effect of analytical and pre-analytical conditions on the 

determination of the metabolites revealing stability issues in 4 metabolites during hydrolysis. 

Future studies will focus on the modification of the hydrolysis conditions e.g. using enzymatic 

hydrolysis. Furthermore, the use of isotopically labelled internal standards for each studied 

substance class as surrogates is recommended to improve the method's accuracy. 

 

 



 

Chapter 6 Adrenic acid non-enzymatic 

peroxidation products in biofluids of moderate 

preterm infants 

6.1 Abstract 

Oxidative stress plays an essential role in processes of signaling and damage to 

biomolecules during early perinatal life. Isoprostanoids and isofuranoids from the free radical-

catalyzed peroxidation of polyunsaturated fatty acids (PUFAs) are widely recognized as 

reliable biomarkers of oxidative stress. However, their quantification is not straightforward due 

to high structural similarity of the compounds formed. In this work, a semiquantitative method 

for the analysis of adrenic acid (AdA, C22:4 n-6) non-enzymatic peroxidation products (i.e. 

dihomo-isoprostanes and dihomo-isofurans) was developed. The proposed ultra-performance 

liquid chromatography - tandem mass spectrometry (UPLC-MS/MS) method was applied to 

the analysis of blood plasma and urine from preterm infants providing information about AdA 

peroxidation. 

6.2 Introduction 

The assessment of oxidative stress (OS) in the perinatal period, and particularly in 

prematurity is widely discussed elsewhere176. In both, physiological and pathological 

conditions, perinatal oxidative status provides highly valuable information and has helped to 

understand disease mechanisms and establish predictive or prognostic biomarkers. 

One of the most studied OS-related reactions in the perinatal field is the free radical-

catalyzed peroxidation of polyunsaturated fatty acids (PUFAs)51–55. Since the in-vivo free 

radical-catalyzed peroxidation of arachidonic acid (AA, C20:4 n-6) was discovered406, 

numerous studies have been performed focusing on the mechanisms and biomedical 

implications of the formed compounds that were named isoprostanes (IsoPs) and isofurans 

(IsoFs). These implications have been recently reviewed by Milne et al.267 including their 

employment as biomarkers of oxidative stress-related conditions and their biological activity 
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in the cardiovascular system. During the last decade, the study of lipid peroxidation (LPO) has 

been extended to other PUFAs thereby identifying different families of LPO products (i.e. 

isoprostanoids and isofuranoids) from docosahexanoic acid (DHA, C22:6 n-3) and adrenic acid 

(AdA, C22:4 n-6) among others268,423–426. The study of the AA, DHA and AdA peroxidations 

are particularly of interest in the neonatal field since these PUFAs play an essential role in the 

physical properties and function of membranes, influencing their packing and fluidity427. 

Moreover, AdA oxidation may be of particular interest during early human development given 

the high concentration of this PUFA in the retina and cerebral white matter428. 

Ultra-performance liquid chromatography - tandem mass spectrometry (UPLC-

MS/MS) has proven its effectiveness to provide adequate sensitivity and selectivity for the 

analysis of isoprostanoids and isofuranoids in biological samples. Due to their clinical 

relevance, efforts have been made to chemically synthesize414,420,425,429 different isomers of 

isoprostanoids and isofuranoids268,425,430 for their use as analytical standards for quantification 

purposes. However, a comprehensive quantification of the complete set of potentially hundreds 

of isomers is complex because of the lack of analytical standards and the difficult resolution in 

the MS and chromatographic dimensions269,420,425,431.  

To circumvent these limitations, the semiquantitative analysis of IsoPs, IsoFs, 

neuroprostanes (NeuroPs) and neurofurans (NeuroFs) has been proposed recently51,408,412,432. 

In this approach, “total parameters” of IsoPs, IsoFs, NeuroPs, and NeuroFs are defined as the 

total relative response of LPO products that may be detected from the corresponding PUFA in-

vitro lipid peroxidation at fixed conditions51. These conditions include the free radical 

generator and its concentration, the incubation time, the PUFA concentration, and the 

preprocessing performed to concentrate the generated compounds. Therefore, the analysis of 

the selected relative responses in a biological sample allows a straightforward assessment of 

the free radical attack to the PUFA.  

Total parameters of IsoPs, IsoFs, NeuroPs, and NeuroFs were successfully 

implemented in a UPLC-MS/MS method that enabled their semiquantitative determination 

together with the quantification of 28 isoprostanoid isomers53. However, to the best of our 

knowledge, to date total parameters of dihomo-isoprostanes (dihomo-IsoPs) and dihomo-

isofuranes (dihomo-IsoFs) formed by AdA peroxidation have not been studied yet. 

This work assesses the potential of a relative quantification approach for total dihomo-

IsoP and dihomo-IsoF isomers in biofluids. For method set-up and optimization AdA standards 

were subjected to an invitro peroxidation procedure and characterized employing UPLC-MS 

and UPLC-MS/MS. Detection parameters were optimized in terms of sensitivity and the 

method was applied to urine and plasma samples from preterm infants. 
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6.3 Material and methods 

6.3.1 Standards and reagents 

AAPH (2,2′-Azobis [2-methylpropionamidine] dihydrochloride), adrenic acid (AdA, 

22:4 n-6), β-glucuronidase type IX-A from E. coli, and potassium hydroxide (KOH) were 

purchased from Sigma Aldrich Química S.A. (Madrid, Spain). Methanol (MeOH), ethanol 

(EtOH), n-heptane (C7H16), and acetonitrile (CH3CN) at LC-MS grade were purchased from 

J.T. Baker (Phillipsburg, NJ, USA). Formic acid (98% w/w) and ethyl acetate (analytical grade) 

were from Panreac (Barcelona, Spain). Dulbecco's phosphate buffered saline (PBS) containing 

137 mM of NaCl, 2.7 mM of KCl, 10 mM of sodium hydrogen phosphate, and 1.8 mM of 

potassium dihydrogenphosphate at pH 7.4 was prepared dissolving the pre-weighted tablet 

from VWR (Radnor, PA, USA) in 100 mL of water. Water was ultrapure H2O generated on a 

Milli-Q® integral system from Merck Millipore (Darmstadt, Germany). Deuterated 

prostaglandin F2α (PGF2α-D4) with purity ≥98% and deuterated incorporation ≥99% was 

purchased from Cayman Chemical Company (Ann Arbor, MI, USA) and employed as internal 

standard (IS). 

6.3.2 Study population and sample collection 

The samples employed to evaluate the method's performance were urine and plasma 

obtained from moderate preterm infants, defined as gestational age between >31 and ≤33 weeks 

at birth, collected at University Hospitals, Rainbow Babies & Children's Hospital, Cleveland 

Ohio, USA. Exclusion criteria included infants with congenital anomalies. Institutional review 

board approval was obtained for this study. Parents provided written consent at time of 

enrollment. A set of 75 plasma and 23 urine samples collected during the first 3 weeks of life 

(Days 7–10 and Days 13–17) were employed. For plasma, 500 μL of venous or capillary blood 

was collected in lithium heparin plasma separator tubes (BD Microtainer; Franklin Lakes, NJ, 

USA) and centrifuged at 1000 g for 10 min at 4 °C to obtain plasma that was then stored at –

80 °C until analysis. One milliliter of urine was collected employing sterile cotton pads or a 

newborn Hollister bag and urine was extracted and stored at –80 °C until analysis. Samples 

were shipped on dry ice and arrived frozen for analysis. 

6.3.3 AdA in vitro oxidation 

AAPH was employed as a model generator of free radicals following previous works 

with slight modifications [1,8,24–26]. Eight aliquots of 500 μL of AdA (4.5 mg/mL) and 

AAPH (2.7 mg/mL) suspensions in PBS were incubated in 1.5 mL microcentrifuge tubes at 37 

°C with mild shaking in a MKR13 thermoblock from Ditabis AG (Pforzheim, Germany). After 

0, 2, 4, 6, 8, 10, 24, and 30 h, aliquots were withdrawn and stored at −20 °C until further 
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processing. Before analysis, each aliquot was thawed, homogenized on a Vortex S0200 mixer 

from LabNet (Edison, NJ, USA) for 30 s at maximum speed and diluted 1:9 (v/v) in 

H2O:MeOH (85:15, 0.1% (v/v) HCOOH) to 900 μL. Blank samples were prepared following 

the same procedure in the absence of AdA. Diluted aliquots were centrifuged at 16000 g for 10 

min at 4 °C using a Biocen 200r centrifuge from Orto Alresa (Madrid, Spain) and supernatants 

were extracted by solid phase extraction (SPE) following the procedure described for plasma 

and urine samples prior to UPLC-MS/MS analysis. 

6.3.4 Sample preprocessing 

Plasma samples were subjected to basic hydrolysis in order to obtain free isoprostanoids 

and isofuranoids by saponification from the corresponding esters as described in the 

literature53,54,268,431. A volume of 100 μL of plasma was thawed on ice and 100 μL of KOH 

solution at 15% (w/v) were added. The mixture was incubated at 40 °C for 30 min. For urine 

samples, the glucuronide conjugates were hydrolyzed using β-glucuronidase from E. coli to 

deconjugate glucuronides of isoprostanoids433. One hundred units of β-glucuronidase were 

added to 600 μL of urine and the mixture was incubated at 37 °C for 90 min. 

A volume of 3 μL of aqueous IS solution (20 μM) was added to hydrolyzed samples 

and diluted to 900 μL with H2O:MeOH (85:15, 2.8% (v/v) HCOOH) solution for plasma 

samples and H2O:MeOH (85:15, 0.1% (v/v) HCOOH) solution for urine samples. Then, the 

samples were mixed for 30 s at maximum speed and centrifuged at 16000 g and 4 °C for 10 

min. For clean-up and pre-concentration of the samples, an SPE procedure employing 

Discovery® DSC-18 SPE 96-well plates from Sigma Aldrich Química S.A. (Madrid, Spain) 

was applied following a protocol previously developed for the analysis of lipid peroxidation 

products51–54. Briefly, first the stationary phase was equilibrated with 1 mL of MeOH and 1 

mL of water. Then, the supernatant of the centrifuged sample (approximately 900 μL) was 

loaded followed by washing with 1 mL of H2O. Finally, the samples were eluted with 100 μL 

four times with ethyl acetate. The eluate was evaporated using a miVac centrifugal vacuum 

concentrator from Genevac LTD (Ipswich, UK) and dissolved in 60 μL solution of H2O (0.1% 

v/v HCOOH, pH 3):CH3OH (85:15 v/v). 

6.3.5 UPLC-MS/MS analysis of dihomo-IsoPs and dihomo-IsoFs total 

parameters 

An Acquity-Xevo TQS system from Waters (Milford, MA, USA) using negative 

electrospray ionization (ESI−) was employed for UPLC-MS/MS analysis. Chromatographic 

separation and ESI interface conditions were selected according to previously published 

methods51–54. A Waters BEH C18 reversed phase column (2.1×100 mm, 1.7 μm) was used. 

Flow rate, column temperature and injection volume were set at 450 μL min−1, 45 °C and 9 μL, 

respectively. A binary mobile phase H2O (0.1% v/v HCOOH):CH3CN (0.1% v/v HCOOH) 

gradient with a total runtime of 7.0 min was run as follows: from 0.0 to 0.1 min 15% v/v 
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CH3CN (0.1% v/v HCOOH) (i.e. mobile phase channel B); from 0.1 to 5.0 min %B increased 

up to 40%; from 5.0 to 6.0 min %B increased up to 75%; between 6.0 and 6.15 conditions were 

held constant at 75% B followed by the return to initial conditions (i.e. 15% B) between 6.15 

and 6.25 min; conditions were maintained for 0.75 min for system reequilibration. ESI interface 

conditions were selected as follows: negative mode; capillary voltage to 2.9 kW; source and 

desolvation temperatures were 150 °C and 395 °C respectively; and nitrogen cone and 

desolvation gas flows were 150 and 800 L h−1. 

In order to determine the chromatographic profile of the in-vitro formation of dihomo-

IsoPs and dihomo-IsoFs, the processed AdA oxidized samples (i.e. blank sample, 0, 2, 4, 6, 8, 

10, 24, and 30 h) were injected into the UPLC-MS/MS system and detected in Selected Ion 

Monitoring (SIM) mode employing previously reported m/z ratios of parent ions for dihomo-

IsoP and dihomo-IsoF isomer detection53. Once chromatographic profiles and parent ions of 

total parameters were established, the processed AdA oxidized samples were detected in 

daughter ion scan (i.e. product ion scan) mode (cone voltage: 30 V, collision energy: 30 eV, 

mass range: 105–397). The Collision Ion Dissociation (CID) patterns obtained were analyzed 

and the most intense product ions were identified for each total parameter. Thereafter, collision 

energy and cone voltages were optimized testing different combinations in a Multiple Reaction 

Monitoring (MRM) experiment. The MRM transition with the highest intensity after the 

optimization was selected for each total parameter. Extracts of plasma and urine samples were 

analyzed employing the parameters shown in Table 6.1. MassLynx™ 4.1 from Waters 

(Milford, MA, USA) was used for data acquisition and processing. Further data analysis was 

performed in Matlab R2017a (MathWorks, Natick, MA, USA). 

Table 6.1 Mass spectrometric parameters and chromatographic window selected for the total parameters. 

Analyte m/z Parent ion 
Cone 

[V] 

CE 

[eV] 

m/z Daughter 

Ions 

Chromatografic 

window [min] 

Internal 

standard 

Dihomo-IsoPs 381.00 20 20 143.00 5.3 – 6.5 PGF2α-d4 

Dihomo-IsoFs 397.00 35 25 155.00 3.5 – 6.5 PGF2α-d4 

PGF2α-d4 357.00 40 30 197.00 4.97 - 

6.4 Results and discussion 

6.4.1 ULPC-MS/MS characterization of AdA non-enzymatic peroxidation 

products 

Dihomo-IsoPs and dihomo-IsoFs formed by free-radical oxidation of AdA is a set of 

compounds with a vast number of isomers extensively studied in the literature420,423,425,426,434. 

They show similar chemical structures and only some of these isomers can be resolved 

chromatographically resulting in multiple and overlapping peaks. Furthermore, only a limited 

number of pure analytical standards for the quantitation of those isomers is commercially 

available or has been described in the literature269,420,425,431. It is also unclear to what extent of 
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knowledge on the augmentation of levels of specific isomers adds to the final interpretation in 

clinical studies268. In this work, an alternative top-down approach for the semi-quantitative 

measurement of total dihomo-IsoP and dihomo-IsoF isomers is presented. This approach 

potentially allows a straightforward determination of dihomo-IsoP and dihomo-IsoF substance 

classes in biological samples for their application as biomarkers in the clinical environment. 

During analytical method development, the formation of AdA-derived lipid 

peroxidation products by free-radical attack in an in-vitro experiment with different reaction 

times was characterized by UPLCMS/MS. For this purpose, the ions [C22H38O5-H]- (m/z=381) 

and [C22H38O6-H]- (m/z=397) were monitored for dihomo-IsoPs and dihomo-IsoFs, 

respectively, taking into account the common molecular formulae of these compounds 

illustrated in Figure 6.2420,423,434. The chromatographic elution window for each total parameter 

under the employed chromatographic settings was assessed examining the SIM chromatograms 

of the parent ions for dihomo-IsoPs (m/z=381) and dihomo-IsoFs (m/z=397) as shown in 

Figure 6.1. For dihomo-IsoPs the intensities of the peaks between 5.3 and 6.5 min increased 

with incubation time. Likewise, for dihomo-IsoFs an increase was observed with a slight shift 

of the elution window between 3.5 and 6.5 min. The higher predicted logP for dihomo-IsoPs 

(i.e. 0.7 more than dihomo-IsoFs)435 might explain the difference in the observed retention time 

windows. The above-mentioned ranges were established as elution windows for total dihomo-

IsoPs and dihomo-IsoFs, respectively.  

The oxidized AdA samples were re-injected in daughter ion scan mode to obtain CID 

patterns at different reaction times. The combined spectra of the scans acquired during the 

corresponding elution windows for each total parameter are shown in Figure 6.1. Regarding 

dihomo-IsoP product ions, the most abundant m/z were 139, 143, 157, and 155, while in the 

case of dihomo-IsoFs 139, 143, 155, and 183 m/z were the most intense product ions. For 

optimum sensitivity, different collision energies and cone voltages were tested (see 

Supplementary figure AI.2.1 and Supplementary figure AI.2.2). In general, the collision 

energy had a great impact on the sensitivity, while the cone voltage showed to be less critical. 

For all values tested, the most sensitive MRM transitions (i.e. the pairs parent > daughter) were 

381 > 143 for dihomo-IsoPs and 397 > 155 for dihomo-IsoFs. The selected transitions for both 

total parameters have been assigned to the 7-series dihomo-IsoPs423 and 17-series dihomo-

IsoFs420 and have been employed previously for the quantification of certain dihomo-IsoP and 

dihomo-IsoF isomers53,268,269,425,431,434. The fragmentation patterns suggest a charge remote ion 

mechanism with previous 1 [3]-sigmatropic shift for the 7-series dihomo-IsoPs436,437. The 

structures with the proposed fragments are illustrated in Figure 6.2. The optimum MS detection 

conditions selected for the determination of total dihomo-IsoPs and dihomo-IsoFs based on the 

analysis of in-vitro oxidized AdA are shown in Table 6.1. 
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Figure 6.1 SIM (left) and daughter ion scan (right) chromatograms of dihomo-IsoPs (top) and dihomo-IsoFs 

(bottom) obtained at different reaction times from AdA. 
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Figure 6.2 MRM transitions selected for the total parameters and proposed fragmentation mechanisms. 

6.4.2 Total dihomo-IsoPs and dihomo-IsoFs in urine and plasma samples 

A total of 75 plasma and 23 urine samples from preterm infants were analyzed by 

UPLC-MS/MS employing the parameters of the experimental conditions selected for dihomo-

IsoP and dihomo-IsoF. Chromatographic profiles of representative samples for each matrix are 

plotted in Figure 6.3 together with an in-vitro oxidized AdA standard solution and a blank. In 

urine samples, several peaks were observed at the same retention time and resolution as in-

vitro oxidation products (i.e. peaks at ≈ 5.8, 6.1 and 6.2 min for dihomo-IsoPs and ≈5.5 and 

5.75 for dihomo-IsoFs). Furthermore, additional peaks appear partially overlapped or at 

different retention times. In the case of plasma samples, no distinguishable dihomo-IsoP peaks 

were observed. In contrast, for dihomo-IsoFs two poorly resolved peaks at ≈ 5.5 min were 

measured. 
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The area of the entire chromatographic elution window, as determined during the 

analysis of oxidized AdA standards for each total parameter was selected as a response variable 

and the limit of quantification (LOQ) was defined as 10 times the blank area. With this cut-off 

value, both total parameters were detected in most of the urine samples (≥70%). However, for 

plasma samples only dihomo-IsoFs were detected in a small number of samples. The precision 

of the determinations was evaluated by the Relative Standard Deviation (RSD) of technical 

replicates of QC samples (i.e. pooled study samples) and satisfactory values ≤10% were 

obtained. The percentages of samples above the LOQ (> LOQ) and the precision measurements 

are shown in Table 6.2. 

 

Figure 6.3 Chromatograms of total dihomo-IsoPs (left) and dihomo-IsoFs (right). AdA in-vitro non-enzymatic 

peroxidation products after t=2 hours and mean ± standard deviation (thick line and the light shade, respectively) 

of chromatograms of total parameters measured in 3 replicates of urine samples, plasma samples, and blanks. 

In order to compensate signal fluctuations originating from instrumental noise and 

sample treatment, the areas detected in samples > LOQ were normalized by the area of the IS 

resulting in relative responses. The obtained relative responses given in procedure defined units 

(p.d.u.) allow a comparison of results between different batches of samples. Fig. 4 shows 

boxplots of relative responses obtained for both total parameters detected in blanks, urine and 

plasma samples. In urine samples, the dihomo-IsoPs mean relative response was 16 times 

higher than that found in the blanks. For dihomo-IsoFs, the mean relative response was 13 and 

90 times higher than for blanks in plasma and urine samples, respectively. Urine samples 

showed a relatively large interquartile range compared to plasma samples. The fact that 

dihomo-IsoPs were  <LOQ in plasma samples, while they could be detected in the majority of 

urine samples might be an indicator for the dynamics of dihomo-IsoP formation/excretion as it 

suggests that the maximum plasma concentration formed from oxidation of AdA remainsbelow 

the LOQ for the experimental methods used, whereas, dihomo-IsoPs were detected in excreted 

urine from the same infants. Conversely, dihomo-IsoFs showed a different profile: they were 

formed after dihomo-IsoPs at sustained oxygen tensions420,425, and hence they were still present 
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in plasma at the time of sampling and were excreted at higher concentrations in a similar way 

as described for NeuroFs51. This observation is important for the design of future clinical study 

protocols that aim at targeting those biomarkers in biofluids. 

Table 6.2 Percentage and number of samples >LOQ as well as RSD in % of QC sample replicates for each matrix 

and total parameter. 

Analyte 

Samples >LOQ [%] RSD QCs [%] 

Urine 

(N = 23) 

Plasma 

(N = 75) 

Urine 

(N = 3) 

Plasma 

(N = 3) 

Dihomo-IsoPs 70 0 10 - 
Dihomo-IsoFs 100 12 4 9 

The developed method allows the simultaneous relative determination of the total sum 

of 7-series dihomo-IsoPs and 17-series dihomo-IsoFs. In urine, this method proved sufficient 

sensitivity for detecting relevant concentrations in clinical samples, whereas sensitivity in 

plasma samples should be improved in order to enable detection of dihomo-IsoPs in the 

majority of samples. This could potentially be achieved by increasing the pre-concentration 

factor by using higher sample volumes or by modifying the hydrolyzation procedure. It should 

be noted that the basic/enzymatic hydrolysis employed during the preprocessing of biofluids 

allowed to detect the sum of free and esterified/glucuronide conjugated forms, however, this 

analytical method could be applied omitting the hydrolysis step in order to evaluate free forms 

independently. For clinical validation of the study parameters a larger study population needs 

to be tested and different sample collection time points are needed for a comprehensive 

assessment of dynamic concentration ranges. Finally, the sensitivity and selectivity of total 

dihomo-IsoPs and total dihomo-IsoFs for detecting brain injury in clinically relevant settings 

has to be studied. 

 

Figure 6.4 Boxplots of total dihomo-IsoPs (left) and dihomo-IsoFs (right) for blanks (N = 11), urine (N = 23) and 

plasma (N = 9) samples. Boxes indicate the 1st and the 3rd quartiles, the median is shown as a blue line, whiskers 

mark the 9th and 91st percentiles, red circles represent mean concentrations and blue circles are outliers. 

 



Adrenic acid non-enzymatic peroxidation products in biofluids of moderate preterm 

infants 

117 

 

6.5 Conclusions 

In-vitro peroxidation of AdA was characterized by CID experiments allowing to select 

the most sensitive and selective MRM transitions for dihomo-IsoPs and dihomo-IsoFs (381 > 

143 and 397 > 155, respectively). The selected measurement conditions were implemented in 

a UPLC-MS/MS method and applied to urine and plasma samples from preterm infants. 

Dihomo-IsoFs could be detected in both matrices (i.e. urine and plasma), however, dihomo-

IsoPs were detected exclusively in a limited number (12%) of urine samples. This suggests that 

the plasmatic dihomo-IsoP concentration was low (i.e. below the LOQ) at the studied sampling 

time due to the formation and excretion rates. These results enable the design of future studies 

necessary to establish the accumulation and excretion patterns of total dihomo-IsoPs and total 

dihomo-IsoFs and compare them to the obtained regio- or stereoisomer profiles. The usefulness 

of the total parameters as biomarkers for brain injury will have to be assessed in bigger cohorts 

of study subjects with well-defined clinical conditions. 

 

 





 

Chapter 7 Biomarkers of oxidative stress derived 

damage to proteins and DNA in human breast milk 

7.1 Abstract 

Oxidative stress derived biomarkers have been extensively studied for assessing 

pathological situations in the neonatal period and their usefulness for an early outcome 

prediction of oxidative stress related diseases in non-invasive biofluids could be demonstrated. 

This is the first report on a method for the simultaneous detection of a panel of oxidative stress 

related biomarkers for quantifying damage to proteins and DNA in human breast milk samples. 

A straightforward sample clean-up procedure using 1.5 mL of milk was developed and extracts 

were analyzed by ultra-performance liquid chromatography coupled to tandem mass 

spectrometry. The analytical method was validated and applied to human milk samples from a 

cohort of mothers of preterm infants, as well as donor human milk samples before and after 

pasteurization at a human milk bank. The results demonstrate the feasibility of this method for 

the analysis of a panel of oxidative stress related biomarkers, reporting ranges found in human 

milk. 

7.2 Introduction 

The most recent definition of oxidative stress (OS) has been provided by Sies et al.43 as 

“an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a 

disruption of redox signaling and control and/or molecular damage”. In the field of 

perinatology, the role of OS is essential since the developing fetus, and then the newborn, are 

particularly susceptible to the effects of oxidants60. 

Fetal life elapses in a low oxygen atmosphere, and maturation of the lung, surfactant 

and antioxidant defense system only occurs very late in gestation. Therefore, babies born 

prematurely are not endowed with an adequate physiology to face a brisk increment in tissue 

oxygenation derived from respiration. Consequently, with the initiation of breathing 

immediately after birth and the need for oxygen supplementation for postnatal stabilization in 

the delivery room, a burst of oxygen free radicals is generated. Free radicals are extremely 

aggressive byproducts of incomplete oxygen reduction with an extremely short half-life that 
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cause structural and functional damage to nearby cellular components such as lipids, proteins, 

nucleic acids, etc. The consequences of oxidative stress can be damage to lung, myocardium, 

retina, intestine or brain438. 

Maternal OS has also been studied and both, maternal and perinatal OS were correlated 

with several pregnancy and perinatal conditions including prematurity169,214,438–443. At the same 

time, inflammatory processes are risk factors for preterm birth60,444. Indeed, OS and 

inflammation are interconnected and a paradigmatic example for this link is the action of 

neutrophils43,445,446. Neutrophils are the most abundant white blood cells in humans playing an 

essential role during the inflammatory response and they are key for killing bacteria and other 

microorganisms. The generation of a wide range of oxidant species by neutrophil 

myeloperoxidase (MPO) that destroy the pathogen is part of the complex mechanism of action 

of neutrophils445. Hypochlorous acid is one of these oxidant species which during MPO activity 

produces the chlorination of tyrosine residues forming 3-chlorotyrosine (3Cl-Tyr), which has 

been widely described as a biomarker of infection284,445,447. 

The assessment of OS may be carried out by quantification of the oxidants/antioxidants 

imbalance by measuring the oxidized-to-reduced ratio of selected antioxidants (e.g. 

glutathione). However, OS-mediated damage is a complex phenomenon that involves intricate 

repair pathways43. A complete appraisal of effects of OS on an organism can only be obtained 

by means of the analysis of biomarkers of damage to macromolecules such as lipids (e.g. 

peroxidation products), proteins or nucleic acids43,60,438. On the other hand, biomarkers of 

oxidative-related inflammation such as 3Cl-Tyr in addition to OS biomarkers, allow to obtain 

a more detailed vision of disruptions of the network of redox steady states445. 

Analytical methods for quantification of the above-mentioned biomarkers in 

perinatology have been reported in the literature during the last decades60,438,448. Gas 

Chromatography coupled to Mass Spectrometry (MS) and Liquid Chromatography coupled to 

tandem MS (LC-MS/MS) emerged as the most reliable techniques438. Recently, methods for 

analysis of lipid peroxidation products in urine51,52, plasma54, and serum55 and biomarkers of 

damage to proteins and DNA in urine231, plasma449, amniotic fluid284 and tissues449 were 

developed employing Ultra Performance LC-MS/MS and applied to several studies related to 

the neonatal period involving biofluids and tissues from newborns and animal models. 

Breast milk is a non-invasive and highly accessible biofluid that has been analyzed to 

quantify maternal OS283,330,441,443,450–453. However, multi-biomarker analysis of OS has not been 

reported in the scientific literature. Breastfeeding is the gold standard for newborn infant 

nutrition and especially for the high risk population of preterm infants283,454. Beyond nutritional 

aspects, human milk contains a wide spectrum of bioactive compounds which improves the 

regulation of the gastrointestinal tract and the immune system, contributing to disease 

prevention, infant growth, and development454–457. When own mother's milk is not available, 

the use of donor human milk (DHM) from human milk banks (HMB) is the best alternative for 

feeding of the (preterm) newborn458. DHM must be collected, processed, and stored in a way 
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that ensures its microbiological safety and nutritional quality. Holder pasteurization (62.5 ˚C, 

30 min) is generally employed by HMBs to inactivate all non-spore forming and potentially 

pathogenic microorganisms. Processing (pasteurization and freezing) of expressed breast milk 

likely decreases the availability and function of a number of bioactive substances and 

microorganisms458,459. Antioxidants, enzymes and lipid peroxidation biomarker changes have 

been observed after pasteurization460–463. However, the effect of pasteurization on biomarkers 

of protein and DNA damage by OS has not been studied. 

In this work we present the first method for the quantification of a panel of biomarkers 

of oxidative damage to proteins and DNA for assessing OS and inflammation in human breast 

milk samples employing a straightforward solid phase extraction (SPE) clean-up followed by 

ultra performance liquid chromatography (UPLC)-MS/MS analysis. The method was validated 

according to the FDA guidelines for bioanalytical method validation and then applied to 

samples of human milk from mothers of preterm infants and DHM samples from a milk bank 

before and after pasteurization. 

7.3 Material and methods 

7.3.1 Standards and reagents 

Primary standards of o-tyrosine (o-Tyr), m-tyrosine (m-Tyr), phenylalanine (Phe), 

3NO2-tyrosine (3NO2-Tyr), 3Cl-Tyr, p-tyrosine (p-Tyr), 8-Oxo-2’-deoxyguanosine (8OHdG) 

and 2-deoxyguanosine (2dG) (>96% w/w purity) were obtained from Sigma-Aldrich (St. 

Louis, MO, USA). Deuterated phenylalanine (Phe-D5) was purchased from CDN Isotopes 

(Pointe-Claire, Canada). 8-Oxo-20-deoxyguanosine-13C15N2 (8OHdG-13C15N2) and 20-

deoxyguanosine-13C15N2 (2dG-13C15N2) were obtained from Toronto Research Chemicals 

(Toronto, Canada) and deuterated p-Tyrosine (p-Tyr-D2) from Cambridge Isotope 

Laboratories (Tewksbury, EEUU). Purities of all isotopically labeled compounds were >98% 

w/w.Water was Milli-Q® grade (>18.2 MU) dispensed from a Milli-Q® integral system 

(Darmstadt, Germany). Methanol and acetonitrile (LC-MS grade) where purchased from JT 

Baker (Deventer, Netherlands) and sodium hydroxide (NaOH), phosphoric acid and formic 

acid were acquired from PanReac Química (Barcelona, Spain). 

7.3.2 Collection and storage of human milk samples 

7.3.2.1 Human milk from mothers of preterm infants 

Human milk samples from mothers of preterm infants were collected in a prospective, 

observational cohort study. Eligible infants were born at a gestational age ≤32 weeks and 

exclusively fed with own mother’s milk. Exclusion criteria were severe congenital 
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malformations, intestinal surgery and chromosomopathies. The first aliquot of human milk was 

collected after achieving exclusive enteral nutrition of above 150 mL kg-1 day-1 and once per 

week thereafter. The mothers were followed for up to four weeks or until hospital discharge of 

the newborn. Milk was extracted manually or using a milk pump after receiving instructions 

from the nurse. Aliquots of the total volume of expressed breast milk collected during each 

extraction of ≥20 mL were placed in sterile glass vials and stored at -20 ⁰C until analysis. 59 

human milk samples from 31 mothers were considered in this study. The Ethics Committee for 

Biomedical Research of the Health Research Institute La Fe (Valencia, Spain) approved the 

study protocol. Informed consent was obtained from all participants. All methods were 

performed in accordance with the relevant guidelines and regulations. 

7.3.2.2 DHM samples before and after pasteurization 

DHM samples were obtained from the Regional HMB “Aladina-MGU” located at the 

Hospital Universitario 12 de Octubre (Madrid, Spain). Milk collection was performed 

following a specific protocol for donor mothers approved by the local ethics committee (ethical 

approval code: 12/325) and informed consent was obtained from each donor. Milk was 

collected at home using either electric or manual pumps and transported to the HMB in an 

insulated box provided with ice packs. DHM samples from multiple donors were stored frozen 

(˗20 ⁰C) until processing. DHM was thawed in a shaking water bath at 37 ⁰C and pooled in a 

sterile Pyrex bottle. An aliquot from each pool was separated before pasteurization, whereas 

the rest of the pool was pasteurized (62.5 ⁰C for 30 min). Then, milk samples were cooled in a 

shaking water bath providing temperature control (Jeio Tech BS-21; Lab Companion, Seoul, 

Korea) filled with ice-cold water. Once the temperature reached 4 ⁰C, DHM aliquots were 

stored at -20 ⁰C until analysis. A thermometer, coupled to an external temperature sensor (Mesa 

Labs, Inc., Lakewood, Colorado, USA), was dipped into a control bottle (cow’s milk) and used 

to monitor the temperature of the milk batch during the whole heating/cooling process. The 

water bath maintained the required temperature with a precision of ±0.2 ⁰C. A total of 13 pools 

were processed following the procedure described above. 

7.3.3 Preparation of stock, working and standard solutions 

Stock solutions of  o-Tyr (3 mmol L-1), m-Tyr (3 mmol L-1), Phe (60 mmol L-1), 3NO2-

Tyr (2 mmol L-1), 3Cl-Tyr (3 mmol L-1), p-Tyr (4 mmol L-1), 8OHdG (1 mmol L-1), 2dG (1 

mmol L-1), Phe-D5 (1 mmol L-1), 8OHdG-13C15N2 (1 mmol L-1) and 2dG-13C15N2 (1 mmol 

L-1) were prepared by dissolving adequate amounts of pure, solid standards in H20 (0.1% 

HCOOH) and stored at -20 °C. Working solutions were obtained by dilution of stock solutions 

and were used for preparing mixtures for internal standards (IS), calibration and spiking 

solutions which were aliquoted and kept at -20 °C in capped vials and went through a single 

freeze-thaw cycle. Standard solutions were prepared by serial dilution of the calibration 

mixture in the concentration intervals summarized in Table 7.1. 
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7.3.4 Sample preparation 

Frozen milk samples were thawed on ice. After that, samples were homogenized and 

centrifuged at 1200 g for 30 min at 4 °C. The top insoluble layer was discarded and 1 mL of 

supernatant were added to 1 mL of phosphoric acid solution (5 % w/v). 10 µL of IS mixture 

solution containing 20 µmol L-1 of Phe-D5, 8OHdG-13C15N2 and 2dG-13C15N2 were added 

followed by homogenization and centrifugation at 16000 g for 5 min at 4 °C. For extraction 

and pre-concentration of diluted samples, SPE was carried out employing ISOLUTE®-96 

ENV+ (96 well, 40 mg) plates from Biotage (Uppsala, Sweden). Plate wells were conditioned 

with 1 mL of CH3OH and 1 mL of H2O. 2 x 800 µL of diluted human milk were loaded onto 

the plate wells at a flow rate of approximately 1 mL min-1. Each well was washed with 2 x 300 

µL of H2O and samples were eluted using 300 µL of NaOH (0.1 mmol L-1) aqueous solution 

and 2 x 300 µL of acetonitrile. Recovered eluates were evaporated and re-dissolved in 60 µL 

of H2O (0.1% HCOOH v/v). Ten-fold dilutions were prepared by mixing 5 µL of sample extract 

with 45 µL of H2O (0.1% HCOOH v/v) and both, the concentrated and diluted samples were 

analyzed by UPLC-MS/MS.  

7.3.5 LC-MS/MS measurements  

UPLC-MS/MS analysis was based on a validated method developed previously by our 

group231. It was carried out on an Acquity–Xevo TQ system (Waters, Milford, MA, USA) 

equipped with an electrospray ionization source working in positive mode (ESI+) and the 

following conditions: capillary 0.50 kV, cone 21.00 V, extractor 3.00 V, source temperature 

120 °C, desolvation temperature 400 °C, nitrogen cone and desolvation gas flows were 50 and 

750 L h-1, respectively. Multiple reaction monitoring was performed using the instrumental 

parameters summarized in Table 7.1. The dwell time was set to 5 ms to ensure a minimum of 

10 data points per peak. An Acquity UPLC BEH C18 reversed phase column (2.1x50 mm, 1.7 

µm) from Waters and a CH3OH (0.05% v/v HCOOH):H2O (0.05% v/v HCOOH) binary 

gradient were used for chromatographic separation of compounds. Flow rate, column 

temperature and injection volume were set at 0.4 mL min-1, 30 °C and 5 µL, respectively. The 

gradient employed was as follows: from 0 to 1 min 0% v/v CH3OH (0.05% v/v HCOOH) (i.e. 

channel B), from 1 to 2.5 min from 0 to 15% v/v B and from 2.5 to 4.5 from 15 to 99% v/v B. 

Conditions were maintained for 0.25 min followed by returning to initial conditions between 

4.5 and 5.1, which were held for 0.9 min for system re-equilibration. During batch analysis, 

samples were kept at 4 °C in the autosampler. MassLynx 4.1 and QuanLynx 4.1 software 

(Waters) was used for data acquisition and processing, respectively. Linear response curves for 

each analyte were calculated employing IS indicated in Table 7.1. 
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Table 7.1 Acquisition parameters and main figures of merit of the method. 

Analyte 

m/z 

Parent 

ion 

Cone 

[V] 

CE 

[eV] 

m/z 

Daughter 

Ions 

RT ± s 

[min] 

Calibration 

range [nmol 

L-1] 

R2 
LOD 

[nmol L-1] 

LOQ 

[nmol L-1] 
IS 

8OHdG 284.10 20 15 168.10 3.22 ± 0.03 1.7 – 216.8 0.990 0.03 0.1 
8OHdG-

13C15N 

2dG 268.00 15 10 152.00 2.55 ± 0.03 0.8 – 867.0 0.996 0.03 0.1 2dG-13C 

3Cl-Tyr 216.10 25 15 170.10 3.15 ± 0.05 13.5 – 867.0 0.999 0.3 1.0 Phe-D5 

3NO2-Tyr 227.10 25 15 168.10 3.38 ± 0.06 27.1 – 867.0 0.988 0.6 2.0 Phe-D5 

o-Tyr 

m-Tyr 

p-Tyr 

182.10 30 15 136.10 

2.68 ± 0.02 13.5 – 867.0 0.994 0.3 1.0 Phe-D5 

1.88 ± 0.03 6.8 – 216.8 0.98 0.2 0.5 p-Tyr-D2 

1.42 ± 0.04 
169.3 – 

173400.0 
0.993 4 12.7 p-Tyr-D2 

Phe 166.10 25 15 120.10 3.03 ± 0.03 
169.3 – 

173400.0 
0.998 4 12.7 Phe-D5 

8OHdG-
13C15N 

287.00 25 10 171.00 3.22 ± 0.02 - -  - - 

2dG-13C 271.00 15 10 117.2 2.54 ± 0.02 - -  - - 

p-Tyr-D2 184.10 15 20 138.09 1.42 ± 0.02 - -  - - 

Phe-D5 171.10 35 10 125.00 3.00 ± 0.03 - -  - - 

7.3.6 Partial validation 

A partial validation of the analysis method originally developed for the determination 

of OS biomarkers in urine samples231 was carried out following the FDA guidelines for 

bioanalytical method validation15. A written standard operation procedure was elaborated 

including the figures of merit assessed in the partial validation, i.e. accuracy, precision, 

selectivity, limit of detection (LOD) and quantification (LOQ) which was carried out 

employing a pooled human milk sample. All aliquots from the pooled human milk sample 

employed for method validation were prepared and analyzed by triplicate on each validation 

day. Supernatants of human milk obtained after centrifugation were fortified by adding 

standard mixtures at three concentration levels before sample clean-up employing SPE. 

Accuracy was assessed calculating % recoveries from spiked pooled milk samples by 

comparing measured concentrations to the spiking concentrations (see Table 7.2) taking into 

account the concentrations found in the same sample without spiking. Precision was 

determined in spiked samples by calculating the relative standard deviation (% RSD) of 

replicates (n = 3). Both parameters were assessed within one validation batch (intra-day) and 

between three measurement days (inter-day). Selectivity was evaluated by analyzing solvent 

blanks as well as non-spiked and spiked pooled human milk samples. The LOD and LOQ 

values of the studied metabolites in human milk were estimated as the concentrations providing 

a signal-to-noise ratio of three and ten in calibration standards, respectively; alternatively, for 

p-Tyr and Phe LOQs were set at the lowest concentration level studied. 
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7.4 Results and discussion 

7.4.1 Quantification of OS biomarkers in human milk samples 

Chromatographic as well as mass spectrometric parameters were optimized in our 

previous work231 obtaining validated instrumental settings for UPLC-MS/MS analysis of the 

target compounds. The development of sample preparation and clean-up for human milk 

samples was guided by manufacturer’s instructions of the employed SPE micro-well plates and 

a previous work describing the determination of 8OHdG in human milk464. In order to achieve 

suitable performance for the whole panel of target biomarkers, the washing and elution steps 

had to be optimized in terms of solvent types and volumes. Analytical figures of merit obtained 

for the determination of concentrations of selected OS biomarkers in human milk employing 

optimized conditions as described in section 2.4 are summarized in Table 7.1. Retention times 

were reproducible with standard deviations ≤ 0.06 min. Linear calibration lines calculated 

using Phe-D5, 8OHdG-13C15N2 or 2dG-13C15N2 as IS generally covering two to three orders of 

magnitude were obtained with coefficients of determination (R2) ≥ 0.98 and homoscedastic 

residuals as assessed by visual inspection. LODs and LOQs in human breast milk ranged 

between 0.03 and 4 nmol L-1 and 0.1 and 12.7 nmol L-1, respectively. 

Figure 7.1 shows chromatograms obtained from a spiked and a non-spiked pooled 

human milk sample. From chromatograms obtained during the analysis of a non-spiked pooled 

human milk sample it can be appreciated that all analyte signals were apparently resolved from 

matrix compounds and symmetric peak shapes were obtained except for 3NO2-Tyr that was 

not detected. Back-calculated recovery values in spiked samples were used to assess accuracy 

and precision and are shown in Table 7.2. For all analytes intra-day recoveries in the range of 

90–130% were obtained at all levels. As far as the intra-day precision was concerned, %RSD 

values ≤ 20 were obtained for all studied analytes except for 3Cl-Tyr at the high spiking level 

where the intra-day precision was 30% RSD. Obtained intra-day accuracies were similar to 

inter-day results covering values between 91 and 130%. Inter-day precisions generally also 

remained ≤ 20 %RSD, with the exception of 8OHdG (medium level), 3Cl-Tyr (medium and 

high level) and m-Tyr (high level). Taking into account the complexity of human milk and the 

relatively simple sample clean-up, we consider that the method’s performance fits the purpose 

of simultaneously measuring a whole panel of OS related biomarkers in human milk especially 

considering that these biofluids are typically collected in clinical studies where a high sample 

throughput is essential. 
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Figure 7.1 Chromatograms of the selected biomarkers obtained during the analysis of a pooled human milk 

sample extract (red) and a spiked pooled human milk sample extract (blue). Note: spiking concentrations were: 

8OHdG: 50 nmol L-1; 2dG: 755 nmol L-1; 3Cl-Tyr: 360 nmol L-1; 3NO2-Tyr: 125 nmol L-1; m-Tyr: 60 nmol L-1; 

o-Tyr: 200 nmol L-1; p-Tyr and Phe: 7300 nmol L-1. 

 

Table 7.2 Back-calculated intra- and inter-day accuracy and precision in spiked milk samples. 

Analyte 

% Recovery ± s (µmol L-1) 

Intra-day (N=3) Inter-day (N=3) 

Low Medium High Low Medium High 

8OHdG 120 ± 20 (8.3) 106 ± 8 (16.6) 94 ± 13 (24.9) 100 ± 20 (8.3) 120 ± 30 (16.6) 120 ± 20 (24.9) 

2dG 92 ± 5 (8.3) 130 ± 20 (16.6) 110 ± 20 (24.9) 99 ± 17 (8.3) 120 ± 20 (16.6) 110 ± 20(24.9) 

3Cl-Tyr 130 ± 11 (25.0) 120 ± 20 (49.9) 90 ± 30 (74.6) 122 ± 18 (25.0) 130 ± 30 (49.9) 130 ± 40 (74.6) 

3NO2-Tyr 90 ± 20 (25.0) 100 ± 20 (49.9) 100 ± 20 (74.6) 100 ± 20 (25.0) 114 ± 11 (49.9) 117 ± 19 (74.6) 

m-Tyr 94 ± 8 (49.9) 110 ± 20 (99.8) 91 ± 6 (149.3) 108 ± 13 (49.9) 118 ± 9 (99.8) 120 ± 30 (149.3) 

o-Tyr 100 ± 20 (25.0) 113 ± 7 (49.9) 108 ± 3 (74.6) 91 ± 11 (25.0) 100 ± 20 (49.9) 127 ± 17 (74.6) 

Phe* 109 ± 11 (4993.8) 120 ± 14 (9975.1) 101 ± 14 (14925.4) 113 ± 8 (4993.8) 120 ± 20 (9975.1) 110 ± 20 (14925.4) 

p-Tyr* 120 ± 20 (4993.8) 105 ± 15 (9975.1) 94  ± 19 (14925.4) 130 ± 20 (4993.8) 121 ± 16 (9975.1) 110 ± 14 (14925.4) 

Note: Values within brackets indicate the spiking concentration [µmol L-1] of each metabolite * measured in 1:10 diluted sample. 

7.4.2 Analysis of human milk from mothers of preterm newborns  

The validated method was applied to the measurement of OS biomarkers in 59 milk 

samples from 31 mothers of preterm newborns. The obtained concentration ranges are shown 

in Table 3. For 3Cl-Tyr, p-Tyr, and Phe concentrations >LOQ were found in all samples and 

8OHdG, 2dG, m-Tyr, and o-Tyr were quantified in at least 93% of samples. Only in case of 

3NO2-Tyr concentrations were <LOQ in all studied samples. Hence, the method’s sensitivity 

proved its suitability for the quantification of OS related biomarkers in human breast milk. A 
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comparison of the determined metabolites with published concentrations has been carried out. 

To the best of our knowledge, only 8OHdG, Phe and p-Tyr were measured by other authors in 

milk samples. Recently, A. De Luca et al.465 reported concentrations of 11 ± 5 and 13 ± 9 µmol 

L-1 for p-Tyr and Phe, respectively, and P.M.W Lam et al.464 obtained 0.9 ± 0.3 nmol L-1 for 

8OHdG employing LC-MS/MS based-methods. Both ranges were not significantly different 

from those reported in this work of 13 ± 5 and 18 ± 9 µmol L-1 for p-Tyr and Phe, and 0.9 ± 

0.6 nmol L-1 for 8OHdG. 

 

Figure 7.2 Boxplots of m-Tyr/Phe, o-Tyr/Phe and 3Cl-Tyr/p-Tyr ratios (left) and 8OHdG/2dG ratios (right) found 

in human milk from mothers of preterm infants. Note: boxes indicate the 1st and the 3rd quartiles, medians are 

shown as blue lines, whiskers mark the 9th and 91st percentiles, red triangles represent mean concentrations, 

standard (1.5*IQR) and extreme (3*IQR) outliers were plotted as open and closed circles, respectively. 

Previously we observed changes in the levels of biomarkers of OS (lipid peroxidation) 

in urine samples from preterm infants, collected during the entire neonatal period, with the age 

of the infant51. Hence, the influence of sampling times (i.e. from the moment of reaching a 

stable ingestion above 150 mL of human milk per kg and day and once per week thereafter) on 

the determined levels of biomarkers of OS were studied. In contrast to our previously reported 

findings in urine samples, no significant differences in concentrations in dependence of the 

sample collection time point were found for m-Tyr/Phe, o-Tyr/Phe, 3Cl-Tyr and 8OHdG/2dG 

ratios in breast milk samples (data not shown). 

Boxplots representing the determined ratios of biomarkers of OS to proteins (i.e. m-

Tyr/Phe, o-Tyr/Phe, 3Cl-Tyr/p-Tyr) and DNA (i.e. 8OHdG/2dG) in 59 human milk samples 

are shown in Figure 7.2. None of the determined ratios followed a normal distribution 

(Shapiro-Wilk test, α = 0.05) and the highest interquartile range (IQR) was found for 

8OHdG/2dG ratio (IQR8OHdG/2dG = 0.7) followed by 3Cl-Tyr/p-Tyr ratio (IQR3Cl-Tyr/p-Tyr = 

9.9x10-4 = 2.8*IQRm-Tyr/Phe = 5.8*IQRo-Tyr/Phe). This biomarker has been used for the assessment 

of inflammatory processes284,445 and the correlation between inflammation and prematurity has 

been widely studied as was reviewed by Cappelletti et al.444. Moreover, inflammatory processes 
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such mastitis are a common condition in lactating women with incidences ranging between 3 

% and 20 %466,467. Therefore, the detection of 3Cl-Tyr in the study cohort is in concordance 

with literature reports on inflammatory processes related to prematurity. Future studies with an 

appropriate study design need to be conducted to elucidate the correlation between the 

concentration of 3Cl-Tyr or other oxidative stress biomarkers in human milk and pathological 

conditions. 

7.4.3 Analysis of DHM before and after pasteurization 

Aliquots from 13 pools of DHM were analyzed before and after Holder pasteurization. 

NO2-Tyr and 3Cl-Tyr were not detected in any sample and concentrations of 2dG and m-Tyr 

above the LOQ were found in 6 and 10 out of 13 samples, respectively. The remaining 

metabolites in raw and pasteurized human milk were detected in more than 11 samples. 

 

Figure 7.3 Boxplots of m-Tyr/Phe (left), o-Tyr/Phe (middle) and 8OHdG/2dG (right) ratios found in human milk 

pools before and after Holder pasteurization. Note: boxes indicate the 1st and the 3rd quartiles, medians are shown 

as blue lines, whiskers mark the 9th and 91st percentiles, red triangles represent mean concentrations, standard 

(1.5*IQR) and extreme (3*IQR) outliers were plotted as open and closed circles, respectively. 

In order to assess the changes of measured ratios during heat treatment, samples 

measured before and after pasteurization were compared as shown in Figure 7.3. For the o-

Tyr/Phe ratio, normal distributions with one extreme outlier for raw and pasteurized milk were 

obtained. The median in the case of raw milk was slightly lower than after pasteurization, but 

between both distributions no statistically significant differences were detected when a 

nonparametric paired test was performed (Wilcoxon signed-rank test, α = 0.05). For m-Tyr/Phe 

and 8OHdG/2dG ratios higher IQRs were observed in both groups (i.e. raw milk and 

pasteurized milk). For m-Tyr/Phe ratios, medians remained unchanged (Wilcoxon signed-rank 

test, α = 0.05). Regarding 8OHdG/2dG ratios, the median value for pasteurized milk was higher 

than for raw milk, but changes were not significant (Wilcoxon signed-rank test, α = 0.05). In 

summary, we did not observe significant changes in any of the parameters under the studied 

pasteurization conditions. However, in the case of 8OHdG/2dG ratios, the detected increase in 

the median suggests a possible degradation of 2dG during the pasteurization process. 
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7.5 Conclusions 

This work presents an analytical tool for the simultaneous determination of a panel of 

OS biomarkers suitable for the determination of free radical mediated damage to proteins and 

DNA in human milk samples. Small volumes (1.5 mL) were processed employing SPE 

allowing the simultaneous clean-up of 96 samples. Extracts were analyzed employing UPLC-

MS/MS with a total runtime of 6 min per sample. Therefore, this analytical workflow is suitable 

for the analysis of human milk samples providing an acceptable throughput for large scale 

clinical studies. In addition, the method's performance was assessed following FDA guidelines 

of bioanalytical method validation. 

The measurement of 59 human milk samples from 31 mothers of preterm infants was 

used to prove the usefulness of the developed analytical method. In the studied cohort, in 

general, the studied biomarkers could be quantified, with exception of 3NO2-Tyr, which was 

found below the LOQ. Concentrations were similar to those reported in literature for 8OHdG, 

Phe and p-Tyr. However, it has to be highlighted that for the majority of metabolites studied 

here (2dG, m-Tyr, o-Tyr, 3Cl-Tyr, 3NO2-Tyr) this is the first time that concentration ranges 

have been reported in human milk samples. From the results we conclude that determined ratios 

of biomarkers of OS do not vary during the neonatal period of the infant. Furthermore, the 

quantification of the 3Cl-Tyr/p-Tyr ratio in human milk samples could be of potential interest 

for the assessment of inflammation in different clinical scenarios. 

The analysis of human milk samples before and after pasteurization did not reveal 

changes in the detected metabolite ratios, indicating that both raw and pasteurized milk may be 

used for the assessment of OS biomarkers. However, due to an increase in the medians of 

8OHdG/2dG we recommend to carry out measurements in raw milk instead of pasteurized milk 

when possible. 

 





 

Chapter 8 On-Capillary Surface-Enhanced Raman 

Spectroscopy: Determination of Glutathione in 

Whole Blood Microsamples 

8.1 Abstract 

Oxidative stress monitoring in the neonatal period supports early outcome prediction 

and treatment. Glutathione (GSH) is the most abundant antioxidant in most cells and tissues, 

including whole blood, and its usefulness as a biomarker has been known for decades. To date, 

the available methods for GSH determination require laborious sample processing and the use 

of sophisticated laboratory equipment. To the best of our knowledge, no tools suitable for 

point-of care (POC) sensing have been reported. Surface-enhanced Raman spectroscopy 

(SERS), performed in a microvolume capillary measurement cell, is proposed in this study as 

a robust approach for the quantification of GSH in human whole blood samples. The use of a 

silver colloid allowed a highly selective signal enhancement for GSH providing analytical 

enhancement factors of 3 to 4 orders of magnitude. A highly accurate determination of GSH in 

whole blood samples with recoveries ranging from 99 to 107% and relative standard deviations 

less than or equal to 18% were achieved by signal normalization with the intensity of an 

isotopically labeled internal standard. GSH concentrations were retrieved within 4 min using 

small-volume blood samples (2 μL). The developed procedure was applied to the analysis of 

blood of 20 healthy adults and 36 newborns, obtaining comparable results between literature 

and those found by SERS and a reference method. The characteristics of this novel tool are 

suitable for its implementation in a portable optical sensor device enabling POC testing of 

oxidative stress levels in newborns. 

8.2 Introduction 

Under normal conditions, arterial oxygen saturation in the fetal-to-neonatal transition 

rises from 55% in the fetus up to more than 95% in the newly born infant within ∼10 min, 

generating physiologic oxidative stress36,468. However, in very preterm infants (i.e., <32 week 

gestation) postnatal stabilization is frequently required. This involves positive pressure 
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ventilation with an O2-enriched gas admixture to achieve a normal heart rate and arterial 

oxygen saturation after birth170. Preterm infants are endowed with an immature lung and 

antioxidant defense system, and therefore supplementation with high oxygen concentrations 

leads to a pro-oxidant imbalance that causes oxidative stress, disruption of redox signaling and 

control, and/or molecular damage43,170. The consequences are increased morbidity and 

mortality169. Recent 2015 guidelines from the International Liaison Committee on 

Resuscitation6 recommend to initiate ventilation of term infants with an inspired fraction of 

oxygen (FiO2) of 0.21 (i.e., room air) instead of 100% O2 and preterm infants with an FiO2 

between 0.21 and 0.30. The use of oxygen has contributed to dramatically reduce mortality; 

however, the negative consequences of oxygen supplementation have been oxidative stress-

related diseases such as retinopathy of prematurity, bronchopulmonary dysplasia, or 

intracranial hemorrhage169,170. Recently, we could link a panel of endogenous metabolic 

biomarkers to oxidative stress-related diseases of the preterm and show that their quantification 

in biofluids is useful for an early outcome prediction51 facilitating treatment monitoring of 

newborns in neonatal intensive care units. 

Reduced glutathione (GSH), a tripeptide (γ-glutamylcysteinyl-glycine), is the most 

abundant low molecular weight endogenous biothiol236,469 and fulfills a wide range of functions 

in the metabolism including Phase II detoxification, synthesis of biomolecules, redox signaling, 

and a central role as part of the antioxidant defense system in charge of scavenging reactive 

oxygen species to maintain redox homeostasis236,470. Moreover, the reduced to oxidized 

glutathione redox couple (GSH/GSSG) is one of the main determinants of the cytoplasmic 

redox status471 indispensable for an adequate cell reproduction, growth, and differentiation. 

Blood is a readily available biofluid frequently employed for clinical determinations. While 

GSH concentrations in blood plasma typically range between 2 and 20 μM, GSH 

concentrations in whole blood are notably high (mM range), as over 95% of GSH is located 

inside the erythrocytes472. GSH quantification in whole blood is hampered by the matrix 

complexity. Besides, GSH is easily oxidized under normal conditions102,237,239,469,473, requiring 

laborious and time-consuming sample processing. The most widely used approaches involve a 

previous sample derivatization with, for example, N-ethylmaleimide followed by acidic protein 

precipitation49,102,237,239,474,475 and a chromatographic or electrophoretic separation with 

different detectors49,102,239,474. Alternative approaches based on enzymatic assays237 or 

electrochemical determinations476 have also been reported. However, none of them enables a 

direct analysis of GSH, and they suffer from relevant limitations for their application in 

neonatal intensive care units such as the use of relatively large sample volumes (typically tens 

to hundreds of microliters of whole blood); time required for sample collection, pretreatment, 

and analysis; the use of expensive equipment and reagents; and the need of experienced 

personnel. 

Surface-enhanced Raman spectroscopy (SERS) is a promising approach for the 

development of fast analytical methods. SERS combines the molecular specific information 

provided by Raman spectroscopy with high sensitivity due to the optical properties of 
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plasmonic metallic nanostructures477. The analytical enhancement factor (AEF), defined as the 

magnitude of increase in the apparent Raman cross-section of the molecules478, depends on 

multiple factors including molecular binding, conformation, orientation, and distribution on the 

plasmonic substrates taking into account the absorption/desorption process479. Therefore, a 

precise control of atomic-scale parameters is needed to achieve reliable and reproducible 

quantitative SERS measurements. This is a challenging task, especially for the analysis of 

complex biofluids and the main limitation of SERS in biomedical applications. Several 

strategies, such as the use of an internal standard (IS)480–483 or ratiometric calibrations482 have 

been successfully implemented for compensating fluctuations in the SERS signal in aqueous 

solutions484,485. The determination of GSH using SERS in aqueous solutions has been proposed 

repeatedly56,484–496, and a recent publication showed the correlation of SERS signal and biothiol 

concentration in umbilical cord blood samples56. However, no approach allowing a 

reproducible SERS-based quantification of GSH at physiologically relevant concentrations in 

blood droplets, complying with specifications suitable for clinical determinations, has been 

reported so far. 

This study aimed at the development of a robust on-capillary SERS approach for the 

fast and direct quantification of GSH in whole blood. The developed approach enables a 

selective and reproducible GSH determination employing a silver colloid for SERS signal 

generation and an isotopically labeled IS for signal normalization. The method was developed 

to fulfill specific requirements enabling its application in neonatology including the use of very 

limited sample volumes. Results obtained provided adequate sensitivity, precision, and 

accuracy for the analysis of blood samples. The reduced sample pretreatment, analysis time 

(no incubation or drying required), and sample volume, especially critical in the field of 

neonatology, will facilitate the application of this SERS-based assay in the clinical environment 

and the development of a portable sensor device suitable for point-of-care (POC) testing in 

newborns. 

8.3 Experimental section  

8.3.1 Standards and reagents  

GSH, glutathione-(glycine-13C2,
15N) trifluoroacetate salt (used as IS), L-alanine, 

Lasparagine, L-histidine, L-isoleucine, L-leucine, L-ornithine monohydrochloride, L-proline, 

sarcosine, L-serine, taurine, L-threonine, L-tryptophan, L-valine, L-glutamine, L-arginine, 

glycine, L-aspartic acid, L-creatinine, L-cystine, L-glutamic acid, L-lysine, L-phenylalanine, 

L-tyrosine, L-methionine, L-homocystine, L-cystathionine, L-cysteine, γ-L-glutamyl−L-

cysteine, and L-homocysteine were obtained from Sigma-Aldrich. Phenylalanine-D5 (Phe-D5) 

was purchased from CDN Isotopes. All standards had purities of at least 97% except for γ-L-

glutamyl−L-cysteine, L-cystathionine, and glutathione-(glycine-13C2,
15N) trifluoroacetate salt, 
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which were at least 80%, at least 90%, and at least 95%, respectively. Silver nitrate (AgNO3), 

hydroxylamine hydrochloride, sodium hydroxide (NaOH), and Nethylmaleimide (NEM) were 

purchased from Sigma-Aldrich. Perchloric acid (70%) and formic acid (98%) were purchased 

from Panreac Quimica S.A.U. Ultrapure water was obtained from a Milli-Q Integral Water 

Purification System from Merck Millipore. Ethanol 96% was obtained from Labkem. 

8.3.2 Silver colloid preparation 

Silver colloids were synthesized as described elsewhere48. Briefly, hydroxylamine 

hydrochloride/NaOH (10 mL) was added rapidly to 90 mL of AgNO3 at room temperature and 

under constant stirring, which produced a 1.5 mM hydroxylamine hydrochloride, 3 mM NaOH, 

and 1 mM AgNO3 solution. The reaction (i.e., reduction of AgNO3 by hydroxylamine 

hydrochloride at alkaline pH) was completed within seconds. A UV−vis spectrum of a 1:10 

dilution of the colloid solution with H2O was acquired (see Supplementary figure AI 3.1) 

employing a UV-1800 Spectrometer (Shimadzu). An absorption maximum at 416 nm and the 

full width at half-maximum of 116 nm were obtained giving an indication of the average 

particle size and particle size dispersion, respectively497. The results agreed well with those 

reported in the literature48,56, indicating a successful synthesis of the silver colloid. 

8.3.3 Preparation of standards 

GSH and IS working solutions were freshly prepared on each measurement day. A 1 

mM GSH working solution was prepared by accurately weighing solid GSH in polypropylene 

microcentrifuge tubes and dissolving it in adequate volumes of Milli-Q water. Six calibration 

standards were obtained by serial dilution of the working solution in Milli-Q water. For the IS, 

accurately weighed amounts of solid standard were prepared in ethanol. Aliquots were 

evaporated employing a miVac Centrifugal Vacuum Concentrator from Genevac LTD at room 

temperature, and dry residues were stored at −20 °C. On each measurement day, one aliquot of 

IS was dissolved in an appropriate amount of Milli-Q water. For SERS measurements, 24 μL 

of each GSH calibration standard was mixed with 16 μL of IS solution (286 μM) and 120 μL 

of perchloric acid solution (10% v/v in H2O). Each solution (5 μL) was added to 45 μL of Ag 

colloid. With the blood samples being diluted by a factor of 800 during sample processing, a 

concentration of ∼1.25 μM GSH is expected in the measurement solution. Accordingly, GSH 

standard concentrations in the final measurement solutions ranged between 0.56 and 9 μM. 

Blanks were prepared by replacing GSH standard solutions with H2O. 

8.3.4 Blood sample processing 

Blood samples from two study populations were collected: (i) finger-prick blood 

samples collected with lancets from 20 healthy adults and (ii) residual blood volumes from 

routine newborn screening of 36 healthy term infants extracted by venipuncture without 

anticoagulant. Characteristics of the study populations are shown in Supplementary table AI 
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3.1 and Supplementary table AI 3.2. Blood (2 μL) was mixed with 22 μL of H2O and 16 μL 

of IS solution (286 μM). Then, 120 μL of perchloric acid solution (10% v/v in H2O) was added 

for protein precipitation. The resulting solutions were centrifuged for 30 s at 2000 g at room 

temperature on a Sprout Mini Centrifuge (Heathrow Scientific). Supernatant (5 μL) was added 

to 45 μL of Ag colloid prior to SERS measurement. 

This study was approved by the Ethics Committee of the Health Research Institute La 

Fe (Valencia, Spain), and all methods were performed in accordance with the relevant 

guidelines and regulations. Permission was obtained from each volunteer or legal 

representative by signing an informed consent form. 

8.3.5 On-capillary SERS analysis 

UV-transparent, fused silica capillary tubing from Molex with an inner diameter of 101 

± 4 μm and an outer diameter of 363 ± 10 μm was used. Manual injection was used to insert 

the sample into a 1 cm capillary placed on top of a microscopy glass slide. SERS spectra were 

recorded immediately employing an XploRA ONE confocal Raman microscope (Horiba) 

equipped with a laser emitting at 532 nm, a 10× objective, a 1200 grooves/mm grating, as well 

as a charge-coupled device detector. Slit width and hole were set to 200 and 500 μm, 

respectively, and for each spectrum, 10 scans, with an acquisition time of 3 s each, were 

accumulated in the range between 400 and 2000 cm−1. Measurement parameters were 

optimized to minimize background fluorescence while maximizing the signal intensity. 

8.3.6 Method validation 

Analytical figures of merit were assessed following the Food and Drug Administration 

Guidelines for Bioanalytical Method Validation15. Accordingly, accuracy, precision, lower 

limit of quantification (LLOQ), selectivity, and on-bench stability were evaluated on three 

different measurement days. Because of the lack of blank matrices (i.e., blood sample without 

GSH), accuracy was assessed calculating recovery percentage values in samples spiked at three 

concentration levels. Concentration levels were chosen conveniently at 0.38, 0.75, and 1.50 

μM in measurement solution, keeping total GSH concentrations in the measurement solution 

within the calibration range of the method. Spiked samples were prepared by adding 22 μL of 

GSH standard solutions to 2 μL blood samples before protein precipitation with perchloric acid. 

Precision was studied in spiked samples at three concentration levels, by calculating the relative 

standard deviation (% RSD) of replicates. Selectivity was tested by comparing the Raman and 

SERS signals of GSH and other endogenous metabolites with similar chemical structures 

including homocysteine (17.6 mM), γ-L-glutamyl−L-cysteine (32 mM), cysteine (20 mM), and 

other amino acids and related metabolites (600 μM) under the same experimental conditions. 

Stability of the signal acquired from blood supernatants after protein precipitation was 

monitored after 0.4, 1, 2, 4.3, and 7.1 h and compared to the results from the fresh blood sample. 
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GSH concentrations in blood samples from newborns were determined employing a 

validated Liquid Chromatography coupled to tandem Mass Spectrometry (LC-MS/MS) 

method49. Blood (50 μL) was added to 10 μL of aqueous 100 mM NEM solution. After 5 min 

of incubation at room temperature, 60 μL of perchloric acid (8% v/v) was added. After they 

were thoroughly mixed, samples were centrifuged at 10 000 g at 4 °C for 15 min. Supernatant 

(10 μL) was added to 90 μL of formic acid (0.1% v/v). After centrifugation at 10 000 g at 4 °C 

for 15 min, 95 μL of supernatant was added to 5 μL of Phe-D5 solution (12.5 μM, 0.1% v/v 

formic acid), and sample extracts were analyzed employing an Acquity-Xevo TQD system 

from Waters operating in the positive electro-spray ionization mode. Separations were 

performed using a Kinetex UPLC C8 column (2.1 × 100 mm, 1.7 μm) and precolumn (2.1 × 5 

mm) from Phenomenex and a binary mobile phase gradient. 

8.3.7 Data analysis and software 

Labspec software (version 6, Horiba) was employed for spectra acquisition. Data 

analysis was performed in MATLAB 2015a (The Mathworks) using built-in as well as in-house 

written functions. 

For GSH quantification, average values from six technical replicates of the relative 

intensities (RGSH/IS) of the SERS signals measured at the maxima of specific peaks of GSH and 

IS located at 1738 and 1720 cm−1, respectively, after a single point baseline correction at 1919 

cm−1 were determined. 

The AEF was determined using the following equation498: 

𝐴𝐸𝐹 =
𝐼𝑆𝐸𝑅𝑆

𝐼𝑅𝑎𝑚𝑎𝑛
 (8.1) 

where 𝐼𝑆𝐸𝑅𝑆  and 𝐼𝑅𝑎𝑚𝑎𝑛  stand for the relative intensities measured at 647, 715, 793 cm−1 

(baseline correction at 860 cm−1) and 1738 cm−1 (baseline correction at 1800 cm−1) divided by 

concentration of GSH in the standard solutions employed for SERS and Raman measurements, 

respectively. 

8.4 Results and discussion 

8.4.1 On-capillary SERS analysis of GSH and IS 

In this work, a fused silica capillary was employed as a measurement cell for liquid 

samples. This enables a straightforward signal acquisition of sample extracts on a Raman 

microscope avoiding the use of dried sample spots and overcoming associated issues 

concerning analyte stability and measurement reproducibility. Figure 8.1 depicts Raman 

spectra obtained from an empty capillary segment as well as from the capillary filled with a 
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GSH standard solution containing perchloric acid. The empty capillary showed very weak 

Raman scattering with no distinguishable peaks. The signal obtained for the GSH standard 

solution was characterized by one predominant peak located at 925 cm−1 corresponding to the 

Raman shift observed for the ClO4
- ion of perchloric acid. In view of the poor Raman activity 

of GSH in aqueous solution, an enhancement of the GSH signal intensity was indispensable to 

reach the sensitivity required for the direct quantification of GSH in blood. Figure 8.1 shows 

the signal enhancement achieved when using a silver colloid substrate for SERS analysis of 

GSH and IS standard solutions containing perchloric acid as well as a perchloric acid (0.75% 

v/v) blank. In the blank spectrum only one distinguishable peak at 925 cm−1 assigned to ClO4
- 

was observed. However, in agreement with previous works56,485–488,491,493,496,499, information-

rich SERS spectra were obtained from the GSH standard solution. The mechanism of the 

observed signal enhancement of GSH using silver substrates has been the subject of earlier 

studies499,500. A detailed peak assignment for GSH is summarized in Table 8.1. In this study a 

laser emission wavelength of 532 nm was selected for spectra acquisition due to the low signal 

intensity obtained using 785 nm and the intense background fluorescence observed when 

employing 638 nm. 

Table 8.1 GSH peak assignment 

Raman Shift 

[cm-1] 
Vibration Intensity Reference 

647 
ν(C–S) from –H2C–S– group of 

Cys (PH conformer) 
s 499,501 

715 
ν(C–S) from –H2C–S– group of 

Cys (PC conformer) 
m 499,501 

793 ν(C=N) Amide V s 499,501 

905 ν(C-COO-) w 499,501 

925 ν(ClO4−)
 s 502 

1007 ν(C-N) w 499,501 

1120 ν(ClO4−)
 w 502 

1245/1293 ν(C=N) Amide III m/m 499,503 

1375 ν(COO) m 499,501 

1414 ν(COO-) s 503 

1567 ν(C=N) Amide II s 503 

1629/1662 ν(C=N) Amide I w/m 499,503 

1738 ν(C=O) s 503 

Note: w, m and s stands for weak, medium, and strong, respectively. 

The SERS spectrum obtained from isotopically labeled GSH (used as IS) was almost 

identical in comparison to the GSH spectrum, with a single appreciable shift in the position of 

the ν(C=O) peak from 1738 cm−1 for GSH to 1720 cm−1 for the IS (see Figure 8.2) attributed to 

the 13C substitution of one of four C=O functional groups of the GSH molecule. Following the 

simple harmonic oscillator model, the frequency of Raman bands is inversely proportional to 

the square root of the mean atomic mass. Because of the mass difference between the 12C and 
13C isotopes induced by isotopic substitution, the position of Raman peaks decreases with 

increasing 13C concentration. Hence, the observed redshift of the ν(C=O) peak is coherent with 
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the isotopic modification and in good agreement with previous results reported in the 

literature504. 

 

Figure 8.1 Raman and SERS spectra: Raman spectra of an empty capillary (black) and a GSH standard solution 

(6 μM) containing perchloric acid (cyan); SERS spectra of a GSH standard solution (6 μM, blue), IS solution (2.4 

μM, green), and a perchloric acid blank (gray). Notes: spectra have been shifted for better visibility; spectra are 

shown as mean spectra ± standard deviation (n=6). 

 

Figure 8.2 Normalized SERS spectra (maximum = 1) in the range between 1710 and 1765 cm-1 of GSH and IS 

standard mixtures 
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To optimize the SERS signal enhancement, different ratios of sample to SERS substrate 

were evaluated. With Raman and SERS spectra of two GSH standard solutions (2.4 mM and 6 

μM, respectively), optimum AEFs were obtained using 5 μL of sample supernatant and 45 μL 

of Ag colloid (see Figure 8.3). The AEFs calculated for peaks located at 647, 715, 793, and 

1738 cm−1 ranged between 2 × 103 and 1 × 104. The obtained AEFs are 3 orders of magnitude 

higher than those reported in a previous study56 and provide appropriate sensitivity for GSH 

quantification in blood micro samples, where concentrations in the range of 1 mM are expected. 

 

Figure 8.3 GSH spectra used for the calculation of AEFs. Note: spectra were baseline corrected 

at 1800 cm-1; dashed vertical lines indicate the Raman shifts used for the calculation of AEFs; 

AEFs at 647, 715, 793 and 1738 cm-1 were 5x103, 2x103, 2x103 and 1x104, respectively. 

To test the specificity of the SERS signal, spectra from relevant low molecular weight 

endogenous biothiols (homocysteine, γ-L-glutamyl−L-cysteine, and cysteine), present in blood 

and with molecular structures similar to GSH, were measured and compared to a GSH 

spectrum. The observed signal enhancement was very low (<10) for all tested metabolites. 

Besides, the correlation between the spectra of GSH and those of potentially interfering 

metabolites in the region between 600 and 1000 cm−1 was poor (R2 < 0.75). Both observations 

support the specificity of the observed GSH SERS signal in blood samples. 

In addition, SERS signals of other amino acids and related compounds that can be 

typically found in blood samples were examined. A detailed list of all obtained correlation 

coefficients can be found in the Supplementary table AI 3.3. Correlation coefficients 

calculated between GSH spectra and spectra of 27 studied compounds (600 μM) in the 600 to 

1800 cm−1 region ranged between 0.09 and 0.4. Conversely, high correlation coefficients 

ranging between 0.6 and 0.99 in the 600 to 1800 cm−1 region were obtained when compared to 

a blank spectrum with the exception of L-arginine (R = 0.03). Hence, none of the tested 
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metabolites showed SERS features that could potentially interfere with the determination of 

GSH in blood sample extracts. 

8.4.2 Quantification of GSH employing an isotopically labeled IS  

As illustrated in  Figure 8.1, SERS analysis suffers from a low precision characterized 

by a high RSD of ∼40% for technical replicates. This shortcoming of the SERS approach is in 

agreement with previously reported results56 and clearly hinders the direct use of peak 

intensities for quantitative measurements. To increase measurement precision and accuracy, a 

novel approach based on the use of isotopically labeled GSH as internal standard was 

employed. The calibration model exploited the peak shift between the ν(C=O) peaks of GSH and 

the IS in the 1710−1765 cm−1 range. The changes in peak positions and relative intensities 

observed for GSH and IS are illustrated in Figure 8.2. Additionally, Figure 8.4 (left) shows 

external calibration curves from data acquired on three different days. The relative intensity 

ratio of GSH and IS (RGSH/IS) followed a rational function with the GSH concentration. 

However, it was found to vary linearly with the GSH concentration fraction χ, being 

𝜒 =
[𝐺𝑆𝐻]

[𝐺𝑆𝐻] + [𝐼𝑆]
 (8.2) 

where [GSH] and [IS] are the GSH and IS concentrations, respectively (see Figure 8.4, right). 

With this approach, [GSH] in samples could be easily determined after interpolation in the 

linear regression models as  

[𝐺𝑆𝐻] =
𝜒 [𝐼𝑆]

1 − χ
 . (8.3) 

The accuracy and precision values were determined at the LLOQ (0.56 μM) and two 

concentration levels above the LLOQ (i.e., 2.25 and 9 μM) by replicate (n =3) analysis of GSH 

standard solutions on three measurement days providing recovery percentages ranging between 

99 and 103% and RSDs ≤ 11% as shown in Table 2. These results demonstrate that the use of 

an isotopically labeled IS greatly improves the robustness of the method. 
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Figure 8.4 Calibration lines measured on different days of the validation study; intensity ratios (R(GSH/IS) vs. GSH 

concentrations (left) and vs. GSH concentration fractions χ (right) for each measurement day. Mean values (n=3) 

± standard deviation are represented in blue; red lines are polynomic fits (left) or linear regression lines (+ 95% 

confidence interval) (right). 

8.4.3 Determination of GSH in human blood samples 

Figure 4 shows sample processing steps for SERS analysis and SERS spectra of a blood 

sample and a GSH standard solution, both containing IS. The characteristic peaks of GSH can 
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be clearly discerned in the blood spectrum, and both spectra were highly similar providing R2 

> 0.7 in the 400 to 1600 cm−1 region. Remarkably, the GSH and IS peaks at 1720 and 1738 

cm−1, respectively, were detected in blood enabling the use of the ratio RGSH/IS for GSH 

quantification as described in the foregoing section. To assess the robustness of the SERS 

quantification of GSH in blood samples, replicates (n = 3) of non-spiked and spiked samples 

at three levels were analyzed on three different days. GSH concentrations in samples and 

recovery percentages were calculated using the corresponding calibration equations acquired 

on each measurement day. Spiked and non-spiked sample concentrations were obtained with 

an adequate level of precision (i.e., <20% RSD), and accuracy ranged between 99 and 107% 

for all studied levels as summarized in Table 8.2. 

Table 8.2 Accuracy and precision given as %recoveries and %RSD in GSH standard solutions and spiked blood 

samples. 

  % Accuracy ± RSD (GSH concentration, µM) 

  Low Medium High 

GSH standards 
Intra-day (N=3) 103 ± 1 (0.56) 100 ± 5 (2.25) 101 ± 5 (9.00) 

Inter-day (N=3) 99 ± 11 (0.56) 103 ± 5 (2.25) 102 ± 8 (9.00) 

Blood samples 
Intra-day (N=3) 100 ± 6 (0.38) 99 ± 14 (0.75) 106 ± 11 (1.50) 

Inter-day (N=3) 102 ± 13 (0.38) 99 ± 15 (0.75) 107 ± 18 (1.50) 

The proposed quantitative SERS method was sensitive and selective. The method 

requires a 2 μL blood sample, which was diluted during preprocessing, and finally, a small 

fraction of ∼80 nL of the sample extract was introduced in the capillary for SERS 

measurement. Taking into account the diameter of the laser spot (∼3 μm), an actual volume of 

∼25 pL of sample extract contributed to the final SERS signal. Hence, at the LLOQ of 0.56 

μM, only 1.4 × 10−17 moles of GSH are located within the irradiated capillary volume, which 

corresponds to less than 8.4 million molecules, showing the high sensitivity of the SERS signal 

under the selected conditions. 
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Figure 8.5 SERS determination of GSH in blood samples. Top: Schematic overview of the sample processing 

steps, bottom: Mean SERS spectra and their standard deviation (n = 6) of a GSH standard solution (6 µM, blue, 

top) and a blood sample (red, bottom). Note: Both, the GSH standard and the blood sample contained IS (2.4 µM) 

and perchloric acid. Spectra were shifted in the y-axis for a better visibility. 

In the case of GSH analysis, stability of the target analyte was recognized as an 

important factor limiting reproducibility. Sample analysis might not always be performed 

immediately due to practical issues, and hence, storage of blood samples becomes necessary. 

Therefore, the on-bench stability of the blood sample extract after addition of perchloric acid 

and IS was performed covering a time period of over 7 h at 25 °C. Average differences between 

retrieved GSH concentrations were evaluated, and obtained results showed no statistically 

significant changes (Wilcoxon rank-sum test, two-tailed, pvalues >0.05) in the GSH 

concentration in the studied time interval, indicating that the sample extract was stable under 

the tested conditions. 

The validated SERS method was applied to in situ obtained blood samples from 20 

healthy adults. A median GSH concentration of 1055 μM was obtained, and the mean ± 

standard deviation was 1090 ± 190 μM. These observations were in good agreement with the 

range of 1020 μM ± 17% accepted as reference value in healthy adults.53 In addition, three 

independent blood samples were drawn from three volunteers to test repeatability. The mean 

GSH concentrations (μM) ± %RSD obtained for each volunteer were 968 ± 3%, 1007 ± 12%, 

and 1159 ± 10%. The %RSD represents variation arising from the sum of all steps including 

sample handling (i.e., sampling, preprocessing) as well as on-capillary SERS spectral 

acquisition. RSD values found in the replicate analysis of real samples supports the high 

repeatability of the approach. 

The SERS approach was applied to the determination of GSH concentrations in blood 

samples from 36 newborns and compared to results obtained using a validated, LC-MS/MS 
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based reference method. Median GSH concentrations of 1412 and 1196 μM and mean 

concentrations ± standard deviation of 1360 ± 370 and 1200 ± 390 were obtained employing 

SERS and LC-MS/MS, respectively. Results are depicted in Figure S3. No significant 

differences were found between concentrations determined using both methods (Wilcoxon 

rank sum test, p-value = 0.1). The agreement between the results obtained with the SERS 

approach and the reference method further confirm the accuracy of GSH quantification in blood 

samples. 

In summary, analytical figures of merit including selectivity, stability, precision, and 

accuracy were assessed in this study. The reported figures of merit for the quantification of 

GSH in blood samples are comparable and, in some cases, even outperformed other analytical 

approaches49,102,474,505. Specifically, the most recent work, focused on the determination of 

GSH in blood samples of newborns49 employing LC-MS/MS and an isotopically labeled IS, 

yielded values for precision of up to 20% RSD and an accuracy of less than or equal to 90%. 

Furthermore, a sample volume of 100 μL was used, which is a limiting factor in neonatology 

and 50 times the volume needed for the SERS approach. It can be concluded that the developed 

approach presents important advantages over alternative standard methods based on LC-MS or 

GC-MS, as it significantly reduces the hands-on time required for sample analysis. The 

developed approach, including sample preparation and measurement, allowed to obtain GSH 

concentrations within ∼4 min per sample. 

8.5 Conclusions 

This work describes a novel, fast, and highly robust SERS-based method for the 

quantification of GSH in whole blood samples. This approach relies on the use of a fused silica 

capillary employed as a measurement compartment for liquid blood extracts and the use of an 

isotopically labeled IS. The sample pretreatment steps of the proposed method have been 

minimized to reduce sources of variation that could affect the robustness of the analysis and 

affect its translation into clinical practice. The method avoids sample derivatization with toxic 

reagents, commonly employed in other validated approaches, and it provides a direct analysis 

setup potentially compatible with microfluidic or lab-on-a-chip devices. This work proves the 

applicability of the developed SERS approach for the determination of GSH in blood samples 

from two study populations (adults and newborns) and its capability of providing results 

comparable with an LC-MS reference method. The employed blood volume could be reduced 

25 times (from 50 to 2 μL) with respect to previous work. This approach is especially valuable 

in the field of neonatology, where limited blood volumes are accessible and could potentially 

contribute to increase the understanding of the role of GSH in redox homeostasis in different 

scenarios relevant for neonatal care. Future work will focus on the possibility to allow a 

simultaneous determination of oxidized glutathione as well as on the automation and 

miniaturization of a Raman device specifically tailored to its application in a portable sensor 

device suitable for POC testing in newborns. 



 

General conclusions and outlook 

In this PhD thesis, the development and applicability of a range of analytical techniques 

for the analysis of biomarkers in biofluids relevant to the study of the newborn in different 

conditions has been shown. The following main conclusions can be drawn:  

• The blood plasma from a pig model of perinatal asphyxia is a suitable matrix to 

analyze choline, cytidine, uridine, and betaine via LC-MS/MS. These 

compounds combined with lactate improve the predictive power of lactate in 

the assessment of asphyxia. 

• The validation of a GC-MS based method for the analysis of biomarkers of 

energy metabolism in neonates that undergo HIE is feasible. With this method 

the concentration profiles of these compounds in neonates with HIE subjected 

to therapeutic hypothermia and healthy controls was measured.  

• It is possible to develop and validate a method employing LC-MS/MS for the 

analysis of a panel of lipid peroxidation biomarkers (isoprostanes and 

isofuranes) in blood plasma from infants with HIE. However, it is necessary to 

exclude some compounds that suffer degradation during sample treatment from 

the analysis.  

• The in vitro study of the oxidation of adrenic acid is suitable for identifying LC-

MS/MS signals related to it. With this approach it was possible to identify 

oxidation products of adrenic acid that were found at detectable concentrations 

in urine and in a small proportion of plasma samples.  

• It is possible to validate the analysis of biomarkers of oxidative damage to DNA 

and proteins in human milk employing LC-MS/MS. With this method the 

concentration ranges of several biomarkers were determined and it was shown 

that the pasteurization process did not affect their levels.  

• The use of an isotopically labeled internal standard and a quartz capillary is a 

powerful approach to increase the measurement precision and accuracy of 

SERS methods. With this set-up it was possible to demonstrate the 

quantification of GSH in microsamples of blood from neonates.  

Moreover, this Thesis comprises two review articles on biomarkers of HIE in the 

newborn and biomarkers of oxidative stress in preterm infants, respectively. These articles 

provide a novel approach, putting emphasis on the methodological and analytical aspects. 
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Finally, a series of questions that are being studied by our group have emerged from 

this PhD Thesis, resulting in the research lines summarized as follows:  

• The clinical validation of candidate biomarkers found in the animal model of 

asphyxiated piglets. An LC-MS/MS method that combines the analysis of 

choline, cytidine, betaine, and uridine with other candidate biomarkers proposed 

by our group such as the “metabolite score”57 is currently under development. 

The performance of this method will be tested on a cohort of newborn infants 

suffering from HIE. 

• The study of the energy metabolism and related compounds in continuous and 

intermittent asphyxia in an animal model employing non-targeted and targeted 

approaches with the aim of controlling asphyxia conditions.   

• The development of a comprehensive, quantitative analytical method for the 

analysis of lipid peroxidation products that circumvents the drawbacks found in 

sample processing, chromatographic resolution, and sensitivity. 

• The in vitro study of peroxidation reactions of PUFAs under conditions of 

interest for neonatology (i.e. oxygen concentrations, matrix of interest, etc.) and 

the development of a lipid bilayer model.     

• The development of a Point of Care approach for the analysis of GSH and GSSG 

in microvolume blood samples employing SERS. 
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Annex I. Supplementary figures and tables 

AI.1 Novel free-radical mediated Lipid Peroxidation Biomarkers 

in Newborn Plasma 

 

Supplementary figure AI.1.1 Chemical structures of determined isoprostanoids. Note: rt= retention time in 

minutes; acquired MRM transitions are given as parent ion > daughter ion; compounds acquired employing the 

same MRM transition were grouped in boxes. 
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preterm infants 

 

AI.2 Adrenic acid non-enzymatic peroxidation products in 

biofluids of moderate preterm infants 

 

Supplementary figure AI.2.1 Optimization surfaces of dihomo-isoP ([C22H38O5 – H]-, m/z = 381) 

fragmentations. In each triangular surface plot is shown the corresponding values of the integrated area along the 

window of 5.3 – 6.5 minutes for each cone voltage and collision energy. 

 

Supplementary figure AI.2.2 Optimization surfaces of dihomo-isoF ([C22H38O6 – H]-, m/z = 397) 

fragmentations. In each triangular surface plot is shown the corresponding values of the integrated area along the 

window of 3.5 – 6.5 minutes for each cone voltage and collision energy. 
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AI3. On-Capillary Surface-Enhanced Raman Spectroscopy: 

Determination of Glutathione in Whole Blood Microsamples 

 

Supplementary figure AI 3.1 UV-Vis spectrum of the SERS substrate. 

 

Supplementary figure AI 3.2 GSH concentrations determined in blood samples from 36 newborns employing a 

validated LC-MS/MS reference method and the SERS approach. 
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Supplementary table AI 3.1 Characteristics of adults (N=20). 

Parameter Newborns (N=36) 

Weight, mean [kg] ± s 67 ± 13 

Height, mean [cm] ± s 168 ± 8 

Male [%] 40 

Age [years] ± s 33 ± 11 

 

Supplementary table AI 3.2 Characteristics of newborns (N=36). 

Parameter Newborns (N=36) 

Gestational age, mean [weeks + days] ± s [days] 39+3 ± 2 

Birthweight, mean [g] ± s 3300 ± 400 

Length, mean [cm] ± s 50 ± 2 

Male [%] 44 

Age [h] ± s 54 ± 13 

 

Supplementary table AI 3.3 Correlation coefficients (R) of 27 SERS spectra of standard solutions of metabolites 

found in blood with GSH and blank SERS spectra in the 600 to 1800 cm-1 region. 

Metabolite 
R with GSH 

spectrum 

R with blank 

spectrum 

L-alanine 0.2 0.96 

L-asparagine 0.3 0.94 

L- histidine 0.3 0.8 

L-isoleucine 0.2 0.96 

L-leucine 0.4 0.92 

L-ornithine 0.3 0.93 

L-proline 0.3 0.98 

Sarcosine 0.3 0.93 

L-serine 0.3 0.990 

Taurine 0.2 0.95 

L- threonine 0.2 0.94 

L- tryptophan 0.3 0.90 

L-valine 0.2 0.93 

L-glutamine 0.3 0.96 

L-arginine 0.2 0.03 

Glycine 0.3 0.98 

L-aspartic acid 0.3 0.93 
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Metabolite 
R with GSH 

spectrum 

R with blank 

spectrum 

L-creatinine 0.3 0.8 

L-cystine 0.4 0.90 

L-glutamic acid 0.3 0.94 

L-lysine 0.09 0.6 

L-phenylalanine 0.3 0.90 

L-tyrosine 0.2 0.94 

L- methionine 0.2 0.91 

L-homocystine 0.2 0.90 

L-cystathionine 0.4 0.94 

L- cysteine 0.4 0.93 

 


