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Abstract
This study aimed to identify possible sources of settled dust events that occurred in an urban area nearby an industrial park, 
which alarmed the local population. Settled dust was collected in January 2019 and its chemical characterization was assessed 
by micro-PIXE, focusing on a total of 29 elements. Comparison with chemical profiles of particulate matter from different 
types of environment was conducted, along with the assessment of crustal enrichment factors and Spearman correlations, 
allowing to understand which sources were contributing to this settled dust event. A nearby industrial area’s influence was 
identified due to the contents of Fe, Cr and Mn, which are typical tracers of iron and steel industries.

Keywords Air pollution · Industrial environments · Pollution sources · Settled dust · Micro-PIXE

Introduction

Air quality has become a worldwide concern for govern-
ments and society in general, due to a strong scientific 
research investment in the last decades, where the impact of 
natural and anthropogenic emissions on the air that people 
breathe was assessed, along with its potential health impact 
on the citizens [1, 2]. Among the several air pollutants that 
are studied and legislated, particulate matter (PM) is of 

particular interest since a wide evidence of its impact on 
human mortality [3, 4] and morbidity [5, 6], along with a 
wide range of different implications (such as visibility [7] 
and climate change [8, 9]), has been arising.

In 2013, the fine fraction of PM  (PM2.5, i.e., particulate 
matter with an aerodynamic diameter below 2.5 µm) was 
classified as carcinogenic to human beings by the Interna-
tional Agency for Research on Cancer (IARC) of the World 
Health Organization (WHO) [10, 11]. Around 5500 deaths 
are attributable to  PM2.5 exposure in Portugal with an annual 
mean concentration of 9.8 µg m−3 (which is below both 
European and WHO’s guidelines, namely, of 25 µg m−3 and 
10 µg m−3), regarding 2015 [12]. As stated by WHO, there 
is no evidence of a safe level of PM exposure or a concentra-
tion value below which no adverse effects occur [13].

Despite the risk perception of air pollution has not always 
been a reality for citizens [14, 15], environmental health 
literacy has been increasing in order to empower the popu-
lations with knowledge about sources, adverse impacts (in 
terms of environment, health and climate) and potential miti-
gation measures [16, 17]. This strategy may be a powerful 
tool in order to change individual behaviors and to promote 
societal pressure for implementation of actions that may 
mitigate air pollution and its harmful effects [18].

Due to a higher awareness of citizens towards air pollu-
tion, the population of an urban area in Portugal, located 
nearby an industrial park, noticed occasional settled dust 
events and promoted some pressure over the authorities in 
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order to understand its sources and potential health hazards. 
With the purpose of assessing the population exposure and 
associated health risks regarding these events, along with 
corresponding with the population’s needs, the local coun-
cil promoted a set of actions, such as, assess the chemical 
composition of the settled dust in order to understand its 
source. Therefore, the present study aims to reach this goal, 
namely, perform the chemical characterization of the settled 
dust, using the micro-PIXE technique, and assess the poten-
tial pollution sources, through the analysis of their chemical 
tracers and comparison with chemical profiles of different 
types of environments.

Experimental

Study site

This study was carried out in the municipality of Seixal 
(Portugal), which is located in the peninsula of Setúbal and 
nearby the Tagus river. The area pertaining this study has 

a high influence of industries, having in the vicinity a ship-
yard, a steelwork and other metallurgic activities, as well as 
the residential area of Seixal containing 165 547 inhabit-
ants in 95.5 km2 [19]. Figure 1 shows the location of the 
study site, which was in the parish of “União das Freguesias 
do Seixal, Arrentela e Aldeia de Paio Pires” within Seixal 
municipality. The sampling site was the cemetery of Aldeia 
de Paio Pires (38°37′35.72″N, 9°4′51.69″W), which is adja-
cent to a steelwork (200 m away), 150 m away of national 
roads, 3 km away of the highway and with a distance of 
2.5 km from a shipyard.

Sampling and treatment

In order to evaluate the recent events of dust deposition iden-
tified by the local population, the samples were collected 
from the surface of recently washed (previous or same 
day that the sampling occurred) graves of the cemetery of 
Aldeia de Paio Pires. This strategy allowed to sample only 
the dust material that deposited due to these events, while 
the choose of the graves was due to their horizontal surface 

8 km

0.5 km

Fig. 1  Location of the study site within Seixal municipality (Portugal). Red dot identifies the sampling location (cemetery of Aldeia de Paio 
Pires). (Color figure online)
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with knowledge that the dust deposited on them was recent 
since they were washed, at the maximum, 24 h before. The 
sampling was performed on 15th January 2019.

The dust was collected with the help of brush and the 
assistance of a card frame to standardize the sampling area 
and, afterwards, stored in polyethylene containers (as shown 
in Fig. 2. A total of 7 samples were collected from five dif-
ferent graves (from A to E), whereas three samples (A1, A2 
and A3) were sampled from the same grave.

At the laboratory, it was found that the collected settled 
dust had magnetic properties by testing with a magnet, as 
shown in Fig. 3.

Micro‑PIXE analysis

Micro-Particle Induced X-ray Emission (micro-PIXE) was 
used to determine the quantitative elemental composi-
tion of the seven dust samples, using the scanning nuclear 
microprobe installed at the 0° beamline of the 5MV Van de 
Graaff accelerator at the Institute for Nuclear Research of 
the Hungarian Academy of Sciences, Debrecen, Hungary 
[20]. The samples were irradiated with a focused  H+ beam 
with 2.5 MeV energy and of 200–300 nA. The beam size 
was 3 µm × 3 µm.

For each sample, one pellet with 5 mm diameter was pre-
pared from the collected dust by using a stainless-steel press 
without adding any aggregate. The pellets were fixed on a 
sample holder, which was placed in the vacuum chamber 

of the nuclear microprobe. Regarding the measurement, on 
each sample two randomly selected areas of 1 mm × 1 mm 
were measured, with an accumulated charge on each  
measurement point between 120 and 150 nC.

Samples were positioned in the focus point of the cham-
ber with the help of two lasers. PIXE spectra and elemental 
maps were recorded from all measured areas. Two X-ray 
detectors placed at 135° geometry to the incidence beam 
were applied to collect the emitted characteristic X-rays. A 
SDD detector with AP3.3 ultra-thin polymer window (SGX 
Sensortech) with 30 mm2 active surface area was used to 
measure low and medium energy X-rays (0.2−12  keV, 
Z > 5). A permanent magnet protected the detector from 
the scattered protons. A Gresham type Be windowed Si(Li) 
X-ray detector with 30 mm2 active surface area equipped 
with an additional kapton filter of 125 µm thickness was 
applied to detect the medium and high energy X-rays 
(3–30 keV, Z > 19). The beam dose was measured with a 
beam chopper. Full description of the setup can be found 
elsewhere [21].

The obtained PIXE spectra were evaluated with the 
GUPIXWIN program code [22]. The samples were treated 
as thick samples and the trace elements mode was used for 
the evaluation. A total of 29 elements were fitted, namely, 
Al, Ba, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Ga, Ge, Hf, K, Mg, 
Mn, Na, Nb, Ni, P, Pb, S, Se, Si, Sr, Ti, V, Zn and Zr.

The uncertainty of the PIXE measurement for the main 
components was between 2% and 5%, while for the trace 

Fig. 2  a Cemetery with the industrial area in the background; b detail of settled dust on the marble of a gravestone; c collection of the settled 
dust using a brush and a card frame

Fig. 3  Magnetic properties of the settled dust by using a magnet
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elements it was between 10% and 15%. The uncertainty 
originated from the fitting process was added to it. Carbon 
could not be fitted with GUPIX, therefore it was treated 
as matrix elements with an average of 7 wt% concentra-
tion. The composition of the samples is given in weight % 
for elements present in samples with more than 1% and in  
mg/kg for the trace elements.

In order to check the quality and accuracy of the dose 
measurement and of the determination of the concentrations, 
measurements on standard reference materials were carried 
out, namely, NIST 610 glass, a series of pure metals (Pb, 
Zn, Fe, Sn) and a layered sample (6 µm thick Ti foil on 
50 µm Ni). The calibration of the beam chopper was also 
done at the beginning of the campaign. These measurements 
were used for the determination of the exact measurement 
conditions (e.g., solid angles of detectors).

Crustal enrichment factor

The crustal enrichment factor method has been widely used 
to identify the contribution of the crustal and non-crustal 
origin of elements [23, 24], i.e., the degree of enrichment 
of a certain element compared to the relative abundance of 
it in crustal material [25]. In this study, crustal enrichment 
factor (EF) was calculated using Si as a crustal reference 
element [26] and the reference values of soil composition 
defined by Mason and Moore [27]. The EFs were calculated 
based in Eq. (1):

Statistical analysis

Statistical analysis was performed using STATISTICA soft-
ware version 13. To perform an analysis of variance of the 
results, non-parametric statistics at a significance level of 
0.050 were selected. Spearman correlations were used to 
understand the associations between parameters.

Results and discussion

Chemical composition

As an example, Fig. 4 presents the elemental maps recorded 
for sample A1 during a measurement (with a scan size  
of 1  mm × 1  mm). Overall, all analyzed samples had a  
similar aspect and it was found that Zn and K particles had,  
generally, the greatest sizes, namely between 50 µm and 
100 µm. Moreover, Zn appeared often together with Cl and Na.

(1)EF
X
=

(

[X]

[Si]

)

Settled Dust
(

[X]

[Si]

)

Crustal

Taking in account that all samples referred to the settled 
dust into the graves in the last 24 h prior the sampling, the 
elemental characterization of the settled dust was done by 
considering the mean of all the analyzed samples.

Table 1 presents the mass fractions of major and trace 
elements of the settled dust.

The major elements (> 1%) found in the settled dust were, 
by decreasing order, Fe (32.4%), Ca (26.2%), Si (14.9%), Al 
(9.7%), Mg (6.3%), Mn (4.6%) e Cr (1.7%).

Understanding the origin of the settled dust

In order to understand the type of sources that could be  
promoting and influencing the dust event under study, a  
literature review was conducted to gather mean values of the 
chemical composition of  PM10 for different types of environ-
ments in different countries, for comparison purposes. Three 
different settings were analyzed: urban areas (Greece [28], 
Italy [28], Portugal [28, 29], Spain [28, 30, 31] and Swit-
zerland [32]), rural areas (Spain [30, 31] and Switzerland 
[32]) and industrial areas with steel works nearby (Australia 
[33], France [34, 35], Germany [36], Greece [37], Poland 
[38], Spain [31, 39] and Turkey [40]). It is noteworthy to 
highlight that the 13 studies considered above refer to atmos-
pheric particles with an aerodynamic diameter below 10 µm, 
whereas the samples of settled dust considered in the present 
study are of a much higher granulometric dimension.

The mean values found for each type of environment were 
compared with the ones obtained from the present study in 
order to identify potential common sources of the settled 
dust collected. Table S 1 (in section “Supplementary Infor-
mation”) presents the mean values of the elemental mass 
fractions for the different three settings, based in the above 
literature.

Figure 5 shows the comparison of the elemental mass 
fractions between the different types of environments and 
the studied settled dust. Taking into account the major seven 
elements, industrial setting with steelworks presented the 
following decreasing order: S > Ca > Fe > Cl > Zn > Si > K, 
while urban environment presented a different decreasing 
mass fractions order, namely, S > Cl > Si > Fe > Ca > Na > K; 
and the rural environment presented the following decreasing  
order: Ca > Na > Cl > Fe > K > Al > Mg. For major elements 
found in the settled dust, only the industrial environment 
with steelworks presented elements with similar mass 
fractions (with a variability of 30%), namely, Fe and Ca, 
as noted by Fig. 5. Sr and Ga levels in industrial environ-
ments with steelworks were also found to have similar mass 
fractions (variability of 30%) with the ones found in the 
studied settled dust. In other types of environments, similar 
variability (30%) was found for Ba, Zr, Ni and Se for urban 
environments, and for P, Ba, Cu, Zr, Ni and Se for rural 
environments.
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Table 2 presents the variability, in %, between the ele-
mental mass fractions found in the studied settled dust 
and the different types of environments. For comparison 
purposes, it was added results from studies on road settled 
dust, one in Czech Republic [41] and other in Portugal 
[42], whose mass fractions can be found in Table S 2 (Sup-
plementary Information section).

Based on Table 2, it is possible to assess that the levels of 
Fe and Ca found in the studied settled dust are in agreement 
(below 30% of variability) to the ones found in industrial 
environments with steelworks. In fact, the possible anthro-
pogenic sources for these elements may be iron and steel 
industries for Fe and the cement industry or from fugitive 
emissions from the sinter plant for Ca [26, 43], respectively. 

Fig. 4  Elemental maps recorded on sample A1, for the second measurement area with the scan size of 1 mm × 1 mm
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Table 1  Elemental mass 
fractions of the settled dust, 
whereas n stands for the number 
of replicates

Type Element n Mass fractions (µg g−1) %

Mean ± SD Min Max

Major Fe 14 183,000 ± 14,000 158,600 208,800 32.4
Ca 14 148,000 ± 13,000 132,900 172,900 26.2
Si 14 83,900 ± 5400 79,100 98,500 14.9
Al 14 54,600 ± 6000 45,500 67,900 9.67
Mg 14 35,700 ± 2900 31,000 40,700 6.33
Mn 14 26,100 ± 1600 22,300 28,300 4.62
Cr 14 9460 ± 680 8100 10,500 1.68

Trace Ba 13 801 ± 155 570 1130 0.14
Br 7 46.4 ± 8.5 40 60 0.01
Cd 10 375 ± 82 245 540 0.07
Cl 14 2520 ± 1910 460 6580 0.45
Co 14 682 ± 101 530 910 0.12
Cu 14 310 ± 55 220 420 0.06
Ga 12 32.1 ± 9.9 15 45 0.01
Ge 8 49.4 ± 15.2 35 85 0.01
Hf 7 153 ± 51 85 230 0.03
K 14 1180 ± 660 350 2420 0.21
Na 13 5360 ± 6740 950 25,000 0.95
Nb 14 223 ± 86 135 375 0.04
Ni 14 105 ± 46 45 220 0.02
P 14 2010 ± 320 1150 2400 0.36
Pb 8 238 ± 163 120 620 0.04
S 14 2680 ± 630 1940 3915 0.47
Se 5 24.0 ± 9.6 10 35 < 0.01
Sr 14 263 ± 56 150 360 0.05
Ti 14 3230 ± 340 2720 4000 0.57
V 14 740 ± 92 560 850 0.13
Zn 14 2620 ± 1100 955 4950 0.46
Zr 13 188 ± 32 110 390 0.03
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Fig. 5  Comparison of elemental mass fractions in the studied settled dust and in  PM10 studies available in the literature for different type of envi-
ronments
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Regarding the industrial environment with steelworks 
nearby, a good agreement between elemental mass fractions 
were also found for Ga and Sr (also below 30% of variability).  
Although these elements are not typically associated with 
industry activities, some studies have already found an 
association with coal combustion [44, 45]. When compar-
ing with elemental levels in urban environments, Ba, Zr, Ni 
and Se showed the lowest variability with the levels found 
in the studied settled dust. Barium is a tracer of mechanical 
abrasion of brakes [26] and, together with Zn (that reported 
a variability of 31% and it is associated with mechanical 
abrasion of tires [24, 46]), can indicate the contribution of 

a local traffic source to the settled dust. The remaining ele-
ments, namely, Ni, Se and Zr, are usually associated with 
industrial activities (steel, heavy, petrochemical industries 
and oil burning, coal burning and ceramic industries, respec-
tively [26]).

The rural environments presented a similar elemental 
variability (below 30%) regarding P, Ba, Cu, Zr, Ni and Se. 
As the possible sources identified for urban environments, 
Ba and Cu may be originated from the mechanical abra-
sion of brakes [26] and Ni, Se and Zr may be originated 
by industrial activities. In this environment, P also had a 
similar variability. Phosphorous may have natural (sea salt, 

Table 2  Variability of elemental mass fractions between the studied settled dust and different types of environments, in %. Ind. w/SW refers to 
“Industrial with steelworks” and RSD stands for road settled dust

Variability between Settled Dust 
with the different environments (%) Possible Sources [26]

Elements Urban Rural Ind. w/SW RSD [1] RSD [2] Natural Anthropogenic
Fe 86 95 27 76 79 Soil Oil burning and iron and steel industries
Ca 85 86 1.1 n/a 77 Soil Cement industry
Si 66 n/a 60 -232 n/a Soil
Al 85 86 81 n/a 40 Soil Coal burning and non-ferrous metal industries
Mg 87 88 55 n/a 93 Sea salt
Mn 99 99 85 94 99 Oil burning and iron and steel industries

Cr 99 99 90 94 99 Steel industry, heavy industry, oil burning, iron and 
steel industries and non-ferrous metal industries

Na -310 -210 -270 n/a -31 Sea salt
Ti 74 74 62 7 56 Heavy industry and coal burning
S -1300 n/a -9400 n/a -16 Oil burning, coal burning and automobile diesel

Zn 31 52 -1600 90 47
Heavy industry, iron and steel industries, non-

ferrous metal industries, refuse incineration, vehicle 
tailpipe and mechanical abrasion of tires

Cl -1100 -530 -3700 n/a n/a Sea salt

P 69 22 n/a n/a 67
Sea salt, mineral dust [49], 
primary biogenic sources, 

volcanic eruptions [47]

Agricultural fertilizers [48], biomass burning 
[48] and fossil fuel combustion [47]

K -760 -600 -1600 n/a -1100 Soil Refuse incineration, biomass burning and firework 
combustion

Ba -17 -4.8 50 n/a -15 Soil Firework combustion and mechanical abrasion of 
brakes

V 84 90 73 91 97 Heavy industry, petrochemical industry and oil 
burning

Co 99 99 77 n/a 99 Heavy industry and coal burning
Cd 98 97 38 n/a n/a

Cu -220 -5.5 -290 67 -290 Copper metallurgy, non-ferrous metal industries 
and mechanical abrasion of brakes

Sr 39 42 -7.2 n/a 80 Soil Firework combustion and coal combustion [44]

Pb -150 -99 -5200 87 4.5
Ceramic industries, coal burning, non-ferrous metal 

industries, refuse incineration and firework 
combustion

Nb 91 n/a 99 n/a 91
Zr 11 1.2 74 n/a 47 Ceramic industries
Hf n/a n/a 97 n/a 97

Ni 12 -18 -1200 72 95 Steel industry, heavy industry, petrochemical 
industry and oil burning

Ge 72 n/a 90 n/a 91
Br -530 n/a -1300 n/a n/a Sea salt Biomass burning
Ga 86 91 30 n/a 25 Coal combustion [45]
Se -23 30 -33 n/a n/a Coal burning

variability ≤ -75 % -75 % < variability ≤ -30 % -30 % < variability ≤ 30 % 30 % < variability ≤ 75 % variability > 75 %
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mineral dust, primary biogenic sources, volcanic eruptions) 
and anthropogenic sources (agricultural fertilizers, biomass 
burning and fossil fuel combustion) [47]. The similar P  
levels in the settled dust to the rural environments may  
indicate an anthropogenic contribution from, for instance, 
fertilizers [48].

When comparing the studied settled dust with other 
studies regarding to road settled dust, for example, in Czech 
Republic (Ostrava) [41] and in Portugal (Oporto) [42], other 
elements presented similar levels. For instance, in Czech 
Republic, Ti levels presented a similar variability (7%), 
which may indicate an industrial source, namely, heavy 
industry and coal burning [26]. In Portugal, Ba, S, Pb, Ga 
presented similar levels and their provenience may come 
from traffic, coal burning or industrial activities [26].

Crustal enrichment factors

Figure 6 presents the enrichment factors (EF) for the studied 
settled dust. Elements with EF values that approach unit 
can be considered predominantly from crustal source [46], 
while elements with EF values higher than 10 indicate that 
their source is associated with other natural or anthropogenic 
sources due to local, regional and/or long transportation phe-
nomena. Several elements presented EF values above the 
threshold of 10, which indicates their non-crustal origin, 
namely, Ba, Fe, Ca, Cu, V, S, Ge, Cl, Nb, Pb, Zn, Mn, Br, 
Co, Hf, Cr, Se and Cd.

Some of the possible anthropogenic sources [26] may be 
heavy industry, usually characterized by elemental finger-
prints of V, Cr, Co, Zn and Pb; cement industry identified by 
Ca contribution; iron and steel industries due to the contri-
bution of Mn, Cr, Fe and Zn; coal burning identified by the 

contribution of elements such as Co, Pb and Se; or traffic due 
to contribution of mechanical abrasion of tires (Zn), automo-
bile diesel (S) and mechanical abrasion of brakes (Cu and 
Ba). This mixture of different anthropogenic sources that 
contribute to the studied settled dust, namely, from industrial 
activity to traffic influence, agrees with the location where 
the sampling was conducted, taking into account that it is 
characterized by an urban area with an industrial area with 
strong activity nearby.

Spearman correlations

Table 3 presents the Spearman correlations between the 
assessed elements for the studied settled dust. From the total 
dataset, the elements Ba, Br, Cd, Ga, Ge, Hf, Na, Pb and Se 
were not considered, along with two replicas, due to miss-
ing values. Therefore, the analysis of Spearman correlations 
considered only 12 replicas with a characterization of 20 
elements. 

Significant positive correlations were found for: (1) Ba 
with Ni (r = 0.65) and Sr (r = 0.59); (2) Cl and Na (r = 0.76), 
which indicates their sea salt source [26]; (3) Cr and Fe 
(r = 0.59) and Mn (r = 0.85), indicating their common source 
as iron and steel industries [26]; (4) Ni and S (r = 0.65) that 
are usually associated with oil burning [26]; Nb and Sr 
(p = 0.59); and P and Ti (p = 0.63) that may indicate fuel 
combustion [26, 42].

Considerations

The chemical characterization of the settled dust is cru-
cial to understand its sources. The present work aimed 
to perform its elemental characterization by micro-PIXE, 

K Na Si Al Ti Zr Sr Ni P Mg Ga Ba Fe Ca Cu V S Ge Cl Nb Pb Zn Mn Br Co Hf Cr Se Cd
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Fig. 6  Crustal enrichment factors for the studied settled dust. Red line stands for the threshold of 10 regarding a non-crustal source. (Color figure 
online)
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which allowed to compare it to chemical profiles of par-
ticulate matter from different types of environment, in 
order to understand the origin of the studied settled dust. 
As already stated, the granulometric fractions between 
the studies considered were different, since levels of par-
ticulate matter are usually assessed focusing on specific 
granulometric fractions, such as  PM10 or  PM2.5, which are 
regulated by the European directives and national legis-
lation. It is noteworthy to highlight this fact, since the 
elemental mass fractions in the different granulometric 
fractions are different taking in account their sources. For 
instance, some contaminants, including metals, are found 
at higher concentrations in finer particles than in coarser 
particles [50], due to the process (such as combustion) 
that originates them [26]. However, the analysis between 
elemental mass fractions of different environments and 
granulometric fractions allows to identify the potential 
sources that are common between them.

Taking into account that the studied settled dust is  
characterized by coarse particles, which are heavier and 
have a short lifetime in the atmosphere (i.e., travel short  
distances) [51], it is possible to suggest that the emission 
source of the settled dust event is nearby the sampling location.  
The analysis of the chemical profile of the studied settled 
dust indicates a major contribution from the industrial area 
nearby, along with minor traffic influence. It is possible that 
the source of this settled dust event is not only the industrial 
processes conducted in the industrial area, but also due to 
fugitive emissions of raw materials, for instance [52, 53].

Regarding the potential health risk of this settled dust 
to the population, it is possible to state that it won’t have a 
significant impact [54], since the health risk increases with 
the decrease of the particle size [55] and coarser particles 
will not penetrate in the human respiratory tract, minimizing  
their health impact. However, it is noteworthy to highlight  
the possibility of other exposure ways, such as ingestion  
[56], when the particles deposit in food or water, for 
instance. Moreover, taking in account that children usually 
have a more frequently hand-to-mouth contact, this group 
of the population may be more exposed to the settled dust.

In order to understand exactly which are the settled dust’s 
specific sources and/or from which industrial activity it is 
being originated (since the industrial area gathers several 
different types of processes), it would be important to evalu-
ate raw materials stored in the industries’ areas, in order 
to compare them to the studied settled dust. Moreover, for 
future work, an assessment of  PM10 and  PM2.5 levels and 
their chemical characterization should be conducted in the 
area, in order to define, by receptor models, what are the 
contributions of the different emission sources. This infor-
mation would allow to identify more carefully the health risk 
for the population regarding the local air pollution, namely, 
the inhalable fraction of particulate matter in the air.

Conclusions

This study allowed to identify potential sources that con-
tributed to the settled dust event through the analysis of 
the chemical composition assessed by micro-PIXE and 
comparison with chemical profiles of particulate matter 
from different types of environments. A strong contribu-
tion of iron and steel industrial sources, based, namely, on 
Fe, Cr and Mn levels of the samples, along with a known 
short lifetime of coarse particles, such as the studied set-
tled dust, indicates that the origin of this event may be due 
to the nearby industrial area.

This preliminary approach allows to identify potential 
sources and to define future strategies to perform monitoring  
campaigns to comply with national legislation and to 
understand the human exposure of the population to local 
air pollution and its associated health risk.
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