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Abstract—In this letter, we investigate closed-form distributions
to approximate the power of the residual Self-Interference (SI)
due to: 1) uncanceled signals transmitted over multiple delay-
taps, and 2) the presence of radio frequency and transceiver
impairments, of an In-Band Full-duplex (IBFDX) wireless system.
Starting with the distribution of the residual SI power for
a single tap, we extend the analysis for multiple taps com-
paring two different solutions. The first one is based on the
Welch-Satterthwaite (W-S) approximation, while the second is
a moment-based approximation to an α-µ distribution. When
compared to empirical results obtained by simulation, our work
shows that the distribution of the residual SI power can be
accurately represented by the W-S approximation when the
uncertainty level of the fading in the different taps is low.
However, for higher levels of uncertainty we show that the α-µ
moment-based approximation is more accurate. A comparison
between simulated and numerical results show the effectiveness
of the proposed model.

Index Terms—In-Band Full-duplex Wireless Communications,
Residual Self-interference, Stochastic Modeling.

I. INTRODUCTION

In In-Band Full-Duplex (IBFDX) communications, the
nodes transmit and receive the signals simultaneously on the
same frequency [1], exhibiting the potential of doubling the
spectral efficiency. The residual self-interference (SI) is de-
fined as the amount of remaining signal after the cancellation
of the SI signal. The SI can be mitigated by a combination of
passive and active methods [1]. Active methods can be adopted
in both analog and digital domains [2]. The residual SI is
mostly due to: (1) inaccurate SI channel estimates [3]; (2)
radio frequency (RF) and transceiver hardware impairments
in the SI cancellation scheme [4].

Our work is mainly motivated by the importance SI can-
cellation in the digital domain, where the level of residual
SI to be canceled is mainly caused by the wireless channel.
Usually, the wireless channel and the SI are jointly estimated
by exploiting known pilot symbols and the statistics of the
residual SI [5]. However, the distribution of the residual SI
is not symmetric, consequently, the statistics of the residual
SI are not accurately characterized by only first and second
moments, and the availability of high order statistics could
enrich the joint estimation process. The distribution modeled

This work has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie ETN
TeamUp5G, grant agreement No. 813391, and by national funds through
Fundação para a Ciência e Tecnologia (FCT), under the projects CoSHARE
(PTDC/EEI-TEL/30709/2017) and UIDB/50008/2020.

A. T. Abusabah, L. Irio, and R. Oliveira are with the Instituto de
Telecomunicações, 1049-001 Lisbon, Portugal. A. T. Abusabah and R.
Oliveira are also with the Dep. de Engenharia Electrotécnica e de Computa-
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in the paper can thus be used to characterize the residual SI
high order statistics that could enrich the estimation process
in the digital domain.

In the recent literature, the statistical characterization of
residual SI has received limited attention due to the difficulty
of the mathematical modeling process. The amount of can-
cellation and the strength of the residual SI were computed
in [3] for a single-tap delay channel. The similarity of the
residual SI distribution with known distributions was analysed
in [6], and a closed-form approximation was presented in
[7]. While [3], [6] and [7] only consider a single-tap delay
channel, our work advances the current research in the field
by proposing closed-form approximations to the distribution
of the residual SI power in multi-tap delay fading channels
and assuming hardware impairments. The novelty of our work
is the assumption of multi-tap delay fading channels and
the comparison of two different methods to compute the
distribution of the residual SI. To the best of the authors’
knowledge, this is the first work characterizing the residual
SI power for multiple fading taps.

This paper starts by considering that the multi-tap fading
channel can be represented as a summation of independent
non-identically distributed (i.n.i.d) Gamma random variables
(RVs). Due to the lack of a straightforward solution to rep-
resent the sum of i.n.i.d Gamma RVs, two different approx-
imations are proposed to model the residual SI power: the
Welch-Satterthwaite (W-S), and the α-µ. Both approximations
are compared adopting low and high fading uncertainty levels
associated to the taps and the occurrence of hardware im-
pairments. We show that the α-µ approximation outperforms
the W-S approximation when the fading uncertainty levels are
significantly high. On the other hand, the W-S approximation
exhibits a high accuracy when the uncertainty levels are
relatively low. In Section II, we present the architecture and
mathematical formulation of multi-tap delay fading channel in
IBFDX systems. In Section III, we derive the proposed model
for the residual SI power. Numerical and simulated results
are used to validate the model and presented in Section IV.
Finally, Section V concludes the paper.

Notations: In this work, fX( · ) and FX( · ) represent the
probability density function (PDF), and the cumulative dis-
tribution function (CDF) of the RV X , respectively. δ( · ) is
used to represent Dirac’s delta function. Γ( · ) represents the
complete Gamma function. Kx( · ) represents the modified
Bessel function of the second kind and order x. A Gaussian
distribution with mean µ and variance σ2 is denoted by
N (µ, σ2). Gamma(k, θ) represents a Gamma distribution
with shape (k) and a scale (θ) parameters. Nakagami(m,λ)
denotes the Nakagami distribution with a shape (m) and
spread (λ) parameters. The notation χ2

k denotes a chi-squared
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distribution with k degree of freedom. E[X] and V ar[X] are
the expectation and variance of the RV X , respectively. A RV
Y is a realization of a time-varying signal, y(t).

II. SYSTEM MODEL
A. In-Band Full Duplex Canceller

In this work a post-mixer active analog canceler is adopted,
where the canceling signal is generated by processing the
SI signal after the RF upconversion stage, as considered in
[3] and [7]. The block diagram of the analog canceler is
depicted in Fig. 1. The main goal is to characterize the residual
interference, yres(t), after the analog cancellation, so it can be
used in the digital domain.

transmission over I taps

cancellation loop

+ × hIδ(t− τI) +

h2δ(t− τ2) +

h1δ(t− τ1) +
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-ĥIδ(t− τ̂I)

+
xs(t)

qT (t) e−iωct

qR(t)

qR(t)

qR(t)

yres(t)

Fig. 1. Multi-tap analog post-mixer canceller.

The cancellation loop admits I multi-tap delay fading
channels. The active analog canceler reduces the SI at the
angular carrier frequency ωc = 2πfc. Multiple shifted versions
of the SI signal, xs(t), with different amplitudes are expected
at the receiver side. The i-th tap is characterized by the delay
and the channel gain, τi and hi, respectively. We consider RF
and hardware impairments, qT (t) and qR(t), at the transmitter
and receiver chains, respectively. The combined influence
of the impairments has been studied in [8] and used in
many IBFDX works [9]. In particular, the xs(t) signal is
distorted by qT (t), while the receiver chains are subjected
to a qR(t) distortion, as represented in Fig. 1. With the aim
of minimizing the residual SI signal, yres(t), the estimated
delay τ̂i and estimated gain, ĥi, related to the i-th tap, have to
be injected in the cancellation loop. Note that, the ĥi has to
capture the impairments contribution in order to be removed
at the cancellation stage. Thus, ĥi = εi

(
hi + qR(t)

xs(t)+qT (t)

)
,

where (1 − εi) is the gain estimation error of the i-th tap,
εi ≥ 0. The phase estimation error of the i-th tap is given by
φi = ωc(τi − τ̂i). The estimation of the parameters τ̂i and ĥi
can be done using different methods already available in the
literature, such as the one described in [10].

The residual SI signal, yres(t), not canceled by the analog
cancelation process, is discretized over time. The proposed

analysis uses the discretized samples of yres(t) as a starting
point to derive its distribution. In this way, we characterize
the distribution of the residual SI at the output of the analog
cancelation scheme, being available for the digital domain
signal processing stage.

B. Residual Self-Interference Power

According to Fig. 1, the residual SI, yres(t), can be ex-
pressed mathematically as follows

yres(t) =

I∑
i=1

(
xs(t− τi) + qT (t− τi)

)
ejωc(t−τi)hi + qR(t)

−
(
xs(t− τ̂i) + qT (t− τ̂i)

)
ejωc(t−τ̂i)ĥi.

(1)

Channel gains are assumed to be independent and complex,
i.e., hi=hri+jhji . We also assume that xs(t) and qT,R(t) are
independent complex signals given by xs(t)=xr(t)+jxj(t)
and qT,R(t)=qT,Rr (t)+jqT,Rj (t), respectively. Considering
xs(t− τi)≈xs(t− τ̂i), qT (t− τi)≈qT (t− τ̂i) [7], and using
Lemma 1 in [8], (1) can be represented as follows

yres(t) =
(
xs(t) + q(t)

) I∑
i=1

hici, (2)

where q(t) is the aggregate distortion noise capturing contri-
butions from hardware impairments at both the transmitter and
the receiver, and ci =

(
ejωc(t−τi) − εi ejωc(t−τ̂i)

)
. Thus, the

residual SI power can be expressed as

Pyres =SH. (3)

The RV S=S2
r+S2

j represents the power of the SI
signal, and the power of the aggregate hardware im-
pairments, where Sr =(Xr+Qr) and Sj=(Xj+ Qj).
Moreover, the RV H=

∑I
i=1(H2

ri +H2
ji

)Ci represents the
power of fading taps and estimation errors. The con-
stant Ci=(1+ε2i−2εi cos (φi))=

(
(<(ci))

2+(=(ci))
2
)

repre-
sents the power of ci.

III. SELF-INTERFERENCE POWER DISTRIBUTION

This section considers the required steps to derive the
distribution of the residual SI power, denoted by Pyres .

A. Characterization of S

Regarding the transmitted signal, xs(t), we assume that it
is a circularly-symmetric complex signal, with {Xr, Xj} ∼
N (0, σ2

x). The circularly-symmetric complex distribution is
considered because it can effectively represent Orthogonal
Frequency-Division Multiplexing systems with a high num-
ber of carriers. The transmitter and receiver impairments
are defined as {QTr , QTj } ∼ N (0, κ2

T ) and {QRr , QRj } ∼
N (0, κ2

R|h|2), respectively, with design parameters κT , κR ≥
0, [8], [9]. Consequently, the aggregate effect of both transmit-
ter and receiver impairments, q(t), can be then characterized
by {Qr, Qj} ∼ N (0, κ2) where κ =

√
κ2
T + κ2

R represents
the aggregate level of impairments, ([8], Lemma 1). Because
the sum of two independent normally distributed RVs is



another normal distribution, then {Sr, Sj} ∼ N (0, σ2
s), where

σ2
s = σ2

x + κ2. Consequently, the RVs S2
r and S2

j follow a
scaled Chi-squared distribution with k = 1 degrees of freedom
denoted by χ2

1 and may be written as follows

{S2
r , S

2
j } ∼ σ2

sχ
2
1. (4)

By definition, if Q ∼ χ2
k and v is a positive constant, then

vQ ∼ Gamma(k/2, 2v). Consequently,

{S2
r , S

2
j } ∼ Gamma(1/2, 2σ2

s). (5)

Finally, the sum of two Gamma RVs, holding the same
scale parameter, results another Gamma distribution, i.e.,
Gamma(k1, θ) +Gamma(k2, θ) = Gamma(k1 + k2, θ),
thus,

S = S2
r + S2

j ∼ Gamma(1, 2σ2
s). (6)

B. Characterization of H

The RV H includes I independent Rician fading taps along
with estimation errors. To characterize its distribution, we first
consider the distribution of a single tap. The Rician fading tap
is parameterized through K and Ω. K represents the quotient
between the power in the LoS component and the power in
the other non-LoS components. Ω represents the total power
from both components. Then, the received signal amplitude of
the i-th tap is Rician distributed with parameters µ2

hi
= KiΩi

1+Ki

and σ2
hi

= Ωi
2(1+Ki)

. KdBi = 10 log10 (Ki) is the decibels
representation of Ki.

If the i-th tap is Rician, then, Hri ∼ N (µhi cos (ϑi), σ
2
hi

)
and Hji ∼ N (µhi sin (ϑi), σ

2
hi

). Consequently, the term
(1/σ2

hi
)(H2

ri +H2
ji

) follows a non-central Chi-squared dis-
tribution with k = 2 degrees of freedom and non-centrality
parameter µ2

hi
/σ2

hi
. Using the method of moments, we end up

with a simplified Gamma approximation to approximate the
shape and scale parameters, khi and θhi , respectively, given
by

khi =
(µ2
hi

+ 2σ2
hi

)2

4σ2
hi

(µ2
hi

+ σ2
hi

)
, θhi =

4(µ2
hi

+ σ2
hi

)

(µ2
hi

+ 2σ2
hi

)
. (7)

Since Ci is a constant, the term (H2
ri +H2

ji
)Ci can be written

as follows

Hi =
(
H2
ri +H2

ji

)
Ci ∼ Gamma(ki, θi), (8)

where ki = khi and θi = θhiσ
2
hi
Ci. Therefore, the RV H is

merely a sum of i.n.i.d Gamma RVs and may be written as
follows

H =

I∑
i=1

Hi. (9)

C. Welch-Satterthwaite Approximation

Due to intractability of closed-form solutions for the sum
of i.n.i.d Gamma RVs, we use the W-S method for the
approximation of H . The original W-S approximation was for
linear combinations of independent Chi-square RVs. However,
their basic idea easily extended to the sum of i.n.i.d Gamma
RVs [11], [12].

Let {Hi}Ii=1 be i.n.i.d Gamma RVs with Hi ∼
Gamma(ki, θi), and H = H1 + · · ·+HI be their sum, then

H ∼ Gamma(keq, θeq), (10)

where keq and θeq are the equivalent shape and scale param-
eters, respectively, and given by

keq =
(k1θ1 + ...+ kIθI)

2

k1θ2
1 + ...+ kIθ2

I

, θeq =
k1θ

2
1 + ...+ kIθ

2
I

k1θ1 + ...+ kIθI
. (11)

Substituting (7) in (11), we obtain

keq =
(
∑I
i=1 khiθhiσ

2
hi
Ci)

2∑I
i=1 khi(θhiσ

2
hi
Ci)2

, θeq =

∑I
i=1 khi(θhiσ

2
hi
Ci)

2∑I
i=1 khi(θhiσ

2
hi
Ci)

.

(12)

By definition, S and H are independent. Thus, the PDF of
Pyres can be found by computing the product density function
as follows

fPyres (z) =

∫ ∞
−∞

fS(s)fH(z/s)
1

| s |ds. (13)

The integral in (13) is solved replacing fS(s) and fH(z/s) by
(6) and (10), respectively, obtaining the PDF of the residual
SI power as follows [7]

fPyres (z) ≈2
1−keq

2 σ
−keq−1
s θ

−keq
eq

Γ(keq)

× (θeq/z)
keq−1

2 zkeq−1K(keq−1)

(√
2z

σ2
sθeq

)
.

(14)

D. α-µ Approximation

In this section, we apply the method of moments to ap-
proximate Pyres by an α-µ distribution. In general, the α-µ
distribution has more degrees of freedom compared to others,
since it is capable of representing other distributions. In [13],
the sum of i.n.i.d Nakagami RVs has been approximated to
an α-µ distribution. Moreover, α-µ distribution has been used
to approximate the sum of i.n.i.d Gamma RVs [13]. Building
upon this, next we describe how to approximate the RV Pyres
to an α-µ distribution. Consequently, the PDF of the RV Pyres
can be expressed as follows

fPyres (z) ≈ αµµzαµ−1

r̂αµΓ(µ)
exp

(
− µz

α

r̂α

)
, (15)

in which r̂ = α

√
E[Pαyres ] and µ = r̂2α

V [Pαyres ] . In order to
compute (15), the parameters α, µ, and r̂ have to be estimated.
The moments estimator for α and µ are given by [13]

E2[Pyres ]

E[P 2
yres ]− E2[Pyres ]

=
Γ2(µ+ 1/α)

Γ(µ)Γ(µ+ 2/α)− Γ2(µ+ 1/α)
,

(16)

and

E2[P 2
yres ]

E[P 4
yres ]− E2[P 2

yres ]
=

Γ2(µ+ 2/α)

Γ(µ)Γ(µ+ 4/α)− Γ2(µ+ 2/α)
.

(17)



In (16) and (17) the moments E[Pyres ], E[P 2
yres ], and

E[P 4
yres ], are unknown and are derived next.

Given that S and H are independent RVs, then

E[Pnyres ] = E[Sn]E[Hn]. (18)

According to (18), the moments of Pyres can be obtained by
computing the moments of S and the moments of H . Since
S follows a Gamma distribution, its n-th moment can be
computed by

E[Sn] =
(
(k + n− 1)(k + n− 2) · · · k

)
× θn, (19)

where k = 1 and θ = 2σ2
s , for the RX S. Lets define

Wi ∼ Nakagami(mi, λi) as a Nakagami distribution. Then,
by definition, Hi = W 2

i for ki = mi and θi = λi/mi.
Therefore, the multi-tap fading channel may be written as
H =

∑I
i=1W

2
i . Thus, the n-th moment of the RV H can

be computed using the multinomial expansion as follows

E[Hn] =
n∑

n1=0

n1∑
n2=0

· · ·
nI−2∑
nI−1=0

(
n

n1

)(
n1

n2

)
· · ·
(
nI−2

nI−1

)
× E[W

2(n−n1)
1 ]E[W

2(n1−n2)
2 ] · · ·E[W

2(nI−1)
I ],

(20)

where the moments of the RV W are given by

E[Wn
i ] =

Γ(ki + n/2)

Γ(ki)
(θi)

n/2. (21)

Equations (19) and (20) are used to compute the exact mo-
ments required in (18). Having obtained α and µ using (16)
and (17), r̂ can be estimated by

r̂ =

[
µ2/αΓ(µ)E[Pyres ]

Γ(µ+ 2/α)

]1/2

. (22)

IV. PERFORMANCE ANALYSIS

In this section we evaluate the accuracy of the two approx-
imations proposed to model the residual SI power. Regarding
the simulation, the system design in Fig. 1 is adopted. The
carrier frequency is adjusted to fc = 1 GHz. The residual
SI power is sampled each ∆T = 1/(360fc) s. The values of
Xr and Xj are sampled from Normal distributions each 4/fc
with σ2

x = 1
2 . The values of QT,Rj and QT,Rj are sampled from

Normal distributions each 4/fc.
The gains of the taps are assumed to be time-variant, so, Hri

and Hji are sampled from independent Rician distributions
each 40/fc. To guarantee a fair comparison, each Rician
tap is parameterized with µhi , σ

2
hi

, and KdBi to achieve an
average power of Ωi = 10 mW. Monte Carlo simulations were
computed during 277.8 µs (108 realisations of the stochastic
process were run), and the total number of fading taps is set
to I = 8.

The accuracy of the W-S approximation and α-µ approxi-
mation is evaluated for two different scenarios1:

1The uncertainty refers to the level of dissimilarity of the parameter KdBi ,
and is quantified by the variance of KdBi for the different taps. Regarding
Table I and Table II, the index in the first column (“i/I”) represents i for
KdBi , µhi , σ2

hi
, ϑ◦i , εi, and φ◦i , and represents I for keq , θeq , α, µ, and

r̂.

S1 - in this scenario we consider low uncertainty of the
Rician fading taps and the channel estimation errors are
relatively small (parameters described in Table I);

S2 - in this scenario we assume that the uncertainty of the
Rician fading taps is significantly higher when compared
to S1 (parameters in Table II).

TABLE I
FADING TAPS AND ESTIMATION ERRORS ADOPTED IN THE SCENARIO S1 .

“i/I” KdBi µhi σ2
hi

ϑ◦i εi φ◦i keq θeq α µ r̂

1 -5.0 1.55 3.80 45 0.90 26 1.06 1.8 1.00 1.06 0.90
2 0.0 2.23 2.50 60 0.80 55 1.96 4.6 0.48 2.48 6.26
3 -10.0 0.95 4.54 70 0.70 10 2.40 4.3 0.48 2.72 7.21
4 -6.0 1.41 4.00 50 0.95 8 2.50 4.2 0.48 2.77 7.38
5 -9.0 1.05 4.44 30 0.75 13 2.93 3.9 0.49 2.86 8.28
6 6.5 2.85 0.91 40 0.85 24 3.78 3.5 0.50 2.89 9.80
7 7.4 2.91 0.77 42 0.60 26 5.31 3.0 0.55 2.62 12.46
8 8.2 2.94 0.65 46 0.80 46 8.23 2.6 0.64 2.05 17.68

8, κ 8.2 2.94 0.65 46 0.80 46 6.50 4.0 0.61 2.17 21.50

TABLE II
FADING TAPS AND ESTIMATION ERRORS ADOPTED IN THE SCENARIO S2 .

“i/I” KdBi µhi σ2
hi

ϑ◦i εi φ◦i keq θeq α µ r̂

1 10.0 3.00 0.45 60 0.70 50 5.76 1.0 1.00 5.76 2.20
2 -5.0 1.55 3.80 230 0.40 200 1.78 14.0 0.43 3.10 16.44
3 5.0 2.75 1.20 57 0.01 220 3.14 11.2 0.46 3.38 25.27
4 -10.0 0.95 4.54 32 0.6 330 3.64 10.5 0.47 3.29 28.19
5 10.0 3.00 0.45 146 0.20 146 6.21 8.4 0.56 2.63 41.29
6 -6.0 1.40 4.00 254 1.00 330 6.76 8.1 0.57 2.50 43.94
7 50.0 0.01 5.00 310 0.87 20 7.04 8.0 0.58 2.45 45.16
8 -5.0 1.55 3.80 97 0.20 85 8.07 8.2 0.63 2.10 54.83

8, κ -5.0 1.55 3.80 97 0.20 85 6.86 11.9 0.62 2.10 67.36

The CDFs of the residual SI power are illustrated in Fig. 2
considering the parameters described in Table I. First, we
assume ideal RF and hardware impairments (κ2

T = κ2
R = 0)

for the simulation of I = {2, 4, 6, 8} fading taps. Next, we
consider the impact of RF and hardware impairments for I = 8
taps, with parameters κ2

T = κ2
R = 0.1. The “simulation”

curves were obtained through Monte Carlo simulation while
“W-S” and “α-µ” curves were obtained with the computation
of the CDFs associated to the PDFs in (14) and (15), respec-
tively. The similarity comparison between simulated data and
the proposed approaches indicates a high accuracy of both,
W-S and α-µ approximations, when the uncertainty levels of
the fading in the different taps is low.
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Fig. 2. CDFs of the residual SI power adopting Table I parameters.

The normalized average squared error between the simu-
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Fig. 3. Normalized square error, ∆err with ∆max = 0.242 × 10−3, over
the power domain for the CDFs plotted in Fig. 2. The average error, Err, is
presented in the legend of the figure for each curve.

lated (Fs(n)) and approximated (Ft(n)) CDFs is defined as

Err =
1

nmax

nmax∑
n=1

∆err(n), (23)

where ∆err(n) = (Fs(n)− Ft(n))2/∆max is the normalized
squared error, ∆max is the normalization value, and nmax
is the length of the vector containing the non-null squared
errors. Fig. 3 plots ∆err values using the CDFs presented in
Fig. 2 for each number of fading taps, i.e. considering I =
{2, 4, 6, 8}. The results in Fig. 3 show that the squared error
and average error are low, indicating high accuracy of both
approaches. However, the W-S approximation exhibits higher
levels of accuracy, especially as the number of taps increases.
Additionally, the assumption of the impairments increases the
power of the residual SI.

Next we evaluate the accuracy of the proposed approxima-
tions for the scenario S2. Again, (23) is used for the evaluation
of the results when utilizing high levels of uncertainty. The
simulated and theoretically approximated CDFs are shown
in Fig. 4. As can be seen, the W-S approximation exhibits
a higher error when compared to the α-µ approximation,
especially for probability values less than 0.5.
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Fig. 4. CDFs of the residual SI power adopting Table II parameters.

Fig. 5 depicts the square error, ∆err, values and the average
error, Err, values obtained for the I = {2, 4, 6, 8} fading
taps. The results presented in Fig. 5 indicate that the α-µ
approximation exhibits higher accuracy levels over the W-
S approximation when the uncertainty is high. As can be
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Fig. 5. Normalized square error, ∆err with ∆max = 4.6 × 10−3, over
the power domain for the CDFs plotted in Fig. 4. The average error, Err, is
presented in the legend of the figure for each curve.

seen, the accuracy of both approximations decreases with
the number of taps. Error values are also reported when
considering RF and hardware impairments in both scenarios,
S1 and S2, for I = 8 taps.

V. CONCLUSIONS

This work derives closed-form approximations for the dis-
tribution of the residual SI power caused by multi-tap delay
fading channels in IBFDX systems. Through the comparison
of numerical and simulated results, we have shown that the
residual SI power can be accurately approximated using the
W-S equation when adopting low levels of fading uncertainty,
although the α-µ moment-based approximation exhibits higher
accuracy when the uncertainty increases.
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