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ABSTRACT 
 

Diabetes is a chronic metabolic disease with increasing numbers worldwide. Pancreatic 

deposits of human Islet Amyloid Polypeptide (hIAPP) represent the major histopathological hallmark of 

type 2 diabetes. IAPP is a hormone produced by β-cells, which is released upon glucose stimulation 

concomitantly with insulin, acting on gastric emptying and glycemic control. It is synthesized as 

preproIAPP (ppIAPP) hormone that is first processed to proIAPP (pIAPP) and finally to its mature form 

(matIAPP). Impairment in IAPP processing seems to be associated with the accumulation of immature 

IAPP forms, leading to the formation of toxic intracellular aggregates, which have been associated with 

β-cell dysfunction and loss. Currently, IAPP proteotoxicity is not fully understood. The main goals of this 

study were to investigate the pathological role of immature IAPP forms involved in intracellular 

aggregation and to test the potential protective activity of tauroursodeoxycholic acid (TUDCA) towards 

IAPP-induced cytotoxicity. To this end, Saccharomyces cerevisiae models recapitulating IAPP 

intracellular aggregation were characterized. Expression of human ppIAPP, pIAPP, and matIAPP 

fusions with green fluorescent protein (GFP) induced toxicity in yeast cells, with ppIAPP exerting the 

most deleterious effect on yeast growth and cell viability. Moreover, the expression of all IAPP 

constructs led to the formation of intracellular aggregates with different biochemical features. The first 

steps on generating a pancreatic β-cell line (INS-1) stably expressing hIAPP were also conducted. 

Overall, the data obtained suggest that the accumulation of immature hIAPP forms triggers the 

formation of highly cytotoxic intracellular aggregates. Although TUDCA has been shown to overcome 

proteotoxicity induced by amyloid proteins, neither TUDCA nor ursodeoxycholic acid (UDCA) were able 

to protect yeast cells against the toxic effects of hIAPP aggregates. These novel yeast models represent 

powerful tools for future research focused on IAPP-induced toxicity and to screen for compounds 

mitigating the deleterious effects caused by IAPP aggregation. 

 

Keywords: Amylin, Diabetes, IAPP, Protein aggregation, Saccharomyces cerevisiae, TUDCA 
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RESUMO 
 

A Diabetes é uma doença metabólica crónica, com números crescentes por todo o mundo. Os 

depósitos do polipeptídeo amiloide dos ilhéus pancreáticos humanos (hIAPP) representam a principal 

característica histopatológica da diabetes do tipo 2. IAPP é uma hormona pancreática produzida nas 

células β, que é secretada juntamente com a insulina em resposta à presença de glucose, atuando no 

controlo glicémico. É sintetizado na forma de preproIAPP (ppIAPP) que é primeiro processado em 

proIAPP (pIAPP) e finalmente na sua forma madura (matIAPP). Alterações no processamento do IAPP 

parecem estar associadas a uma acumulação de formas imaturas de IAPP, levando à formação de 

agregados intracelulares tóxicos, associados à perda das células β. Atualmente, a proteotoxicidade do 

IAPP não é totalmente compreendida. Os principais objetivos deste estudo foram desvendar o papel 

patológico das formas imaturas de IAPP envolvidas na agregação intracelular e testar a potencial 

atividade protetora do ácido tauroursodeoxicólico (TUDCA) na toxicidade induzida pelo IAPP. Assim, 

modelos de Saccharomyces cerevisiae que recapitulem a agregação intracelular de IAPP foram 

desenvolvidos e caracterizados. A expressão de fusões de ppIAPP, pIAPP e matIAPP humano com a 

proteína fluorescente verde (GFP) induziram toxicidade na levedura, com ppIAPP exercendo o efeito 

mais deletério no crescimento e viabilidade celular. A expressão de todas as construções de IAPP 

levaram à formação de agregados intracelulares com diferentes características bioquímicas. Os 

primeiros passos no desenvolvimento de uma linha de células β pancreáticas (INS-1) expressando 

hIAPP de forma estável também foram realizados. Assim, os dados sugerem que a acumulação de 

formas imaturas de hIAPP desencadeia a formação de agregados intracelulares citotóxicos. Embora o 

TUDCA tenha demonstrado melhorar a proteotoxicidade induzida por proteínas amilóides, nem ele 

nem o ácido ursodeoxicólico (UDCA) foram capazes de proteger as células de levedura contra os 

efeitos tóxicos dos agregados de hIAPP. Estes novos modelos representam ferramentas poderosas 

para investigações futuras com foco na toxicidade induzida por IAPP e no screeening de compostos 

que possam mitigar os efeitos deletérios causados pela agregação de IAPP.  

 

Palavras-chave: Amilina, Diabetes, IAPP, Agregação de proteínas, Saccharomyces cerevisiae, 

TUDCA 
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I. INTRODUCTION 
 

I.1 Diabetes Mellitus – A Brief Overview  

I.1.1 Epidemiology 
Diabetes mellitus (DM), hereby referred to as diabetes, is a chronic metabolic disease that 

affects millions of people worldwide. In 2019, approximately 463 million adults (1 in 11 adults) between 

the ages of 20 to 79 were living with diabetes. It is estimated that this number will reach 700 million by 

2045 (International Diabetes Federation, 2019). In Portugal, by 2015, 9,8% of the population between 

the ages of 25 and 74 had diabetes (Barreto et al., 2017). Furthermore, according to the National 

Diabetes Observatory’s preliminary data, in 2018, this number already increased to 13,6% (National 

Diabetes Observatory, 2019).  

In 2019, 4.2 million deaths all over the world were attributed to diabetes, and the number of 

people with the disease or at risk of developing this condition is rapidly increasing in most countries. 

Diabetes brings severe impacts on the world’s economy and people’s life-quality, becoming a growing 

public health problem (International Diabetes Federation, 2019). Of importance, diabetes often leads to 

other health complications such as vascular and neurological complications (Del Guerra et al., 2005; 

Kahn, 2003; Kahn et al., 2006). Therefore, there is an urgent necessity to uncover the early pathological 

causes of diabetes as to develop effective strategies allowing its control or prevention.  

 

I.1.2 Classification 
Diabetes is mainly characterized by elevated blood glucose levels (hyperglycaemia) and 

glucose intolerance due to insufficient insulin response (International Diabetes Federation, 2019; 

Kayatekin et al., 2018; Zou et al., 2019). However, this disease is also highly heterogeneous regarding 

its clinical presentation and progression (Ahlqvist et al., 2018).  

Diabetes is generally classified into two most common types: type 1-diabetes mellitus (T1DM) 

and type 2-diabetes mellitus (T2DM). T1DM represents 5-10% of all diabetes cases and results in 

complete insulin insufficiency due to the destruction of insulin-producer β-cells by islet-cell antibodies 

(Rorsman & Braun, 2013; Del Guerra et al., 2005). On the other hand, T2DM counts for approximately 

90% of the cases, mainly characterized by insufficient insulin secretion and insulin resistance (Zou et 

al., 2019). The underlying causes for the development of T2DM are still unknown and probably have 

multiple origins, both genetic and environmental, such as lifestyle factors (Haataja et al., 2008). (Ascroft 

& Rorsman, 2012). Genome-wide association studies (GWAS) show more than sixty common gene 

variants or loci, most of which play a role in β-cell function, that could increase the risk of developing 

T2DM (Rorsman & Braun, 2013). Additionally, a recent study showed that T2DM is remarkably highly 

heterogeneous, and there could be different subgroups with different characteristics and risks of 

diabetic complications (Ahlqvist et al., 2018). For example, it was identified a cluster of individuals with 

insulin-resistance with a high risk of diabetic kidney disease and a cluster of young insulin-deficient 

individuals with metabolic deficiencies demonstrating the high variability of this disease (Ahlqvist et al., 

2018). 
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I.1.3 Glucose Homeostasis  
Glucose homeostasis results from a tightly regulated system where the rise of blood glucose is 

compensated by insulin release by pancreatic β-cells (Raimundo et al., 2020). In healthy conditions, 

this feedback guarantees that the plasma glucose levels remain within the physiological range (between 

3.5-5.5 mmol/L) (Guemes et al., 2016).  

A human pancreas contains ~ 1 million pancreatic islets of Langerhans. These islets are quite 

heterogeneous in terms of composition, having different types of cells with different functions. 

Pancreatic β-cells are the most abundant endocrine cell type (~ 50%). These cells are responsible for 

the synthesis and secretion of insulin and IAPP, essential for maintaining glucose homeostasis. Besides 

β-cells, pancreatic islets are also composed of α-cells (35-40%), δ-cells (10-15%)  responsible for 

glucagon and somatostatin release, respectively. Pancreatic polypeptide cells (F-cells) are also 

components of islets (< 5%) and are responsible for the secretion of pancreatic polypeptide (PP). ε-

cells produce ghrelin and are less than 1% of islet secretory cells (Rorsman & Braun, 2013; Brereton 

et al., 2015; McGuckin et al., 2020) (Figure I.1).  

 

Insulin is an essential hormone in glucose regulation. It is mainly released in response to the 

intracellular uptake and glucose metabolism after food ingestion. The predominant glucose transporters 

in human β-cells are GLUT1 (encoded by SLC2A1), GLUT2 (encoded by SLC2A2) and GLUT3 

(encoded by SLC2A3). Once in the cytosol, glucose metabolism begins with glucose phosphorylation, 

generating glucose 6-P, catalyzed by the rate-limiting enzyme glucokinase (GCK). This enzyme 

functions as a glucose sensor, having a relatively lower affinity for glucose than the other hexokinases 

(Fu et al., 2013) and is not inhibited by its own products. Additionally, loss-of-function mutations in this 

GCK gene result in this pathway’s impairment (Rorsman & Braun, 2013). Glucose 6-P then enters the 

glycolysis pathway, whose end-products enter the oxidative phosphorylation pathway, that ends in ATP 

Figure I.1 – Schematic representation of the main secretory cells of pancreatic islets of 
Langerhans. Islets of Langerhans are mainly composed by b-cells (~ 50%), α-cells (35-40%) and d-cells (10-
15%). b-cells produce and secrete insulin, that promotes glucose uptake in muscle tissues, while inhibits liver 
gluconeogenesis and lipolysis in the adipose tissue. α-cells are responsible for the secretion of glucagon which 
has the opposite effect of insulin in liver and adipose tissue, promoting gluconeogenesis and lipolysis. d-cells 
secrete somatostatin, which has an inhibitory effect on insulin and glucagon. 

Pancreas

Islet of Langerhans

!-cell

"-cell

#-cell

Glucagon

Insulin

Somatostatin

Muscle

Glucose Uptake

Liver

Gluconeogenesis

Lipolysis

Adipose 
tissue



 
 

3 

production. Elevated levels of ATP inhibit the K+ channels leading to depolarization of the cell 

membrane. The alteration of membrane potential activates the voltage-dependent calcium channels, 

causing a calcium influx, triggering insulin release via exocytosis. Although the increase in calcium influx 

triggers insulin exocytosis, other secondary signals like cAMP, IP3, DAG amplify this response (Ascroft 

& Rorsman, 2012; Fu et al., 2013; Xavier & Rutter, 2020) (Figure I.2). 

 

I.I.4 Pathogenesis 
The pathogenesis of T2DM is highly complex and many aspects of its pathophysiology are still 

unknown. It is known that mutations in genes involved in b-cell physiology increase the risk of 

developing this disease (Rorsman & Braun, 2013). Moreover, lifestyle factors such as diet and obesity 

are known to influence b-cell function and peripheral insulin resistance. T2DM is thought to result of two 

major components: the development of insulin resistance and b-cell dysfunction/mass reduction 

(Rorsman & Braun, 2013).  

Furthermore, in islets from patients with T2DM, glucose-induced insulin secretion is reduced 

by 60% when compared to healthy individuals due to an impairment in b-cell function. Besides, oxidative 

glucose metabolism is also compromised in these individuals, along with a reduction in GCK expression 

Figure I.2 – Schematic representation of glucose-induced insulin pathway in pancreatic b-cells. In b-
cells, glucose is transported to the cytosol by specific transporters and phosphorylated by glucokinase to glucose 6-
P. This compound enters the glycolysis pathway, whose end-products enter the oxidative phosphorylation pathway 
and ATP is produced. Rising levels of ATP inhibit K+ channels leading to the depolarization of the cell membrane. 
The alteration of membrane potential activates the voltage-dependent calcium channels, causing a calcium influx, 
triggering the exocytosis of insulin into the blood stream. ATP = Adenosine triphosphate, ER = endoplasmic 
reticulum, TCA = Tricarboxylic acid. Image created with Biorender.com.  
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(Rorsman & Braun, 2013). Furthermore, patients with T2DM often manifest b-cell mass reduction due 

to an increase in b-cell apoptosis (Fu et al., 2013). 

Therefore, different causes for β-cell loss have been suggested, namely, glucolipotoxicity, 

endoplasmic reticulum (ER) stress, inflammation, and amyloid formation (Haataja et al., 2008). 

Glucolipotoxicity results of a chronic and extensive exposure of the pancreatic cells to high 

concentrations of glucose and fatty acids, with deleterious effects on b-cell function. Elevated 

concentrations of glucose overstimulate the insulin secretion pathway, disturbing the cells homeostasis 

and induces the production of reactive oxygen species (ROS) and inflammation. The b-cells are 

particularly vulnerable to oxidative stress, which can trigger signaling cascades resulting in cell death. 

So, when glucotoxicity happens, b-cell damage can lead to irreversible defects in insulin production and 

secretion (Fu et al., 2013). Furthermore, high glucose levels may interfere with fatty acid metabolism 

and promote the formation of toxic by-products. Besides, studies with fatty acids demonstrate that 

prolonged exposure to these molecules has impacts on insulin secretion. ER stress and the activation 

of the unfolded protein response (UPR) are also implicated in b-cell damage. Additionally, as the 

number of functional b-cells declines, islet amyloid deposits also seem to emerge, suggesting a relevant 

role of IAPP in b-cell dysfunction (Fu et al., 2013). All these toxic stimuli can create a huge metabolic 

burden in the ER and in the metabolic cellular pathways and create an unbalance that cannot be 

restored, resulting in cell death. 

 

I.2 Diabetes as a Protein Misfolding Disorder 
Changes in the correct folding of specific proteins can lead to the formation of aggregates and 

subsequent amyloid fibrils and plaques (Figure I.3). Protein misfolding is associated with several 

disorders, including T2DM. Amyloid formation was thought to be the leading cause of protein deposition-

related diseases (Bucciantini et al., 2002; Knowles et al., 2014). Currently, oligomers are considered to 

be more toxic than the mature amyloid fibrils. They can interfere with essential cellular processes such 

as cell signaling, apoptosis, inflammation, and other cellular pathways culminating in cell death 

(Knowles et al., 2014). 

Figure I.3 – Schematic representation of amyloid fibril formation. Single monomers start 
aggregating leading to the formation of oligomers that turn into protofibrils, culminating in the formation of full 
mature fibrils. Monomers aggregation may follow alternative pathways giving rise to off-pathway oligomers that 
can interfere with crucial cell processes.   
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One important feature of diabetes is the aggregation of islet amyloid polypeptide (IAPP), which 

has been shown to have an essential role in the damage of pancreatic β-cells and disease progression. 

IAPP fibril deposits are histopathological hallmarks of T2DM, being present in the pancreas of 90% of 

patients (Mukherjee et al., 2017). IAPP aggregation is thought to be responsible for β-cell loss and for 

decline in β-cell function as demonstrated in post-mortem studies and islets transplants (Mukherjee et 

al., 2015). Studies in animal models (non-human primates and cats) that spontaneously develop T2DM 

demonstrated that the presence of IAPP aggregates precedes β-cell dysfunction and loss (Mukherjee 

et al., 2017). Furthermore, transgenic rodent models overexpressing human IAPP developed the 

pathological characteristics of T2DM, with formation of toxic intracellular oligomers of IAPP and 

deposition of IAPP (Mukherjee et al., 2015; Westermark et al., 2011; Lin et al., 2007). However, the link 

between IAPP pathogenicity and β-cell dysfunction is not completely understood (Kahn, 2003; 

Westermark et al., 2011). 

 

I.2.1 Islet Amyloid Polypeptide 
IAPP, also known as amylin, was discovered and isolated from islet tumor cells of patients. It 

consists of a polypeptide hormone co-expressed and co-secreted with insulin by pancreatic islet β-cells. 

Therefore, the release of IAPP closely mirrors that of insulin. The storage and secretion ratio 

IAPP:insulin is approximately 1:100 in healthy individuals (Hull et al., 2004; Denroche et al., 2018). 

Importantly, this ratio can increase to 1:20 in T2DM individuals due to alterations in insulin sensitivity 

and insulin resistance since both are subjected to the same regulatory mechanisms (Hull et al., 2004; 

Fernández, 2014; Knight et al., 2008). Indeed, since IAPP and insulin are co-secreted, it is thought that 

insulin resistance may be closely associated with IAPP aggregation since it leads to an increase in 

IAPP production (Mukherjee et al., 2017).  

 IAPP is a soluble protein and its single subunit/monomeric form state is unfolded. After its 

production, IAPP is mainly stored in the halo of the secretory granules and posteriorly secreted upon 

the stimulation with glucose and other secretagogues, like sulfonylureas. (Fernández, 2014; Cobb & 

Dukes, 1998). Under normal conditions, IAPP plays a role in glycemic regulation. It inhibits insulin 

secretion, increasing the blood glucose uptake and reducing the glucose output from the liver. IAPP 

also increases renin-activity and vasodilation, and slows gastric emptying, suppressing appetite (Figure 

I.4).  

Figure I.4 – Physiological functions of human IAPP. IAPP plays a role in glycemic regulation. It inhibits 
insulin secretion, glucose output from liver, slows gastric emptying and suppresses appetite, decreasing body 
weight. It also promotes renin-activity, vasodilation and blood glucose uptake. IAPP = islet amyloid polypeptide 
(Adapted from Press et al., 2019). 
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I.2.2 Regulation of IAPP Expression 
The human IAPP gene, located on the short arm of chromosome 12, belongs to the calcitonin 

family. It is present in all mammals, and there is a high homology of the mature IAPP sequence among 

the different species (Asthana et al., 2018). 

The human IAPP gene contains three exons. The first exon is presumably a regulatory mRNA 

sequence encoding most of the 5’-untranslated region (UTR), while the second one includes the 

sequences for the initiation of translation, the signal peptide (SP), and a few amino acids that compose 

the N-terminus of preproIAPP (ppIAPP). The third exon contains the amino acids of the mature IAPP 

(matIAPP), an 3’-untranslated region, and the C-terminus of proIAPP (pIAPP). An Alu sequence of 

repetitive DNA is also present in exon 3 (Christmanson et al., 1990; Asthana et al., 2018; Nishi et al., 

1989). Mutations in IAPP gene have been associated with increased T2DM susceptibility (Gasa et al., 

2001). 

 

Several factors affect IAPP gene regulation. Peptide expression is regulated through the IAPP 

gene promoter, responsive to glucose but less sensitive than the insulin promoter (Fernández, 2014). 

The pancreatic and duodenal homeobox 1 (PDX1) transcription factor activates both insulin and IAPP 

promoters. The insulin gene is mainly activated following PDX1 modulation by glucose. However, the 

IAPP gene is not activated by PDX1 unless in the absence of calcium (Ca2+) signaling. When Ca2+ 

signaling is restored, the IAPP gene becomes activated with the help of PDX1, indicating that glucose 

has a direct impact on the transcription of insulin and an indirect impact on IAPP transcription. Studies 

suggest an essential role of calcium and PKA/C signaling pathways in IAPP gene transcription 

(Macfarlane et al., 2000; Asthana et al., 2018). 

 

I.2.3 IAPP and Insulin Processing  
IAPP and insulin processing in β-cells are very similar since both hormones are processed by 

the same enzymes at the same location (Marzban et al., 2005). Generation of mature IAPP starts with 

the synthesis of the 89-residue IAPP precursor – ppIAPP – in β-cells. The ppIAPP hormone is 

Figure I.5 – Schematic representation of the relationship between hIAPP gene and mRNA. The hIAPP 
gene is composed by the three exons represented by the respective number. The region of the mRNA encoded by 
each exon is indicated: 5’-UTR and 3’-UTR represent 5’- and 3’- untranslated regions of mRNA. IAPP represents 
the mature IAPP sequence and SP represents the signal peptide. mRNA of hIAPP also has an Alu sequence of 
repetitive DNA and the polyadenylation is represented by the tale of poly(A). IAPP = islet amyloid polypeptide, SP 
= signal peptide, UTR = untranslated region (Adapted from Nishi et al., 1989). 
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hydrolyzed by a signal peptidase in the ER to form a 67-residue pIAPP, which is cleaved at the two 

pairs of basic residues (Lys-Arg) located in the NH2 and COOH termini, by prohormone convertase 2 

(PC2) and prohormone convertase 1/3 (PC1/3), respectively (Marzban et al., 2005). pIAPP dibasic 

residues are removed by the action of carboxypeptidase E (CPE) to form the mature IAPP consisting 

of 37 amino acids, which is stored in secretory granules. Other post-translational modifications include 

the formation of an intramolecular disulfide bridge between residues 2 and 7, and amidation of the C-

terminus by peptidylglicine α-amidating monoxygenase (PAM) (Figure I.6A) (Westermark et al., 2011; 

Marzban et al., 2005; Marzban et al., 2006; Zou et al., 2019). 

Similarly, insulin is first synthesized as the precursor – preproinsulin. This preprohormone’ 

signal peptide is cleaved in the ER to yield proinsulin. Still within the ER, intramolecular disulfide bonds 

are formed between the peptide cysteine residues. Proinsulin is then cleaved by endoproteases PC1/3 

and PC2 and CPE removes four amino acid residues to yield mature insulin, which is stored in the 

secretory granules (Figure I.6.B) (Bratanova-Tochkova et al., 2002).  

PC1/3, PC2, PAM, CPE are all highly enriched in mature secretory granules, emphasizing their 

crucial role in prohormone processing. Expression of these enzymes is dynamically and tightly 

regulated at the transcriptional, translational, and posttranslational levels, and diabetogenic stressors 

have been shown to affect their regulation (Marzban et al., 2005; Paulsson et al., 2006; Chen et al., 

2018). 

 

Figure I.6 – Processing pathway of human IAPP and insulin. (A) IAPP is synthesized as an 89-residue 
designated preproIAPP. The 22-residue signal sequence (dark blue) is cleaved to give rise to the 67-residue 
proIAPP. The N- and C-terminal proIAPP flanking regions are shown (blue). ProIAPP is then cleaved by the 
prohormone convertases PC1/3 and PC2 at two conserved dibasic sites. The C-terminus is amidated by PAM after 
processing by CPE resulting in the mature 37-residue IAPP. The biologically active peptide has a disulfide bridge 
between Cys-2 and Cys-7. (B) Insulin is first synthesized as preproinsulin. The signal peptide (dark green) is 
cleaved in the ER to yield proinsulin. There occurs the formation of disulfide bonds between the cysteine residues. 
Proinsulin is then processed by PC1/3 and PC2 at two conserved sites. Additionally, CPE removes four amino acid 
residues to yield mature insulin. IAPP = islet amyloid polypeptide, ER = endoplasmic reticulum, PC1/3 = 
prohormone convertase 1/3, PC2 = prohormone convertase 2, CPE = carboxypeptidase E, PAM = peptidylglicine 
α-amidating monoxygenase. 
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I.2.4 IAPP Secretion Pathways 
Endocrine cells, such as pancreatic β-cells, possess two secretory pathways involved in the 

release of hormones: the regulated and the constitutive pathways. Prohormones are synthesized in the 

ER and are then transported to the trans-Golgi network (TGN) (Marzban et al., 2005). In the regulated 

secretory pathway, pro-proteins are sorted into secretory granules for processing and storage before 

their release by exocytosis. This process occurs in response to secretagogues. The constitutive 

secretory pathway is thought to be the default pathway by which newly synthesized pro-proteins exit 

the TGN in small vesicles to be rapidly released without storage. It is only regulated at the level of 

biosynthesis and is not subject to regulation by secretagogue (Marzban et al., 2005) (Figure I.7). Co-

localization of IAPP and insulin in secretory granules suggested that they are both released via the 

regulated secretory pathway in normal conditions (Gasa et al., 2001). However, 90% of proinsulin is 

directed at the regulated pathway, while only 66% of pIAPP appeared to follow the same pathway. 

Indeed, studies suggest that the increase in IAPP production might overwhelm the regulated pathway 

and promote IAPP secretion via the constitutive pathway (Gasa et al., 2001). Under certain conditions, 

unprocessed forms of IAPP might also be secreted by both pathways, which could promote amyloid 

formation and deposition (Marzban et al., 2005; Marzban et al., 2006). 

 

 

 

 
Figure I.7 – Schematic representation of IAPP and insulin secretion by the regulated and 

constitutive pathways. IAPP and insulin are synthesized in the ER and transported to the Golgi. Then they can 
follow two different secretion pathways. In the regulated secretory pathway, the hormones are sorted into secretory 
granules to finish processing and stored before their release by exocytosis. In the constitutive secretory pathway, 
the newly synthesized hormones exit the trans-Golgi network (TGN) in small vesicles that can be rapidly released 
without storage. IAPP = islet amyloid polypeptide, ER = endoplasmic reticulum (Adapted from Marzban et al., 
2005).    
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I.2.5 IAPP Clearance  
IAPP is removed from cells in different ways. The plasma clearance rates of IAPP and insulin 

differ as circulating IAPP is removed from plasma by renal excretion, by glomerular filtration and tubular 

secretion, being more slowly cleared than insulin (Hull et al., 2004; Leckström et al., 1997). Furthermore, 

β-cells have enzymes that can clear IAPP. However, little is known about the enzymes involved in this 

turnover. The insulin-degrading enzyme (IDE) is a protease with high-affinity for insulin that can also 

degrade IAPP, playing an important role in IAPP clearance (Bennett et al., 2000). Interestingly, 

mutations in IDE gene have been associated with T2DM susceptibility. Inhibition of IDE function 

enhanced IAPP aggregation in rat pancreatic β-cells (Mukherjee et al., 2015). Additionally, peptidase 

neprilysin (NEP) can also cleave and degrade IAPP, inhibiting oligomers, and fibrils formation by a non-

catalytic interaction between the two proteins (Guan et al., 2012). Studies in mice overexpressing hIAPP 

showed elevated NEP levels, which can be a compensatory mechanism for the increase in IAPP 

production (Mukherjee et al., 2015, Zraika et al., 2007).  

 

I.2.6 IAPP Amyloidogenic Properties 
Amyloidogenesis is a process characterized by the spontaneous self-assembly of peptides into 

higher-order structures such as oligomers, protofibrils and mature fibrils (Raimundo et al., 2020). The 

monomeric form of IAPP is a natively or intrinsically disordered protein (IDP), meaning that, under 

physiological conditions, it lacks a stable or fixed tertiary structure. Instead, it can assume numerous 

configurations and can interact with different structures. Importantly, IDPs are usually aggregation-

prone. Human IAPP, as well as IAPP from primates and cats, forms amyloid structures. The aggregation 

properties of IAPP are thought to be linked to the presence of proline residues. The most variable region 

is between residues S20 to S29, thought to be an important section in amyloidogenic propensity 

However, studies show that other sequence regions also interfere with IAPP aggregation (Figure I.8) 

(Fernández, 2014; Akter et al., 2015, Asthana et al., 2018). 

 
 

The kinetics of IAPP aggregation in vitro have been investigated in several studies. It starts with 

a slow nucleation phase, which is followed by a rapid increase in the aggregation rate and culminating 

in a fibrillogenic plateau. IAPP dimerization starts by the formation of α-helical structures that lead to 

the formation of β-hairpins and β-sheets that mainly compose the mature fibrils. Current hypothesis 

highlights the importance of oligomers and intermediate species as the main drivers of IAPP toxicity 

(Fernández, 2014; Westermark et al., 2011). 
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Figure I.8 – Alignment of preproIAPP sequences from human, rat, mouse, cat and primate. The signal peptide 
is represented (dark blue), followed by proIAPP sequence (blue). The mature IAPP sequence (light blue) is shown 
with a square marking the most variable region, between residues S20 and S29 (Adapted from Asthana et al., 
2018). 
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I.2.7 Molecular Mechanisms Underlying IAPP Cytotoxicity  
IAPP cytotoxicity has been demonstrated in vitro and in animal models. Similar to findings of 

protein aggregates in neurodegenerative diseases, the consensus on the real toxic forms of IAPP has 

shifted from the amyloid deposits and large plaques to smaller and diffusible oligomers, which can 

infiltrate cellular membranes and alter essential cell functions. Recent findings show that these 

aggregates can be found intra- and extracellularly (Kayatekin et al., 2018; Asthana et al., 2018). 

Intracellular IAPP oligomers disrupt multiple aspects of β-cell function. They can lead to ER 

stress, defects in the UPR, proteasome deficiency, autophagy impairment, inflammation, mitochondrial 

dysfunction, receptor-mediated mechanisms linked to oxidative stress, and activation of signaling 

cascades and cell membrane permeabilization resulting in β-cell apoptosis. All these processes 

promote islet amyloidosis and disease progression. Besides, receptor-mediated mechanisms of IAPP 

toxicity support the pathological role of extracellular oligomers, suggesting that they can bind to 

receptors and activate the inflammasome. Thus, IAPP-mediated cytotoxicity can be activated by extra- 

and intracellular oligomers (Abedini & Schmidt, 2013; Raleigh et al., 2017) (Figure I.9). 

Remarkably, the ER has a vital role in protein synthesis and post-translational modifications, 

including their correct folding and assembly (Cao et al., 2016; Chung et al., 2017). It is also the 

intracellular organelle that senses environmental changes and cellular stress, being very susceptible to 

factors that alter its homeostasis, leading to ER stress (Chung et al., 2017). Several factors such as 

accumulation of unfolded or misfolded proteins, ROS, free fatty acids, and hyperglycaemia lead to ER 

stress (Cao et al., 2016; Chung et al., 2017). It has been shown that pancreatic β-cells are particularly 

susceptible to ER stress, mainly because they have an extremely developed ER due to their high protein 

synthesis and secretion rate. Moreover, several studies point to ER stress as a critical mechanism 

involved in β-cell dysfunction and T2DM progression associated with extra- and intracellular IAPP 

aggregation (Huang et al., 2019). Additionally, oxidative stress has been linked to diabetes 

pathophysiology in animal models and humans (Baynes & Thorpe, 1999; Kucharska et al., 2000). 

Several authors believe that liver damage (steatohepatitis) described in T1DM and T2DM and non-

alcoholic steatohepatitis (NASH) is due to mitochondrial dysfunction closely dependent on oxidative 

stress, which is enhanced in diabetic animals and patients (Lukivskaya et al., 2007).   

One of the most widely accepted hypothesis indicate that IAPP-induced cytotoxicity occurs via 

a membrane disruption mechanism. IAPP oligomers are mainly composed of α-helical structures and 

can penetrate and anchor the membrane to form a hollow tubular structure leading to pores’ formation, 

disrupting plasma and organelle membranes, ultimately leading to apoptosis (Abedini & Schmidt, 2013; 

Zou et al., 2017). These findings are compatible with the hypothesis that cell death occurs when the 

expression of unprocessed IAPP exceeds β-cells capacity to process it, resulting in an accumulation of 

toxic, partially processed forms that aggregate and interfere with essential cellular pathways.  
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I.3 Experimental Models of IAPP Proteotoxicity 
Over the years, several experimental models have been used in diabetes research (Rees & 

Alcolado, 2005). Non-mammalian animal models, like Caenorhabditis elegans, Drosophila 

melanogaster and zebrafish, have the advantage of having a low maintenance cost, a short life cycle, 

and various gene-editing tools available. However, their translational value to the human is limited, 

considering the differences in physiology. On the other side, larger animal models such as dog, pig, 

and non-human primates, are closer to human physiology but are a lot harder to maintain and have 

long life cycles with a few offspring. Rodents emerged as a compromise between throughput and 

translational value since their physiology is relatively similar to humans and are easier to maintain and 

study (Kleinert et al., 2018).  

On the other side, the contribution of in vitro models have been very relevant in the diabetes 

field. As human islets are laborious to maintain, human β-cell lines have been an important tool for 

understanding β-cells physiology. However, these lines are still unstable, less physiologic and sensible, 

becoming difficult to manipulate under laboratory conditions (Andersson et al., 2015; Green et al., 

2018). As a consequence of these limitations, and despite the physiological differences between rodent 

and human β-cell lines (Green et al., 2018), recombinant rodent β-cell lines have been widely used to 

better understand β-cell physiology. Thus, there is currently no ideal β-cell model to address the 

intricacies of pancreatic β-cell dysfunction observed in T2DM (Zou et al., 2019; Hohmeier et al., 2000). 

Figure I.9 – Possible molecular mechanisms underlying IAPP-induced toxicity. Intracellular IAPP 
aggregates may disrupt multiple aspects of β-cell function, leading to ER stress, defects in the UPR, proteasome 
deficiency, autophagy impairment, inflammation, mitochondrial dysfunction, oxidative stress, activation of signaling 
cascades and cell membrane permeabilization resulting in b-cell apoptosis. Extracellular aggregates can form 
amyloid deposits damaging pancreatic tissue. ER = endoplasmic reticulum, UPR = unfolded protein response, 
IAPP = islet amyloid polypeptide.  
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I.3.1 INS-1 Pancreatic β-cell Line  
Several attempts have been made to design stable insulin-secreting cell lines. The most widely 

used cells lines are from radiation- or virus-induced insulinomas such as β-hyperplastic islet-derived 

cells derived from preneoplastic islet cells or rat insulinoma cell line (RIN) and insulinoma cell line (INS-

1) generated from irradiated cells (Skelin et al., 2010). 

The INS-1 rat cell line has been used as a model for metabolic signaling mechanisms in the β- 

cell, having a higher response to glucose over the physiological range than the other cell models 

(Hohmeier et al., 2000). 

Asfari et al. (1995) isolated the cell line INS-1 832/13 from a heterogeneous population of 

parental INS-1 cells with different glucose-sensing capacities and stably transfected them with a 

plasmid containing the human insulin gene under the control of the cytomegalovirus promoter and a 

neomycin resistance gene. Remarkably, the clone 832/13 had a stable and robust response to glucose-

stimulated insulin secretion (GSIS) similar to the physiological response. This enhanced secretory 

responsiveness to glucose can be maintained for a few months in culture, suggesting its potential for 

studying the mechanisms of insulin secretion and drug screening of therapeutic compounds diabetes  

(Hohmeier et al., 2000). Therefore, this INS-1 832/13 cell line arises as an optimized model to study the 

processes inherent to β-cells that are altered in diabetes. However, cell lines are complex and 

challenging to manipulate and it has not been developed a cell line model optimized to study all the 

aspects of IAPP cytotoxicity. 

 

I.3.2 Yeast Model of Protein Aggregation 
Saccharomyces cerevisiae is a simple eukaryotic organism that has been widely used as a 

model for the study of human diseases. It presents several advantages over the other experimental 

models. Being very versatile with a short generation time, it is easily manipulated and maintained under 

laboratorial conditions (Smith & Snyder, 2006).  

S. cerevisiae was the first eukaryotic organism to have its genome fully sequenced. This 

achievement allowed the development of a myriad of genetic and biochemical tools and resources, 

such as, yeast gene deletion strains, inducible and repressible systems to generate conditional mutants, 

two-hybrid system, strains engineered to overexpress heterologous recombinant proteins, among 

others (Menezes et al., 2015; Smith & Snyder, 2006).  

Remarkably, this yeast’s genome has approximately 1000 genes orthologous to mammalians 

and associated with human diseases, enabling the study of specific aspects of several human diseases 

(Menezes et al., 2015). The high evolutionary conservation of fundamental biological processes among 

eukaryotes make yeast a powerful model for the study of human diseases. Cell cycle, transcription and 

translation, protein processing, clearance and proteostasis mechanisms, vesicular trafficking, 

autophagy, cytoskeleton dynamics, organelle biogenesis and metabolism are some of the molecular 

processes that are shared between yeast and higher eukaryotes (Menezes et al., 2015; Smith & Snyder, 

2006). Particularly, protein folding is a critical process for cell survival, consequently, cellular 

mechanisms conserved from yeast to humans have evolved to ensure that proteins are correctly folded. 

Thus, yeast can provide a valuable tool to explore the mechanisms behind aberrant protein misfolding 
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and aggregation (Menezes et al., 2015; Tenreiro & Outeiro, 2010). This makes yeast an ideal model in 

interrogating the intricacies of human protein misfolding diseases. For instance, heterologous 

expression of disease-associated proteins has been used to investigate cellular responses and disease 

pathological mechanisms (Outeiro & Muchowski, 2004; Smith & Snyder, 2006). 

Yeast models expressing human proteins associated with several disorders capture key 

aspects of cellular pathology and have allowed major advances in understanding the fundamental 

pathological processes of human diseases (Khurana & Lindquist, 2010; Menezes et al., 2015). In the 

particular regard of IAPP, a recent study disclosed the first model of IAPP toxicity in yeast strains 

expressing IAPP oligomers triggering toxicity, ER stress and impairing ER transport. These models 

advanced the state of the art in the diabetes field, however, many aspects of IAPP proteotoxicity remain 

to be investigated and yeast models emerge as unprecedented tools to investigate several molecular 

aspects underlying IAPP aggregation and cytotoxicity (Kayatekin et al., 2018). 

 

I.4 Bile Acid Effects in Diabetes  
Bile acids are molecules derived from cholesterol and originated in hepatic cells (Vettorazzi et 

al., 2016). They play a role in the digestion and absorption of dietary lipids and fat-soluble vitamins, 

regulate cholesterol excretion and sterol homeostasis. They can also have a role as extracellular 

messengers in many tissues, including the pancreas (Vettorazzi et al., 2016). Previous studies suggest 

that their chemical structure may influence their bioactivity (Martinez et al., 1998; Hofmann & Roda, 

1984), and they recently emerged as important regulators of glucose and lipid metabolism (Cao et al., 

2016). 

 

I.4.1 Ursodeoxycholic acid (UDCA) and the Taurine-conjugate (TUDCA) Protective 
Functions 

Ursodeoxycholic acid (UDCA), a bile acid, and the taurine-conjugate (TUDCA) act as chemical 

chaperones that ameliorate ER stress (Chung et al., 2017) (Figure I.10). They have been extensively 

used in the treatment of different liver diseases, and have therapeutic potential in non-liver diseases, 

such as neurological, retinal, metabolic, and myocardial disorders (Chung et al., 2017; Lukivskaya et 

al., 2007; Vettorazzi et al., 2016). Moreover, increasing evidence in neurodegenerative disorders points 

to a role of these chaperones in preventing the protein aggregation to attenuate ER stress (Cadavez et 

al., 2014; Vettorazzi et al., 2016). 

UDCA is a primary component of black bear bile and has been used in clinic for the treatment 

of liver diseases over the years. It has a wide range of cellular actions, including anti-apoptotic and anti-

inflammatory effects in hepatocytes (Chung et al., 2016). It has beneficial effects on hepatic steatosis, 

insulin resistance, and enhancement of ER adaptive capacity (Cao et al., 2016). Previous studies 

demonstrated that UDCA could modulate the apoptotic pathway by preventing membrane 

perturbations/regulating mitochondrial functions with ROS reduction in hepatic and non-hepatic cells 

from various non-bile acid agents. The in vivo studies suggest that bile acids directly or indirectly 

modulate apoptosis-related protein abundance at the mitochondrial membrane (Rodrigues et al., 1998). 

UDCA alleviated ER stress, which resulted in the normalization of hyperglycaemia and restoration of 
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systemic insulin sensitivity, thereby revealing their potential benefits in treating type 2 diabetes (Özcan 

et al., 2006). UDCA improved the morphology of pancreatic β-cells and restored the amount of 

cytoplasmic secretory granules of insulin-producing β-cells, which resulted in increased insulin 

production and prevented hyperglycemia in a rat model of alloxan-induced diabetes (Lukivskaya et al., 

2004). 

 TUDCA is a chemical chaperone resulting from the natural conjugation of UDCA with taurine 

and it is produced in very small amounts. The taurine groups are known to enhance bioavailability of 

the compound (Invernizzi et al., 1999), so it is expected that TUDCA has a greater protective effect. It 

is a well-known inhibitor of ER stress, thereby improving protein folding. Studies in experimental models 

of obesity have reported that TUDCA can act as a chemical chaperone that ameliorates insulin 

resistance by reducing ER stress, stabilizing protein conformation, improving the ER folding capacity 

and the UPR. Additionally, studies in mouse pancreatic islets show that TUDCA can stimulate insulin 

secretion in a glucose-dependent manner by a mechanism mediated by the cAMP/PKA/CREB pathway 

(Cadavez et al., 2014; Vettorazzi et al., 2016). Furthermore, TUDCA treatment was shown to prevent 

β-cell dysfunction and maintain insulin secretory response in a similar way to untreated cells. Other 

evidences indicate that the activation of ER stress markers was reversed after treatment with this 

chaperone, and in thapsigargin or high glucose/palmitic acid treatment, the addition of TUDCA prevents 

activation of ER-stress protein markers. Importantly, results obtained using the hIAPP-INS1E cell line 

demonstrate that TUDCA treatment ameliorates insulin secretory response (Cadavez et al., 2014). 

 

 

 

 

I.5 Aims 
Given the importance of IAPP proteotoxicity in T2DM, understanding the mechanisms 

controlling IAPP processing and secretion from β-cells is critical. There is still a lot to unveil regarding 

the molecular mechanisms behind IAPP-induced toxicity. This may help identify new possible 

therapeutic targets to inhibit islet amyloid formation and lead to a better understanding of the disease. 

The main objective of this study was to understand the role of immature IAPP species in 

formation of intracellular aggregates by developing eukaryotic models facilitating the investigation of 

the mechanisms associated with IAPP processing and aggregation. The final goal was to investigate 

Figure I.10 – Chemical structure of TUDCA and UDCA. (A) TUDCA and (B) UDCA. The frames represent 
the differences between the two compounds. UDCA = ursodeoxycholic acid, TUDCA = tauroursodeoxycholic acid. 
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the potential protective activity of the chaperone UDCA and its taurine derivative TUDCA towards IAPP-

mediated proteotoxicity. 

To achieve these aims, the following intermediate goals were proposed: 

- To ascertain the pathological role of immature forms of human IAPP in yeast models 

(Task 1); 

- To develop an INS-1 832/13 rodent β-cell line stably expressing immature hIAPP for 

the validation of yeast results (Task 2); 

- To evaluate the potential protective effect of the chaperones UDCA and TUDCA  (Task 

3). 
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II. MATERIALS AND METHODS 
 

II.1 Materials 

II.1.1 Chemicals 
Several kits were used in this study, namely, In-Fusion® HD Cloning System (Takara Clon-

tech, Japan), ZR Plasmid Miniprep-Classic and Zymoclean Gel DNA Recovery Kit (Zymo Research, 

USA), MicroBCA kit (Thermo Fisher Scientific, USA), Cell Titer-Blue® Cell viability assay (Promega, 

USA). 

Yeast extract, tryptone and peptone were obtained from BD Biosciences, USA. Linear 

Hygromycin Marker 2 μg and Doxycycline were purchased from Takara Bio, Japan. 

Ethylenediaminetetraacetic acid (EDTA), 1,4-Dithiothreitol >99% (DTT), glycerol, ampicillin and 

galactose were obtained from Sigma®, Germany. GeneRuler 1 kb DNA Ladder, GeneRuler 100 bp 

DNA Ladder, Dimethylsulfoxide (DMSO), agarose, methanol and sodium-pyruvate were acquired from 

ThermoFischer Scientific, USA. Bovine Serum Albumin (BSA), Tween 20, denatured DNA from salmon 

sperm, Trichloroacetic acid (TCA), Hydrochloric Acid (HCl), lithium acetate (LiAc), raffinose, glucose 

and 2-mercaptoethanol from Sigma-Aldrich, USA. Phosphatase Inhibitor Cocktail Tablets and Pro-

tease Inhibitor Cocktail Tablets from Roche, Switzerland. Trypsin, phosphate buffer saline (PBS), Opti-

MEM, RPMI-1640, HEPES, L-glutamine, DMEM and penicillin-streptomycin were obtained from 

GibcoTM, USA. Sodium dodecyl sulfate (SDS), Urea and N, N, N, N’-Tetramethyl ethylenediamine 

(TEMED) were purchased from Merck, Germany. Acrylamide, glycine and Tris were purchased from 

Carl Roth, Germany. For mammalian cell transfection, FuGene® HD Transfection Reagent was 

obtained from Promega, USA and Lipofectamine 2000 Reagent (1 mg/mL) from Invitrogen, USA. 

GreenSafe Premium was purchased from NZYTech, Portugal and ECL™ Prime Western Blotting 

System from GE Healthcare, USA. Acetone and isopropanol were acquired from Acros Organics, USA. 

Acetic acid, NaCl and protein marker VI (10-245) prestained from PanReac Applichem, Germany and 

agar from Prolab Scientific, Canada. Yeast nitrogen base (YNB) without amino acids from Difco, USA 

and single amino acid dropout CSM-URA from MP Biomedicals, USA. Fetal bovine serum (FBS) was 

obtained from Biowest, France. Tauroursodeoxycholic acid (TUDCA) and Ursodeoxycholic acid 

(UDCA) were kindly provided by Dr. Margarida Braga. 

 

II.1.2 Equipment 
All the experimental procedures involving bacteria and yeast cell handling were performed in 

sterile conditions using a Labgard Class II biological Safety Cabinet. The experimental procedures with 

mammalian cells were performed in a Biological safety cabinet class 2 – Mars, Labo-Gene™. Bacteria 

and yeast cells were incubated in Excella E24 Incubator Shaker from New Brunswick Scientific and in 

a 200 IC incubator from Agitorb. DNA was quantified in Nanodrop (Thermo Fisher Scientific, USA). 

Readings of the OD600 were performed in 96-well plates (Thermo Fisher Scientific, USA) using a Biotek 

Power Wave XS Microplate Spectrophotometer (Biotek®, Winooski, USA) and absorbance and 

fluorescence readings were carried out using a Synergy™ HTX Multi-Mode Microplate Reader. Images 
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from western blot, filter trap and phenotypic assays were acquired using ChemidocTM XRS and 

ImageLab® software. GFP fluorescence was visualized using a Carl Zeiss LSM 710 (for confocal 

fluorescence microscopy) and a Leica Z2 fluorescence microscope and images were analyzed using 

Fiji-ImageJ1.51j8, USA. Flow cytometry was performed using a CyFlow Cube 6 (Sysmex Partec GmbH, 

Goerlitz, Germany), equipped with a blue solid-state laser (488 nm), green fluorescence channel 

(530/30 nm) and orange-red fluorescence channel (610/20 nm). Data analysis was performed using 

FlowJo software. Mini-PROTEAN Tetra cell system, Trans-Blot® SD semi-dry transfer system and Mini 

Trans-Blot® Electrophoretic Transfer Cell from Bio-Rad, USA were used in immunoblotting procedures. 

Thermocycler T3000 (Biometra, Germany) was used for the synthesis of cDNA. Centrifuges 

(Eppendorf, Germany) and thermomixer (VWR) were used when necessary. 

 

II.1.3 Culture Media 
Bacteria were cultured in liquid [5 g/L yeast extract, 10 g/L tryptone, 10 g/L NaCl] or solid [5 g/L 

yeast extract, 10 g/L tryptone, 10 g/L NaCl, 20 g/L agar] Luria-Broth (LB) media supplemented or not 

with the appropriated antibodies. 

 For yeast cell assays, the following media were used: YPD [20 g/L peptone, 20 g/L glucose, 10 

g/L yeast extract], Synthetic dropout (SD)-glucose medium [0.67% (w/v) YNB, 0.77 g/L CSM-URA, 2% 

(w/v) glucose], SD-raffinose medium [0.67% (w/v) YNB, 0.77 g/L CSM-URA, 1% (w/v) raffinose], SD-

galactose [0.67% (w/v) YNB, 0.77 g/L CSM-URA, 2% (w/v) galactose]. To prepare solid media, 2% of 

agar was used. 

For INS-1 832/13 cells the medium used was RPMI-1640 media supplemented with 10% FBS, 

10 mM HEPES, 2 mM L-glutamine, 1 mM sodium-pyruvate, 0.05 mM 2-mercaptoethanol. As for HeLa 

cells, DMEM High Glucose media supplemented with 10% FBS and 10% Penicillin-Streptomycin was 

used. 

 

II.1.4 Strains and Plasmids 
The bacteria strain used in this study was Escherichia coli (E. coli) XL1-Blue recA1 endA1 

gyrA96 thi-1 hsdR17 supE44 relA1 lac [F ́ proAB lacIqZ∆M15 Tn10 (Tetr)]. The yeast strain used in this 

study was BY 4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (obtained from EUROSCARF). The 

mammalian cell lines used in this study were INS-1 832/1 stably expressing pCMV-Tet3G marker (INS-

1 832/13 Tet3G), previously constructed in the lab and HeLa Tet-On® 3G (Takara Bio, Japan). 

 The plasmids used are listed in Table II.1.  
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Table II.1 – List of plasmids used in this study. 

 

Note: * Empty plasmid used as control, ATCC = American Type Culture Collection, IAPP = islet amyloid 
polypeptide, SP = signal peptide, GFP = green fluorescent protein, ppIAPP = preproIAPP, pIAPP = pIAPP, matIAPP 
= mature IAPP, ampR = ampicillin resistant. 
 

The yeast vectors expressing matIAPP, pIAPP and ppIAPP fused or not to GFP were previously 

constructed by digestion of p426-Gal-aSyn-GFP (Outeiro & Lindquist, 2003) with SpeI/HindIII to remove 

aSyn. The cDNA sequence of each form of IAPP was amplified by PCR and cloned into this vector 

using the In-Fusion Cloning kit. The same strategy was used to construct the vectors p426-SP-GFP 

and p426-SP. Briefly, the annealing of the respective primers was made for 5 min at 55 oC and it was 

confirmed by agarose digestion. The vectors p426-Gal1 and p426-Gal1-hIAPP-GFP were also digested 

with SpeI/HindIII for 1 h at 37 oC and purified with the kit Zymoclean™ Gel DNA Recovery Kit from the 

agarose gel.   

For the plasmids used in mammalian cells, they were previously constructed by cloning the 

cDNA of ppIAPP-GFP into the pTREG vector using the kit mentioned above. The same strategy was 

used for GFP alone by replacing the ppIAPP sequence with the sequence corresponding to GFP.  

Analytical 2% agarose gels were used to monitor the restriction patterns of DNA. The 

GeneRuler 1 kb DNA Ladder and GeneRuler 100 bp DNA Ladder were used as molecular weight 

markers. 

 

 

Plasmid Description Source or reference 

p426-Gal1* GAL1promoter, 2μ, URA ATCC® 87341™ 

p426-SP GAL1promoter-SP, 2μ, URA Raimundo et al. (2020) 

p426-GFP GAL1promoter-GFP, 2μ, URA Raimundo et al. (2020) 

p426-SP-GFP GAL1promoter-SP-GFP, 2μ, URA Raimundo et al. (2020) 

p426-ppIAPP-GFP GAL1promoter-ppIAPP-GFP, 2μ, URA Raimundo et al. (2020) 

p426-pIAPP-GFP GAL1promoter-pIAPP-GFP, 2μ, URA Raimundo et al. (2020) 

p426-matIAPP-GFP GAL1promoter-matIAPP-GFP, 2μ, URA Raimundo et al. (2020) 

p426-ppIAPP GAL1promoter-ppIAPP, 2μ, URA Raimundo et al. (2020) 

p426-pIAPP GAL1promoter-pIAPP, 2μ, URA Raimundo et al. (2020) 

p426-matIAPP GAL1promoter-matIAPP, 2μ, URA Raimundo et al. (2020) 

pTRE3G-IRES TRE3Gpromoter-IRES2, pUC, ampR Clontechâ 

pTRE3G-ppIAPP-GFP TRE3Gpromoter-ppIAPP-GFP, pUC, ampR  Raimundo et al. (manuscript 
under preparation) 

pTRE3G-GFP TRE3Gpromoter-GFP, pUC, ampR Raimundo et al. (manuscript 
under preparation) 
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II.1.5 Antibodies 
The set of antibodies used in this study is shown in the table below (Table II.2). All antibodies 

were diluted in PBS-T with 5% BSA. 

 

Table II.2 – List of antibodies used in this study. 

 

 
II.2 Methods 

II.2.1 Bacteria Transformation and Plasmid DNA Purification 
E. coli was used for cloning and plasmid propagation. Cells were grown in LB supplemented 

with 0.1 mg/mL of ampicillin for selection, under orbital agitation at 200 rpm. For the transformation, 10-

100 ng of DNA were added to 40 μL of competent E. coli suspension and incubated on ice for 30 min, 

followed by incubation at 42 oC for 1 min and 2 min incubation on ice, for thermal shock. Cells were 

then resuspended in 1 mL of LB and incubated for 1 h at 37 oC, with orbital agitation at 200 rpm. Cells 

were plated onto LB agar media supplemented with selective antibiotic marker. After incubation 

overnight at 37 oC, single colonies were inoculated in 2 mL of liquid LB media supplemented with 

antibiotic for plasmid DNA extraction and incubated overnight at 37 oC at 200 rpm (Froger et al., 2007). 

The kit ZR Plasmid Miniprep-Classic was used for plasmid DNA isolation according to 

manufacturer’s instructions. Briefly, the bacterial culture was centrifuged and the indicated buffers were 

used for cell lysis and neutralization. The resulting solution was centrifuged and the supernatant was 

transferred to a Zymo-SpinTM IIN column and washed. The plasmid DNA was then eluted and 

quantified in Nanodrop.   

Analytical 2% agarose gels were used to monitor plasmid DNA restriction patterns. The 

GeneRuler 1 kb DNA Ladder and GeneRuler 100 bp DNA Ladder were used as molecular weight 

markers. Plasmid DNA was stored at -20 oC. 

 

II.2.2 Yeast Competent Cells and Transformation 
Yeast transformation procedures were carried out as indicated using the LiAc standard method 

(Gietz & Schiestl, 1991). Cell cultures were incubated in YPD overnight at 30 ºC under orbital agitation 

at 200 rpm diluted until a final optical density at 600 nm (OD600) of 0.1 ± 0.01 (logarithmic growth phase) 

was obtained.  

The following equation was used to synchronize the cultures:   

Antibody Source Identifier Concentration 

Rabbit anti-IAPP polyclonal Sigma-Aldrich Cat# HPA053194 1:2500 

Mouse anti-GFP NeuroMabs Cat# 75-131 1:5000 

Mouse anti-Pgk1 monoclonal Invitrogen Cat# 459250 1:1000 
Goat anti-mouse polyclonal 

peroxidase-conjugated Sigma-Aldrich Cat# A5278 1:10000 

Stabilized goat anti-rabbit HRP-
conjugated Pierce Cat# 1858415 1:5000 
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where ODi is the initial optical density of the culture, Vi is the initial volume of culture, ODf is the 

final optical density of the culture, t is the time (usually 16 h), gt is the generation time of the strain and 

Vf is the final volume of culture (Raimundo et al., 2020).  

Cell cultures were incubated for approximately 4 h, centrifuged (4000 rpm, 5 min) and cells 

were resuspended in 1 mL of sterile H2O and transferred to microtubes. Cells were centrifuged at 8000 

rpm for 1 min and the supernatant was discarded. The pellet was resuspended in 1 mL of a solution of 

Tris-EDTA (TE)/LiAc [Tris 0.1 M; EDTA 10 mM; 100 mM LiAc]. Cells were centrifuged again and 

resuspended in TE/LiAc. The transformation mixture was prepared as follows: 5 µL of denatured DNA 

from salmon sperm; 0.5-1 ng of DNA; 50 µL of competent cells, 300 µL of PEG solution [40% PEG3350; 

1x TE; 100 mM LiAc].  

Cell suspensions were first incubated for 30 min at 30 ºC and then for 20 min at 42 oC. Cells 

were washed with 1 mL of sterile H2O, centrifuged at 4000 rpm 2 min and plated into (SD)-glucose 

medium. Plates were incubated for 48 h at 30 oC. 

 

II.2.3 Mammalian cells transfection 
INS-1 832/13 Tet3G and HeLa Tet-On® 3G were maintained in T-75 flasks in RPMI media with 

supplements and in DMEM media with supplements, respectively. Cells were kept in a 37 °C humidified 

incubator with 5% CO2 and were split every 3-4 days, when they obtained a confluence of 80-90%. 

INS-1 832/13 Tet3G cells were transfected with the pTREG vectors as indicated in Table II.1. 

For that, cells were seeded in 6-well plates (1 x 106 cells/well)  and kept at 37 °C with 5% CO2. FuGene 

was the transfection agent used and manufacture’s protocol was followed. Briefly, 2 µg of plasmid DNA 

and 4 µg of hygromycin linear marker and 6 µL of FuGene were added to Opti-MEM. The mixture was 

incubated for 30 min at room temperature and 200 µL of the reaction was added to each well. After 4 

h, the media was changed, 1 µg/µL Doxycycline was added, and 24 h after the cells were observed for 

GFP fluorescence. 

For HeLa Tet-On® 3G transfections, the same plasmid DNA was used. Cells were seeded in 

24-well plates (0.1 x 106 cells/well) or 96-well plates (1,68 x 104 cells/well) and kept at 37 °C with 5% 

CO2. Lipofectamine was the transfection agent used and manufacture’s protocol was followed. Shortly, 

1 µg of plasmid DNA and 4 µL of Lipofectamine were each added to 100 µL of Opti-MEM. The mixture 

was incubated for 10 min at room temperature and 36 µL or 6 µL of the reaction were added to each 

well on a 24-well plate or 96-well plate, respectively. After 4 h, the media was changed, 1 µg/µL 

Doxycycline was added, and 24 h after the cells were observed for GFP fluorescence. 

 

II.2.4 Yeast Growth Conditions 
Synthetic dropout (SD)-glucose medium was used to grow the cells transformed with p426-

derived plasmids previously mentioned. For all experiments, an isolated colony was inoculated in SD-

raffinose medium and cultures were incubated overnight at 30 oC under orbital shaking at 200 rpm. 

Cultures were diluted in fresh medium and, unless indicated otherwise, they were incubated under the 

Equation II.1  

 
Equation 1  

 
Equation II.1  

 
Equation 1  
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same conditions until an OD600 of 0.5 ± 0.05 (logarithmic growth phase) was obtained. Then, cell 

cultures were diluted as indicated for each assay. In all experiments, repression or induction of 

constructs was carried out in SD-glucose or SD-galactose media, respectively.  

 

II.2.5 Growth Curve Analysis 
For the growth curves, yeast cultures were diluted to OD600 0.05 ± 0.005 in SD-glucose and 

SD-galactose and incubated at 30 oC with shaking for 24 h. Growth was monitored hourly by measuring 

OD600. 

The data was analyzed using a model-free spline (nonparametric) and a model fitting (par-

ametric) approach was used to calculate the growth parameters in the R software. The package grofit 

(Kahm et al., 2010) was used to adjust a model-free spline and the parameters maximum cell growth 

(µm), length of the lag phase (lag time) were estimated from the spline fit. Grofit was also used to adjust 

a model-based and the parameters were estimated from the best model fit. The 95% confidence 

intervals (95CI) were calculated via bootstrapping for both model-free spline and model-based fits. 

 

II.2.6 Phenotypic Growth Assays 
For the phenotypic growth assays, yeast cells were grown in SD-raffinose medium to OD600 0.4 

± 0.04 and then OD600 was adjusted to 0.1 ± 0.01. Serial dilutions were performed with a ratio of 1:3, 

and 5 μL of each dilution was spotted onto solid SD-medium containing glucose or galactose as the 

sole carbon sources. Growth was recorded after 48 h and 72 h incubation at 30 oC (Lee et al., 2007). 

 

II.2.7 Fluorescence Microscopy  
Cell cultures were diluted to OD600 0.1 ± 0.01 in SD-galactose, incubated at 30 oC for 12 h under 

orbital agitation, and centrifuged at 3000 g for 3 min. Slides were prepared using 4 μL of cell 

suspensions.  

 

II.2.8 Flow Cytometry  
Cell cultures were diluted to OD600 0.1 ± 0.01 in SD-galactose and incubated at 30 oC for 3 h, 

6 h, 9 h, 12 h and 24 h under orbital agitation. Cells were incubated in a 96-well plate with Propidium 

Iodide (PI) at a final concentration of 5 µg/mL for the last 30 min of the time point at 30 oC under orbital 

agitation and protected from light. A minimum of 100 000 events were collected for each experiment. 

Cell doublets exclusion was performed based on Forward-A and -W scatter parameters. Results were 

expressed as the percentage of PI and GFP positive cells as compared to the control (Deere et al., 

1998; Haase & Reed, 2002). 

Additionally, assays with the compounds UDCA and TUDCA were performed. Cell cultures 

were diluted to OD600 0.1 ± 0.01 in SD-galactose and incubated for 12 h with UDCA (10 μM, 30 μM, 50 

μM, 70 μM) or TUDCA (100 μM, 250 μM or 500 μM). The consecutive steps were followed as described 

above.   
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II.2.9 Protein Extraction and Quantification 
Yeast cell cultures were diluted to OD600 0.1 ± 0.01 in SD-galactose and incubated at 30 oC 

under orbital agitation. Two different cell protein extraction protocols were used. 

For the Tris-based (TBS) [Tris 2.4 g/L, 8 g/L NaCl, pH 7.6] protein extraction, cells were 

collected by centrifugation for 4 min at 2500 g, the pellets were resuspended in TBS buffer sup-

plemented with protease and phosphatase inhibitors, cells were disrupted with glass beads (Sigma, 

Germany) (3 cycles of 30 sec in the vortex and 2 min on ice) and cell debris were removed by 

centrifugation at 700 g for 3 min. Total protein was quantified using the MicroBCA kit according to the 

manufactures' instructions. Briefly, the MicroBCA working reagent and sequential standards of diluted 

BSA were prepared. In a 96-well plate, 150 μL of each standard or diluted sample were pipetted in 

duplicates and 150 μL of working reagent was added to each well. The plate was incubated for 2 h at 

37 oC and OD562 was monitored on Biotek Power Wave XS Microplate Spectrophotometer. The 

standard curve was obtained by plotting the average blank-corrected OD values for each BSA standard 

versus its concentration, allowing the determination of protein concentration.  

For TCA protein extraction, the same cell culture volume was centrifuged at 10000 g for 5 min. 

The pellets were resuspended in 1 mL of 10% TCA and kept at -20 oC overnight. Cells were centrifuged 

at 15000 g for 3 min and washed twice with 1 mL of acetone. The pellets were air-dried and 

resuspended in 200 μL of MURB [0.5% β-mercaptoethanol, 0.129 mM sodium azide, protease and 

phosphatase inhibitors] buffer. Cells were disrupted with glass beads (3 cycles of 30 sec in the vortex 

and 5 min on ice) and incubated at 70 oC for 10 min. Cell debris were removed by centrifugation at 

10000 g for 1 min and the supernatant was collected to a new tube (Wright et al., 1989). 

To monitor secreted IAPP, cell media was collected by centrifugation and protein was extracted 

using TCA (Brissette et al., 2012). TCA in 10% (v/v) acetone 9:1 was added to each sample and 

incubated overnight at -20 oC. Samples were centrifuged at 15000 g 10 min at 4 oC and washed with 

cold acetone containing 20 mM DTT until the pellet became white. The pellets were air-dried and 

resuspended in sample buffer [8 M urea in Tris-HCl 1 M pH = 8 (+ SDS 1% | 1:1 and 1x inhibitor of 

proteases)]. 

For protein extraction from mammalian cells, cells were trypsinized, collected and samples 

were centrifuged at 200 g for 5 min. Cells were washed with PBS and diluted in RIPA buffer [150 mM 

NaCl, 0.5% Sodium Deoxycholate, 0.1% SDS, 50 mM Tris HCl pH 8] with protease and phosphatase 

inhibitors. Samples were incubated at 4 oC for 45 min (vortex every 15 min), centrifuged at 4 oC for 15 

min at 15000 g and the supernatant was retrieved (Ngoka, 2008; Sekhon et al., 2015). 

 

II.2.10 SDS-PAGE and Immunoblotting 
Protein extracts from yeast cells were incubated at 95 oC for 10 min before SDS-PAGE. Equal 

concentrations of total protein were loaded and resolved in Mini-Protean TGX Gels (Bio-Rad, USA) for 

90 min at 90 V. Gels were transferred to PVDF membranes using the semi-dry transfer method. 

Membranes were activated with methanol and blocked with 5% (w/v) BSA dissolved in PBS-T [Tris 2.4 

g/L, 8 g/L NaCl, 0.1% (v/v) Tween 20] for 1 h at room temperature with shaking. The primary antibodies 

against GFP, IAPP and Pgk1, were probed overnight at 4 oC, according to Table II.2. The membranes 
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incubated with anti-IAPP were boiled in PBS for 3 min before blocking. All membranes were then 

washed 6 x 5 min in PBS-T and incubated with the appropriate secondary antibody (Table II.2) for 1 h 

at room temperature. The membranes were washed 6 x 5 min in PBS-T and incubated with ECL™ 

Prime Western Blotting System. Specific protein signals were normalized against the Pgk1 signal.  

For protein extracts from yeast cell media or mammalian cells, equal amounts of protein were 

separated on a Tris-Tricine gel electrophoresis, during approximately 90 min, at 100 V. Gels were 

transferred to PVDF membrane activated with methanol, during 90 min, at 60 V and the same procedure 

was performed as described above. Results from lysates from extracellular media were normalized to 

Amido black protein stain. 

 

II.2.11 Filter-trap Assays 
Protein lysates were prepared and quantified as previously indicated. Increasing concentrations 

(5, 10 and 50 ug) of total protein were diluted in 1% (v/v) SDS in PBS and loaded onto a 0.22 µm pore 

nitrocellulose membrane (GE Healthcare, USA), pre-equilibrated with PBS in slot-blot apparatus. The 

samples were applied to the slot-blot apparatus and filtered by vacuum and the slots were washed twice 

with 1% (v/v) SDS in PBS. The membranes were blocked 1 h at room temperature with 8% BSA 

dissolved in PBS-T and incubated overnight with anti-IAPP primary antibody at 4 oC, according to Table 

II.2. The membranes were washed 6 x 5 min in PBS-T and incubated with ECL (Cox & Ecroyd, 2017; 

Juenemann et al., 2015). 

 

II.2.12 Metabolic Capacity 
The Cell Titer-Blue® Cell viability assay was used to monitor mammalian cell viability, according 

to manufactures’ instructions. Cells were transfected in a 96-well plate, medium was removed, and cells 

were washed with PBS. Fresh medium with Cell Titer-Blue® reagent (20 µL in 100 µL of medium) was 

added to the cells followed by incubation at 37 oC with 5% CO2 for 1 h. Fluorescence (560/590 nm) was 

monitored in Synergy™ HTX Multi-Mode Microplate Reader. 

 

II.3 Statistical analysis  

The results reported in this study are the average of at least three independent biological 

replicates and are represented as the mean ± SD. Differences among treatments were assessed by a 

2-way ANOVA test using GraphPad Prism 7. R software was used to analyze data from growth curves. 
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III. RESULTS 
 

III.1 Effects of Immature Forms of IAPP in Yeast Cellular Homeostasis  

III.1.1 Engineering Yeast Models to Study the Role of Immature IAPP Forms on 
Aggregation and Proteotoxicity 

 
To study the impact of immature IAPP forms on cell homeostasis, it was developed a set of 

yeast models expressing different IAPP forms. For this, the cDNA of human ppIAPP, pIAPP, matIAPP, 

SP with a GFP-tag were cloned into the multicopy vector p426-GAL1 under the control of the yeast 

GAL1-inducible promoter. A construct encoding the GFP tag was also generated for control purposes. 

The use of GFP tag allows easy detection of recombinant proteins, increases protein stability, and 

exacerbates protein aggregation (Niedenthal et al, 1996). The use of the galactose inducible GAL1 

promoter allows a tight regulation of gene expression according to the carbon source available. Thus, 

in the presence of glucose, the GAL1 promoter is repressed due to catabolic repression. Raffinose 

reduces the effect of catabolic repression but gene expression is only triggered in the presence of 

galactose. The plasmid backbone has the auxotrophic marker URA3, allowing the selection of 

transformed cells (Figure III.1).  

 
 
 

 
 
 

Figure III.1 – Schematic representation of human IAPP yeast models generation. The cDNA of human 
ppIAPP, pIAPP, matIAPP and SP, with and without a GFP tag were cloned into p426-GAL1. BY 4741 cells were 
transformed with the constructs and selected in solid media without uracil. SP-GFP = signal peptide-GFP, ppIAPP-
GFP = preproIAPP-GFP, pIAPP = proIAPP-GFP, matIAPP = mature IAPP-GFP. 
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III.1.2 IAPP Forms Induce Toxicity in Yeast Cells 

 
To verify if the constructs were being expressed, yeast strains were cultured and IAPP-GFP 

expression was induced with galactose. Analysis of the GFP signal was performed by flow cytometry 

in the indicated timepoints confirming that expression of all IAPP-GFP fusions generate a GFP+ signal 

(Figure III.2A). 

To evaluate viability, cells were stained with propidium iodide (PI) and analysed by flow 

cytometry (Figure III.2B). PI binds to double stranded DNA but it cannot permeate cells if plasma 

membrane is intact, allowing the determination of membrane integrity and consequently inferring cell 

viability. None of the constructs used as controls, p426 (empty vector), p426-GFP (GFP) and p426-SP-

GFP (SP-GFP) affected cell viability up to 12 h of protein expression. Interestingly, cells expressing 

ppIAPP-GFP showed higher levels of toxicity after 12 and 24 h of induction with galactose, however 

SP-GFP was shown to be toxic at 24 h.  

Considering that at 12 h there was similar GFP+ for all strains, there is no toxicity of the controls 

and that 20.1 ± 5.0% of the yeast cells expressing ppIAPP-GFP were PI+, compared to only 5.5 ± 0.8% 

or 5.6 ± 2.6% of cells expressing pIAPP-GFP or matIAPP-GFP, respectively, this timepoint was selected 

for further analysis.  

 

 

 

 

 

 

 

 

Figure III.2 – Expression of preproIAPP mediated toxicity in yeast. BY4741 cells expressing IAPP-GFP 
fusions and the respective controls were induced with galactose for the indicated time points and the frequency 
of (A) GFP positive cells and (B) propidium iodide (PI) positive cells was assessed by flow cytometry. Values 
represent mean ± standard deviation (SD) from at least three independent experiments. Statistical differences 
are represented as **p<0.01 and ***p<0.001 vs the control condition; #p<0.05 vs SP-GFP. SP-GFP = signal 
peptide-GFP, ppIAPP-GFP = preproIAPP-GFP, pIAPP-GFP = proIAPP-GFP, matIAPP-GFP = mature IAPP-GFP. 
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III.1.3 Effects of IAPP Expression on Yeast Cellular Growth 

 
To investigate the effects of the constructs on cellular growth, spot assays were performed. 

The strains were consecutively diluted and plated onto repressing (glucose) or inducing (galactose) 

medium and incubated for 48 h (Figure III.3). Remarkably, all strains expressing IAPP in fusion with 

GFP showed compromised cellular growth when compared to the control, being this effect more 

pronounced in cells expressing ppIAPP-GFP.  

 

 

 

Additionally, growth curve analysis were performed for each strain (Figure III.4). A normalized 

number of cells were induced by galactose and cell growth was monitored hourly for 24 h. Yeast cell 

growth is divided in three phases – lag phage, exponential phase and stationary phase. Cell cultures 

showed a short lag phase, corresponding to growth adaptation on galactose as the only carbon source. 

The duration of this phase depends on different environmental conditions like temperature, pH, oxygen, 

nutrients, etc. Once the cells start to divide, the exponential phase begins and growth was similar among 

strains for the first 5 h, when growth of the ppIAPP-GFP strain was slightly compromised when 

compared to the control. After 9 h the differences were more evident. For cells expressing pIAPP-GFP 

this effect could only be slightly detected at 12 h and for matIAPP-GFP there was no visible growth 

defects. 

 

Figure III.3 – Expression of ppIAPP in yeast impairs cellular fitness. Cell suspensions were adjusted 
to the same OD600 and serially diluted and spotted onto the surface of solid medium containing either glucose or 
galactose and incubated for 48 h. A representative image is shown. ppIAPP-GFP = preproIAPP-GFP, pIAPP-GFP 
= proIAPP-GFP, matIAPP-GFP = mature IAPP-GFP. 

Control

ppIAPP-GFP

pIAPP-GFP

matIAPP-GFP

SP-GFP

Glucose Galactose

GFP

Figure III.4 – Expression of ppIAPP in yeast impairs cellular growth. Cell suspensions were adjusted to 
OD600 = 0.1 and incubated for 25 h at 30 oC. A representative image is shown. ppIAPP-GFP = preproIAPP-GFP, pIAPP-
GFP = proIAPP-GFP, matIAPP-GFP = mature IAPP-GFP. 
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III.2 IAPP Processing and Aggregation in Yeast 

III.2.1 IAPP Intracellular Expression 
 

  To investigate IAPP expression and processing, immunoblotting assays were performed using 

antibodies against IAPP and GFP. To this end, cell lysates were prepared using TBS buffer after 12 h 

induction with galactose. 

As indicated in Figure III.5A, protein levels were different among constructions. A signal of ~ 

37 kDa was detected in cells expressing ppIAPP-GFP, which matches the full-length construct's 

molecular weight. Moreover, in cells expressing ppIAPP-GFP, two additional signals were detected, 

one of ~ 32 kDa and another of ~ 75 kDa. Likewise, pIAPP-GFP expressing-cells showed a ~ 35 kDa 

signal, corresponding to the molecular weight of the pIAPP-GFP construct. Additional signals of ~ 32 

kDa and ~ 70 kDa were also detected in this condition. Lastly, for total protein lysates of mature IAPP-

GFP, there was only a single signal of ~ 31 kDa, matching this construction’s molecular weight. 

Furthermore, the membranes incubated with anti-GFP antibody showed a ~ 60 kDa signal in cells 

expressing matIAPP-GFP.   

Figure III.5 – IAPP is partially processed in yeast. Cells expressing IAPP-GFP fusions and the 
control construct were induced with galactose for 12 h and protein lysates were obtained using (A) TBS buffer 
or (B) TCA buffer. Expression was assessed by immunoblotting using anti-IAPP and anti-GFP antibodies. 
Pgk1 was used as loading control. Representative images are shown. ppIAPP-GFP = preproIAPP-GFP, 
pIAPP-GFP = proIAPP-GFP, matIAPP-GFP = mature IAPP-GFP. 
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Additionally, cell lysates were also prepared using TCA after 12 h of induction with galactose. 

As observed in Figure III.5B, the results were similar to those observed for the protein lysates obtained 

with TBS. However, there was also a lower weight signal of ~ 20 kDa that may correspond to a 

processed form of GFP. 

 

 

III.2.2 IAPP Aggregation 

 
 To investigate the sub-cellular distribution of IAPP, cells were observed by confocal 

fluorescence microscopy after induction with galactose for 12 h. As depicted in Figure III.6, the ex-

pression of all IAPP fusions induced the formation of IAPP aggregates with different morphology, at 

least in ppIAPP-GFP expressing cells. In this case, most of the fluorescent cells showed a 

heterogeneous distribution of intracellular aggregates. For cells expressing pIAPP-GFP and matIAPP-

GFP, the fluorescence was scattered throughout the cell and there were mostly bigger and less defined 

aggregates. What appears to be the vacuole compartment was visible in these cells, with some cells 

presenting what looks to be intravacuolar aggregates.  

 

 

 

To further support that the structures observed in the fluorescence microscopy were IAPP 

aggregates, filter trap assays were performed. By filtering the cell lysates through a nitrocellulose 

membrane with 0.2 μm pores, this analysis allows the detection of intracellular aggregates higher than 

the cut-off of the membrane. As shown in Figure III.7, cells expressing pIAPP-GFP presented a 

stronger signal when compared to the other conditions, revealing the presence of high amounts of IAPP 

SDS-insoluble aggregates bigger than 0.2 μm in these cell lysates. 

Figure III.6 – Expression of IAPP-GFP fusions induces the formation of aggregates with different 
morphologies. Cells were induced with galactose for 12 h and processed for fluorescence microscopy. Scale bar 
correspond to 10 μm.  Representative images are shown. ppIAPP-GFP = preproIAPP-GFP, pIAPP-GFP = 
proIAPP-GFP, matIAPP-GFP = mature IAPP-GFP. 

ppIAPP-GFP pIAPP-GFP matIAPP-GFP
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III.2.3 IAPP Secretion 

 
To evaluate the presence of IAPP fusions in the extracellular medium, cells were induced with 

galactose for 6 h and the media was collected. This timepoint was chosen as no significant cell death 

were detected (Figure III.2B), which could lead to the misinterpretation of the results derived from the 

release of IAPP as a consequence of cell death. Protein extracts were subjected to immunoblotting 

analysis using antibodies against IAPP and GFP (Figure III.8). A signal of ~ 37 kDa is detected in cells 

expressing ppIAPP-GFP, which matches the molecular weight the full-length construct. Likewise, 

pIAPP-GFP expressing-cells showed a ~ 35 kDa signal, corresponding to the molecular weight of 

pIAPP-GFP construct. For total protein lysates of mature IAPP-GFP, there is only a single signal of ~ 

31 kDa, matching the molecular weight of this construction. Furthermore, the membranes incubated 

with anti-IAPP antibody showed a ~ 15 kDa signal in pIAPP-GFP constructs that can correspond to 

intermediate processing forms where GFP was cleaved. The membranes incubated with anti-GFP 

antibody showed a ~ 26 kDa and ~ 21 kDa signals in ppIAPP-GFP condition. This low molecular weight 

signals possibly correspond to the GFP form alone and to an intermediate processing form. 

Figure III.7 – Immature IAPP-GFP fusions form aggregates with different sizes. Cells were induced for 
12 h with galactose, subjected to filter trap assays and incubated with anti-IAPP and anti-GFP antibodies. 
Representative image is shown. ppIAPP-GFP = preproIAPP-GFP, pIAPP-GFP = proIAPP-GFP, matIAPP-GFP = 
mature IAPP-GFP. 
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III.3 Evaluation of Potential Protective Actions of TUDCA and UDCA Chaperones 

III.3.1 Effect of TUDCA on Yeast Viability  
 

The potential protective action of the chemical chaperone TUDCA in the viability of cells 

expressing IAPP-GFP fusions was evaluated by flow cytometry analysis using PI. As shown in Figure 

III.9A, the pattern of GFP expression was similar to that observed in Figure III.2A. ppIAPP-GFP 

expressing cells presented the lowest percentage of GFP+ cells in all the concentrations tested, while 

cells expressing pIAPP-GFP and matIAPP-GFP showed similar levels. The increased percentage of 

PI+ ppIAPP-GFP cells was not significantly affected by treating the cells with TUDCA in a concentration 

range of 100-500 μM (Figure III.9B). 

 

III.3.2 Effect of UDCA on Yeast Viability 

 
As TUDCA did not mediate cellular protection in ppIAPP-GFP expressing cells, it was 

hypothesized that the lack of a protective effect could be related to the low permeability of the compound 

to yeast cell wall. Thus, the potential protective action of UDCA, lacking the taurine moiety, was tested 

by flow cytometry analysis. As shown in Figure III.10, preliminary data indicated that UDCA treatment 

did not reduce cytotoxicity of ppIAPP-GFP in a concentration range of 10-250 μM.   

 

 

 

Figure III.8 – Release of IAPP-GFP fusions to the extracellular media. Cells were induced with 
galactose for 6 h, the media was collected and protein expression was assessed by immunoblotting using anti-
IAPP and anti-GFP antibodies. Representative image is shown. ppIAPP-GFP = preproIAPP-GFP, pIAPP-GFP = 
proIAPP-GFP, matIAPP-GFP = mature IAPP-GFP. 
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Figure III.9 – TUDCA does not protect yeast against IAPP-induced toxicity. Cells expressing IAPP-GFP fusions 
and the respective control were induced with galactose for 12 h and the frequency of (A) GFP positive cells and (B) 
propidium iodide (PI) positive cells was assessed by flow cytometry. Values represent mean ± standard deviation 
(SD) from at least three independent experiments. Statistical differences are represented as *p<0.05 and **p<0.01 
vs the control condition. TUDCA = taurineursodeoxycholic acid, ppIAPP-GFP = preproIAPP-GFP, pIAPP-GFP = 
proIAPP-GFP, matIAPP-GFP = mature IAPP-GFP. 
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Figure III.10 – UDCA does not protect yeast against IAPP-induced toxicity. Cells expressing ppIAPP-
GFP and the control were induced with galactose for 12 h and the frequency of (A) GFP positive cells and (B) 
propidium iodide (PI) positive cells was assessed by flow cytometry. Values represent mean ± standard deviation 
(SD) from at least three independent experiments. Statistical differences are represented as **p<0.01 vs the control 
condition. UDCA = ursodeoxycholic acid, ppIAPP-GFP = preproIAPP-GFP. 
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III.4 Generation of INS-1 832/13 β-Cell Line Stably Expressing hIAPP 
 

The first steps on the generation of INS-1 832/13 β-cell line encoding the full-length hIAPP 

cDNA was previously performed in the laboratory. First, the cells were transfected with pCMV-blast-

TET3G vector, obtained by replacing the neomycin resistance gene of pCMV-TET3G by the blasticidin 

resistance gene. Five clones were obtained, expanded and tested for GSIS. Clone 5 showed the closest 

results to the expected physiological response, i.e. there was an increased insulin secretion in response 

to hyperglycaemia (15 mM glucose) in comparison to the basal insulin secretion levels (3 mM glucose). 

Diazoxide blocks insulin secretion, serving as control for a true basal insulin secretion level that should 

be equivalent to insulin secretion levels at 3 mM glucose. Thus, clone 5 was selected for further 

modifications (Table III.1).   

 

Table III.1 - Glucose-stimulated insulin secretion (GSIS) of INS-1 832/13 clones. 

 

 

The cDNAs of ppIAPP-GFP and GFP were cloned into the vector pTRE3G-IRES vector using 

the In-Fusion HD cloning system. Clone 5-cells were transfected with ppIAPP-GFP or GFP and the 

hygromycin linear marker to select the positive clones (Figure III.11). Given the low transfection 

efficiency of pancreatic β-cells, only few hygromycin resistant colonies were obtained for each 

construct. However, no GFP signals were detected by fluorescence microscopy and immunoblotting 

after induction of cells with the tetracycline analogue doxycycline.  

Glucose Treatment  3 mM 15 mM 3 mM 
 + Diazoxide [200 μM] 

Clones Insulin (ng/mL) 

1 35.09 149.84 87.17 

2 114.38 53.69 704.94 

4 41.78 38.30 62.59 

5 44.19 70.42 33.71 

7 77.86 49.11 18.31 
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III.5 HeLa Tet-On Cell Line – an Alternative Approach 
 

The HeLa Tet-On cell line was used as an alternative approach to investigate the pathological 

effects of immature hIAPP. HeLa Tet-On 3G cell line is derived from a human cervical epithelioid 

carcinoma that expresses the tetracycline (Tet)-regulated transactivator Tet-On 3G. This cell line, stably 

expressing the transactivator protein, was transiently transfected with the ppIAPP-GFP construct, and 

the respective vector and GFP controls. Protein expression was induced for 24 h with doxycycline and 

cells were observed under fluorescence microscopy (Figure III.12). Only cells transfected with the GFP 

alone displayed fluorescence signals, indicating that the GFP construct was working properly, while 

cells transfected with ppIAPP-GFP showed no detectable fluorescence signals. 

 

Figure III.12 – HeLa Tet-On cells expressing GFP. HeLa Tet-On cells were transfected with pTRE3G-GFP, GFP 
expression was induced with doxycycline for 24 h and fluorescence was monitored by fluorescence microscopy.   

Figure III.11 – Schematic representation of the procedures for the generation of INS-1 832/13 β-
cell line stably expressing ppIAPP-GFP. INS-1 832/13 cells were cultured and transfected with pCMV-blast-
TET3G. Five clones were isolated, were subjected to GSIS and Clone 5 was selected. Clone 5-cells were 
transfected with the cDNA for ppIAPP-GFP or GFP alone together with a linear hygromycin marker for selection. 
ppIAPP-GFP = preproIAPP-GFP, blast = blasticidin, GSIS = glucose-stimulated insulin secretion. Image created 
with BioRender.com.  
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To verify if the constructs were properly expressed, cells were induced with doxycycline for 24 

h, proteins were extracted with RIPA buffer and the media was also collected to monitor the secretion 

of hIAPP to the extracellular medium. Immunoblotting assays were performed using anti-IAPP and anti-

GFP antibodies. As depicted in Figure III.13, a signal of ~ 37 kDa was detected in cells expressing 

ppIAPP-GFP, both with anti-IAPP and anti-GFP antibodies which matched the molecular weight of the 

full-length construct. This signal was also found in the cell media. A signal of ~ 27 kDa, corresponding 

to GFP alone, was also detected in cell lysates and in the media.  

 

To verify if ppIAPP-GFP expression affected cell metabolic capacity, Cell Titer-Blue® Cell 

viability assays were performed after ppIAPP-GFP expression was induced for 24 h with doxycycline. 

This method allows monitoring of cell viability based on the ability of living cells to convert a redox dye 

into a fluorescent end product. Although not statistically significant, the results showed a tendency in 

the decrease of viability of cells expressing ppIAPP-GFP (Figure III.14).  

Figure III.13 – HeLa Tet-On cells properly express GFP and ppIAPP-GFP. HeLa Tet-On encoding 
ppIAPP-GFP and the respective controls were induced with doxycycline for 24 h and GFP and ppIAPP-GFP levels 
in cell lysates (A) and in the medium (B) were assessed by immunoblotting using anti-IAPP and anti-GFP antibodies. 
ppIAPP-GFP = preproIAPP-GFP. Representative images are shown. 
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Figure III.14 – Effect of ppIAPP-GFP expression in HeLa Tet-On cell viability. Cells were transfected 
with the empty vector, GFP and ppIAPP-GFP and induced for 24 h with doxycycline. The Cell Titer-Blue® reagent 
was added to the media and cells were incubated for 1 h. Readings were done at 560/590 nm and values were 
normalized to the control cells. No statistically significant differences are observed between the conditions. 
ppIAPP-GFP = preproIAPP-GFP.    
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IV. DISCUSSION 
Diabetes affects millions of people worldwide highlighting the need to develop new strategies 

to minimize the deleterious effects of this disease. Since IAPP was first discovered and linked to β-cell 

loss, it has been the subject of several studies. The relevance of hIAPP proteotoxicity for diabetes 

pathophysiology makes it an attractive target for the design of new strategic therapies aiming at the 

amelioration of disease pathological processes. Nevertheless, the underlying mechanisms of IAPP 

aggregation and toxicity in pancreatic β-cells are not yet fully understood, leaving room for further 

investigations.   

This study first investigated the pathological role of immature human IAPP in yeast models 

expressing different IAPP forms, with focus on the role of immature IAPP on aggregation and 

cytotoxicity (Task 1). The lack of models allowing the study of hIAPP processing defects and the 

pathological consequences of the accumulation of immature intermediates on the formation of 

intracellular aggregates constitutes a limitation in the field. Over time, several studies have showed the 

unprecedented potential of yeasts as the simplest eukaryotic models to investigate the disease 

mechanisms (Menezes et al., 2015; Smith & Snyder, 2006). Remarkably, yeast has been very useful 

to study different aspects of protein misfolding diseases (Tenreiro & Outeiro, 2010).  

The yeast models used in this study were generated by the heterologous expression of hIAPP 

constructs in multicopy yeast vectors to drive high levels of gene expression (Figure III.1). The inherent 

instability in the transmission of this extra-chromosomic DNA elements through generations can affect 

plasmid copy number, which can have minor effects on the results. A set of constructs drives the 

expression of IAPP-GFP fusion proteins. GFP has been widely used as a reporter protein to investigate 

protein expression and subcellular dynamics. Nevertheless, GFP also has some disadvantages as it 

can also aggregate in some circumstances and lead to cellular toxicity (Jensen, 2012; Niedenthal et al., 

1996). On the other hand, strains expressing GFP-tagged hIAPP versions, particularly those expressing 

the immature forms, mediated significant cytotoxicity. This fact suggests that GFP enhances hIAPP 

cytotoxicity. However, GFP alone did not significantly affect cellular viability so the constructs with a 

GFP tag were chosen for further analysis. 

The expression of hIAPP fusion proteins was first followed by assessing GFP+ cells through 

flow cytometry (Figure III.2A). The deviations observed were probably due to variations in plasmid copy 

number. In general, the percentage of fluorescent cells seems to decrease with time for most of the 

constructs. This could be explained by different reasons. First, the increase of cell death observed over 

time, where GFP is degraded and/or released to the extracellular media in response to membrane 

leakage. Second, it may also result from GFP cleavage by yeast endoproteases acting on the IAPP 

sequence. Third, the accumulation of GFP in differently shaped aggregated species, as later confirmed 

by microscopy, may interfere with the signal acquisition in flow cytometry analysis. Moreover, the 

percentage of GFP+ cells is lower for IAPP constructs than for the GFP controls, particularly for ppIAPP-

GFP, suggesting that this protein is indeed present at lower levels as confirmed by immunoblotting 

analysis. Cell death increases over time for cells expressing IAPP, particularly for ppIAPP-GFP from 12 

h incubation in the presence of galactose (Figure III.2B). These results suggest that the constructs 

were properly expressed, although they presented a variable expression patterns among strains and 



 
38 

over time. Starting from 12 h, ppIAPP-GFP expressing cells show a decrease in cell viability, suggesting 

a greater cytotoxic effect of this IAPP form. Importantly, until 12 h of induction, none of the controls were 

significantly toxic. However, at 24 h SP-GFP showed a relevant increase in cellular toxicity. This can 

be due the fact that the signal peptide of SP-GFP drives its translocation and accumulation in the ER, 

clogging the ER pathway and affecting vital cellular functions. 

To investigate the impact of IAPP overexpression in yeast growth, phenotypic assays were 

performed (Figure III.3). A dramatic reduction in the growth of cells expressing ppIAPP-GFP, as 

compared to the control, may reflect the impairment of cellular functions, probably due to the toxic effect 

of immature forms of IAPP. Although expression of pIAPP-GFP and matIAPP-GFP did not seem to 

compromise significantly cell viability, as indicated before by the flow cytometry analysis, these 

constructs do interfere with cellular growth. Growth curve analysis corroborated that cells expressing 

immature IAPP forms showed impaired cellular growth (Figure III.4). Remarkably, and in accordance 

with the reduction of cell viability observed in flow cytometry, after 9 h induction with galactose the 

growth defects of cells expressing IAPP forms are evident. Interestingly, cells expressing ppIAPP-GFP 

showed a higher degree of growth impairment.  

Altogether, these results show that expression of the three IAPP forms (ppIAPP-GFP, pIAPP-

GFP, and matIAPP-GFP) are toxic to yeast cells at different degrees. Importantly, the immature 

ppIAPP-GFP form, appears to be the most toxic. Accumulation of these species may cause the overload 

of cell processing machinery and promote protein aggregation, interfering with key cellular pathways 

and ultimately leading to cell death.  

To unveil the mechanisms behind the IAPP-induced toxicity in yeast, immunoblotting assays 

were performed. Protein lysates were generated using two buffers, TBS and TCA. Extraction with TBS 

buffer is less aggressive, preserving protein biochemical features, while TCA is more aggressive, 

causing protein precipitation and complete loss of structure. In both cases, total proteins in the cell 

lysates were separated on denaturing SDS-PAGE and similar results were obtained. Protein levels of 

ppIAPP-GFP, pIAPP-GFP, and matIAPP-GFP were shown to vary among strains, although there were 

no significant differences in the number of GFP+ cells obtained by the flow cytometry analysis.  

In protein lysates prepared with TBS (Figure III.5A), for each strain there is a signal that 

corresponds to the expected molecular weight of the construct. Curiously, the ~ 31 kDa signal, present 

in all IAPP-expressing cell, but more pronounced in pIAPP-GFP, suggesting that yeast endoproteases 

may process immature forms. Additionally, a signal of ~ 75 kDa was detected in cells expressing 

ppIAPP-GFP. Equivalent signals were detected for pIAPP-GFP and matIAPP-GFP, of ~ 70 and ~ 60 

kDa, respectively. These high molecular weight signals may correspond to dimers or oligomeric species 

that were not completely denatured. 

For the TCA-based protein extraction and incubation with anti-GFP antibody, the results are 

consistent with those described above (Figure III.5B). The high molecular weight bands are very faint, 

possibly due to the destabilization of molecular interactions between dimers or oligomers. Moreover, 

an additional signal of ~ 20 kDa was detected in protein lysates from pIAPP-GFP and matIAPP-GFP 

that may correspond to a fragment of GFP fused to the C-terminal flanking peptide. Additionally, a ~ 27 

kDa signal was present in all IAPP-expressing strains that probably corresponds to GFP alone. 
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Altogether, these results suggest that IAPP forms can suffer alterations and processing in yeast 

cells. Considering that yeast encodes for endogenous convertases such as Kex2 (Fuller et al., 1989; 

Kjeldsen, 2000), ppIAPP and pIAPP peptides may be recognized and cleaved by these enzymes. 

Immunoreactive signals of lower molecular weight may correspond to processing intermediates and 

giving rise to peptides like GFP fused to the C-terminal flanking peptide located downstream of the 

PC1/3 cleavage site both in ppIAPP and pIAPP (Figure I.5B). 

The identity of the high molecular weight protein species detected in the immunoblotting assays 

was confirmed by nanoLC-MS/MS. Results showed that specific sequences of IAPP and GFP, namely, 

the internal IAPP and C-terminal of pIAPP fused to GFP sequences were detected in samples from 

ppIAPP-GFP and pIAPP-GFP (Raimundo et al., 2020). This further supports the hypothesis that 

endogenous yeast convertases process IAPP immature species. 

Since the results obtained for immunoblotting suggested the presence of intracellular 

aggregates in IAPP-expressing yeast, the cells were observed under fluorescence microscopy to 

monitor the presence of aggregates (Figure III.6). In general, most fluorescent cells presented 

intracellular aggregates. Noteworthy, cells expressing pIAPP-GFP and matIAPP-GFP showed a more 

diffused fluorescence pattern with less defined aggregates. An apparent predominance of aggregates 

in the compartment presumed to be the vacuole appeared to occur in these cells. Accumulation of 

intravacuolar aggregates may be a possible explanation for the lack of toxicity. On the other hand, for 

ppIAPP-GFP expressing cells, the fluorescence is more heterogeneously distributed with well-defined 

aggregates. These differences seem to be associated with the impaired growth and viability for ppIAPP-

GFP strain. The formation and accumulation of intracellular aggregates may explain the decrease in 

cell viability observed over time. Furthermore, the different subcellular localization of aggregates in the 

different strains may be related to the different toxicities observed. Although there is an indication of a 

possible co-localization of the aggregates in the vacuole, further analyses are necessary to confirm this 

hypothesis. Under stress conditions, the compartmentalization of toxic elements (in this case toxic 

protein aggregates) into vacuole is used by cells as a protective mechanism to avoid further damaging 

of cellular functions. In the case of ppIAPP-GFP, the signal is more scattered throughout the cell, which 

indicated that they are available in the cytosol to interfere with cellular functions justifying the increased 

toxicity observed in this strain.  

The frequency of cells showing IAPP-GFP aggregates and the aggregate’s area were also 

calculated (Raimundo et al., 2020). The frequency of GFP+ cells corroborated the results obtained by 

flow cytometry analysis. ppIAPP-GFP cells displayed the higher number of cells with aggregates with 

the smaller average area when compared to the other two strains, which showed similar number of cells 

with aggregates. However, in terms of aggregate size distribution, pIAPP-GFP cells have mostly smaller 

aggregates, similar to ppIAPP-GFP, than matIAPP-GFP that presents a higher percentage of bigger 

aggregates (Raimundo et al., 2020). Altogether, these data support that small soluble aggregates are 

the drivers of IAPP-induced cytotoxicity. 

To further validate these results, total protein lysates were subjected to filter-trap assays 

(Figure III.7) (Juenemann et al., 2015; Nasir et al., 2015; Cox & Ecroyd, 2017). Interestingly, lysates 

from pIAPP-GFP-expressing cells displayed the strongest signal, implying the presence of high 
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amounts of IAPP SDS-insoluble aggregates bigger than the membrane pore. On the other hand, lysates 

of cells expressing ppIAPP-GFP and matIAPP-GFP, showed a weaker signal. However, these results 

should be interpreted with caution, since the protein levels of the IAPP-GFP fusions are extremely 

variable among strains as mentioned before. Thus, the intense signal in pIAPP-GFP may just reflect a 

higher protein content. Nevertheless, these results are in agreement with the hypothesis that smaller 

aggregates are the drivers of cytotoxicity, instead of the bigger aggregates.  

As mentioned before, ppIAPP-GFP appeared to have the lowest expression levels. One 

hypothesis to justify this is the possible secretion of ppIAPP-GFP to the extracellular media. ppIAPP-

GFP bears the signal peptide responsible for the entry in the secretory pathway. To assess the 

presence of the constructs in the extracellular media, cells were induced for 6 h, when cellular death is 

still low as indicated by the flow cytometry data, meaning that the presence of IAPP in the media was 

not caused by membrane leakage (Figure III.2B). The presence of intracellular aggregates at this 

timepoint was confirmed by microscopy and it was similar to what was observed at 12 h (Raimundo et 

al., 2020). Immunoblotting analysis showed extracellular IAPP signals in all strains (Figure III.8). 

Additional low molecular weight signals might correspond to processing intermediates that were 

released to the extracellular media. Moreover, the presence of pIAPP-GFP and matIAPP-GFP in the 

extracellular media, suggests that the signals may result from basal cellular death or that pIAPP and 

matIAPP may enter the secretory pathway by alternative pathways. Also, the aggregation and 

accumulation of these species might cause them to be released from cells as a protective mechanism. 

Experiments using mutant strains with defects in the secretory pathway are needed to shed some light 

on this issue. 

The accumulation of misfolded IAPP is also associated with ER stress, which can lead to cell 

death. IAPP synthesis starts in the ER. This organelle is crucial for protein synthesis and is very sensible 

to environmental changes and cellular stress, being very susceptible to factors affecting cell 

homeostasis and leading to ER stress (Chung et al., 2017). Several studies point ER stress as a critical 

mechanism involved in β-cell dysfunction and T2DM progression associated with extra- and intracellular 

IAPP aggregation (Huang et al., 2019). Therefore, it was hypothesized that chemical chaperones such 

as TUDCA and UDCA, that ameliorate ER stress, might have a protective role against the effects of 

IAPP aggregation. 

TUDCA was the first compound to be tested as a previous study showed a reduction of ER 

stress markers in β-cells overexpressing hIAPP (Cadavez et al., 2014). Flow cytometry analysis showed 

no changes in GFP expression patterns, suggesting that TUDCA did not interfere with the protein level 

of GFP constructs or cause alterations in cell viability (Figure III.9). A possible explanation is that yeast 

have a cell wall that could prevent the compound to effectively enter the cells. To overcome this potential 

limitation, UDCA lacking the taurine moiety was tested as few studies show that it has a better 

permeability than TUDCA in animal cells (Martinez et al., 1998). Flow cytometry analysis showed no 

improvements in cell viability with UDCA treatment (Figure III.10). Altogether, the data from these 

experiments indicate that, although TUDCA and UDCA showed protective effects in animal cells, they 

have no apparent protective effect in IAPP-induced cytotoxicity in yeast, at least in the tested 

concentrations.  
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One of the goals of this study was the generation of an INS-1 832/13 β-cell line stably 

expressing immature hIAPP to investigate the molecular mechanisms underlying hIAPP proteotoxicity. 

INS-1 832/13 emerged as a useful tool since it brings advantages over the previously available cell 

lines. The glucose effect can be potentiated by different known agents and the glucose-induced insulin 

secretion is closer to physiologic levels. However, they also differ from normal islets in some 

fundamental aspects, namely in the glucose response threshold (lower than normal rat islets) and in 

maximum response to glucose (8 mmol/L unlike normal rat islets) (Hohmeier et al., 2000). 

To this end, an inducible expression system was used (Figure IV.1). The INS-1 832/13 β-cells 

were transfected with a pCMV-TET3G vector that contains the gene for the transactivator protein, Tet-

On 3G, under the regulation of a constitutive promoter. The positive clones stably express the Tet-On 

3G transactivator protein that is highly sensitive to doxycycline (Zhou et al., 2006). Doxycycline is a 

synthetic tetracycline derivative and the most active analogue of tetracycline, therefore it is used as the 

effector molecule for the Tet-On Tet-Off systems. Five clones were obtained and glucose-stimulated 

insulin secretion (GSIS) was tested. GSIS allows the measurement of the cell's insulin secretion induced 

by glucose and only clone 5 showed closest results to the physiological response, so it was chosen to 

proceed for further analysis.  

The cDNAs encoding for ppIAPP-GFP and GFP were cloned in the pTRE3G-IRES vector, in 

which the TRE3G inducible promoter (PTREG) regulates the transcription of target genes. This 

promoter has very low basal expression and maximal expression after induction and consists of 7 

repeats of a 19 bp tet operator sequence located upstream of a minimal CMV promoter (Loew et al., 

2010). When doxycycline is added to cell cultures, it binds to Tet-On 3G, which suffers a conformational 

change that allows it to bind to the tet operator sequences located in the PTRE3G. The transcription is 

activated, and the downstream gene of interest is expressed. In the absence of doxycycline, the 

transcription levels are virtually absent since TRE3G lacks binding sites for endogenous mammalian 

transcription factors. 

Clone 5-cells were transfected with ppIAPP-GFP or GFP and the hygromycin linear marker to 

select the positive clones (Figure III.11). Given the low transfection efficiency of pancreatic β-cells, only 

a few hygromycin resistant colonies were obtained for each construct. Moreover, these cells did not 

TRE3G Gene of interest

TRE3G Gene of interest

+ Dox

- Dox

Doxycycline (Dox)

Transactivator protein

Figure IV.1 – Tet-ON 3G system allows inducible gene expression in the presence of doxycycline 
(Dox). Cells transfected with pCMV-TET3G vector constitutively express the transactivator protein. Then these cells 
were transfected with pTRE3G-IRES vector containing the gene of interest under a TRE3G dox-inducible promoter.   
In doxycycline absence, the transactivator protein is not activated and gene expression is not induced. When dox is 
present, it binds to the transactivator protein, promoting its binding to the promoter and activating the transcription of 
the gene of interest.   
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show any GFP signal detected by fluorescent microscopy or immunoblotting, after induction with 

doxycycline. However, the constructions were confirmed to be correct, so the low expression levels 

obtained may not be sufficient for detection by fluorescent microscopy or immunoblotting. 

Thus, a possible alternative to overcome the low transfection efficiency of these cells might be 

to use lentivirus-mediated gene transfer. Lentiviruses have been widely used for gene delivery in many 

applications. It combines the use and speed of transient transfection with the robust expression in cell 

lines. These viruses can use the host machinery to amplify the transgene and delivery it to cells by 

membrane fusion (Elegheert et al., 2018). 

As an alternative approach, the HeLa Tet-On cell line was used. This cell line originally 

expresses the transactivator protein Tet-On 3G. It was transiently transfected with the vectors encoding 

ppIAPP-GFP, GFP and the empty vector. After induction for 24 h with doxycycline, cells were observed 

under a fluorescence microscope and only GFP transfected cells exhibited a fluorescence signal 

(Figure III.12). To understand this result, ppIAPP-GFP and GFP levels were assessed immunoblotting 

(Figure III.13). A ~ 37 kDa signal matching the molecular weight of ppIAPP-GFP, both in cell lysates 

and in the media were detected, suggesting that proteins were properly expressed and partially 

secreted to the media. Thus, the absence of fluorescence may result from an alteration of GFP 

conformation that results in the loss of fluorescence signal, or that ppIAPP-GFP protein levels is under 

the detection threshold of the fluorescence microscope. Furthermore, cell metabolic capacity was also 

assessed using the Cell Titer-Blue® assay and suggests a tendency for the decrease in the viability for 

ppIAPP-GFP expressing cells, although the difference was not statistically significant (Figure III.14).  

Overall, the data obtained indicate that the protocol for the overexpression of ppIAPP-GFP in 

INS-1 832/13 cells has many limitations and still needs optimization. Nevertheless, the development of 

a cell line model overexpressing immature forms of IAPP could be crucial to help unveil the mechanisms 

and pathways behind IAPP-induced cytotoxicity and β-cell dysfunction.  
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V. CONCLUSIONS AND PERSPECTIVES 
 

Since IAPP was first discovered, its role in the pathophysiology of diabetes has been the subject 

of several studies, although the mechanisms underlying IAPP aggregation and toxicity are not yet 

completely understood. Initially, it was thought that IAPP extracellular deposition was responsible for 

pancreatic β-cell loss. However, it is currently accepted that intracellular small soluble oligomers and 

low-order aggregates of IAPP, which precedes amyloid deposition, are the main triggers of the 

cytotoxicity.  

The data obtained in this study show that yeast expressing immature hIAPP forms display 

severe growth impairment. The accumulation of intracellular aggregates might interfere with crucial 

cellular pathways that cause the decrease of cellular viability.  

Furthermore, the lack of hIAPP experimental models limits the investigation of the pathological 

mechanisms triggered by this peptide. Therefore, the development of models allowing the investigation 

of the impact of immature hIAPP forms on aggregation and proteotoxicity, will contribute to the 

development of new strategies capable of ameliorating the deleterious effects caused by IAPP 

aggregation.  

Future studies, using mutants in the processing enzymes might shed more insights into the 

aggregation process and the pathological role of the different IAPP forms. Also, the use of yeast mutants 

with impairments in different proteostasis pathways for the expression of immature IAPP forms might 

allow the understanding of the triggers of cell death. At last, the identification of IAPP toxic species can 

lead to the development of new strategies and therapies that target and modulate IAPP aggregation. 
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