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Abstract: Digital systems require sample and hold (S&H) systems to perform the conversion from analog
to digital and vice versa. Besides the standard zero and first order holds, we find in the literature other
versions, namely the fractional and exponential order holds, involving parameters that can be tuned
to produce a superior performance. This paper reviews the fundamental concepts associated with the
S&H and proposes a new fractional version. The systems are modeled both in the time and Laplace
domains. The new S&H stemming from fractional calculus generalizes these devices. The different
S&H systems are compared in the frequency domain and their relationships visualized by means of
hierarchical clustering and multidimensional scaling representations. The novel strategy allows a better
understanding of the possibilities and limitations of S&H systems.
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1. Introduction

Fractional calculus (FC) generalizes the classical theory of differential calculus by including the
concept of integrals and derivatives of real or complex order [1,2]. Many systems in physics and engineering
can be generalized in the light of the FC concepts. However, a number of applications still remain to
be fully explored under the light of FC. The areas of signal processing, dynamical systems and control
has received considerable attention and the results show that the adoption of FC is clearly a fruitful
research strategy [3–6].

Sample and hold (S&H) systems are commonly applied in mix analog/digital systems, being the
standard procedure in discrete time systems to adopt zero-order holds (S&H-0) [7–10]. The devices,
are simple to construct and ‘hold’ the signal sample during one time interval. They are a basic tool of
the analog to digital (A/D) conversion. In the reverse operation (D/A) other types of S&H are used.
For instance, the first-order hold (S&H-1) reconstructs signals as a piecewise linear approximations and
may yield better fit at the price of a higher complexity. Other S&H are the fractional- and exponential- order
holds, abbreviated as S&H-β and S&H-exp, with parameters 0 ≤ β ≤ 1 and τ > 0, respectively, that also
improve the technique at the cost of a slight additional complexity [11–14]. In fact, we can take advantage
of the extra parameter β and τ by tuning their values for a particular application. Nonetheless, we observe
the introduction of high frequency artifacts, that may pose difficulties in some applications. We can reduce
this kind of distortion by using a modification of some of the above S&H systems. This change consists
in introducing a delay of one sampling interval until a new sample appears. Therefore, instead of an
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extrapolation, as above, we are doing an interpolation [10,15]. Such procedures are very important in
control [16,17] and telecommunications [9,18]. These topics are often neglected in practical applications.
On one hand, the difference between theoretical and engineering implementations, due to physical
restrictions, are overlooked. On the other hand, the possibilities for further improving the S&H systems,
particularly when considering FC, remain to be explored.

This paper starts by reviewing the fundamental concepts associated with the S&H systems and
proposes one generalization in the perspective of FC. The classical and fractional S&H are then compared
based on their frequency responses. For that purpose we adopt the Euclidean and Canberra distances [19].
The distinct realizations of S&H are then represented using the Hierarchical Clustering (HC) and
multidimensional scaling (MDS) computational tools [20–23]. Both schemes rely on constructing graphical
representations of the items under study so that users can visualized their relationships. Items are ‘leafs’
of structures such as dendrogram or trees, for the HC, and as points in some abstract space, for the MDS.
In both cases similar items are represented closely and vice-versa.

Bearing these ideas in mind the manuscript is organized as follows. Section 2 introduces the
fundamental concepts concerning S&H. Section 3 discusses real-world implementations of S&H systems
and proposes a fractional-order generalization. Section 4 analyses the transfer functions of the S&H
systems under discussion. Finally, Section 5 outlines the conclusions.

2. Fundamental Concepts

With present day digital computer systems, and in areas such as signal processing and control,
the conversion of an analog signal into a digital version requires sampling and quantisation. This action is
called the A/D conversion (analog to digital conversion) and its inverse is the D/A conversion. In general,
there are infinite continuous signals that can generate a given discrete signal. However, when the signals
are bandlimited, meaning that they are of bounded support in the frequency domain, we can recover the
original signal.

Definition 1. The process of associating a discrete signal to a continuous one such that

1. the domain of the discrete signal is a discrete subset of the domain of the continuous signal,
2. the range of the discrete signal is also a discrete subset of the range of the continuous signal,
3. both signals, discrete and continuous, assume the same values at the intersection domains,

is named sampling [6].

The inverse operation, that is, the calculation of intermediate continuous values based on the discrete
samples, is called interpolation or reconstruction. Ideally, the sampling operation is performed by the
delta comb that we introduce in the follow-up.

Definition 2. Let F and T = 1
F be two positive real constants. We define an almost linear time scale (ALTS) by [24]

tn = n · T + τn, T = 1/F, n ∈ Z, (1)

where τn a zero mean sequence such that

0 ≤ |τn| <
T
4

. (2)

The constant F is called sampling frequency , or density of the time scale, while its inverse T is the average
graininess or sampling interval [25].

Remark 1. In some applications, we prefer a half sampling interval delayed sequence tn = (n + 1/2) · T + τn.
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Definition 3. On the above ALTS (1) we define a uniform (in amplitude) almost periodic delta comb by

p(t) =
+∞

∑
n=−∞

δ(t− tn), t ∈ R, (3)

that is considered as the ideal sampler, since its multiplication by any signal, y(t), gives its sampled version

yp(t) = y(t)p(t) =
+∞

∑
n=−∞

y(tn)δ(t− tn), t ∈ R. (4)

This distribution has the Fourier transform (FT)

Yp(ω) =
+∞

∑
n=−∞

y(tn)e−jωtn , ω ∈ R, (5)

where j =
√
−1 and

Yp(ω) =
∫ ∞

−∞
yp(t)e−jωtdt.

Theorem 1. Let Ω ∈ R+ be the density of an odd ALTS, that is, so that ωn = −ω−n, given by ωn = nΩ + νn,
with |νn| < Ω/4, n ∈ Z. The FT of the comb (3) in the time domain is another comb [24] in the frequency domain
given by:

C(ω) = 2π
+∞

∑
n=−∞

Cnδ (ω−ωn) , (6)

where the coefficients,

Ck =
1
T

lim
N→∞

1
2N + 1

N

∑
n=−N

e−jωktn ,

form a bounded sequence and
ΩT
2π

= 1. (7)

This has as consequence that

Yp(ω) =
+∞

∑
n=−∞

CnY(ω−ωn), (8)

showing that Yp(ω) is an almost periodic function that results from the almost periodic repetition of Y(ω).
Therefore, if y(t) is not bandlimited, or if Ω is not high enough, then two consecutive repeated images of
Y(ω) may overlap (phenomenon called aliasing) and it is not possible to recover the original signal by
low-pass filtering. Unless something else is specified, we will assume that our signals are bandlimited in
the follow-up. If the bandwidth is W, then we conclude that 2W < Ω−Ω/4 < ω1. Otherwise, if we allow
a spectral superposition, 2W > ω1, then we cannot recover the original signal by low-pass filtering.

In the uniform sampling case tn = nT and ωn = nΩ, and we must have 2W < Ω, stating the well
known Nyquist rule: the sampling interval must be less than one half on the inverse of the higher frequency
of the signal. The relation (7) shows that reducing the average distance between the impulses in the time
domain (4) corresponds to increasing the distances between the replicas in the frequency domain (8).
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Theorem 2. Let x(t) be a continuous-time bandlimited signal with Fourier transform, X(ω), that is null outside
the band |ω| < W ∈ R+. We can recover x(t) from its samples x(tn) with a low-pass filtering provided that the
filter frequency response is constant in the band of the signal. In the case of an ideal low-pass filter with bandwidth
W, the output reads [24]

x(t) =
∞

∑
n=−∞

x (tn)
sin [W (t− tn)]

(Ω/2) (t− tn)
. (9)

This theorem constitutes a generalization of the classical sampling theorem. This results deserves an
interpretation in terms of linear systems. Let us consider that

g(t) =
sin(Wt)
(Ω/2)t

, t ∈ R, (10)

is the impulse response of a low-pass linear system and that the input to such system is

xp(t) =
+∞

∑
n=−∞

x(tn)δ(t− tn).

Then the output will be given by the expression in (9). The signal g(t) is called the interpolating
function and its FT is a rectangle which gives a justification to its name of ‘ideal low-pass filter’.

If the tn sequence is uniform, that is, if τn ≡ 0, then

x(t) =
∞

∑
n=−∞

x(nT)
sin
[
WT

( t
T − n

)]
π
( t

T − n
) , (11)

that states the usual sampling theorem, where WT < π.

3. Sampling and Reconstruction

We reviewed the ideal sampling having as base the comb. In practice, we cannot implement the ideal
Dirac impulses, but we can approximate them by narrow high rectangular pulses, r(t), with area equal
to 1. Nonetheless, we are interested in having the values x(tn), rather than x(tn)δ(t− tn) or its realistic
version x(tn)r(t− tn). Therefore, we need to adopt a system that keeps, i.e. ‘memorizes’, the value x(tn)

during a sufficient time for the computer system to be able to read the value.
The standard sampling is performed by a zero order hold. This scheme transforms the signal x(t) in a

sequence of rectangles with height equal to x(tn) and width less or equal to the sampling interval. This
procedure, called pulse amplitude modulation (usually abbreviated as PAM) in telecommunications [18],
introduces an amplitude distortion and increases of the bandwidth that are corrected by a lowpass
equalizer filter. However, there are several distinct ways of implementing the reconstruction and we
review a few in the sequel.

3.1. The S&H Reconstruction by Extrapolation

Equation (9), is important from the mathematical point of view, but it is not of practical usefulness,
since it requires the knowledge of all the signal values x(tn), both at the past and future. This is a
consequence of the fact that g(t) is not the impulse response of a causal system. To avoid such difficulty
we use causal approximations generically called S&H systems. The most known are the zero- and one-
order, but we can mention also the exponential hold. Let us analyze several approaches.
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3.1.1. The Zero Order Sample and Hold

The output signal of a zero-order hold (S&H-0) has a zero slope between two consecutive sampling
instants. Therefore, the S&H-0 circuit retains the measured value for a sampling instant at that level until
the next sampling instant. The impulse response is a rectangle:

x̂(t) = x(tn) [u(t− tn)− u(t− tn+1)] ,

for tn ≤ t < tn+1, where u(t) is the Heaviside unit step.

3.1.2. The First-Order Sample and Hold

The first-order hold (S&H-1) exhibits an impulse response that has a constant slope between two
consecutive sampling instants. This slope is the incremental ratio determined by the values of the two
preceding samples. Thus, the first-order-hold predicts the response over the sampling interval from tn

to tn+1 as a ramp with the slope determined by the signal values at the two consecutive time instants.
The impulse response is

x̂(t) = x(tn) [u(t− tn)− u(t− tn+1)] + (t− tn)
x(tn)− x(tn−1)

(tn − tn−1)
[u(t− tn)− u(t− tn+1)] ,

for tn ≤ t < tn+1.

3.1.3. The Fractional-Order Sample and Hold

If we calculate the the arithmetic average between the S&H-0 and S&H-1, with weight factors 1− β

and β, 0 ≤ β ≤ 1, respectively, then we obtain the fractional-hold (S&H-β) [12–14].
The impulse response of the S&H-β is:

x̂(t) = x(tn) [u(t− tn)− u(t− tn+1)] + β(t− tn)
x(tn)− x(tn−1)

(tn − tn−1)
[u(t− tn)− u(t− tn+1)] ,

for tn ≤ t < tn+1. Therefore, we obtain the S&H-0 and S&H-1 for β = 0 and β = 1, respectively.

3.1.4. The exponential order sample and hold

The exponential order hold S&H-exp is interesting because it has a simple electrical implementation
based on an RC low-pass circuit [11]. The impulse response of the S&H-exp is:

x̂(t) = x(tn) [u(t− tn)− u(t− tn+1)] +

[
1− e−

(t−tn)
τ

]
x(tn)− x(tn−1)

(tn − tn−1)
[u(t− tn)− u(t− tn+1)] ,

for tn ≤ t < tn+1, where τ is the time constant. This expression is slightly different from the one presented
in [11]. However, the previous expression is preferable because gives the S&H-0 when τ → ∞.

3.1.5. The α-Order Sample and Hold

Given the expressions for the S&H-0 and S&H-1 we can propose a generalization as follows.

Definition 4. The α-order (S&H-α) is formulated as:

x̂(t) = x(tn) + (t− tn)
α x(tn)− x(tn−1)

(tn − tn−1)
α , (12)
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for tn ≤ t < tn+1, where α ∈ R+.

The impulse response is given by:

x̂(t) = x(tn) [u(t− tn)− u(t− tn+1)] + (t− tn)
α x(tn)− x(tn−1)

(tn − tn−1)
α [u(t− tn)− u(t− tn+1)] , (13)

for tn ≤ t < tn+1.

3.2. The S&H Reconstruction by Interpolation

The S&H tools presented in the previous sub-section have a drawback, since they may lead to a
discontinuous signal. The presence of discontinuities transforms the original bandlimited signal into
fullband as we can observe in Figure 1. We can avoid this difficulty by implementing some kind of
interpolation instead of having an extrapolation. However, this strategy has a price, since it involves the
problem of a one sample delay. In many applications this delay has no visible effect. For example, in speech
processing, with a sampling interval equal to 125 µs, the effect of such delay is negligible. Nevertheless,
not all the S&H techniques discussed above can be used. In fact, the S&H-0 leads always to discontinuities.
The exponential hold has also that problem, unless we modify the parameter τ from sample to sample,
which is not easily implementable. This problem does not happen with the proposed general S&H-α,
where we only have to make a slight modification.

Definition 5. The α-order (S&H-α) with delay is expressed as:

x̂(t) = x(tn) + (t− tn)
α x(tn+1)− x(tn)

(tn+1 − tn)
α , tn ≤ t ≤ tn+1. (14)

The impulse response is given by:

x̂(t) = x(tn) [u(t− tn)− u(t− tn+1)] + (t− tn)
α x(tn+1)− x(tn)

(tn+1 − tn)
α [u(t− tn)− u(t− tn+1)] . (15)

The S&H-α with delay (14) leads to a continuous signal, having as consequence that the amplitude
spectrum decreases, at least, as fast as ω−2 when ω → ∞.

Example 1. On the left of Figure 2 we depict the extrapolations obtained with the S&H-0, S&H-α (with α = 0.3
and α = 0.7), S&H-1 and S&H-exp (with τ = 200). On the right, we show the interpolations resulting from the
S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.

The difference between the two kinds of procedures is clear, as well as their distinct behavior.
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Figure 1. Frequency response of the extrapolations of the S&H-0, S&H-α (with α = 0.3 and α = 0.7),
S&H-1 and S&H-exp (with τ = 200) and interpolations with S&H-α (with α = 0.3 and α = 0.7) and
the S&H-1.

Figure 2. Time response of the extrapolations of the S&H-0 , S&H-α (with α = 0.3 and α = 0.7), S&H-1 and
S&H-exp (with τ = 200) and interpolations with S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.

4. The Transfer Functions of the S&H

In the previous section we introduced several S&H and presented the corresponding impulse
responses. These have a general form

x̂(t) = ar(t) + bg(t), (16)
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where a and b are real constants, r(t) = u(t − tn) − u(t − tn+1) and g(t) is a short duration signal
(i.e., a pulse). The first term in (16) is a rectangle and its Laplace transform is

L [r(t)] = e−stn − e−stn+1

s
, s ∈ C, (17)

where L and s denote the Laplace operator and variable, respectively.
In the case of a uniform time scale, tn = nT,

r(t) = u(t− nT)− u(t− (n + 1)T),

Equation (17) gives

L [r(t)] = e−snT − e−s(n+1)T

s
, s ∈ C. (18)

The second term in (16) depends on the S&H method. For the fractional case (that includes α = 1),
that is, for relations, (13) and (15), we obtain

L [(t− tn)
αr(t)] = e−stn

∫ tn+1−tn

0
tαe−stdt, s ∈ C. (19)

Let us introduce the lower incomplete gamma function defined as:

γ(α, v) =
∫ v

0
τα−1e−τdτ, α, v > 0,

that verifies the relation
γ(α + 1, v) = αγ(α, v)− vαe−v.

We can write∫ tn+1−tn

0
tαe−stdt = α

γ(α, (tn+1 − tn)s)
sα+1 − tn+1 − tn

s
e−(tn+1−tn)s, Re(s) > 0,

that leads to

L [(t− tn)
αr(t)] = α

γ(α, (tn+1 − tn)s)
sα+1 e−stn − tn+1 − tn

s
e−stn+1 , Re(s) > 0. (20)

For a uniform time scale Equation (20) yields

L [(t− nT)αr(t)] = α
γ(α, Ts)

sα+1 e−snT − T
s

e−s(n+1)T , Re(s) > 0. (21)

In the particular case of α = 1, we obtain γ(1, v) =
∫ v

0 e−τdτ = 1− e−v, resulting

L [(t− tn)r(t)] =
e−stn − e−stn+1

s2 − tn+1 − tn

s
e−stn+1 , Re(s) > 0, (22)

and, therefore, to

L [(t− nT)r(t)] = e−snT
[

1− e−sT

s2 − T
s

e−sT
]

, Re(s) > 0. (23)



Appl. Sci. 2020, 10, 7360 9 of 14

Remark 2. The choice of

g(t) = L−1
[

e−stn − e−stn+1

sα

]
is not of relevance, because it is not a function with finite support.

Let us recall the example discussed in the previous section. Figure 2 depicts the responses in the
frequency domain.

We can compare the distinct items by means of the HC and MDS schemes. These clustering techniques
allow the comparison and visualization of high dimensional data [26–29], such as in the case of controlling
nonlinear systems [30].

In our case, the i-th item corresponds to the response in the frequency domain, Gi ( f ), that is
represented by a numerical array of m points. A set of N items is then compared by means of suitable
distances [31]. We adopt the Euclidean and Canberra distances given by:

dE
ij =

√
m

∑
n=1

(
Gi ( f )− Gj ( f )

)2, (24a)

dC
ij =

m

∑
n=1

∣∣Gi ( f )− Gj ( f )
∣∣

|Gi ( f )|+
∣∣Gj ( f )

∣∣ , (24b)

where i, j = 1, . . . , N, so that N denotes the total number of items under comparison.
The first distance, dE, follows the standard logic of Euclidean spaces, while the second, dC,

distinguishes more clearly values close to zero and in general is more robust to data sets including
large and small values. The MDS computational recursive algorithm requires the input of a matrix of all
item-to-item distances (i.e., a N dimensional square and symmetric matrix with main diagonal of zeros)
and tries to reproduce approximately that matrix by mean a plot in a mMDS < m dimensional space where
items consist of points. Therefore, similar items lead to close points and, inversely, very different items
produce points very far apart. Usually, the dimensions mMDS = 2 or mMDS = 3 are used, because they
allow a straightforward visualization [32,33].

In our case, the N = 9 items consist of the frequency responses G ( f ) described numerically in
n f = 104 sample frequencies. The frequency responses characterize the original signal as well as the
S&H-0, S&H-α (with α = 0.3 and α = 0.7), S&H-1 and S&H-exp (with τ = 200) and interpolations with
S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.

Figures 3 and 4 show the HC tree and 3-dimensional MDS plots, respectively, when we compare the
the frequency response of the extrapolations of the S&H-0, S&H-α (with α = 0.3 and α = 0.7), S&H-1 and
S&H-exp (with τ = 200) and interpolations with S&H-α (with α = 0.3 and α = 0.7) and the S&H-1,
using the Euclidean and Canberra distances.

We verify that extrapolations and interpolations (marked in red and blue, respectively) produce
two distinct clusters. The extrapolation cluster is more concentrated than the interpolation, showing the
behavioral in practical applications is almost independent of the adopted method, because they introduce
similar discontinuities. However, in the interpolation case we see clearly an improvement when varying
the parameter α.

This paper has not addressed the electronic implementation of such devices (interested readers can
refer to [34–40] and references therein). Therefore, an open issue is the design of hardware systems capable
of S&H advanced systems. Studies on the use of S&H-β in control systems report relevant results for
improving the overall performance [41–46]. In this perspective, the construction of low cost general S&H
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may be a valuable option for obtaining equipment more friendly to the environment while not posing
significant financial requirements.

Figure 3. The HC trees using the Euclidean and Canberra distances, for the frequency response of the
extrapolations of the S&H-0, S&H-α (with α = 0.3 and α = 0.7), S&H-1 and S&H-exp (with τ = 200) and
interpolations with S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.
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Figure 4. The MDS 3-dimensional plots using the Euclidean and Canberra distances, for the frequency
response of the extrapolations of the S&H-0, S&H-α (with α = 0.3 and α = 0.7), S&H-1 and S&H-exp
(with τ = 200) and interpolations with S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.
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5. Conclusions

S&H systems are a fundamental part of present-day digital systems. In spite of their widespread use,
often their characteristic are neglected and, therefore, the possibility of improving the overall performance
by using advanced S&H devices is not taken into account when designing signal discrete-time processing
or control systems. This paper reviewed the main mathematical ideas associated with S&H systems.
The main types of S&H systems were analyzed both in the time and Laplace domains. A generalization
of S&H in the viewpoint of FC was formulated so that the additional degree of freedom provided by
the fractional order can be tuned for each particular application. This strategy allows designers to take
advantage of a more advanced system for improving the performance of systems posing considerable
dynamical challenges and requiring that all sub-system are fully optimized. Furthermore, the HC and
MDS clustering techniques were used to better verify the S&H characteristics. These tools allow a novel
viewpoint for the quantitative comparison between multidimensional data sets. In particular, they can be
applied also for improving the real-time performance of complex control systems.
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Abbreviations

The following abbreviations are used in this manuscript:

BLT bilateral Laplace transform
FT Fourier transform
HC Hierarchical clustering
LT Laplace transform
MDS Multidimensional scaling
S&H Sample and hold
S&H-0 Zero order sample and hold
S&H-1 First-order sample and hold
S&H-β Fractional-order sample and hold
S&H-exp Exponential order sample and hold
S&H-α α-order sample and hold
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