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A CONTRIBUTION TO LAND COVER AND LAND USE MAPPING 

in Portugal with multi-temporal Sentinel-2 data and supervised 

classification 

 

 

ABSTRACT 

 

Remote sensing techniques have been widely employed to map and monitor land cover 

and land use, important elements for the description of the environment. The current 

land cover and land use mapping paradigm takes advantage of a variety of data options 

with proper spatial, spectral and temporal resolutions along with advances in 

technology. This enabled the creation of automated data processing workflows 

integrated with classification algorithms to accurately map large areas with multi-

temporal data. In Portugal, the General Directorate for Territory (DGT) is developing an 

operational Land Cover Monitoring System (SMOS), which includes an annual land cover 

cartography product (COSsim) based on an automatic process using supervised 

classification of multi-temporal Sentinel-2 data. In this context, a range of experiments 

are being conducted to improve map accuracy and classification efficiency. This study 

provides a contribution to DGT’s work. A classification of the biogeographic region of 

Trás-os-Montes in the North of Portugal was performed for the agricultural year of 2018 

using Random Forest and an intra-annual multi-temporal Sentinel-2 dataset, with 

stratification of the study area and a combination of manually and automatically 

extracted training samples, with the latter being based on existing reference datasets. 

This classification was compared to a benchmark classification, conducted without 

stratification and with training data collected automatically only. In addition, an 

assessment of the influence of training sample size in classification accuracy was 

conducted. The main focus of this study was to investigate whether the use of 
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classification uncertainty to create an improved training dataset could increase 

classification accuracy. A process of extracting additional training samples from areas of 

high classification uncertainty was conducted, then a new classification was performed 

and the results were compared. Classification accuracy assessment for all proposed 

experiments was conducted using the overall accuracy, precision, recall and F1-score. 

The use of stratification and combination of training strategies resulted in a classification 

accuracy of 66.7%, in contrast to 60.2% in the case of the benchmark classification. 

Despite the difference being considered not statistically significant, visual inspection of 

both maps indicated that stratification and introduction of manual training contributed 

to map land cover more accurately in some areas. Regarding the influence of sample 

size in classification accuracy, the results indicated a small difference, considered not 

statistically significant, in accuracy even after a reduction of over 90% in the sample size. 

This supports the findings of other studies which suggested that Random Forest has low 

sensitivity to variations in training sample size. However, the results might have been 

influenced by the training strategy employed, which uses spectral subclasses, thus 

creating spectral diversity in the samples independently of their size. With respect to 

the use of classification uncertainty to improve training sample, a slight increase of 

approximately 1% was observed, which was considered not statistically significant. This 

result could have been affected by limitations in the process of collecting additional 

sampling units for some classes, which resulted in a lack of additional training for some 

classes (eg. agriculture) and an overall imbalanced training dataset. Additionally, some 

classes had their additional training sampling units collected from a limited number of 

polygons, which could limit the spectral diversity of new samples. Nevertheless, visual 

inspection of the map suggested that the new training contributed to reduce confusion 

between some classes, improving map agreement with ground truth. Further 

investigation can be conducted to explore more deeply the potential of classification 

uncertainty, especially focusing on addressing problems related to the collection of the 

additional samples. 
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1. INTRODUCTION 

1.1. Background 

Land cover is considered an element of extreme relevance for the description and study of the 

environment (Herold et al., 2006), therefore it is necessary to quantify and map land cover and 

its changes over time. Land cover can be defined as a descriptor of Earth’s terrestrial surface, 

important to characterize anthropogenic activity, biogeographical and eco-climatic diversity and 

is often mapped in conjunction with land use, a descriptor of how humans use the land (Wulder 

et al., 2018). Land cover and its derived products can benefit society in a variety of areas, such 

as disasters, climate, water, agriculture, among other areas listed by the Group on Earth 

Observations (GEO) (Wulder et al., 2008). In terms of sustainable development, land cover and 

land use (LCLU) data are decisive to combat land degradation and promote sustainable land 

management (Anderson et al., 2017). Therefore, it is essential to develop methods to gather 

such valuable information.  

Remote sensing techniques have been widely adopted to map and monitor land cover (Cihlar, 

2000) since they can provide data in a variety of spatial and temporal scales (Gómez et al., 2016). 

While early works, which date back to the 1970s, were limited due to the quality of the 

information (Townshend, 1992) and less advanced and costly technology (Cihlar, 2000), the 

current land cover mapping paradigm benefits from a variety of data options with adequate 

spatial, spectral and temporal resolutions and the developments in technology (Wulder et al., 

2018). Nowadays, automated data processing workflows integrated with state-of-the-art 

machine learning classification algorithms allow to accurately map land cover of large areas 

using multi-temporal imagery (Inglada et al., 2017; Hermosilla et al., 2018). Although these 

conditions contributed to the creation of some operational LCLU monitoring programs (Wulder 

et al., 2008), most countries, including Portugal, still do not have any. Therefore, there is a 

demand to further develop LCLU mapping methodologies so that more countries can implement 

their monitoring programs. 

1.2. Problem 

In Portugal, the General Directorate for Territory (DGT), the National Reference Center for Land 

Cover of the European Environment Agency, is developing a new project: the Land Cover 

Monitoring System (SMOS). SMOS results from the integration of three products. The first 

product is the already consolidated domestic LCLU cartography, Carta de Uso e Ocupação do 

Solo (COS), which was first released in 1995. The production of COS is based on visual 
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interpretation of orthophotos, a manual process with a high cost in terms of time and resources. 

Such cartography adopts a nomenclature of 83 classes and is available in vector format, with a 

minimum mapping unit (MMU) of 1 ha, having a periodicity of 3 years. The second product that 

integrates SMOS is a simplified COS called COSsim, which aims to map land cover exclusively in 

a yearly basis. COSsim’s production relies on an automatic process based on supervised 

classification of Sentinel-2 images, though DGT has also been conducting research to evaluate 

whether combining data from Sentinel-1 and Sentinel-2 can increase mapping accuracy. COSsim 

provides data in raster format with a MMU of 100 m² (10 m x 10 m pixel) in a nomenclature of 

13 classes and with annual periodicity, therefore having greater spatial detail and periodicity 

when compared to COS. The third SMOS product is the Vegetation State Intra-annual Map 

(MIAEV), which aims to monitor the conditions of the vegetation. Such product is also generated 

by an automatic process based on Sentinel-2 imagery, thus being available in raster format with 

100 m² MMU. MIAEV provides monthly continuous values of the vegetation state.   

The automatic methodology adopted by DGT to produce COSsim employs state-of-the-art 

machine learning supervised classification algorithms, which have been widely used to map 

LCLU. Recent studies indicate a preference for supervised algorithms in particular, as they tend 

to yield higher accuracies when compared to unsupervised methods (Maxwell et al., 2018; Yu et 

al., 2014). In spite of the classification being automatic, supervised classification requires 

collecting training samples, a traditionally human dependent activity, thus costly and time 

consuming. Since training samples can have a significant impact on classification accuracy, it is 

important to dedicate special attention to the process of sample collection. In this context, DGT 

is experimenting a process of automatic sample extraction from existing databases in the 

production of COSsim (Hernandez et al., 2020). 

In order to produce LCLU maps with adequate accuracy, DGT has been using time-series images. 

Multi-temporal intra-annual imagery can improve land cover classification accuracy 

(Townshend, 1992; Griffiths et al., 2019), since the collection of seasonal variability data can 

help distinguish land cover classes related to vegetation, e.g. forest and crops (Gómez et al., 

2016). The characteristics of Landsat products and the availability of its extensive open access 

time series imagery (Wulder et al., 2018; Gómez et al., 2016) made Landsat the main source of 

data for land cover classification. However, the satellite’s revisit time of 16 days generally 

provide an insufficient data availability for a variety of locations, especially in regions subjected 
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to constant cloud cover, what prevents conducting proper inter and intra-annual analysis using 

medium resolution data over large areas (Gómez et al., 2016). 

The launch of the European Space Agency (ESA) Sentinel-2 mission brought a systematic global 

coverage, with a 5 day revisit time, high spatial resolution (10 to 60m) and an appropriate 

spectral band range (Drusch et al., 2012). The more frequent revisit time means an increase in 

the number of observations and thus a higher probability of acquiring cloud free images, what 

supports creating intra-annual time-series. Despite the opportunities brought by more 

observations, there are still some challenges to be met. Incorporating vast time-series into the 

classification results in more predictor variables. Although additional predictor variables might 

help separate distinct classes, they also increase the dimensionality and complexity of the 

feature space, which might result in a decrease in classification accuracy. This issue happens 

because the number of training sampling units is insufficient to describe the complexity of the 

feature space, which is called the Hughes phenomenon (Maxwell et al., 2018). Therefore, multi-

temporal land cover classification might require collecting a sufficiently large training sample. 

Although the higher dimensionality of the feature space demands a larger training sample, it is 

unclear how changes in sample size can influence classification accuracy. Overall, literature lacks 

advice on the minimum sample size, however, there is a broad understanding that increasing 

sample size results in higher classification accuracy (Maxwell et al., 2018). Whilst the sensitivity 

to sample size was evaluated for classifications with reduced predictor variables (Rodríguez-

Galiano et al., 2012; Thanh Noi and Kappas, 2018; Huang et al., 2002), which indicated small 

sensitivity, further investigation is required for classifications with a large number of variables. 

Identifying a minimal or optimum number of training sampling units can be an aspect that 

facilitates sample collection works. 

In addition, training sample quality, i.e. the representativeness of each class, and class balance 

can influence classification performance (Maxwell et al., 2018). Thus, it is necessary to not only 

collect a proper amount of training data but also to observe its quality and class balance, while 

also considering the feasibility in terms of cost and resources dedicated to such task. 

Multiple works use existing reference datasets to draw training samples automatically 

(Leinenkugel et al., 2019; Griffiths et al., 2019; Inglada et al., 2017). However, despite the 

encouraging results, classification accuracy still needs to be improved, especially in the case of 

classes which carry errors or lack quality from the reference dataset, for instance, classes whose 

spectral response is heterogeneous, having contributions of various cover types. Poor training 
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sampling can also cause confusion in distinguishing some similar classes. In order to address 

these issues, DGT is experimenting the implementation of a stratification of the study area based 

on reference cartography to group regions that share the same land cover characteristics. 

Additionally, DGT is also investigating whether introducing manual training for the classes that 

normally exhibit low accuracies when automatically sampled can improve classification 

accuracy. 

Since one of the major causes of classification inaccuracy is a certain degree of imperfection in 

the training dataset, it is convenient to develop means to improve it. Active Learning represents 

an alternative to enhance the performance of the classification through the evaluation of the 

classification uncertainty, which can help identify areas where the classification was the most 

uncertain, so that additional training samples could be collected manually in these areas (Tuia 

et al., 2011). Training samples collected from areas of high uncertainty are considered difficult 

examples, therefore having potential to improve the model. The additional training data is then 

included in the training dataset to produce a reinforced model. Active Learning approaches 

begin with a small number of training sampling units, which gradually increases after adding new 

well-chosen sampling units in each cycle. Then, one can achieve good classification performance 

using a much smaller training dataset.  In spite of the good results, Active Learning approaches 

are based on recurrent interactions between the model and the analyst, with the latter being 

responsible for manually collecting and labeling new sampling units. In contrast to such 

demanding human intervention, classification uncertainty can assist refining classifiers trained 

on a large training dataset simply by providing a single set of additional training sampling units 

collected in areas of high uncertainty (Mack et al., 2017). 

This thesis was developed in collaboration with DGT within the context of experiments with the 

COSsim methodology, currently in implementation in other regions. Besides assessing whether 

the methodology can be suitable to the specificities of other type of landscape, characterized 

mainly by mountainous land occupied with rocks, forest and bushes, the purpose of this thesis 

is to contribute to improve the methodology of COSsim production in terms of efficiency and 

accuracy, suitable for the production in subsequent years. The approach adopted in this work 

innovates by introducing manual training samples, stratification of the area to be mapped and 

most importantly the improvement of the training dataset using classification uncertainty. 

Furthermore, a series of experiments were conducted in order to assess the impact of training 

sample size in classification accuracy. 
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1.3. Research Question 

Mapping LCLU by performing supervised classification of multi-temporal imagery requires 

adequate training sample size and quality.  Most studies have not investigated the effect of 

variations in training sample size on classifications with a large number of predictor variables. 

Additionally, further investigation can be conducted regarding the use of classification 

uncertainty to produce a new training dataset of enhanced quality. This study proposes to 

classify LCLU using multi-temporal Sentinel-2 data and to assess the sensitivity of classifications 

with a large number of predictor variables to variations in training sample size by comparing 

classification performance in different sample size scenarios. Moreover, the study proposes to 

evaluate whether using classification uncertainty to generate a new training sample can increase 

performance. The new training sample is created by incorporating additional sampling units 

extracted from areas of high classification uncertainty. 

Therefore, the following research questions are proposed: 

 Can the stratification of the mapping area and the introduction of manual training 

samples for classes in which the automatic training performs poorly improve 

classification accuracy? 

 Can variations in the sample size affect the performance of classification of high 

dimensionality? 

 Can the introduction of new training samples collected from areas of high classification 

uncertainty improve classification performance? 

1.4. Thesis structure 

This thesis is organized according to the following sections: 

 Section 2 - Literature Review: a review and discussion of relevant works focused on land 

cover mapping, temporal compositing, machine learning classification, random forest 

classifier, effects of training sample size on classification accuracy, use of reference data 

to extract training samples and classification uncertainty in land cover mapping.  

 Section 3 – Study Area and Data: a description of the study area and datasets utilized. 

 Section 4 – Methods: a comprehensive description of the methods employed. 

 Section 5 – Results and Discussion: presents the results based on classification accuracy 

metrics and other statistics and analyzes the results in the light of the literature. 

 Section 6 – Conclusion: a summary of the research, with the main findings, limitations 

and recommendations for future works. 
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2. LITERATURE REVIEW 

2.1. Land cover mapping 

Land cover refers to the biophysical characteristics of the Earth’s terrestrial surface, including 

vegetation, water, bare soil and anthropogenic structures (Gómez et al., 2016). Land cover can 

outline the existing functional relationship between the terrain, climate and soils, thus providing 

an overview of the environment and the factors that induce changes. It is also relevant to 

describe anthropogenic activity and biogeographical and eco-climatic diversity (Wulder et al., 

2018), hence being considered the most significant element for the description and study of the 

environment (Herold et al., 2006) and an indispensable climate variable (GCOS, 2003). Changes 

in land cover have a considerable influence in climate change processes, especially in the case 

of deforestation, which is a major anthropogenic source of carbon dioxide (Anderson et al., 

2017). In addition, Hermosilla et al. (2018) pointed out that changes in land cover also heavily 

impacts on hydrology and global biophysical and biogeochemical cycles of the terrestrial surface. 

They consider land cover and land cover change to be crucial information in the process of 

monitoring Earth ecosystems and capable of providing insights about their status and 

tendencies. Furthermore, land cover products can contribute to the Earth observation societal 

benefits presented by GEO in nine different areas: disasters, health, energy, climate, water, 

weather, ecosystems, agriculture and biodiversity (Wulder et al., 2008). It is also acknowledged 

that land cover data is decisive to achieve the target of neutral land degradation and to promote 

sustainable land management (Anderson et al., 2017). 

Remote sensing techniques emerged as an opportune alternative to map land cover, mainly 

since the availability of Landsat 1 data, which prompted the use of satellite data for numerous 

studies involving mapping land cover (Cihlar, 2000). However, the early researches, which were 

developed in a time when Landsat-TM and SPOT-HRV were the main source of data, found some 

limitations regarding the quality of the information extracted by the sensors in terms of spectral, 

spatial and temporal resolutions, affecting the ability to distinguish the different cover types of 

interest (Townshend, 1992). In terms of spectral limitations, Townshend (1992) considered the 

TM and SPOT-HRV broad spectral bands sensors to hinder the ability to separate multiple cover 

types spectrally. In addition, the SPOT-HRV did not have the valuable short wave infrared band, 

important for vegetation characterization. Concerning the spatial resolution, the author views 

the relatively fine resolution as insufficient to capture the details in the context of urban 

applications. In spite of such criticism, he highlights the importance of the detailed view 

provided by the aforementioned sensor to map and monitor land cover. With respect to the 
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temporal resolution, he affirms that the use of multi-temporal images can improve 

performance, although the recurring presence of clouds makes it difficult to acquire multiple 

usable images. The author mentions the use of data provided by short observation intervals 

from sensors such as the National Oceanic and Atmospheric Administration (NOAA) Advanced 

Very High Resolution Radiometer (AVHRR) as an attempt to increase the number of cloud-free 

observations, however, these sensors’ coarse spatial resolution fails to capture important spatial 

detail. Other limitations at the time were related to the lack of technology and cost of data 

storage, which constrained most of the studies with fine resolution data to limited areas (Cihlar, 

2000). 

Currently, the variety of data options in terms of spatial, spectral and temporal resolutions 

combined with the advances in data storage, computing processing and classification algorithms 

contributed to create a new land cover mapping paradigm (Wulder et al., 2018). Open access 

and analysis-ready satellite imagery also play an important role in this new paradigm. It is 

possible to automate data processing and use advanced classification algorithms, typically based 

on signature-extension methods, to produce accurate land cover maps of large areas using 

multi-temporal images (Hermosilla et al., 2018). These encouraging conditions favored the 

development of some operational land cover mapping programs. In spite of the good efforts of 

the aforementioned initiatives, they represent an exception, since most countries do not have 

remote sensing based land cover mapping operational programs. In addition, some programs, 

e.g. the Portuguese COS and European CORINE, rely on mapping land cover through computer 

aid photointerpretation (DGT, 2018; Bossard et al., 2000), which is a costly and time consuming 

approach. Therefore, it is necessary to expand land cover mapping operational programs as well 

as to develop automated mapping approaches. 

Landsat has been the main source of data for land cover classification due to its convenient 

spatial detail (30m), multi decade image archive, radiometric calibration, open access and 

capacity of covering large areas (185 x 185 km) (Wulder et al., 2018; Gómez et al., 2016). In spite 

of that, the availability of Landsat data for a range of locations, especially in constantly cloudy 

areas, is often considered insufficient and inadequate for both inter and intra-annual analysis 

(Gómez et al., 2016). The last authors outline that even though data availability can be increased 

by adopting compositing strategies, large areas remain discontinuous to some extent. 

The ESA Sentinel-2 mission, operating with two identical satellites (Sentinel-2A and Sentinel-2B, 

launched in 2015 and 2017, respectively), provides an unprecedented combination of 
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systematic global coverage, frequent revisit time of 5 days (considering both satellites), high 

spatial resolution (10, 20 or 60m depending on the spectral band) and 13 spectral bands 

including visible, near infrared and short wave infrared (Drusch et al., 2012). The shorter revisit 

time translates into a higher number of observations, which boosts the likelihood of acquiring 

cloud free data, hence favoring the formation of multi-temporal intra-annual composites. 

Additionally, the data can be downloaded with no cost. The aforementioned characteristics 

make Sentinel-2 a valuable and adequate source of data for mapping and monitoring land cover. 

Multiple studies successfully mapped land cover and land use utilizing Sentinel-2 imagery 

(Weigand et al., 2020; Paris et al., 2019). Nevertheless, some of them do not take advantage of 

the full potential of the constellation (Sentinel-2A and 2B) revisit time of 5 days (Close et al., 

2018; Griffiths et al., 2019; Vuolo et al., 2018), as data from Sentinel-2B was not available at the 

time. As Griffiths et al. (2019) outlines, within the agricultural domain temporal information is 

crucial to distinguish different crop types. The authors claim that intra-annual observations are 

required to record the differences in seasonal growing characteristics of a determined crop. In 

this context, the work by Vuolo et al. (2018), despite using only Sentinel-2A observations, 

demonstrates that multi-temporal Sentinel-2 data can improve crop type classification.  

In spite of Sentinel-2’s increased revisit time being an opportunity, it also represents a challenge, 

as more images are provided. The availability of vast multi-temporal data can be translated into 

a growing number of predictor variables, e.g. in the form of statistical metrics (Gómez et al., 

2016). Whilst adding more predictor variables can enhance the classification ability of separating 

classes, it also expands the dimensionality and complexity of the feature space, which might 

result in a decreased classification accuracy. This occurs because the amount of training data 

becomes insufficient to describe the overly complex and high dimensional feature space, which 

is known as the Hughes phenomenon. Such situation is more critical in supervised classifications 

with a small number of training sampling units (Maxwell et al., 2018). Therefore, the additional 

predictor variables brought by using multiple time-series might require the collection of a large 

number of training sampling units. 

2.2. Temporal compositing 

Sentinel-2 temporal resolution facilitates the use of multi-temporal data. According to Wulder 

et al. (2018), most of the current studies in land cover classification derive spectral band and 

indices from image time series. As Townshend (1992) and Griffiths et al. (2019) observed, 

acquiring remotely sensed data in an intra-annual frequency could be important to improve 



9 

classification performance. However, the latter mention that achieving such frequency depends 

strongly on atmospheric conditions, i.e. clear sky, since cloud cover can mask relevant phases of 

crop development. Furthermore, the authors and Hermosilla et al. (2018) pointed out that cloud 

shadow also prevent obtaining consistent pixel values. Besides cloud-related obstacles, Griffiths 

et al. (2013) also cite discontinuity in image archives and data or sensor related errors as other 

issues that might affect data availability. Therefore, it is necessary to implement strategies to 

minimize such data losses. 

Image compositing within a regular time window or period represents an alternative to address 

the data availability problem. Within a pixel-based approach (pixel-based compositing), analysis 

are not limited to few images with satisfying cloud cover. Instead, information availability grows 

since clear pixels that belong to a cloudy image can be computed (Griffiths et al., 2013).  

Griffiths et al. (2019) explored the concept of temporal compositing as an option to increase 

data availability. The authors mention various existing approaches, most of them based on best-

pixel selection, also known as best available pixel. The selection criteria are numerous, for 

instance, selecting the pixels based on the maximum Normalized Difference Vegetation Index 

(NDVI), selecting the median of a single band or index and a selection based on parametric 

scoring. According to Hermosilla et al. (2015), the selection aims to not only exclude pixels 

affected by cloud and cloud shadow, haze or sensor related problems but also include pixels that 

meet users’ particular requirements, e.g. closeness to a target day-of-year. 

Although pixel compositing might improve data availability, there could still be pixels that do 

not meet all the requirements, hence forming data gaps. In this context, Hermosilla et al. (2015) 

propose using proxy composites. This approach consists in filling data gaps according to the 

complete spectral information of the pixel series, which allows deriving artificial pixel values. 

This method is similar to what is presented in the work conducted by Inglada et al. (2017). Their 

procedure also consists in characterizing pixels by a time series of image features. In order to fill 

data gaps, they perform a linear interpolation using the prior and following cloud-free dates 

(Inglada et al., 2015). This gap filling and resampling process yields a set of virtual acquisition 

dates, which allows choosing common dates for all pixels when proceeding to feature extraction. 

2.3. Use of reference data to extract training samples 

As previously discussed, supervised classification depends on collecting training samples. 

However, such task might be costly in terms of time and resources, especially considering that 

a sufficiently large, representative and balanced training dataset should be sought. Moreover, 
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the increasing availability of multi-temporal data contributes to expand the dimensionality of 

the feature space, which demands an even larger training sample. Therefore, multiple studies 

have adopted the strategy of using existing reference data to collect training samples 

automatically (Inglada et al., 2017; Leinenkugel et al., 2019; Pflugmacher et al., 2019; Griffiths 

et al., 2019). 

Whilst some works use a single reference dataset to extract training samples (Pflugmacher et 

al., 2019; Hermosilla et al., 2018), others use a combination of different reference dataset 

(Leinenkugel et al., 2019; Inglada et al., 2017; Griffiths et al., 2019). The latter approach can be 

justified due to the availability of more reliable datasets covering specifics classes, such as 

agricultural and urban. 

However, Foody et al. (2016) remarked that a range of problems may arise due to using 

reference data from different sources. They outlined that problems might be caused by the 

different acquisition methods of each source. For instance, sampling efforts may differ, what 

might result in imbalanced sampling across regions and thus impact class balance.  

In addition, the authors also discussed the normal errors associated with reference datasets. 

They mentioned errors made due to mislabeling, which they believe can be caused either by 

usual typographical and transcription errors or by an ambiguity in class membership. Such 

errors, they remind, can influence the training phase of the classification, hence affecting the 

classification accuracy.  

Foody et al. (2016) further studied the influence of mislabeling in classification accuracy. They 

found mislabeled training data typically degrade the classification accuracy, especially when the 

incorrect labels involve similar classes. The authors emphasize that such issue might be 

particularly relevant when training sampling units are drawn from border locations. In this 

perspective, a potential approach to mitigate such issue could be what Hermosilla et al. (2018) 

adopted, which is simply to avoid border pixels by excluding areas within a certain distance from 

the border. 

2.4. Feature selection 

Feature selection consists in determining which features of the sample dataset should be 

employed as predictor variables in the classification process. Most studies use satellites’ native 

bands and common spectral indices, such as NDVI (Normalized Difference Vegetation Index), 

NDWI (Normalized Difference Water Index), NDBI (Normalized Difference Built-Up Index) and 
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Normalized Burn Ratio (NBR), as classification features. Inglada et al. (2017) use six Landsat 8 

spectral bands and 3 radiometric indices: NDVI, NDWI and brightness. The authors used data 

from 22 dates, what amounts to 198 features. Pflugmacher et al. (2019) use the blue, green, 

red, NIR, SWIR1 and SWIR2 bands from Landsat 8. The authors also use the NDVI, NBR, Modified 

Soil-adjusted Vegetation Index (MSAVI2), Tasseled Cap Brightness (TCB), Tasseled Cap 

Greenness (TCG) and Tasseled Cap Wetness (TCW). Furthermore, they use spectral-temporal 

metrics, which are statistical metrics that characterize the behavior of a spectral band or index 

within a time period. The statistical metrics might be, for instance, minimum, maximum, mean, 

standard deviation, quantiles, percentiles and other common descriptive statistics. In one of 

their classification models, the authors calculated 9 metrics for 6 bands and 6 indices, what sums 

up to 108 features. 

The works based on Sentinel-2 data employ a similar feature selection. Paris et al. (2019), Vuolo 

et al. (2018) and Close et al. (2018) used only 10 spectral bands. The first authors composed a 

time series of four images, hence totaling 40 features. Griffiths et al. (2019) utilized all 13 

Sentinel-2 spectral bands, with the number of up to 324, depending on the analyzed time series. 

On the other hand, Weigland et al. (2020) used a combination of bands, indices (NDVI, NDWI 

and NDBI), metrics and auxiliary imperviousness information, adding up to 229 features. 

Despite the broad range of features used in the studies cited above, there is a lack of agreement 

about which are the most advantageous features to be used in remote sensing classification. In 

this context, studies regarding the selection of an optimal combination of features, such as the 

one conducted by Feng et al. (2019) which is based on methods of feature importance, can 

provide a significant contribution in this topic.    

2.5. Classification 

Machine learning classification has been largely utilized in remote sensing studies. Its algorithms 

can model complex class signatures and accept a range of predictor variables as inputs. In 

addition, such algorithms are non-parametric, which means that they do not make assumptions 

about the data distribution. A variety of studies indicated that these methods generally produce 

higher accuracy compared to traditional parametric classifiers (Maxwell et al., 2018). 

Supervised learning can be considered the most relevant paradigm of machine learning applied 

to remote sensing. Boutaba et al. (2018) describe supervised learning as a method that requires 

a training dataset labeled with the corresponding ground truth. Then, the model learns to 
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identify patterns in the data so that it can distinguish classes of a set of new input data of an 

unknown class label. 

In terms of machine learning workflow, specifically the supervised learning paradigm, Boutaba 

et al. (2018) describe the process according to the following steps: data collection, feature 

engineering, model learning and model validation. Data collection is simply the process of 

gathering training data, what requires representative data as suggested by the authors. Maxwell 

et al. (2018) highlight that training sample size and quality are crucial aspects to be considered 

in the process of planning a classification. Although the last authors acknowledge the absence 

of advice by the literature towards an appropriate minimum number of sample size, they 

suggest that a large and accurate training dataset is preferable since researches indicate that 

increasing training sample size results in an enhanced classification accuracy. Feature 

engineering can be understood as a preprocessing step that aims to remove noise and clean the 

data. Furthermore, it also encompasses the process of feature selection and extraction. Model 

learning is the actual process of machine learning, in which the algorithm recognizes patterns in 

the training data in order to create a signature for each class. Finally, the trained model is used 

to predict the class of new input data whose class is unknown. Then, the model performance is 

validated through an evaluation of a variety of metrics, such as the overall accuracy (Boutaba et 

al., 2018). 

There is a variety of machine learning classifiers employed in mapping LCLU. In the detailed 

review by Maxwell et al. (2018), some of the most common classifiers presented are Random 

Forest (RF), Support Vector Machines (SVM), Artificial Neural Networks (ANN) and k-nearest 

neighbors (k-NN). Among them, special attention has been dedicated towards RF in exercises 

involving mapping LCLU. 

The Random Forest (RF) classifier is an ensemble classifier that applies the aggregation of 

multiple classification and regression trees. The growth of each tree in the ensemble can be 

determined by random vectors, which can be generated through strategies such as bagging, also 

known as bootstrapping, in which trees are grown based on a random selection of a subset of 

the training sample. Then, after having a large number of trees, the classification is performed 

by computing their votes for the most popular class (Breiman, 2001). 

Belgiu and Drăguţ (2016) highlighted the recent interest of the remote sensing community in 

ensemble classifiers, especially RF. They mention a variety of studies that were successful in 

using RF to map land cover classes, urban buildings, insect defoliation levels, tree canopy cover 
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and others based on images from different satellites. Moreover, Maxwell et al. (2018) showed 

that ensemble methods have yielded better classification accuracy when compared to simple 

single classifiers such as Decision Tree. 

The study by Lawrence and Moran (2015) presented a systematical comparison of machine 

learning classification algorithms using 30 different datasets. The results concluded that RF had 

the highest average classification accuracy. However, RF was the most accurate in only 18 of the 

30 classifications. Belgiu and Drăguţ (2016) also compared RF to other machine learning 

classifiers, finding that RF achieved better classification results when using multi-dimensional or 

multi-source data. They too concluded that RF is faster than high performance classifiers such 

as Support Vector Machine (SVM) and AdaBoost, besides being simpler in terms of parameters 

to be configured. Furthermore, Maxwell et al. (2018) found RF to be less sensitive to the 

dimension of the training sample and training mislabeling. 

Random Forest can be considered a classifier of easy optimization, since it only requires two 

user-defined parameters: the number of trees and the number of random variables used to 

determine the best split when growing the trees (Maxwell et al., 2018). Regarding the number 

of trees, multiple studies concluded that such parameter does not have a major influence on the 

classification results, nevertheless, a value of 500 trees is recommended (Belgiu and Drăguţ, 

2016; Maxwell et al., 2018). As to the number of random variables available at each split, 

Maxwell et al. (2018) outlined that such parameter could have a moderate impact on the 

classification accuracy, thus suggesting it should be optimized. 

With respect to RF limitations, Belgiu and Drăguţ (2016) pointed out that the classifier is 

sensitive to imbalanced training data, which results in favoring the most represented class. 

Therefore, the authors recommend training samples to be balanced and representative of each 

class. 

2.6. Effects of training sample size on classification accuracy 

As stated by Maxwell et al. (2018), the literature lacks a recommendation regarding the 

minimum training sample size needed for machine learning classification. The authors, however, 

support the broad understanding that increasing the number of training sampling units results 

in higher classification accuracy. Notwithstanding, they also acknowledge that the sensitivity to 

training data size varies depending on the classifier. 
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Huang et al. (2002) suggest that a satisfactory sample size might vary according to the classifier, 

number of classification variables and size and spatial variability of the study area. In terms of 

classifiers, Rodríguez-Galiano et al. (2012) verified that RF was significantly less sensitive to a 

reduction in training sample size when compared to single decision tree classification. Their 

findings are in accordance with results obtained by Maxwell et al. (2018), which demonstrated 

that RF has a superior performance compared to single decision trees when the number of 

training sampling units is smaller. Furthermore, the experiments conducted by Thanh Noi and 

Kappas (2018) ratify RF’s low sensitivity to the number of training sampling units. The authors 

tested fourteen sample size scenarios and two sampling strategies: balanced and imbalanced. 

Then, they computed the overall accuracy with an unchanged validation dataset to compare the 

scenarios. The results showed that a reduction of 95% in the training sample size resulted in a 

decrease of less than 5% in the RF classification accuracy, regardless of class balance. When 

taking into account the computed confidence intervals, the decrease might be less than 2%. 

Since the works by Rodríguez-Galiano et al. (2012) and Thanh Noi and Kappas (2018) use only 9 

and 10 classification variables, respectively, further investigation needs to be conducted to 

evaluate the impact of training sample size on classifications with a large number of predictor 

variables. This could be particularly relevant in the case of RF, which is considered a classifier 

that has good performance in classifications with high dimensionality. 

Besides samples size, class imbalance is another common issue discussed within the training 

sample topic. Although Maxwell et al. (2018) suggested using balanced training data, the results 

presented by Thanh Noi and Kappas (2018) indicated that neither balanced nor imbalanced 

strategy is predominant in terms of classification performance specifically using RF and Sentinel-

2 images.  

2.7. Classification uncertainty and land cover mapping 

One of the main aspects of this thesis is using classification uncertainty to generate a new and 

improved training dataset. Therefore, this section is dedicated to presenting and discussing 

methodologies related to how uncertainty can be derived from classification and how it can 

contribute to create new training datasets.  

There is a need to improve classification accuracy, which, in the case of supervised classification, 

implies optimizing the training dataset. In this context, active learning approaches emerge as an 

alternative to build a more informative and representative training set. As Tuia et al. (2011) 

explained, active learning’s main idea consists in creating a small training dataset of optimized 
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samples, whose performance can be as good as a large training dataset composed by randomly 

chosen samples. The process is focused on the interaction between user and model, so that the 

model provides the user with pixels whose classification is the most uncertain. Then, the user is 

responsible for manually labelling such pixels, which will be incorporated into the prior training 

set in order to reinforce the model. This process occurs for a number of iterations until a 

satisfactory result is achieved. The authors explained that including difficult samples contributes 

to maximize the model optimization for generalization capabilities. Li et al. (2013) considered 

that active learning methods select new training samples that provide maximum information, 

resulting in higher classification accuracy when compared to a training set of the same size built 

collecting random selected sampling units. 

Active learning selects unlabeled sampling units based on a query strategy, which can adopt 

measures such as uncertainty, representativeness, inconsistency, variance and error (Ahmad et 

al., 2019). Usually, the query strategy relies on selecting sampling units with highest 

classification uncertainty. Therefore, it is important to discuss the various uncertainty criteria, 

i.e. forms of quantifying uncertainty. Tuia et al. (2011) conducted an extensive review of 

strategies employed to determine uncertainty, dividing them into 3 families: committee-based, 

large margin-based and posterior probabilities-based heuristics. The strategies have distinct 

advantages and degrees of suitability to the different classifiers. For instance, the authors claim 

that when using SVM the best choice is the large margin-based family. A potential method to be 

used in conjunction with a Random Forest classifier is the posterior probability-based Breaking 

Ties (BT). Posterior probability-based heuristics use the estimates of posterior probabilities of 

class membership to select the best candidates. The BT approach computes the difference 

between the two highest class membership probabilities and considers that when they have 

similar values, i.e. are close to a tie, the classifier confidence is the lowest (Tuia et al., 2011). As 

Crawford et al. (2013) suggested, the BT strategy is suitable to be applied to models that output 

posterior probabilities. 

Since Random Forest classification can output for each pixel a class probability distribution, 

various studies used such RF output to determine the uncertainty (Mack et al., 2017; Liu et al., 

2018). Although not implementing an active learning methodology, Loosvelt et al. (2012), 

Loosvelt et al. (2014), Thonfeld et al. (2020) and Roodposhti et al. (2019) used RF class 

probabilities to compute uncertainty, which they used to simply map classification uncertainty. 

Mapping areas where the classification was the most uncertain allowed the authors to perform 
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a spatial analysis to identify patterns and elaborate on possible causes of high uncertainty in 

specific areas and which classes are the most affected. Although important information could 

be inferred, such use of uncertainty does not interfere in the final output of the classification. 

Additionally, most of these works use the Shannon entropy (H) as the uncertainty measure 

(Shannon, 1948). In contrast to the BT heuristics, the entropy H evaluates the disagreement 

existing in the whole class probabilities vector, with a high entropy indicating a higher 

disagreement, therefore a high uncertainty. According to Tuia et al. (2011), entropy is largely 

employed in committee-based active learning. 

In terms of performance, Tuia et al. (2011) concluded that large margin-based heuristics 

performed better than the other families, although in some of their tests the BT approach 

yielded better results. The authors acknowledge that the large margin-based family had a better 

performance due to its enhanced compatibility with SVM, the classifier employed in their study. 

Nevertheless, all families of heuristics performed better than selecting new sampling units 

randomly. As to RF classifications, the BT approach seems the most convenient in terms of 

easiness of implementation (Mack et al., 2017) and fair performance (Liu et al., 2018).  

While usual active learning approaches rely on using uncertainty alone, new researches propose 

combining uncertainty with other criteria. Crawford et al. (2013) outline the importance of a 

diversity criterion in active learning as a strategy to avoid selecting redundant sampling units. 

They argue that introducing a diversity measure contribute to select pixels that are most 

dissimilar among the highly ranked by the uncertainty query. Furthermore, the authors discuss 

the incorporation of spatial information in the active learning process, what can reduce spatial 

redundancy and contribute to further differentiate sampling units. Spatial information in active 

learning is also addressed by Lu et al. (2017) and Li et al. (2013), whose experiments indicate 

that utilizing spatial features can improve performance when compared to approaches based 

exclusively on spectral features. The work by Ahmad et al. (2019) proposes a method that, 

besides taking into account the spatial domain, utilizes fuzziness and diversity criteria. The 

results showed that their method outperformed all other sample selection methods employed. 

Despite the good results, the aforementioned approaches tend to have a more complex 

implementation. 

Although active learning has presented encouraging results, it is heavily dependent on human 

interaction. Therefore, other works try to take advantage of using uncertainty to improve 

classification accuracy. The study by Gonçalves et al. (2009) presents a hybrid approach, in which 
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they propose to classify landscape units using multispectral images by combining a standard 

probabilistic classification and its associated classification uncertainty. The final class is 

determined based on a set of decision rules, which consider the type of surface element and an 

uncertainty value. The results indicated an increase in overall accuracy when compared to a 

classification without the incorporation of uncertainty. However, their work does not focus on 

collecting new samples to improve the training dataset.  

On the other hand, Mack et al. (2017) proposes implementing an initial RF classification, from 

which they derive the classification uncertainty. Then, they determine an uncertainty threshold, 

conduct a segmentation and identify the largest connected patches of high uncertainty, from 

which they extract new training sampling units. Finally, they incorporate the additional sampling 

units to the initial training set and perform a final classification. Although their method yielded 

an overall accuracy of 87%, it is unclear whether adding new samples improved the 

classification, as the study lacks a comparison between initial and final classifications and 

therefore the cost benefit of adding new training based on the uncertainty analysis. Moreover, 

there was insufficient detail regarding the definition of the uncertainty threshold.  

This thesis attempts to take a step further on the use of uncertainty to improve the training 

dataset of supervised algorithms, namely by proposing and evaluating a methodology to 

aggregate into the training data additional sampling units collected from areas where the initial 

classification was the most uncertain.  
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3. STUDY AREA AND DATA 

This section presents a description of the study area and the various data sets used in this 

research. 

3.1. Study area 

The study area is located in the North of Portugal and corresponds to the landscape unit of Trás-

os-Montes (Figure 1), comprising an area of 11,778 km² characterized by mountainous land 

occupied with rocks, forest and bushes, in addition to agriculture in the lower lands. Landscape 

units are areas of similar biogeographic aspects, in which DGT is experimenting specific 

methodologies. Working with landscape units rather than image tiles is preferable, since the 

first gathers areas of similar landscape characteristics, hence contributing to enhance spectral 

distinction between LCLU classes. 

 

Figure 1: Location of study area. 

3.2. Data 

 The data utilized in this study can be divided into two groups: ancillary and remotely sensed 

data. The ancillary data comprise various datasets employed in the process of automatic training 

sample collection, whereas the remotely sensed data correspond to the Sentinel-2 imagery used 

for classification. 

3.2.1. Ancillary data 

The ancillary data were used to delineate regions from where training data will be collected. The 

data can be divided into reference and filter data. Reference data aim to provide the base 

polygons to delineate training sample areas, while filter data aim to refine the reference 

polygons to reinforcing label consistency.   

The first dataset used as reference data was the Portuguese Land Use and Land Cover 

Cartography from 2010, 2015 and 2018 (COS 2010, COS 2015 and COS 2018). COS is a thematic 
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cartography that aims to map land cover and land use in continental Portugal with a high level 

of detail, having a minimum map unit of 1 hectare and a minimum distance between lines of 20 

meters. The production of such cartography is based on visual interpretation of high resolution 

orthorectified aerial imagery and the final product is available in vector format. The latest 

version of COS (COS 2018) contains 83 LULC classes (DGT, 2019). 

The second reference dataset is the national parcel registry from the Portuguese Land Parcel 

Identification System (LPIS) of the Instituto de Financiamento da Agricultura e Pesca (IFAP). The 

data used in this study corresponds to the agricultural year of 2018 and hereinafter is referred 

as IFAP 2018. Such dataset consists of land parcels reported by farmers who applied to 

agricultural subsidies provided by the European Union. A fraction of about 5% of these parcels 

is subjected to control in the form of visual interpretation on orthophotos and field validation 

of the type of crop grown. 

Other dataset used in the study was the map of burned areas of 2018 and 2017 from the Instituto 

da Conservação da Natureza e Florestas (ICNF). The map is provided in vector format, containing 

polygons of burned areas larger than 5 Ha during the years of 2016, 2017 and 2018 (ICNF, 2018). 

In addition, Copernicus Land Monitoring Service’s High Resolution Layers products from 2015 

(HRL 2015) were used as filters to refine the reference dataset (IFAP and COS 2018). HRL provide 

information on particular land cover characteristics. Within the Forests domain, two products 

were incorporated: Tree Cover Density (TCD) and Dominant Leaf Type (DLT). TCD refers to the 

degree of tree cover density in a range from 0 to 100% whilst DLT determines whether there is 

a majority of broadleaf or coniferous leaves. Considering the Imperviousness domain, the 

Imperviousness Density (IMD) product was used. This product aims to provide information 

about the imperviousness degree (0 to 100%), which contributes to identify built-up areas. The 

2015 HRLs products are generated mainly based on Sentinel 1 and 2 satellite imagery through a 

combination of automatic processing and interactive rule based classification and provided in 

raster format with 20m spatial resolution (Langanke, 2016; Langanke, 2017). 

Moreover, a mask of NDVI changes detected from 2015 to 2018 using Landsat 8 images was 

used to remove clear cuts areas (Costa et al., 2020). Clear cuts are zones where trees were 

uniformly cut down as part of forest management cycle of forest plantations. However, the land 

use of such zones is still mapped as forest in reference datasets. Then, removing the clear cuts 

helps preventing training forests classes using pixels that do not correspond spectrally to forests. 
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Lastly, the OpenStreetMap (OSM) primary roads and motorways of Continental Portugal were 

used as reference data to collect training data for the road network class. 

3.2.2. Remotely sensed data 

The remote sensing data utilized are an orthophoto map of 2018 with 25 cm spatial resolution, 

used to assist the collection of manual training and validation, and a composite of Sentinel-2 

images of the study area acquired from October 2017 to September 2018, corresponding to the 

agricultural year of 2018. The year of 2018 was selected not only due to the availability of the 

orthophoto to assist in the process of validation, but also due to the existence of official LCLU 

cartography for such year (COS 2018), allowing a comparison between COS and the map 

generated by our proposed methodology.  

 

Figure 2: Workflow involved in the processing of generating Sentinel-2 dataset. 

The images utilized in this study were produced by DGT according to the subsequent procedures, 

which follow DGT’s technical specifications for the generation of intra-annual Sentinel-2 surface 

reflectance composites (DGT, 2020). The workflow comprises 6 main activities (Figure 2): 

acquisition, preprocessing, indices computation, production of monthly composites, gap filling 

and spectro-temporal metrics computation. 

The acquisition consists in downloading the imagery from Theia for the agricultural year of 2018, 

with a filter of less than 50% of cloud cover. The images are provided as Level-2A processing 

products, with ortho-rectification, atmospheric correction to the bottom of atmosphere (BOA), 

water, snow, cloud and cloud shadow masks and slope effect correction. The study area is 

covered by 6 tiles of Sentinel-2 images: 29TNG, 29TPG, 29TQG, 29TNF, 29TPF and 29TQF (Figure 
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3). In total, 457 images with less than 50% cloud cover were acquired. The per-tile distribution 

is exhibited in Table 1. 

 

Figure 3: Sentinel-2 tiling for Continental Portugal. 

Tile Sentinel-2 images acquired 

29TNG 72 
29TPG 71 
29TQG 81 
29TNF 78 
29TPF 78 
29TQF 77 
Total 457 

Table 1: Number of images per tile. 

In the preprocessing stage, Sentinel-2 spectral bands B2, B3, B4, B5, B6, B7, B8, B8A, B11 and 

B12 are selected and the bands with spatial resolution different from 10m are disaggregated to 

10m. Bands B1 and B10 are used only for atmospheric correction. Next, the bands corresponding 

to a single acquisition are stacked and masked according to the cloud mask. Pixels contaminated 

with cloud or cloud shadow are reclassified to “missing data”. Additionally, pixels beyond 2km 

of the country border and coastline are also converted as missing data. Then, rasters with pixel 

size of 10m and 10 bands are generated. 

The preprocessed rasters are then used to compute spectral indices, thus generating new 

rasters, each corresponding to a specific index. Such indices were selected based on a 
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bibliographic review of various papers about production and implementation of national land 

cover maps. The computed indices and their correspondent equations are described in Table 2. 

Index Equation  Sentinel-2 bands Reference 

NDVI (NIR-R) / (NIR+R) (B08 - B04) / (B08 + B04) Rouse et al. (1974) 

NBR (NIR-MIR2) / (NIR+MIR2) (B8A - B12) / (B8A + B12) Hislop et al. (2018) 

NDWI  (G-NIR) / (G+NIR) (B03 - B08) / (B03 + B08) McFeeters (1996) 

NDBI (MIR1-NIR) / (MIR1+NIR) (B11 - B8A) / (B11 + B8A) Zha et al. (2003) 

NDMIR (or NBR2) (MIR1-MIR2) / (MIR1+MIR2) (B11 - B12) / (B11 + B12) Roteta et al. (2019) 
Table 2: Spectral indices computed for the Sentinel-2 dataset. 

Having the bands and indices set, the next step is the production of monthly composites. This 

process consists in computing at the pixel level the median pixel value for each month. As such 

approach takes into account multiple instead of single acquisitions, it increases the probability 

of acquiring pixels not contaminated by clouds, hence reducing the occurrence of missing values. 

However, there still could be pixels covered by clouds during an entire month, what would lead 

to them being flagged as missing values, forming gaps. Therefore, it is necessary to perform an 

additional step to fill these gaps. 

Metric  Description  

q10 Quantile 10th 

q25 Quantile 25th 

q50 Quantile 50th 

q75 Quantile 75th 

q90  Quantile 90th 

q75-q25 Difference between 75 th and 25 th quantiles 

q90-q10 Difference between 90 th and 10 th quantiles 
Table 3: Spectro-temporal metrics computed for the Sentinel-2 dataset. 

The process of gap filling consists in applying a simple linear interpolation based on time. For 

instance, if a given pixel has a missing value in a specific month, values from the previous and 

following months are used to interpolate the value for the missing month.  

Name Quantity 

Spectral Bands 120 

Spectral Indices 60 

Spectral-temporal metrics 105 

Total 285 
Table 4: Band composition of the Sentinel-2 final dataset. 

Lastly, the results from the previous step are used to compute spectro-temporal metrics. Such 

metrics are composed of quantiles and differences between quantiles, computed for each of the 
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10 bands and 5 indices considering the whole year of analysis. Table 3 presents the list of metrics 

employed. 

The final composite consists of 285 bands: 10 bands and 5 indices for each month of the year 

and 7 metrics for each of the 10 bands and 5 indices (Table 4). A   summary of the data described 

in the previous sections, with their brief description, origin, year and function is presented in 

Table 5. 

Dataset Description Source Year Function 

COS 
Land use and land cover 

official cartography 
DGT 

2010, 2015, 
2018 

Reference data 

IFAP 
National parcel registry 

(crop types) 
IFAP 2018 Reference data 

OSM Roads 
OpenStreetMap roads 

network 
OpenStreetMap 2020 Reference data 

Burned Areas Wildfire burned areas ICNF 2017, 2018 Filter data 

OSM Roads 
OpenStreetMap roads 

network 
OpenStreetMap 2020 Reference data 

HRL-TCD Tree cover density 
Copernicus Land 

Monitoring Service 
2015 Filter data 

HRL-DLT Dominant leaf type 
Copernicus Land 

Monitoring Service 
2015 Filter data 

HRL-IMD Imperviousness degree 
Copernicus Land 

Monitoring Service 
2015 Filter data 

NDVI Clear 
Cuts Mask 

Forest cuts alerts Costa et al. (2020) 2015-2018 Filter data 

Orthophoto Orthophotomap (25 cm) DGT 2018 
Remote sensing 

data 
Sentinel-2 
Imagery 

Satellite imagery 
Theia Land Data 

Centre 
2017-2018 

Remote sensing 
data 

Table 5: Summary of the data used in the research. 
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4. METHODS 

The proposed methodology is based on a combination of manual collection and automatic 

extraction of training sampling units from preprocessed reference datasets. The collected 

sampling units are used to retrieve the spectral information of a multi-temporal Sentinel-2 

composite, which will form the feature space of a supervised learning classifier using Random 

Forest. Prior to the learning process, a stratification of the study area is conducted. The 

classification accuracy is assessed computing the overall accuracy, which is used to compare 

results. This base workflow is implemented to evaluate the impact of training sample size on 

classification accuracy and to assess whether training samples can be improved using 

classification uncertainty. Therefore, the methods can be divided into 5 sections: study area 

stratification, COSsim technical specifications, supervised learning and classification, impact of 

sample size and classification uncertainty and improved training.  

4.1. Study area stratification 

The study area was divided into 5 strata (Figure 4) with distinct land cover characteristics, based 

on COS 2018 and ICNF cartography: Cork and holm oak, Burned areas in 2017, Burned areas in 

2016, Forest cuts from 2015 to 2018 and a complementary stratum (Table 6). Stratum 1 was 

originated from areas of cork and holm oak of COS 2018. Strata 2 and 3 were defined according 

to the ICNF burned areas of 2017 and 2016, respectively. Stratum 4 resulted from the 

intersection of areas of forest and shrubland of COS 2018 with the NDVI clear cuts mask, hence 

representing zones where vegetation cuts occurred. Lastly, the complementary stratum 

represents the remaining areas. 

The stratification aims to provide a combination of land cover classes suitable for each stratum, 

thus considering the inherent specific spectral characteristics.  An individual supervised learning 

was performed for each stratum. The stratification is used to determine the combination of 

classes, as the samples utilized in each learning belong to the whole study area, regardless of 

stratum. Additionally, the generation of the classification map is conducted by merging 

individual classifications of each stratum. 
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Figure 4: Map of the stratification of the region of study. 

Number Stratum Area (ha) % 

1 Cork and Holm Oak 39113 3.3 

2 Burned Areas 2017 42981 3.6 

3 Burned Areas 2016 35418 3.0 

4 Forest Cuts 2015-2018 45513 3.9 

5 Complementary 1014777 86.2 

 Total 1177802 100.0 

Table 6: Stratification of the study area. 

4.2. COSsim technical specifications 

The following processes aim to produce a preprocessed reference dataset to be used to extract 

training samples according to DGT’s COSsim technical specifications. The main purpose of the 

preprocessing is to create a reference dataset in accordance to the defined class nomenclature 

by applying rules to generate polygon features corresponding to each class. Such dataset is used 

as a reference from which training samples are automatically extracted. COSsim production 

adopts a strategy in which the training phase has a particular and more detailed class 

nomenclature, whilst the final product, COSsim Level 3, has a broader class nomenclature 

resulting from the aggregation of the training classes (Table 7). Using more training classes 

means separating COSsim Level 3 classes with known intrinsic variability into subclasses whose 

spectral characteristics are simpler to distinguish. This can be seen, for instance, in class natural 

grasslands (COSsim Level 3), which is divided into 3 classes with distinct spectral responses: 
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agricultural natural grasslands, mountain natural grasslands and natural grasslands BA2017 

(specific of the Burned areas 2017 stratum). 

Class COSsim Level 3 Training Class 
Stratum 

1 2 3 4 5 

Built up 

Built up X X X X X 

Industrial X X X X X 

Road Network X X X X X 

Agriculture 

Oat X X X X X 

Wheat X X X X X 

Barley X X X X X 

Ryegrass X X X X X 

Triticale X X X X X 

Rye X X X X X 

Corn X X X X X 

Sunflower X X X X X 

Managed Grasslands X X X X X 

Natural Grasslands 

Agricultural Natural Grassland X X X X X 

Mountain Natural Grassland X X X X X 

Natural Grasslands BA2017  X    

Cork and Holm Oak 
Cork Oak    X  

Holm Oak    X  

Eucalyptus 

Eucalyptus Adult X X X X X 

Eucalyptus BA2017  X    

Eucalyptus 1 year cuts   X   

Eucalyptus Young Cuts   X   

Other Broadleaf Other Broadleaf X X X X X 

Maritime Pine Maritime Pine X X X X X 

Stone Pine Stone Pine X X X X X 

Other Coniferous Other Coniferous X X X X X 

Shrubland 
Dense Shrubland X X X X X 

Shrubland BA2017  X    

Non-vegetated surfaces 
Baresoil X X X X X 

Bare Rock X X X X X 

Water Water X X X X X 

Table 7: COSsim Level 3 class nomenclature and training class nomenclature according to each stratum. 

This work adopts a hybrid process for collecting training samples: a combination of automatic 

and manual collection. The manual collection is the traditional approach used in supervised 

classification, in which training data are acquired through digitization of polygons by 

photointerpretation, which in this study was assisted by the 2018 ortophoto in conjunction with 

one Sentinel-2 image for each season. Manual training is needed because previous experiments 

indicated that some classes in the reference dataset data are considerably heterogeneous, 

having several contributions from very different land cover types. Table 8 reveals which classes 

are based on manual and automatic training. 

The reference datasets that serve as a base for defining COSsim automatic training areas are 

COS and IFAP 2018. Whilst COSsim is a land cover cartography with 100 m² Minimum Mapping 



27 

Unit (MMU), COS maps land use and land cover with MMU of 1 ha. Therefore, to use COS as 

reference data for COSsim training it is important to apply filters to exclude mislabeled pixels. 

Training Class Method Dataset of Origin 

Filters 

HRL 
IMD 

HRL DLT 
HRL 
TCD 

NDVI 
Clear 
Cuts 

Built up Automatic COS2018 ≥ 80%         

Industrial Manual -           

Road network Automatic OSM       max(NDVI) ≤ 0.3   

Wheat Automatic IFAP18, COS2018           

Rye Automatic IFAP18, COS2018           

Oat Automatic IFAP18, COS2018           

Ryegrass Automatic IFAP18, COS2018           

Triticale Automatic IFAP18, COS2018           

Corn Automatic IFAP18, COS2018           

Sunflower Automatic IFAP18, COS2018           

Barley Automatic IFAP18, COS2018           

Managed 
Grasslands 

Automatic IFAP18, COS2018           

Agricultural 
Natural Grassland 

Manual -           

Mountain Natural 
Grassland 

Manual -           

Natural Grasslands 
BA17* 

Manual -           

Cork Oak Manual -           

Oak Canopy Manual -      

Holm Oak Manual -           

Eucalyptus Young 
Cuts 

Manual -           

Eucalyptus Adult Automatic 
COS2015, 
COS2018 

  Broadleaf ≥ 90% min(NDVI) ≥ 0.3 Outside 

Eucalyptus BA17* Manual -           

Eucalyptus 1 Year 
Cuts** 

Manual -           

Other Broadleaf Automatic COS2018   Broadleaf ≥ 90% min(NDVI) ≥ 0.3 Outside 

Maritime Pine Automatic COS2018   Coniferous ≥ 90% min(NDVI) ≥ 0.3 Outside 

Stone Pine Automatic COS2018   Coniferous ≥ 70% min(NDVI) ≥ 0.3 Outside 

Other Coniferous Automatic COS2018   Coniferous ≥ 90% min(NDVI) ≥ 0.3 Outside 

Dense Shrubland Manual -           

Shrubland BA17* Manual -           

Baresoil Automatic COS2018       
min(NDVI) > 0 & 
max(NDVI) < 0.3 

  

Bare Rock Manual -           

Water Automatic COS2018       max(NDVI) ≤ 0   

Table 8: Class nomenclature, their methods of collecting training samples, origin and filters applied. *Manually 
collected within burned areas in 2017; **manually collected within forest cuts 2015-2018. 

Regarding the automatic process, the first step consists in eliminating burned areas from COS 

2018, based on a geometric difference between COS 2018 and ICNF burned areas of 2018, which 

prevents training vegetation classes with burned pixels. Next, the IFAP 2018 dataset is 

considered, selecting only the 10 most abundant crops in the country (wheat, barley, oat, 

ryegrass, triticale, rye, tomato, corn, sunflower and rice) and managed grasslands. However, 
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there are no rice and tomato polygons within the study region, therefore the subsequent 

processing is conducted with the 8 remaining classes. An additional filter is applied to the 

managed grasslands to exclude parcels that might eventually contain significant abundance of 

trees. Parcels with area of less than 1000m² are excluded from IFAP. 

For each of the eight most abundant crops in the country, a geometric intersection with COS 

2018 annual crops was carried out. Then, a negative buffer of 40m was applied, eroding polygons 

to eliminate boundaries and transition zones where there could be mixed pixels. Lastly, polygons 

generated by the intersection with area of less than 100m² were excluded. The processing of 

the class managed grasslands is similar, however, the intersection is performed with COS 2018 

class grasslands. 

The remaining of the automatic classes are generated directly from the correspondent class in 

the COS 2018 preprocessed dataset, also having a negative buffer of 40m applied to the 

polygons. The only exceptions are road network and eucalyptus adult. Road network reference 

data is acquired by extracting points along the main roads (primary and motorway) in the 

OpenStreetMap dataset, while the eucalyptus adult results from the intersection between 

eucalyptus in COS 2018 and 2015, what suggests that these eucalyptus might be older. 

Besides the processes described above, additional filters are applied to specific classes. The 

filters intend to refine reference polygons by intersecting it with other datasets, such as HRL, in 

order to attempt delineating areas with more accurate spectral responses of a given class, hence 

preventing acquiring potential mislabeled pixels. Three HRL products were used as filters: 

Imperviousness Degree (IMD), Tree Cover Density (TCD) and Dominant Leaf Type (DLT). 

Whenever the TCD and DLT filter are used, a raster shrink function with size of 1 pixel (20m) is 

applied to further refine the filtering. Since HRL and COSsim have different reference periods, 

areas mapped by HRL as forest in 2015 might have been cut later. Therefore, additional filters 

are needed to prevent delineating areas where forest was cut, hence avoiding pixels whose 

spectral characteristics do not match forest’s. For this purpose, an annual NDVI raster was 

employed as a filter, with different thresholds rules depending on the class, along with the NDVI 

clear cuts mask (Costa et al., 2020). After generating the polygons a cleansing process was 

conducted, in which features with less than 1000m² of area were deleted. Table 8 presents a 

summary of the nomenclature adopted in COSsim, the source datasets and filter rules of each 

class. 
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Special attention was dedicated to the classification of cork and holm oaks. Within the cork and 

holm oak stratum, training samples were collected by visual interpretation of the 

orthophotomap. A total of 12 classes were used to represent a gradual level of abundance of 

the following elements: oak canopy, natural grasslands, shrubland and baresoil (Table 9). The 

abundance of each cover type in a pixel was defined according to the occurrence of oak. The 

vicinity or understory can have elements such as shrubs, grass and soil, which can generate 

distinct spectral responses. Therefore, the classes also considered a combination of different 

understory and neighboring cover types based on oak canopy percentage estimation. 

Class Description % oak 

1 Oak and shrubland 100 

2 Oak and natural grasslands 100 

3 Oak and baresoil 100 

4 Oak and shrubland 80 

5 Oak and natural grasslands 80 

6 Oak and baresoil 80 

7 Shrubland and oak 20 

8 Natural grasslands and oak 20 

9 Baresoil and oak 20 

10 Shrubland 0 

11 Baresoil 0 

12 Natural grasslands 0 

Table 9: Cork and holm oak canopy classification training classes. 

4.2.1. Training database 

The preprocessed polygons were used to automatically extract random training samples from 

each class. The sampling process was implemented within a GIS environment. It consisted in 

generating points inside the polygons, corresponding to the image composite pixel centroids, 

then performing a random selection and retrieving the composite values. The composite bands 

correspond to the predictor variables in the classification. Although previous experiments 

performed with variable selection to reduce the dimension of the feature space indicated an 

increase in classification efficiency, this study was conducted with all the predictor variables 

available, following what was being experimented by DGT. With respect to the sampling process, 

a total of 6000 sampling units per class were collected. In some classes the number of sampling 

units available was less than 6000, therefore their sample size was the largest possible. Besides 

the automatic training, the manually collected sampling units were also aggregated, thus 

forming the training database. Table 10 presents the number of polygons, descriptive statistics 

of their areas and number of sampling units per training class. 
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Although some works reviewed in sections 2.5 and 2.6 address the topic of imbalanced training 

samples, our approach did not consider balancing the samples, since our investigation focused 

on other topics. 

Regarding the cork oak canopy classification, Table 11 presents the number of sampling units 

collected by photointerpretation. For this particular classification, only the 10 bands and 5 

spectral indices from August 2018 were used as classification variables. 

Training Class 
Nº of 
polygons 

Area (ha) Sample 
size Min Max Mean Median Std Total 

Built up 223 0.01 2.32 0.18 0.03 0.34 39.44 3943 

Industrial 322 0.01 1.87 0.09 0.05 0.17 30.24 2793 

Road Network - - - - - - - 6000 

Oat 1146 0.01 8.17 0.47 0.25 0.65 535.55 6000 

Wheat 303 0.01 6.88 0.30 0.11 0.63 90.26 6000 

Barley 22 0.01 4.59 0.41 0.10 0.94 9.06 910 

Ryegrass 34 0.01 0.94 0.21 0.12 0.23 7.11 704 

Triticale 66 0.01 3.70 0.27 0.11 0.52 17.91 1777 

Rye 751 0.01 3.79 0.30 0.13 0.46 222.92 6000 

Corn 460 0.01 3.58 0.26 0.10 0.42 118.30 6000 

Sunflower 1 0.14 0.14 0.14 0.14 0.00 0.14 17 

Managed Grasslands 840 0.01 5.90 0.39 0.18 0.60 327.76 6000 

Agricultural Natural Grassland 100 0.07 5.53 0.74 0.52 0.83 74.33 6000 

Mountain Natural Grassland 47 0.03 8.14 1.23 0.77 1.40 57.88 5801 

Natural Grasslands AA2017 57 0.06 7.57 1.33 0.72 1.58 75.80 6000 

Cork Oak 140 0.03 29.65 2.73 1.22 4.30 382.66 6000 

Holm Oak 105 0.05 12.03 2.51 1.67 2.58 263.84 6000 

Eucalyptus Adult 24 0.07 52.66 3.10 0.52 10.40 74.44 428 

Eucalyptus AA2017 22 0.31 20.84 4.08 2.80 4.49 89.73 6000 

Eucalyptus 1 year cuts 30 0.64 11.39 3.09 2.46 2.40 92.72 6000 

Eucalyptus Young Cuts 16 0.02 0.92 0.27 0.08 0.30 4.28 6000 

Other Broadleaf 211 0.01 4.90 0.20 0.03 0.57 42.48 4245 

Maritime Pine 872 0.01 10.19 0.48 0.18 0.87 420.39 6000 

Other Coniferous 140 0.02 3.76 0.34 0.16 0.47 48.03 4796 

Dense Shrubland 255 0.07 88.55 3.09 1.46 6.43 787.23 6000 

Shrubland AA2017 80 0.01 10.17 0.80 0.27 1.56 63.88 6000 

Baresoil 453 0.01 15.32 0.58 0.12 1.38 264.08 6000 

Bare Rock 953 0.01 1.72 0.06 0.03 0.11 58.64 5803 

Water 492 0.01 593.20 4.53 0.08 38.76 2227.24 6000 

Table 10: Number of training polygons resulted from the preprocessing, descriptive statistics of their areas and the 
training sampling units collected. Training for road network is derived from linear elements. 

Class 1 2 3 4 5 6 7 8 9 10 11 12 

Sample Size 100 150 100 100 180 100 100 100 100 230 100 300 

Table 11: Training sample size for the cork and holm oak canopy classification. 

4.2.2. Image classification 

Image classification was performed using the Random Forest classifier. The classification was 

implemented in Python, using the Scikit-learn library (Pedregosa et al., 2011). The parameters 

adopted were 500 trees, √𝑛 as the number of features available at each node and entropy as 
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the criterion used to determine the quality of a split. The remaining parameters were left as 

default. 

A series of classifications were performed. First, five models were trained according to the 

classes of each stratum (see Table 7 in section 4.2) to classify the correspondent stratum in the 

Sentinel-2 composite. In this case, the number of features is equal to 285 (n = 285). Next, the 

pixels were reclassified from training class to the COSsim Level 3 class nomenclature. 

A further classification was conducted to map cork oak canopy. The same parameters were 

applied, though the number of features was different (n = 12). The classification was performed 

only in the Cork and Holm Oak stratum. Then, the classes with occurrence of canopy (class 1-9 

in Table 11) were reclassified to oak canopy. The final map consisted in overlaying the original 

map of such stratum with the oak canopy pixels, what resulted in converting these pixels in the 

original map to oak canopy. Afterwards, the pixels were also converted to COSsim Level 3 class 

nomenclature. The final LCLU map consisted in merging all the products described above. 

4.2.3. Accuracy assessment 

An independent validation dataset composed by 600 sampling units drawn from stratified 

random sampling and manually labeled by visual interpretation of the orthophoto map of 2018 

with 25 cm spatial resolution was used to assess the classification accuracy of the final product 

(COSsim Level 3). The labels were assigned considering a 3x3 pixel window, with the sampling 

unit being located in the central pixel. This approach aims to address possible spatial 

displacement of the Sentinel-2 composite. For each validation sampling unit one or more labels 

were allocated, when adequate (e.g. transition between two land cover patches). A sampling 

unit is considered correctly classified if the class predicted by the RF classifier matches one of 

the labels assigned to it. Figure 5 illustrates the validation window of the sampling unit 

represented by the yellow point. In this case, 2 labels were assigned to the sampling unit: built 

up and agriculture. The metrics utilized in the accuracy assessment are the overall accuracy, 

precision, recall and F1-score. The last three metrics are computed according to the following 

equations, where tp: true positives, tn: true negatives, fn: false negatives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Figure 5: 3x3 pixel neighborhood of the validation sampling unit. 

Confidence intervals for the overall accuracy were computed based on an error tolerance, as 

presented in Baraldi et al. (2006). In addition, confusion matrices are used to assess the 

confusion between predicted and reference classes. As the reference can have multiple labels, 

the disagreement between prediction and reference is computed considering the predominant 

label in the reference. 

4.3. Assessment of the impact of stratification and manual training 

In order to evaluate the impact of adopting stratification and manual training, a benchmark 

classification with training without stratification and using only automatically collected samples 

is conducted.  In this context, some of the manual classes need to be eliminated from the training 

process, while others are replaced with their equivalent automatic class. Nevertheless, 

nomenclature for COSsim Level 3 remained the same, thus a comparison between the 

benchmark and the classification performed with stratification and combination of manual and 

automatic training can determine whether the latter strategies contribute to improve 

classification accuracy. In order to assure compatibility, a training sample size of up to 6000 

sampling units per class was adopted for both classifications. 

4.4. Assessment of the impact of sample size 

The impact of sample size in the classification accuracy was evaluated testing different 

scenarios: 50, 500, 1000, 2000, 3000, 4000, 5000 and 6000 training sampling units per class 

collected randomly. For the classes in which the number of sampling units was less than the 

intended amount, the number of collected units was the largest available. These experiments 

were conducted in the complementary stratum only, as it represents the vast majority of the 
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study region (86.2%). In this case, the validation is performed excluding sampling units from 

other strata, resulting in a 535 sampling units validation dataset. 

4.5. Classification uncertainty and improved training 

The purpose of this process is to map areas where the classification was the most uncertain, 

then collect new training samples from within these areas. The process requires a reference 

classification, which in this case is the aggregation of the Sentinel-2 composite classifications of 

the 5 strata, with sample size of 6000 or the largest number of samples per class (see column 

sample size in Table 10). In this process, the output of the reference classification keeps the 

training nomenclature instead of converting to the map nomenclature.  

 

Figure 6: Workflow of the process of acquisition of new training samples from areas of high classification 
uncertainty and subsequent incorporation in initial training sample to perform a new classification. 

The overview of the workflow is exhibited in Figure 6. The process consists in computing the 

probabilities vector of the reference classification. The Scikit-learn Random Forest 

implementation allows predicting the class probabilities of an input sample, which are defined 

in the documentation as the mean predicted class probabilities of the trees in the forest. From 

the probabilities vector, classification uncertainty can be derived using an uncertainty criterion. 

Breaking Ties (BT), a posterior-probability based approach, was used to compute uncertainty. 

The underlying assumption is that elements whose highest and second-highest class 

probabilities have similar values are considered as having high classification uncertainty. Then, 

BT calculates the uncertainty as the difference between the highest and second-highest class 

probabilities, with values ranging from 0 (high uncertainty) to 1 (low uncertainty). The result of 
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such computation is a raster where each pixel has its uncertainty value associated. The 

uncertainty 𝑈 of a sampling unit 𝑖, calculated by the BT approach is: 

𝑈𝑖 = 𝑚𝑎𝑥𝜔∈𝑁{𝑝( 𝑦𝑖 = 𝜔|𝑥𝑖)} − 𝑚𝑎𝑥𝜔∈𝑁\𝜔+{𝑝( 𝑦𝑖 = 𝜔|𝑥𝑖)} 

where 𝑝( 𝑦𝑖 = 𝜔|𝑥𝑖) represents the probability of a sampling unit 𝑥𝑖belonging to the class 𝜔, 

and 𝜔+ is the class of highest probability. 

The next step consisted in reclassifying the raster based on a threshold, generating a binary map 

where pixels with values greater than the threshold are converted to no data. The threshold 

value was defined based on an analysis of the distribution of uncertainty values (U) computed 

for the whole map (Figure 7), which revealed that a sufficient amount of pixels have U ≤ 0.1, 

which was considered adequate to produce an adequate number of uncertainty patches. Then, 

0.1 was adopted as the threshold. Next, a 5x5 majority moving window was applied in order to 

smooth the results, reducing a potential salt and pepper effect. The resulting raster is converted 

to vector and the 20 largest patches of uncertainty are collected. In addition, the resulting 

vectors are also intersected with the classification output, in order to select the 20 largest 

patches of uncertainty per class. These procedures are illustrated in Figure 8. 

 

Figure 7: Histogram of classification uncertainty values. 

The 20 largest patches regardless of class in conjunction with the 20 largest patches per class 

are photointerpreted in order to collect sampling units in these areas. Next, a negative buffer of 

10m is applied to prevent capturing pixels in transition areas. Since it is not possible to identify 

the crop type by visual interpretation of the orthophoto, a patch or part of a patch located on 
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top of agricultural areas in the orthophoto is ignored. Figure 9 illustrates photointerpreted 

polygons on top of an uncertainty patch. 

 

Figure 8: Delineation of an uncertainty patch: a) raw uncertainty distribution; b) result of the application of 0.1 
threshold followed by smoothing (moving window) in green; c) delineation of a contiguous uncertainty patch. 

 

Figure 9: Photointerpretation of an uncertainty patch. 

Finally, points corresponding to pixel centroids are generated within the polygons and their 

corresponding labels and composite values are retrieved. Regarding the addition of the new 

sampling units into the original sample, some aspects had to be addressed. Since the size of the 



36 

patches might vary, classes may have distinct number of sampling units. The new training should 

consider adding sufficient sampling units while minding class balance. With this in mind, it is 

preferable to incorporate additional sampling units into an initial sample of compatible size, so 

that the new units could have a growing influence in the representativeness of the aggregated 

sample. Thus, we adopted a strategy which consisted in adding up to 500 sampling units per 

class to an initial sample of 500 units per class. The initial sample was taken from the 

experiments with 500 sampling units of section 4.5. Having the new training set, a new 

classification is conducted only for the complementary stratum. 
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5. RESULTS AND DISCUSSION  

This chapter presents the results of the innovative classification performed with stratification 

and introduction of manual sampling, a comparison with the benchmark classification, 

conducted without stratification and manual training, the assessment of the influence of sample 

size in classification accuracy and the evaluation of the improvement of training samples using 

classification uncertainty. 

5.1. Stratification and introduction of manual training samples 

The classification of the Sentinel-2 composite conducted with stratification and combination of 

manual and automatic training sample collection generated the COSsim Level 3 product seen in 

Figure 10. The map was produced by a classification performed with 6000 or the largest amount 

available of training sampling units per class. The overall accuracy of the classification, computed 

with the independent validation dataset, was 66.7%. The distribution of the validation sampling 

units is also shown in Figure 10. 

 

Figure 10: Classification map produced using stratification and combination of manual and automatic training. 
Points represent the distribution of the validation sample. 

The map exhibits a predominance of agriculture throughout the study area, with cork and holm 

oak restricted to the eastern part of the region. Patches of eucalyptus occur especially in the 

southeast and southwest part of the map. The northwest portion of the map depicts a 

concentration of non-vegetated surfaces, corresponding to the rocks present in this 

mountainous area. In this particular location, it is possible to observe some errors caused by 
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classifying bare rock, i.e. non-vegetated surfaces, as built up. Maritime pine forest are 

condensed in the western part of the map, in agreement with COS. In addition, natural 

grasslands and shrublands are spread throughout the entire region. 

  Reference 

 Class BUP AGR NGL CHO EUC OBL MTP OCF SBL NVS WTR 

C
la

ss
if

ic
at

io
n

 

BUP 16 2 14 1     1   1 2   
AGR   56 31     15 1   7     
NGL   1 33     2     3 1   
CHO     1 5               
EUC     1   6 1 2 1 3     
OBL     1     38           
MTP   1     7 3 84 13 1     
OCF         5 1 20 11 1     
SBL   1 5   6 8 16 8 96 1   
NVS 1   4           4 7 1 
WTR                     49 

Table 12: Confusion matrix of the classification. BUP: Built up, AGR: Agriculture, NGL: Natural Grasslands, CHO: Cork 
and Holm Oak, EUC: Eucalyptus, OBL: Other Broadleaf, MTP: Maritime Pine, OCF: Other Coniferous, SBL: Shrubland, 

NVS: Non-vegetated Surfaces, WTR: Water. 

 

Figure 11: Example of confusion between agriculture and natural grasslands. 

The confusion matrix of the classification is presented in Table 12. The data indicates a notable 

confusion between natural grasslands and built up, natural grasslands and agriculture, other 

broadleaf and agriculture, maritime pine and other coniferous and shrubland and maritime pine. 

Confusion among agriculture and natural grasslands is evidenced in Figure 11, where an area 

identified as natural grasslands in COS 2018 is classified as managed grasslands, i.e. agriculture 

according to COSsim Level 3. Overall, confusion was predominant between vegetated classes. 

Cork and holm oak appeared to be the class which benefited the most from the process of 
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stratification and manual training, showing small omission and commission errors. Agriculture 

and built up exhibited only a few omission errors, whilst the commission errors were significantly 

more abundant. Moreover, water was the class with smaller classification errors, as expected. 

5.2. Comparison with benchmark classification 

The benchmark classification, conducted without stratification and manual training, is depicted 

in the map of Figure 12. The classification overall accuracy was 60.2%. In comparison with the 

accuracy of the classification performed with stratification and combination of automatic and 

manual training (66.7%), this result indicates that the former classification has slightly higher 

accuracy. However, considering the confidence interval of 95% (approximately ±4% for both 

classifications), the difference in accuracy was not statistically significant. 

The analysis of the map reveals a predominance of shrubland, natural grasslands and 

agriculture. In contrast with the classification map of section 5.1, there was a reduction in the 

abundance of agricultural areas, which transitioned to shrubland and natural grasslands in the 

benchmark map. Another dissimilarity involves cork and holm oak, which in the benchmark are 

no longer limited to the eastern part of the region. In addition, the rocks in the northwest are 

still present, despite an increase in misclassification of rocks as built up. Fewer eucalyptus were 

mapped, most of them being located in the southwest. 

 

Figure 12: Benchmark classification map, produced without stratification and manual training sample. 
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  Reference 

 Class BUP AGR NGL CHO EUC OBL MTP OCF SBL NVS WTR 
C

la
ss

if
ic

at
io

n
 

BUP 16 1 12       1     4   
AGR   27 16     4           
NGL   9 79     6     6 1   
CHO     1 6 14 27 18 3 15     
EUC         2 1           
OBL           21           
MTP         7 2 77 15 2     
OCF         4 3 24 11 2     
SBL   3 12 1 1 7 9 4 70     
NVS                 2 4 1 
WTR                     49 

Table 13: Confusion matrix of the benchmark classification. BUP: Built up, AGR: Agriculture, NGL: Natural 
Grasslands, CHO: Cork and Holm Oak, EUC: Eucalyptus, OBL: Other Broadleaf, MTP: Maritime Pine, OCF: Other 

Coniferous, SBL: Shrubland, NVS: Non-vegetated Surfaces, WTR: Water. 

Table 13 presents the confusion matrix of the benchmark classification and the accuracy metrics 

per class are shown in Table 14. In terms of F1-score, the introduction of stratification and 

manual training benefited all classes, except for non-vegetated surfaces, built up and natural 

grasslands. The last two showed a decrease in F1-score, even though they were expected to 

benefit from the manual training of their spectral subclasses. Cork and holm oak, eucalyptus and 

other broadleaf were the classes that benefited the most, with an increase in F1-score of 

70.15%, 18.68% and 25.38%, respectively. In the case of cork and holm oak, stratification and 

manual training caused a substantial reduction in commission error, as seen in the precision and 

in the comparison between both confusion matrices. Despite not having manual training, some 

classes, e.g. other broadleaf, exhibited increases in F1-score. Regarding the precision and recall, 

only maritime pine and shrubland presented an increase in both metrics simultaneously. A 

reduction was observed in built up and the remaining classes had a tradeoff between increase 

and decrease in precision and recall. 

Class 
Precision (%) Recall (%) F1-score (%) 

Benchmark SMT Benchmark SMT Benchmark SMT 

Built up 47.06 43.24 100.00 94.12 64.00 59.26 
Agriculture 57.45 50.91 67.50 91.80 62.07 65.50 
Natural Grasslands 78.22 82.50 65.83 36.67 71.49 50.77 
Cork and Holm Oak 7.14 83.33 85.71 83.33 13.19 83.33 
Eucalyptus 66.67 42.86 7.14 25.00 12.90 31.58 
Other Broadleaf 100.00 97.44 29.58 55.88 45.65 71.03 
Maritime Pine 74.76 77.06 59.69 67.74 66.38 72.10 
Other Coniferous 25.00 28.95 33.33 33.33 28.57 30.99 
Shrubland 65.42 68.09 72.16 82.76 68.63 74.71 
Non-vegetated Surfaces 57.14 41.18 44.44 63.64 50.00 50.00 
Water 100.00 100.00 98.00 98.00 98.99 98.99 

Table 14: Benchmark classification accuracy assessment and comparison with classification performed with 
stratification and manual training (SMT). 

In addition to the analysis of the accuracy metrics, a visual inspection was conducted to evaluate 

the differences among the maps. Figure 13 presents the classifications for an area affected by 
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forest fires in 2017 (stratum 2). The comparison between classifications reveals that 

stratification and manual training of burned natural grasslands and eucalyptus (Figure 13c) 

might have contributed to reduce the misclassification of built up within burned areas. 

Another demonstration of how stratification and incorporation of manual training might have 

improved the classification is exhibited in Figure 14. In this example, an area encompassed by 

stratum 4 (forest cuts 2015-2018), identified as eucalyptus forest in COS 2018, was mapped 

mostly as shrubland by the benchmark classification (Figure 14b). The new classification, on the 

other hand, mapped correctly most of the eucalyptus. The benefit observed in this situation can 

be explained by the introduction of manual training classes eucalyptus young cuts and 

eucalyptus 1 year cuts. 

Regarding the cork and holm oak stratum, limiting the areas where pixels can be classified as 

cork and holm oak caused a significant reduction in the dispersion of cork and holm oak 

throughout the region, as seen in Figure 15. In comparison with COS 2018 (Figure 15a), the 

benchmark classification was notably dissimilar, whereas the new classification exhibited a 

spatial distribution closer to COS’s. 

 

Figure 13: Benefits of stratification and manual training – a) orthophoto of an area affected by fires in 2017 (stratum 
2); b) benchmark classification map; c) map produced with stratification and manual training. 



42 

 

Figure 14: Benefits of stratification and manual training – a) orthophoto of an area where forest cuts occurred 
(stratum 4); b) benchmark classification map; c) map produced with stratification and manual training. 

 

Figure 15: Spatial distribution of cork and holm oak according to a) COS 2018; b) the benchmark classification; c) the 
classification conducted with stratification and manual training 

Validation and on map visual inspection provided different insights about the impact of 

employing stratification and manual training. The small improvement observed by the accuracy 

assessment of the validation sample was considered not statistically significant. This can be 
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explained by the predominance of the complementary stratum in the study region, as it accounts 

for 86.2% of the area, whereas the second largest stratum, Forest Cuts 2015-2018, corresponds 

to only 3.9%. In addition, 89.17% of the sampling units in the validation sample belong to the 

complementary stratum. Therefore, it was expected that the results of the accuracy assessment 

would be heavily influenced by the complementary stratum, which, despite having classes 

manually trained, encompass general spectral characteristics instead of being distinguished by 

particular land cover (e.g. burned areas), making it similar to the benchmark approach of 

classifying the study area regardless of stratum. However, visual inspection of both maps 

demonstrated that the innovative approach might have contributed to improve the map, 

although most improvements were observed outside of the complementary stratum, which 

represent a small fraction of the total area. 

5.3. Influence of sample size 

Eight classifications with variable training sample size were performed in the complementary 

stratum. The results computed with the validation dataset exhibited fairly similar classification 

accuracies, despite the significantly different sample sizes (Figure 16). The values remained 

relatively stable even after a reduction of more than 90% in the number of sampling units per 

class. The highest accuracy (69%) was yielded by the classifications with 2000 and 4000 sampling 

units per class, whilst the lowest accuracy (66.2%) was observed using 50 sampling units per 

class. The variation in accuracy was approximately 3% and it was not possible to identify a trend 

in accuracy as a function of the size of the training sample. The error tolerance of the accuracy 

estimates was approximately 4% and the confidence intervals overlap, which means that the 

differences among the classifications’ accuracy are not statistically significant. 

 

Figure 16: Accuracy estimates and confidence interval of classifications with various sample size. 
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These results are in accordance with the findings of Rodriguez-Galiano et al. (2012) and Thanh 

Noi and Kappas (2018), which suggested that RF has low sensitivity to variations in sample size. 

Furthermore, there is indication that smaller samples might be as capable as larger samples to 

distinguish land cover classes adequately. As shown in Table 10, sampling is not restricted to a 

small group of polygons, which could mean reduced class variability. A possible explanation for 

the similar accuracies is the training strategy, which was conducted with spectral subclasses 

instead of map classes. Spectral subclasses are used to distinguish the spectral diversity present 

within a map class, thus ensuring that different cover types are taken into account. As a result, 

such strategy incorporates by design a certain spectral diversity in the samples, regardless of 

their size. 

Spectral diversity can be examined through the distribution of the coefficient of variation (CV) 

computed for all bands and training classes (Figure 17). The histogram illustrates that samples 

of 50 and 6000 sampling units per class have similar CV distribution. A closer investigation of the 

CVs of the near-infrared band for three distinct months (Table 15) also shows comparable values 

for both sample sizes. 

 

Figure 17: Coefficient of variation computed for all bands and training classes. 

Class Sampling 
Oct Feb Jul 

50 6000 50 6000 50 6000 

Other Broadleaf Automatic 0.22 0.23 0.20 0.22 0.10 0.10 

Martitime Pine Automatic 0.18 0.16 0.20 0.18 0.14 0.12 

Other Coniferous Automatic 0.13 0.16 0.14 0.17 0.13 0.17 

Agricultural Natural Grasslands Manual 0.22 0.20 0.17 0.19 0.15 0.16 

Mountain Natural Grasslands Manual 0.13 0.14 0.13 0.17 0.10 0.12 

Dense Shrubland Manual 0.18 0.17 0.26 0.23 0.17 0.16 
Table 15: Coefficient of variation of the near-infrared band calculated for October, February and July. 
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Intra-class variability is exhibited in the scatterplots of Figure 18 and Figure 19, which depict the 

relationship between red and near-infrared bands of the samples with 50 and 6000 sampling 

units per class. In spite of having less units, the smaller sample seems to have fairly similar 

distribution in comparison with the larger. Furthermore, considering the sampling method, the 

analysis of Table 15 in conjunction with Figure 18 and Figure 19 reveals that variability is similar 

regardless of the sampling method being automatic of manual. This is particularly relevant since 

one could expect that the automatic sampling method, due to the application of filters, would 

result in more homogeneous samples, i.e. low spectral variability, when compared to the manual 

method. 

 

Figure 18: Scatterplots exhibiting the correlation between red (horizontal axis) and near-infrared (vertical axis) 
bands of samples with 50 (red) and 6000 (blue) sampling units per class for October, February and July. Only 

automatically sampled training classes considered. 
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Figure 19: Scatterplots exhibiting the correlation between red (horizontal axis) and near-infrared (vertical axis) 
bands of samples with 50 (red) and 6000 (blue) sampling units per class for October, February and July. Only 

manually sampled training classes considered. 

Therefore, although collecting large samples automatically might seem advantageous, it may 

not result in enhancing classification accuracy in the specific case of Random Forest trained with 

subclasses that contribute to increase spectral diversity. Moreover, RF’s sensitivity to variations 

in sample size in classifications with a large number of predictor variables was found to be 

comparable to classifications with fewer predictor variables. Despite the sensitivity evaluation, 

our experiments did not look for the minimum number of training sampling units that could be 

used before accuracy drops dramatically. 



47 

5.4. Improvement of training sample using classification uncertainty 

Computation of uncertainty (U) according to the Breaking Ties heuristics produced the map 

depicted in Figure 20, where values closer to 0 represent high uncertainty, whilst values close to 

1 represent low uncertainty. In spite of the following analysis being focused on the 

complementary stratum, samples were collected regardless of stratum, therefore, the 

uncertainty was computed for the whole region. The map indicates that an expressive portion 

of the pixels have U ≤ 0.25. This suggests that those pixels might have spectral responses for 

which the classifier had difficulties to predict a class, increasing the chance of error. In fact, an 

analysis of the uncertainty of the validation dataset shows that 47.42% of the sampling units 

with U ≤ 0.1 were classified incorrectly. This could mean that training samples’ spectral diversity 

did not encompass such pixels. Another hypothesis is that these could be mixed pixels, e.g. 

transition between classes, which the classifier finds difficult to distinguish. Thus acquiring new 

sampling units in these areas is expected to improve the classifier’s predictive ability. 

 

Figure 20: Map of the classification uncertainty, computed using Breaking Ties heuristics. 

After the application of the 0.1 threshold, following the 5x5 moving window smoothing, 

uncertainty patches were delineated. The selected patches of high classification uncertainty 

comprised a total area of 5866.2 ha. A total of 180 polygons were digitized and labeled on top 

of the selected uncertainty patches, comprising a total of 19799 new sampling units. Patch 

delineation of classes industrial and sunflower yielded very small polygons, which were 
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discarded. In addition, no photointerpreted polygon was labeled as road network or industrial. 

Then, no sampling units were collected for such classes. As already mentioned in section 4.5, 

patches or parts of patches located on top of agricultural crops were not photointerpreted, since 

distinguishing crop type on the orthophoto is not possible. Table 16 presents a summary of the 

uncertainty patches and the new samples derived from the photointerpretation of polygons 

contained in the patches. Polygons digitized within the 20 largest patches overall were assigned 

to their correspondent class in the table. 

A number of up to 500 sampling units were collected from the patches, which were incorporated 

to an initial training sample of up 500 units per class. The validation of the classification 

conducted with the improved training dataset showed a slight increase in accuracy 

(approximately 1%), however, according to the confidence intervals (± 3.9%), the difference can 

be considered not statistically significant (Table 17). 

Patch/Training Class 
Patch 

Area (Ha) 

Photo-interpreted Initial 
Sample 

Size 

Additional 
Sample 

Size 

Final 
Sample 

Size Polygons Sampling units  

20 largest overall 4955.9 N/A N/A N/A N/A N/A 
Built up 36.6 4 40 500 40 540 
Industrial - - - 500 - 500 
Road Network 38.3 - - 500 - 500 
Oat 98.2 - - 500 - 500 
Wheat 33.3 - - 500 - 500 
Barley 5.1 - - 500 - 500 
Ryegrass 3.4 - - 500 - 500 
Triticale 5.1 - - 500 - 500 
Rye 254.8 - - 500 - 500 
Corn 78.9 - - 500 - 500 
Sunflower - - - 17 - 17 
Managed Grasslands 73.6 5 308 500 308 808 
Agric. Natural Grassland 31.9 23 3722 500 500 1000 
Mount. Natural Grassland 25.1 2 220 500 220 720 
Eucalyptus Adult 24.8 6 579 428 500 928 
Other Broadleaf 21.6 18 1906 500 500 1000 
Maritime Pine 37.4 9 769 500 500 1000 
Other Coniferous 22.5 20 1418 500 500 1000 
Dense Shrubland 38.7 47 4195 500 500 1000 
Baresoil 35.4 27 4782 500 500 1000 
Bare Rock 44.1 1 48 500 48 548 
Water 13 18 1812 500 500 1000 
Total 5866.2 180 19799 10445 4616 15061 

Table 16: A summary of the total area collected employing the uncertainty workflow: number of polygons and 
sampling units available after photointerpretation, number of additional sampling units and final sample size for 

new training. 
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Classification Description Accuracy (%) 

Reference 
Original classification, trained with up to 6000 sampling units per 
class 

68.8 ± 3.9 

   

Improved 
New classification with additional sampling units collected from 
areas of high uncertainty 

69.7 ± 3.9 

Table 17: Comparison of the overall accuracy for the reference and improved classification. 

The confusion matrices of both classifications are exhibited in Table 18 and Table 19, 

respectively. Accuracy metrics by class (precision, recall and F1-score) are shown in Table 20. 

Considering the F1-score, the improved classification benefited seven classes: built up, natural 

grasslands, eucalyptus, other broadleaf, maritime pine, other coniferous and water. The 

addition of new sampling units was most beneficial for natural grasslands and eucalyptus, which 

had an increase of 12.99% and 19.29% in F1-score, respectively. There was only a small increase 

in the case of the other five classes, with a tradeoff between reduction and growth in 

commission and omission errors, which overall contributed to an increase in classification 

accuracy. Natural grasslands was the only class in which both precision and recall metrics 

increased, meaning a reduction in commission and omission errors. On the other hand, 

agriculture, shrubland and non-vegetated surfaces exhibited a decrease in F1-score, thus 

contributing to a decrease in classification accuracy, having the last two classes seen a reduction 

in both precision and recall. Non-vegetated surfaces had the highest decrease (16.52%) in F1-

score. 

An important aspect to be discussed is the training class balance, which was highly affected by 

the unequal incorporation of additional training sampling units. This was particularly relevant in 

the case of the agricultural classes, but was also observed in built up, mountain natural 

grasslands and bare rock, besides all agricultural classes. 

  Reference 

 Class BUP AGR NGL CHO EUC OBL MTP OCF SBL NVS WTR 

C
la

ss
if

ic
at

io
n

 

BUP 15 2 11 1           1   
AGR   55 25     13 1   6     
NGL   1 24     2     3     
CHO                       
EUC         5   1         
OBL     1     37           
MTP   1     6 3 76 13 1     
OCF         5 1 19 11 1     
SBL   1 4   6 8 15 7 91     
NVS 1   1           4 6 1 
WTR                     49 

Table 18: Confusion matrix of the reference classification of the complementary stratum for COSsim Level 3. BUP: 
Built up, AGR: Agriculture, NGL: Natural Grasslands, CHO: Cork and Holm Oak, EUC: Eucalyptus, OBL: Other 

Broadleaf, MTP: Maritime Pine, OCF: Other Coniferous, SBL: Shrubland, NVS: Non-vegetated Surfaces, WTR: Water. 
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  Reference 

 Class BUP AGR NGL CHO EUC OBL MTP OCF SBL NVS WTR 

C
la

ss
if

ic
at

io
n

 
BUP 13   9             1   
AGR   35 14     4     2     
NGL   3 40     1     5     
CHO                       
EUC         11 1 3 1 1     
OBL     1     45 1         
MTP         3 2 71 10 1     
OCF   3 2 1 5 2 25 15 5     
SBL   4 7   4 15 9 4 89     
NVS 2 3 5           2 5   
WTR                     50 

Table 19: Confusion matrix of the improved classification of the complementary stratum for COSsim Level 3. BUP: 
Built up, AGR: Agriculture, NGL: Natural Grasslands, CHO: Cork and Holm Oak, EUC: Eucalyptus, OBL: Other 

Broadleaf, MTP: Maritime Pine, OCF: Other Coniferous, SBL: Shrubland, NVS: Non-vegetated Surfaces, WTR: Water. 

Class 
Precision (%) Recall (%) F1-score (%) 

Reference Improved Reference Improved Reference Improved 

Built up 50.00 56.52 93.75 86.67 65.22 68.42 
Agriculture 55.00 63.64 91.67 72.92 68.75 67.96 
Natural Grasslands 80.00 81.63 36.36 51.28 50.00 62.99 
Eucalyptus 83.33 64.71 22.73 47.83 35.71 55.00 
Other Broadleaf 97.37 95.74 57.81 64.29 72.55 76.92 
Maritime Pine 76.00 81.61 67.86 65.14 71.70 72.45 
Other Coniferous 27.03 24.56 35.71 51.85 30.77 33.33 
Shrubland 68.94 67.42 85.85 84.76 76.47 75.11 
Non-vegetated Surfaces 46.15 29.41 85.71 83.33 60.00 43.48 
Water 100.00 100.00 98.00 100.00 98.99 100.00 

Table 20: Precision, recall and F1-score for both classifications. 

Since no additional sampling units were incorporated in the agricultural classes (except for 

managed grasslands), such lack of improvement might have prevented a higher growth in 

accuracy. Furthermore, only 40 additional sampling units were collected for RF training class 

built up, accounting for all the new units of the COSsim Level 3 class built up, as no units were 

collected for industrial and road network. This might also have contributed to inhibit an increase 

in classification accuracy. 

Furthermore, the analysis of Table 16 reveals that in the case of RF training classes built up, 

managed grasslands, mountain natural grassland, eucalyptus adult and bare rock only few 

polygons were delineated within the uncertainty patches. Mountain natural grassland, for 

instance, had only two polygons from which 220 sampling units were extracted. Assuming that 

polygons encompass relatively homogeneous areas, the 220 units could be considered 

redundant, i.e. lack spectral diversity. This could be extrapolated to some extent for the 

aforementioned classes, which means that RF training classes whose additional sampling units 

were extracted from a very limited number of polygons might have only a narrow improvement, 

if any, which may result in minimum impact on classification accuracy. However, while 
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eucalyptus had only 6 polygons, it was the second class that benefited the most in terms of 

improvement in F1-score. This could be explained due to eucalyptus being derived from few 

polygons in the initial training, which were subjected to strict filtering rules. Hence, even though 

there were few additional polygons derived from the uncertainty patches, they could have 

generated a gain in terms of spectral diversity. For future works, in order to increase the number 

of polygons, a larger number of uncertainty patches could be collected. This may involve a fine-

tuning of the threshold parameter as well as the number of uncertainty patches collected. 

 

Figure 21: Reduction of misclassifications possibly caused by adding new training sampling units – a) orthophoto of 
a mountainous area and location of additional training sampling units derived from areas of high uncertainty; b) 

reference classification; c) improved classification. Pixels outside the complementary stratum were not classified. 

In addition to the accuracy assessment, a visual inspection of the reference and improved 

classification maps was conducted. Overall, the classifications were relatively similar, as 74.11% 

of the pixels had identical values in both maps. Besides, the spatial distribution of specific cover 

types, e.g. eucalyptus and maritime pine, was similar among the classifications. However, it 

could be observed that numerous pixels classified as agriculture in the reference classification 

shifted to natural grasslands or non-vegetated surfaces. Although occurring throughout the 

whole region, this trend was most apparent in the mountains to the northwest, where it too 

evidenced less misclassifications involving built up, shrubland and non-vegetated surfaces 
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(Figure 21). This was more evidenced in regions close to additional sampling units, however the 

same effect could be observed in areas where no additional units were collected (Figure 22). 

 

Figure 22: Reduction of misclassifications observed in areas where no additional sampling units were collected – a) 
orthophoto of a mountainous area; b) reference classification; c) improved classification. Pixels outside the 

complementary stratum were not classified. 

The effect of adding new training sampling units extracted from patches of high uncertainty was 

also noticeable for other classes. Figure 23 illustrates how the improved classification mapped 

an area of eucalyptus forest more competently when compared to the reference classification. 

In this case, a reduction of pixels misclassified as maritime pine is observed. The impact of the 

additional sampling units is noticed in the whole vicinity, including the in the southeast of the 

map. 
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Figure 23: Highlight of the classification of eucalyptus forest – a) false color orthophoto and distribution of 
additional eucalyptus adult training sampling units; b) reference classification; c) improved classification. Pixels 

outside the complementary stratum were not classified. 

Another example is exhibited in Figure 24, indicating that the additional sampling units might 

also have contributed to improve the classification in this area. The effects of the new training 

points are extended beyond their vicinity, for instance, in the south of the mapped region. Zones 

misclassified as eucalyptus and other coniferous in the reference classification switched to other 

broadleaf in the improved classification. Again, it is possible to see that the improvement in 

classification was evidenced not only in areas near the additional training sampling units, but 

also spread across the entire study region (Figure 25). 



54 

 

Figure 24: Highlight of the classification of other broadleaf – a) false color orthophoto and distribution of additional 
other broadleaf training sampling units; b) reference classification; c) improved classification. Pixels outside the 

complementary stratum were not classified. 

 

Figure 25: Highlight of the classification of other broadleaf in areas where no additional sampling units were 
collected – a) false color orthophoto; b) reference classification; c) improved classification. Pixels outside the 

complementary stratum were not classified. 
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Figure 26: Highlight of the classification of baresoil – a) false color orthophoto and distribution of additional baresoil 
training sampling units; b) reference classification; c) improved classification. Pixels outside the complementary 

stratum were not classified. 

Additional training might also have contributed to reduce the confusion between built up and 

baresoil, as illustrated in Figure 26. In this example, areas misclassified as built up in the 

reference classification were classified as non-vegetated surfaces after the introduction of new 

training.  

The use of additional sampling units collected from areas of high classification uncertainty to 

improve the training dataset did not provoke a statistically significant impact on COSsim Level 3 

classification accuracy. The results might have been hindered by the lack of new sampling units 

for some training classes as well as by extracting new units from a limited number of polygons. 

Despite the poor statistical results, visual inspection of the classification map suggested that the 

additional sampling units might have contributed to improve the classification in particular 

areas. 
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6. CONCLUSION 

In this work, a Random Forest supervised classification of multi-temporal Sentinel-2 data 

adopting an innovative process of stratification and combination of automatic and manual 

training was conducted to map land cover in Trás-os-Montes, Portugal. Three main research 

objectives were proposed: to assess the impact of incorporating stratification and manual 

training in the process of classification, to assess the influence of variation in training sample 

size in classification accuracy and to evaluate whether incorporating new training sampling units 

extracted from areas of high classification uncertainty could improve classification accuracy. 

The classification workflow consisted in mapping LCLU based on satellite imagery and using 

existing reference datasets to extract training samples automatically. A process of stratification 

of the study region and introduction of manual training samples was adopted to improve the 

classification. The implementation of the classification allowed mapping LCLU with an accuracy 

of 66.7%. Therefore, this method can be considered appropriate to be employed as an 

operational LCLU mapping strategy at the country level and serve as a model to other countries, 

provided the necessary reference cartographies. However, due to the complexity and 

dimensionality of the feature space, the classification workflow had a high computational cost. 

In this context, future studies within the topic of variable selection can contribute to reduce the 

feature space dimension and make the classification more efficient. Preliminary experiments 

have already suggested that a similar classification performance could be achieved using about 

40 of the 285 features used in this study. 

The assessment of the employment of stratification and manual training indicated that the 

difference in classification accuracy was not statistically significant when compared to the 

benchmark classification, conducted without stratification and using only automatic training 

sampling. The analysis of the accuracy metrics by class revealed that there were improvements 

for the majority of the classes. Yet, some classes whose training was partially manual exhibited 

a deterioration in accuracy. Since the complementary stratum accounts for over 86% of the 

study area and over 89% of the validation sample, the results were strongly influenced by such 

stratum, which comprises general spectral characteristics instead of covering areas with a 

particular landscape pattern. Therefore, the effects of stratification and manual training in 

classification accuracy might have been hindered by the size of the complementary stratum, 

which biased the comparison with the benchmark classification. In addition to the accuracy 

assessment, a visual inspection was conducted in order to compare both maps, which evidenced 



57 

potential improvements following the use of stratification and manual training. Most of the 

improvements were observed outside the complementary stratum, therefore representing a 

small fraction of the study area. However, experiments conducted by DGT in other study regions, 

where the distribution of the strata is less imbalanced, indicated that stratification and manual 

training resulted in better classifications, what encouraged DGT to adopt this approach in the 

production of COSsim. In terms of further investigations, it could be convenient to assess the 

impacts of stratification and manual training separately. 

Regarding the variation in training sample size, the results converged with what the literature 

suggests, revealing that differences in the accuracy of Random Forest classifications of complex 

feature space were not statistically significant, even after a reduction of over 90% in the training 

sample size. The investigation of such results indicated that the approach employed in the 

training, which consists in using spectral subclasses of the land cover class, might have 

contributed to produce small differences, as it ensures that spectral diversity is introduced in 

the samples independently of their size. Furthermore, evaluation of the automatically and 

manually collected samples showed that there is minimum difference in spectral variability 

between the smaller and larger samples. The experiments ratified Random Forest’s low 

sensitivity to alterations in sample size, which means that increasing training sample size does 

not necessarily produce higher accuracy for classifications with a large number of predictor 

variables. This could affect the design of operational mapping workflows that rely on automatic 

training sample collection, since in the case of Random Forest collecting large samples might not 

yield higher classification accuracy if using spectral subclasses to assure spectral diversity. 

Concerning the incorporation of training sampling units extracted from areas of high 

classification uncertainty, the change in accuracy was considered not statistically significant. The 

analysis of the accuracy metrics by class revealed that built up, other broadleaf, maritime pine, 

other coniferous and water had a minor overall improvement in accuracy, whilst natural 

grasslands and eucalyptus exhibited a higher improvement. On the other hand, agriculture, 

shrubland and non-vegetated surfaces had an overall deterioration in accuracy. The lack of 

additional training sampling units collected from areas of high classification uncertainty in the 

case of road network, industrial and all agricultural classes except for managed grasslands might 

have prevented achieving higher classification accuracy. Furthermore, some classes had their 

additional sampling units extracted from a small number of polygons, which can limit the 

spectral diversity of the new sample, thus reducing the impact on classification accuracy. Despite 
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the poor performance regarding accuracy statistics, visual inspection of the classification map 

indicated that the additional samples collected from areas of high classification uncertainty 

might have contributed to enhance map accuracy, particularly by mitigating the confusion 

associated to specific classes. Nevertheless, further investigation can be conducted to better 

explore the potential of classification uncertainty, which involves collecting new sampling units 

for the classes that lacked and developing a strategy to increase the number of training polygons 

drawn within the uncertainty patches. 
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