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ABSTRACT 

In today’s information era, where Data galvanizes change, companies are aiming towards competitive 

advantage by mining this important resource to achieve actionable insights, knowledge, and wisdom. 

However, to minimize bias and obtain robust long-term solutions, the methodologies that are devised 

from Data Science and Machine Learning approaches benefit from being carefully validated by a Quality 

Assurance Data Scientist, who understands not only both business rules and analytics tasks, but also 

understands and recommends Quality Assurance guidelines and validations. 

Through my experience as a Data Scientist at EDP Distribuição, I identify and systematically report on 

seven key Quality Assurance guidelines that helped achieve more reliable products and provided three 

practical examples where validation was key in discerning improvements. 
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1. INTRODUCTION 

In this report, I provided a discussion of the best Data Science practices that can be incorporated in the 

industry, through my experience as a Data Scientist for EDP Distribuição (EDP D). Having participated 

in the development of advanced analytics solutions, I took responsibilities as a Quality Assurance Data 

Scientist, having validated key analytical tasks and decisions made during projects.    

Quality Assurance (QA) systematic activities offer significant benefits, ensuring the quality standards 

of a product are being met within an organization. Such tasks, when done right, increase the efficiency 

and effectiveness of operations, minimizing costs, time, and resources. Within a Data Science project, 

the role of a Quality Assurance Data Scientist, who understands both business rules and analytical tasks, 

helps to assure minimum bias during development, and to guarantee that a set of short-term validations 

are satisfied, which, consequently, have a long-term impact. 

I identify and systematically report on seven key QA guidelines and three projects that express the 

importance of these validations in any Machine Learning approach. It is also important to express that, 

during the development of the discussed practical cases, despite having participated as a developer, my 

main role was the one of Quality Assurance Data Scientist. 

1.1. ENTERPRISE CONTEXT 

Electricidade de Portugal, S.A. (EDP) is a publicly-traded holding company among the major European 

operators in the energy sector (Gas and Electricity). It is also one of the largest energy operators of the 

Iberian Peninsula, the largest Portuguese industrial group, and the world’s fourth-largest producer of 

wind energy. 

 

1.1.1. EDP Distribuição History and Timeline 

The history of electricity in Portugal began in 1878 when the first step towards the future was given on 

public illumination when republican members of the parliament were firstly elected in the Portuguese 

Parliament. On the 15th birthday of Prince D. Carlos, the royal family imported six voltaic arc lamps 

from Paris to be lit on the Cascais Citadel esplanade, an offer from the city of Lisbon. They were reused 

in the following month in the Chiado area and the Portuguese people were thrilled with this disruptive 

technology. Around ninety-eight years into the future, after the Portuguese dictatorship was overthrown 

in the 1975 revolution, the country’s power generation assets and distribution chains were nationalized 

in a Marxist approach towards the country's governance. In the following year, the Portuguese Minister 

of Industry and Technology published decree-law Nr. 502/76, published on June 30, 1976, that merged 

the major Portuguese electricity companies and founded EDP as a state-controlled organization.  

Figure 1. EDP & EDP Distribuição logos 
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Twenty-one years later, in 1996, the first community directive was published, leading to significant 

changes in the organization and jurisdiction of the European electricity sector. Antonio de Almeida, as 

the new chairman of EDP, began the first phase of privatization in 1997, allowing for the sale of 30% 

of EDP’s capital, accounting for roughly 368 Billion Euros. With it, EDP’s stocks rose 38% on Lisbon’s 

exchange and became the largest Portuguese company. Four privatization phases later, in 2000, EDP 

was now a majority private company, where private stakeholders accounted for 70% of the capital while 

the State share was reduced to 30%. Furthermore, one of the market liberalization consequences was the 

obligation to juridically separate the transportation and distribution activities from production and 

commercialization. In this turn of the century, EDP Distribuição was also born. 

Starting in 2006, all electricity consumers were given the capacity to choose their supplier. In addition 

to the responsibility of operating the distribution network, EDP D is also responsible for managing all 

supplier’s changes processes. In 2010, Évora was chosen to hold a disruptive idea – InovCity – the first 

smart city in the Iberic Peninsula. Around 2013, EDP becomes the “Utilities: Electricity, Water & Gas” 

leader in the Dow Jones Sustainability Index World and Europe, achieving the highest score ever 

recorded of 90 points. In the same year, between January 19 and January 23, Portugal was hit hard by 

the Gong Storm, causing significant losses, and many EDP customers to lose their electricity service. 

As an acknowledgment of the capability of recovering the energy network and customer service, EDP 

D was awarded the “Most Effective Recovery of the Year” prize by the Business Continuity Institute in 

2014. In 2015, EDP D joins Alliander, ENEL, EVN, and other industry partners and universities as a 

founding member of the European Energy Centre- Information Sharing and Analysis (EE-ISAC). EDP 

D also becomes a European reference through the certification of the Business Continuity Management 

System by the Business Continuity International Standard ISSO 22301:2012. In 2016, EDP Distribuição 

embraces an APP for consumers to submit meter readings or report power cuts, increasing the efficiency 

and effectiveness of these procedures. It was also in this year that EDP Distribuição was certified by 

Societé Générale de Surveillance (SGS), making the Management System for Research, Development, 

and Innovation (SGIDI) the first national utility to be certified for innovation. 

In the following year, 2017, EDP D achieves the “Zero Fatal Injuries” landmark for the first time, as a 

result of the operational teamwork, security training, and awareness campaigns. Lastly, in 2018, EDP 

approves the EDP D 2020 sustainability strategy, aiming to contribute to the United Nations Sustainable 

Development Goals (ODS) agenda. EDP D was also awarded by the Renewables Grid Initiative (RGI) 

in the “Environmental Protection” category for “Good Practice of the Year Awards”, showcasing the 

initiatives and outstanding practices by EDP in grid development. EDP D is also 100% certified in the 

Environmental Management System (EMS) according to ISO 13001:2015. 

1.1.2. EDP Distribuição in Numbers 

EDP D is responsible for supplying electricity from its source to the final customer. Its mission is to 

ensure the distribution of electricity with the highest quality, safety, and efficiency. It also provides 

support to the electrical market, the energy transition, and the decarbonization of energy consumption.  

In 2019, EDP Distribuição network served 6 277 358 clients, accounting for the regulated and free 

market, where 74 (0.001%) were VHV (Very High Voltage), 316 (0.005%) HV (High Voltage), 25 022 

(0.399%) MV (Medium Voltage), 37 144 (0.592%) SLV (Special Low Voltage), 6 152 431 (98.010%) 

NLV (Normal Low Voltage), and lastly, 62 371 (0.994%) PL (Public Lighting). As such, the Normal 

Low Voltage clients account for almost the whole share of the EDPD network, whereas Very High 

Voltage and High Voltage clients are almost inexistent. Furthermore, in this network, 27 000 new MV 
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(Medium Voltage) and LV (Low Voltage) connections were ordered, as well as 52 214 000 Readings, 

and 671 000 power cuts.  

The total network size holds 228 046 Km, whereas the High Voltage Network accounts for 9 532 Km 

(4.2%), the Medium Voltage Network for 73 850 Km (32.4%), and the Low Voltage Network for 144 

664 Km (63.4%). Additionally, there are also 69 190 secondary substations and 431 primary substations. 

In terms of operational and financial indicators, EDPD was accountable for 3 085 employees, having a 

Net Profit of 78 Million Euros, an Operational Investment (CAPEX) of 305 Million Euros, and a 474 

Million Euros EBITDA. 

1.1.3. Distribuição Team and Hierarchy 

At EDP D, I occupy the role of a Data Scientist in the Data Analytics and Management team (Analítica 

e Gestão de Dados), a group inside the Digital Boost Area (Área de Acelaração Digital) that, in turn, is 

a sub-group of the Digital Platform Management (Direção Plataforma Digital), in the Energetic 

Transition and Digital Platform (Transição Energética e Plataforma Digital) (see Figure 2). In other 

words, the full hierarchy chain to my position is EDPD-DPD-AAD-AGD. This team’s vision is to 

implement a data-driven and data-informed culture at EDP D, by developing an audit analytics-related 

projects, validating methodology and documentation, monitoring analytical models, promoting and 

improving their evolution, empowering other business units by organizing analytics sessions that 

democratize this knowledge with business-oriented experts, and it makes an effort to be aware of new 

technologies, tools, and methods in this field.  

1.2. THE PROJECT OVERVIEW 

EDP D is aiming to achieve its digital strategy and vision by unlocking business value through advanced 

analytics, thus building a data-driven and data-informed culture. In this context, my team and I have a 

key role in validating projects where data is the main resource. Hence, Quality Assurance validations 

are fundamental in our participation. Having some guidelines identified, I will provide practical 

Figure 2. EDP D organizational chart 
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examples of how they can be used as improvements for more robust solutions. The considered projects 

that aimed to support decision-making by data means were Predictive Asset Failure Classification, 

Asset’s Health Index estimation, and the construction of Investment and Maintenance Planning 

Dashboards to hold this information 
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2. THEORETICAL FRAMEWORK 

In today’s information era, where Data galvanizes change, companies are aiming towards competitive 

advantage by mining this important resource to achieve actionable insights, knowledge, and wisdom. 

However, in a time wherever larger and more variated data is being generated, some challenges oppose 

the simple techniques and tools that once were optimal for these kinds of analysis. Therefore, new 

solutions were devised, and Data Science and Machine Learning are now indispensable terms when 

dealing with data. In this chapter, we will describe the fundamentals of supervised classification machine 

learning and techniques to assess asset’s health which will be useful to better understand the quality 

assurance guidelines provided in this report, and the discussed practical cases. 

2.1. QUALITY ASSURANCE (QA) 

Quality Assurance (QA) is a systematic planed model of activities that ensure the quality standards of a 

product are being met within an organization. Such tasks, when done right, are key to increase operations 

efficiency and effectiveness, minimizing costs, time, and resources. 

QA, however, is not a recent concept. During the First World War, also known as the War of Production, 

workers were paid for each unit they produced (Piece Work). Given the high demand for supplies, the 

World witnessed an era of mass production. Nevertheless, as manpower increased and manufacturing 

processes became more complex, units also became more susceptible to defects and poor quality 

amongst assembly lines. Visionaries, such as Henry Ford, introduced disruptive methods that tackled 

the lack of quality by standardizing the design and component standards, while also assigning 

accountability to the “Machine Inspectors”, which were quality assurance professionals placed in each 

department, guaranteeing faulty operations were limited to a short period (Wilson, 2014).  

 

Figure 3. Six Sigma DMAIC methodology 

Many years and several developments later, QA evolved into a well-known concept. One of the most 

respected methodologies is the Six Sigma DMAIC (Define, Measure, Analyze, Improve Control) 

methodology. It consists of a data-driven quality strategy, where each letter in the acronym represents 

five different phases (see Figure 9). First, the process requires a definition of the problem, the 

opportunity for improvement, the project goals, and the customer requirements. Then, it measures the 

performance of the process by collecting all the necessary data to determine the types of defects and 

metrics. Afterward, the previously collected data is analyzed, identifying root-causes of defects and gaps 
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between current performance and goal performance.  Then, it improves the process performance by 

addressing and eliminating the root causes, designing creative solutions. Finally, it controls the 

improvements to keep the project on the new course (Tsung, 2006). 

In data science, QA tasks can be commonly misinterpreted as the activities done during the final phases 

of a Machine Learning project pipeline, such as accessing the error on the testing set. However, there is 

a lot to learn from methodologies such as the Six Sigma DMAIC. During the exploratory data analysis 

and feature engineering phases, the data quality must be ensured, requiring input data sources to be 

validated by business experts and automated tests, including data transformations, comparisons, data 

types checking, and accessing missing values and outliers. When modeling, overfitting should also be 

controlled thoroughly, ensuring the model training simulates the reality as much as possible, which 

means splitting the data into different partitions, choosing and comparing models, choosing evaluation 

metrics, and accessing the error. Furthermore, there are also transversal guidelines that should be 

tackled, such as the correct documentation of all steps, ensuring systems integration, and deployment 

success. In this report, I intend to explore possible applications of QA in a Machine Learning project as 

best-practices to follow, which you can find in chapter 4. Quality Assurance Guidelines, and practical 

examples on real projects in chapter 5. Quality Assurance in Practice: Projects. 

2.2. SUPERVISED CLASSIFICATION MACHINE LEARNING 

Machine Learning (ML) can be described as the automation of data exploration and analytics tasks by 

using advanced techniques, usually beyond the traditional Business Intelligence solutions, aiming to 

acquire more knowledge about a problem. The overall idea is that the system should be able to learn 

from data, identify patterns, and make decisions requiring the minimum Human interaction.  

Every dataset in Machine Learning is represented by a set of features, which can be continuous, 

categorical, or binary. When the corresponding label for each data point is known (see Table 1), we refer 

to Supervised Learning, as it’s the case of Classification and Regression models. In contrast, when 

previous-labeled data does not exist, it is called Unsupervised Learning, as it happens with clustering 

algorithms, unsupervised classification of patterns into groups (Jain et al., 1999). Lastly, Machine 

Learning use cases can also be described as Reinforced Learning examples. This is the development of 

intelligent models that, according to the received data, must find the patterns and actions that yield better 

results, awarding or penalizing them (Botvinick et al., 2011).  

Observation Feature 1 Feature 2 … Feature k Class 

Obs. 1 X X … X 1 

Obs. 2 X X … X 0 

… … … … … … 

Obs. n X X … X 1 

Table 1. Dataset with known labels: Predictive features and corresponding target class 

In this report, and practical cases discussed, I will be focusing on Supervised Learning, more precisely, 

on Classification problems and techniques. Classification is one of the fundamental problems of 

Supervised Learning, and one of the most common in Machine Learning applications. It requires 

previously labeled data, so-called examples, and builds models to classify data points based on predictor 

features, learning and adjusting the algorithm’s weights according to the error, or difference, between 

the observed labels and the predicted ones. The result is a classifier that classifies new data points whose 

label is unknown (Kotsiantis, 2007).  
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The process of building supervised classification models can follow a similar structure to the ones found 

in the CRISP-DM methodology (Shearer et al., 2000) and OSEMN (Mason, 2010) framework (see 

Figure 3). Having identified and understood a business problem that Machine Learning can tackle, the 

process begins by identifying which data is needed, thus requiring multidisciplinary teams, that benefit 

from domain-knowledge inputs that will facilitate the following steps, exploratory data analysis (EDA) 

and data pre-processing.  

However, before proceeding, it is important to define the training set. This will allow to assess the final 

classifier performance on unseen data and reduce the bias of developing an overfitted model (Leinweber, 

2007) where results are too adjusted to a particular set of data, and the classifier is likely to fail when 

predicting unseen observations. Thus, depending on the existing amount of data, it is possible to define 

a training set in which all discoveries, decisions, and classifier training are made, applied, and tested on 

the testing set. This can be done by simply splitting the data into these two subsets and, to have a prior 

estimation of the classifier’s performance, one can leave a small proportion of the training set as 

validation, even though the more decisions are made according to the validation results, the more biased 

the classifier will be to that data subset. A better approach is to use cross-validation techniques (see 

Figure 4), in which the training set is divided into mutually exclusive and equal-sized subsets for n 

iterations and, in each iteration, the greater number of subsets is used to train the classifier while the 

remaining subset is used for validating the classifier estimations performance. In each iteration the fold 

that is selected as validation is independent of each other, this is, it will not be part of the validation 

subset on the other iterations, thus ensuring all data was, at some point, selected to train the classifier 

and validate its performance, but never in the same iteration. After all n iterations, the classifier’s 

performance estimation will be an average of all performance metrics recorded in each independent 

iteration.  

The most common cross-validation techniques are the K-Fold cross-validation, in which data is divided 

into K equal-sized subsets, and Stratified K-Fold cross-validation, which assures the proportion of 

Figure 4. Supervised classification machine learning process 
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samples from a given class label is preserved in all folds, thus, a favorable option when dealing with 

imbalanced datasets. 

During the EDA phase, data exploration and summarization can lead to initial discoveries that facilitate 

data pre-processing tasks, such as the identification of patterns and associations in data, data types, 

missing values, and outliers. Then, data is carefully processed by cleansing noisy data, and applying 

feature engineering techniques, such as feature encoding, e.g. One-Hot Encoding; feature selection, the 

process of selecting a subset of features based on a criterion, e.g. Entropy or linear correlation between 

variables; and feature extraction, the process of reducing the dataset dimensionality by creating new 

features that summarize most of the information contained in the original set of features, e.g. Principal 

Component Analysis (PCA).  

2.2.1. Classification Algorithms: Black Box vs. White Box 

After the data pre-processing tasks, specific classification algorithms must be selected. This step is key 

and often based on intuition, a prior hypothesis on the data, successful past use-cases for similar 

problems, or even time and/or computing limitations to implement in a reasonable time. Having a set of 

algorithms, it is necessary to train them on the available training data, in which the classifier will find 

the patterns within a set of independent features, or predictor features, that lead to a certain label.  

From a practical point of view, we can frame classification models, and ML models in general, into 

White Box or Black Box models (Loyola-Gonzalez, 2019). White Box models are explainable and 

interpretable AI models that can easily be compared and understood by human experts, e.g. Regression 

and simple Tree-based methods where the importance and weight of each predictive feature are 

traceable, and it is clear how features affect the predicted labels. On the other hand, Black Box models 

are high-performance models that generally provide more accurate results than the ones obtained with 

White Box models. However, it is quite challenging to explain how predictive variables affect the 

predicted target labels. Black Box algorithms include ensemble methods, such as Support Vector 

Machines and Neural Networks, e.g. Long Short-Term Memory (LSTM) Neural Networks and 

Convolutional Neural Networks (CNN). In this report, we will dive deeper into four specific classifiers, 

two White Box models, Logistic Regression and Logistic Regression, and two Black Box models, 

Random Forests and XGBoost Classifiers.  

  

Figure 5. K-Cross Validation with average classifier performance 
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2.2.1.1. Logistic Regression 

The logistic regression is one of the simplest and easily understandable classification algorithms 

available which, despite its simplicity, proves to be very powerful. The traditional algorithm derives 

from linear regression, as follows: 

𝐸[𝑦] =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖 (1) 

Where, E[y] is the expected value of the dependent variable Y we intend to predict, β0, …, βp are linear 

coefficients, and X1, …, Xi is the values of the p predictor variables for each data point. The problem, 

however, is that linear regression is far from ideal for classification problems, due to strict ordinary least 

squares (OLS) assumptions (James et al., 2000): linearity, normality, and continuity for OLS regression 

and multivariate normality with equal variances and covariances for discriminant analysis. 

Simultaneously, this equation will regress on continuous values, whereas in classification problems the 

target class is binary or categorical. The logistic model can be denoted as:  

𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝑙𝑜𝑔 (
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 +  𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖 (2) 

Where P(X) is the probability of X belonging to a determined target class: 

𝑝(𝑋) =
𝑒𝛽0+ 𝛽1𝑋1+⋯+𝛽𝑖𝑋𝑖

1 + 𝑒𝛽0+ 𝛽1𝑋1+⋯+𝛽𝑖𝑋𝑖
(3) 

Logistic models use Sigmoid functions, thus, when visualizing binary problems, where the target labels 

for all data points are either from Class 1 or Class 2, it is possible to use a scatter plot to observe how 

the Y-axis ranges from zero to one (see Figure 5). 

In machine learning pipelines, Logistic Regression models benefit by not requiring a high computational 

effort and, as a White Box model, its results are highly interpretable. Furthermore, it is not required to 

scale and/or standardize the predictive independent variables to use this model. However, it will not 

produce good predictions if the predictive variables are correlated amongst each other or if they are not 

correlated with the dependent variable we wish to predict. Also, it is still a simple derivation of a linear 

model and a more complex algorithm will likely surpass the predictions of a Logistic Regression, thus, 

I would advise using this model as a baseline for benchmarking other algorithms. 

  

Figure 6. Logistic Regression curved fitting example 
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2.2.1.2. Decision Tree Classifier 

Another White Box model discussed in this report: Decision Tree Classifiers. These tree-based classify 

instances by sorting them based on feature values. A node in a decision tree denotes a predictive feature 

and each branch represents a value that this feature can assume (see Figure 6). These models are non-

parametric, that is, they do not make strong assumptions on the distribution of the data, which presents 

some benefits, especially when a lot of data is available and we do not have any prior knowledge of it, 

allowing more leverage when choosing the right features (Ligeza, 1995). Non-parametric algorithms are 

also flexible, powerful and can achieve good results, however, they require high amounts of data, the 

training can be slow and there is also the risk of overfitting. 

There are several decision tree algorithms, such as ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), and 

CART (Gordon et al., 1984). Trees are greedy and recursive algorithms, meaning that, for each iteration, 

the algorithm will try to find an appropriate splitting partition of the dataset into smaller subsets based 

on a predictive feature. This process will then repeat itself until all branches lead to only an exclusive 

target class, or a stopping criterion is satisfied. Since the referred tree classifiers are top-down 

algorithms, the root node will represent the feature that better discriminates the target class, the second 

node the subsequent feature that better discriminates the target class, and so on. This discrimination 

ability is measured by using the Entropy and Information Gain concepts. Entropy measures the 

homogeneity, or randomness, of a sample, and its equation can be written as:  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = − ∑ −𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)

𝐶

𝑖=1

(4) 

Where Pi is the probability of an element of class I in the subset, and C the number of possible classes. 

For binary problems, the entropy can assume a value from 0 to 1, where values close to one 

mean it is harder to discriminate between target classes, and on the other hand, a completely 

homogeneous subset will have an entropy of zero. If the distribution of classes is equal in a 

subset, then the entropy will be equal to one. Another metric on how to split data and finding 

the first nodes is by using Information Gain, which measures the ability for a predictive feature 

to discriminate between classes, using entropy as the impurity measure: 

Information 𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)
 . 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) (5) 

Figure 7. Decision Tree classifier example of how predictive features are split into branches that either lead to 

other splitting nodes or the classification 
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Where S is the entropy existing in the dataset if the A predictive feature was the only one existing, and 

Sv the entropy in the subset of each distinct value in A. Ultimately, Information Gain measures the 

decrease in entropy, computing the entropy before and after splitting the dataset based on a given 

attribute. 

Decision Trees, as a classification tool, have many advantages, they are easily understandable and self-

explanatory since they belong to the White Box models category and can be translated to a set of if-

then-else rules. Moreover, Decision Trees are capable of handling numerical and categorical inputs and 

are robust to datasets containing errors or missing data. Furthermore, they are also nonparametric, as 

stated earlier, meaning they have no assumptions about the data distribution (Rokach & Maimon, 2006). 

On the other hand, they have some disadvantages as well. Tree classifiers require an exclusively discrete 

target and are likely to provide weak results if no relevant attributes exist. Also, it is important to 

remember they are greedy algorithms which, depending on the dataset size, can lead to a high 

computational effort. 

2.2.1.3. Random Forest Classifier 

Random Forests, as the name suggests, elevate the concept of Decision Trees, as a combination of tree 

predictors that operate as an ensemble (Breiman, 2001). Each tree receives a random subset of features 

to classify, with equal target distribution, which in the end, the predictions are voted on and the class 

with most votes wins (see Figure 7). 

As an ensemble method, the overall idea is that many relatively uncorrelated trees working together will 

outperform any of the predictions provided by a single tree. The reason why this algorithm is so good 

at overall problems is precise because the trees are protected from the individual errors each one makes, 

otherwise, they would tend to provide the same output. Since each Individual Tree is sensitive to the 

data it is trained on, Random Forests allow each one to randomly sample data and features, resulting in 

different trees, also known as bagging. 

As a Black Box model, Random Forests suffer from a lack of interpretability and little control on the 

model’s operability, since they can be very complex. Also, they require more training time and 

computational effort when compared to Decision Trees and Logistic Regression, for example. On the 

other hand, Random Forests can solve both classification and regression problems, they don’t require 

predictive features to be previously scaled, and they are robust to noisy data, e.g. missing values and 

outliers. Furthermore, they are very stable and powerful algorithms that tend to provide good results in 

a wide range of problems, since they can handle high dimensional datasets well and benefit from 

ensemble and bagging techniques that reduce overfitting and improve accuracy. 

Figure 8. Random Forest classifier example on how independent trees work together to vote on a prediction 
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2.2.1.4. XGBoost Classifier 

The final discussed classifier in this report, also a member of the Black Box models family, is called 

extreme gradient boosting classifier, or as it is commonly denoted, XGBoost. Similar to the Random 

Forest, XGBoost is also a decision-tree-based ensemble algorithm, a highly effective and widely used 

machine learning method (Chen & Guestrin, 2016). The reason why XGBoost performs so well in 

overall problems is that it derives from the boosting concept, which aims to create a strong classifier 

based on weaker classifiers. By adding models on top of each other, the errors of the previous model are 

corrected by the following predictor (Schapire, 2003). Then, as the name suggests, the gradient aspect 

of the algorithm looks to minimize the residual loss of adding the last prediction by fitting new residuals 

to the appended model, instead of just assigning different weights in each iteration. 

Ultimately, XGBoost classifiers are considered one of the best algorithms that yield good results in a 

wide range of problems, especially in small to medium-sized datasets, when compared to Neural 

Networks, for example. Furthermore, they are fast and allow for the parallelization of trees, they are 

efficient when handling noisy data, and they use regularization that reduces the risk of overfitting. 

However, since XGBoost classifiers are Black Box models, the prediction process interpretability is 

highly difficult. For example, when accessing the feature importance of a trained model, it is possible 

to use the Weight, which represents the number of times a feature is used to split the data across all trees, 

the Cover, which represents the number of times a feature is used to split the data across all trees 

weighted by the number of training data points that go through those splits, or the Gain, which represents 

the average training loss reduction gained when using a feature for splitting. Any of these is likely to 

provide different importance ranks to each predictor feature, which leads to a lack of interpretability on 

the importance and effect of each feature. Nevertheless, a novelty solution called SHAP1 (Lundberg & 

Lee, 2017) was proposed to tackle this problem. It is based on a game-theoretic approach that assigns 

an importance value for each feature value for a determined prediction and allows for a visualization-

based method for interpreting results from Black Box models. 

2.2.2. Performance Metrics for Supervised Classification Problems 

Having a set of models to use, it is critical to identify which metrics are more suited towards a 

classification problem, to evaluate the optimal classifier’s performance. Commonly, Accuracy is used 

to discriminate classifiers, however, it can lead to major bias, since it only evaluates how many data 

points the classifier got right, from all existing data points, not taking into account class distribution (M 

& M.N, 2015). During the training phase, evaluation metrics are used to learn and compare different 

classifiers, to evaluate which can discriminate the target labels the best. Then, in the testing phase, they 

evaluate the classifier’s performance, or effectiveness, on unseen data. For binary classification 

problems, as is the case of the cases tackled in this report, most metrics derive and can be summarized 

by using a confusion matrix (see Table 1). 

 Predicted Negative Class (N’) Predicted Positive Class (P’) 

Actual Negative Class (N) True Negatives (TN) False Positives (FP) 

Actual Positive Class (P) False Negatives (FN) True Positives (TP) 

Table 1. Confusion matrix for binary classification problems 

 

 
1 https://github.com/slundberg/shap 
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Since the target is binary, its actual label is commonly translated to Negatives or Positives, whereas the 

corrected classified instances are denoted as True Negatives (TN) and True Positives (TP). Moreover, 

data points whose label is incorrectly classified can be either False Negatives (FP) or False Positives 

(FP). As stated before, in cases where the target class is imbalanced, the accuracy can lead to false 

conclusions on the model’s performance: In the extreme case of a dummy classifier, where all predicted 

labels are of class C0, predicting no labels of class C1, the classifier’s accuracy will be equal to the 

number of data points of class C0, which in the presence of an imbalanced dataset leads to high accuracy, 

yet a useless model. 

When choosing a classifier or evaluating performance we should, however, look at other existing metrics 

for classification problems (see Table 2). Metrics such as Recall, or Precision provide a better overview 

of the classifier’s prediction performance. Furthermore, when the implications of failing to predict a 

certain class are critical, domain-knowledge experts can identify if having False Positives is, or not, 

more critical than having False Negatives and thus, greater weight can be given to either Precision or 

Recall. If not, F1-Score is a very robust metric that calculates the harmonic mean between these previous 

two metrics and facilitates the quest of choosing algorithms or evaluate the final classification 

predictions on unseen data. 

Metric Formula Description 

Accuracy (acc) 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

The ratio of correct predictions by all 

predictions made. 

Error Rate (err) 
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

The ratio of incorrect predictions by all 

predictions made. 

Precision (p) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The ratio of correct Positive predictions by 

all Positively predicted classes. 

Recall (r) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The ratio of correct Positive predictions by 

all True positive classes. 

F1-Score (F1) 
2 × 𝑝 × 𝑟

𝑝 + 𝑟
 

The harmonic mean between Precision and 

Recall. 

Sensitivity (sn) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The ratio of correct Positive predictions by 

all True Positive classes. 

Specificity (sp) 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The ratio of correct Negative predictions by 

all True Negative classes. 

Averaged Accuracy 
∑

𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑁𝑖

𝑐
𝑖=1

𝑐
 

The average effectiveness of all classes. 

Averaged Error Rate 
∑

𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑁𝑖

𝑐
𝑖=1

𝑐
 

The average error rate of all classes. 

Averaged Precision 
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑐
𝑖=1

𝑐
 

Average class-specific precision. 

Averaged Recall 
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑐
𝑖=1

𝑐
 

Average class-specific recall. 

Averaged F1-Score 
2 × 𝑝𝑚 × 𝑟𝑚

𝑝𝑚 + 𝑟𝑚

 Average class-specific F1-Score. 

Note: Variable c denotes the possible binary classes in the dataset; TPi the True Positives for Ci; TNi the True 

Negatives for Ci; FPi the False Positives for Ci; FNi the False Negatives for Ci; and m the macro-averaging. 

Table 2.  Classification metrics to evaluate the performance 
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It is important to notice that the overviewed metrics are only theoretical, thus the classifier will benefit 

and yield better results if business or domain metrics are developed. For example, in a predictive 

maintenance problem, the total cost of failure and/or replacing a component should be quantified and 

compared to the cost of a maintenance check that would avoid the subsequent implications. This way, 

it would be possible to build a metric that can be used in the classifier training and evaluation to account 

for real costs. 

After accessing the performance of the model, likely, the results are not desirable in a first iteration, so 

it is necessary to go back to one or more of the classification machine learning process and fine-tune 

several parameters or rules. The final product should be a pipeline that is ready to receive unseen data, 

apply all the transformation steps with the weights and parameters used in the training set and use the 

classifier to predict the labels of these new data points. 

2.3. OFGEM 

Risk is the probability of an expected event outcome to differ from the actual event. It is present in 

everyday activities and, despite us, as individuals, do not often evaluate risk consciously, companies 

and organizations have the highest interest in evaluating risk impact and how to minimize impacts. By 

identifying risk, it is possible to analyze it, evaluate it, and ultimately, mitigate it. To help organizations 

with such tasks, the International Standards Organization has produced ISO 31000:2009 Risk 

Management – Principles and guidelines, which includes definitions, principles, and guidelines 

associated with risk management. Furthermore, BS EN 60912:2006 Analysis Techniques for System 

Reliability provides guidance on analysis techniques for system reliability. In this report, we will be 

focusing on the OFGEM (Office of Gas and Electricity Markets) methodology for the Electricity sector, 

which is based upon the content from ISO 55001, ISO 31000, and BS EN 60812. 

Expressing risk as a combination of the likelihood of an event and its consequences, both factors can be 

measured qualitatively or quantitatively and must be, for analytics purposes, described mathematically 

as a probability. This combination is often represented in a risk matrix that crosses the likelihood and 

consequence of a certain risk in a 2-dimension plan, that can be expressed as:  

𝑅𝑖𝑠𝑘 = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (6) 

In this case, the risk requires the Likelihood and Consequence factors to be quantitative. This equation 

can also be expressed in the Energy and Utilities sector, to estimate the risk associated with each asset. 

This can be translated as the sum of the expected values of the risk consequences associated with a 

certain asset and the probability of Failure:  

𝐴𝑅 =  ∑ 𝑃𝑜𝐹𝑗 ×

𝑛

𝑗=1

𝐶𝑜𝐹𝑗 (7) 

Where AR represents the Asset Risk, PoFj the Proof of Failure j occurring during a given time, CoFj the 

monetized Consequence of Failure j, and n the number of failures associated with the asset. In the scope 

of the OFGEM formula, the described theoretical framework applies in the following assets: Circuit 

Breakers, Transformers, Reactors, Underground Cables, and Overhead Lines (Conductor, Fittings, and 

SPT and SHE-T Towers). Adding the risk associated with each asset, it is possible to estimate the 

Network Risk, a collective measure of all assets in question: 
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𝑁𝑅 =  ∑ 𝐴𝑅𝑘

𝑛

𝑘=1

(8) 

Where NR is the Network Risk, ARk the asset risk associated with asset k, and n the number of assets on 

the network.  

The OFGEM methodology starts from the premise that the health of a certain asset evolves along an 

increasing exponential curve: The higher the health value, the worse that asset’s health. In Figure 8, we 

can observe how this curve is influenced by three segments: The initial Health Score, the Current Health 

Score, and the Long-Term Health Score.  

2.3.1. Initial Health Score (Initial End of Life).  

Initially, the OFGEM curve is determined by an initially expected aging rate, which depends on two 

other factors, the Expected Life (LE) and the Initial Ageing Rate (β1). The asset expected life can be 

decomposed on three main factors: Normal Expected Life, Location Factor, and Duty Factor. The 

Normal Expected Life (LE) represents the expected time, in years, a certain asset is expected to last until 

such deterioration leads to functional failures. This factor considers the original specification and 

manufacturer data (see Equation 9) where LA represents the Expected Average Life, the FLSE the LSE 

Factor, and FDY the Duty Factor. 

𝐿𝐸 =
𝐿𝐴

𝐹𝐿𝑆𝐸 × 𝐹𝐷𝑌
 (9) 

Then, the Location Factor (LSE) represents the wear factor that the asset will suffer as a result of its 

location. This is a combination of 3 segments, which are the Distance to coast (km), meaning the closer 

to the coast, the higher the wear, the Altitude (m), where the higher the asset is located, the higher the 

wear, and lastly the Corrosion (rating 1 to 5), where the higher the corrosion rate, the higher the wear. 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑀𝑎𝑥(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝐶𝑜𝑎𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑍𝑜𝑛𝑒 𝐹𝑎𝑐𝑡𝑜𝑟)(10) 

Having determined this, it is possible to calculate the LSE factor, which stands for the Location, Situation 

and Environment factors, considering, besides the location, if an asset is situated indoors or outdoors 

and the severity of the local environment. The minimum location factor is constant. 

Figure 9. OFGEM Exponential Curve: Expected Asset Health Index considering the aging rate 

factor 
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𝐿𝑆𝐸 𝐹𝑎𝑐𝑡𝑜𝑟 = (
((𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟) × 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟) +

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
) ×

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 (11)
 

Lastly, the Duty factor (FDY) is specific to each different asset, representing the usage rate of an asset: 

The higher the usage, the higher the asset’s wear. For Circuit Breakers, this factor considers the presence 

of feeder protection (Prot); the presence of Auto-Reclose (RA); Operational experience in the form of a 

high duty exception report (DH); the fault level compared to fault rating (DFAULT); and the latest record 

of the total number of Fault clearances undertaken by the circuit breaker (DCLEAR). The Duty Factor 

changes depending on the circuit breaker: SHE-T (see Equation 12) or SPT (see Equation 13). 

𝐹𝐷𝑌 = 𝑀𝑎𝑥(𝑃𝑟𝑜𝑡, 𝑅𝐴 , 𝐷𝐻) (12) 

𝐹𝐷𝑌 = 𝐷𝐹𝑎𝑢𝑙𝑡 × 𝐷𝐶𝑙𝑒𝑎𝑟 (13) 

In the case of Transformers, this factor considers the maximum operating temperature recorded against 

each transformer (Tmax), the maximum demand placed upon the transformer as a percentage of its stated 

rating (Dmax), the average demand placed upon the transformer as a percentage of its stated rating (Dave), 

and the severity of frequency of through faults (TF). Again, the Duty Factor will depend on the 

Transformer: SHE-T (see Equation 14) or SPT (see Equation 15). 

𝐹𝐷𝑌 = 𝑀𝑎𝑥(𝑇𝑚𝑎𝑥 , 𝐷𝑚𝑎𝑥) × 𝑇𝐹 (14) 

𝐹𝐷𝑌 = 𝑀𝑎𝑥(𝐷𝑚𝑎𝑥, 𝐷𝑎𝑣𝑒) (15) 

To complete the Expected Initial Ageing Rate, it is required to estimate the Initial Ageing Rate, which 

is based upon the End of Life modifier (EoL). 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝑔𝑒𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (𝛽𝑖) =
ln (

𝐸𝑜𝐿𝑀𝐴𝐿
𝐸𝑜𝐿𝑁𝐸𝑊

)

𝐿𝐸

(16) 

Where EoLMAL represents the EoL modifier of the asset when it reaches its expected life (set to 5.5), the 

EoLNew the EoL modifier of a new asset (typically set to 0.5), and the LE stands for the Expected Asset 

Life. Thus, we have reunited the conditions to assess the Initial Health Score, or the Initial End of Life 

modifier (EoL), which is modeled through the Initial Ageing Rate and a projection on the asset Expected 

Life. This will represent a theoretical projection where it places the asset’s health in the aging curve. 

This measure can range from 0.5, a new asset, to 5.5, when the first signs of significant deterioration are 

expected to appear. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑛𝑑 𝑜𝑓 𝐿𝑖𝑓𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (𝐸𝑜𝐿1,𝑖) = 𝐸𝑜𝐿𝑁𝐸𝑊 × 𝑒(𝛽1,𝑖×𝐴𝑔𝑒𝑖) (17) 

Where EoL1,i represents the initial indicator of asset i, the EoLNEW the EoL modifier of a new asset 

(commonly set to 0.5), and β1,i the initial aging rate of asset i. 

2.3.2. Current Health Score (Intermediate End of Life) 

Having established how to estimate the initial health index of an asset or initial end of life indicator 

(EoL2), it is possible to assess the current health index of each asset or intermediate end of life modifier. 

This estimation now considers the asset’s observed conditions, inspection surveys, maintenance test 

results, operator’s experience of each asset, and reliability inputs. 
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𝐸𝑜𝐿2 = 𝐸𝑜𝐿1 × 𝐹𝑉1 (18) 

Combining said information and holding individual weights for each one of the previously denoted 

factors, the intermediate end of life modifier (EoL2) is achievable by multiplying the initial end of life 

modifier (EoL1) by a conditional factor value (FV1). 

2.3.3. Long-term Health Score (Forecasting End of Life) 

To estimate a long-term health index score, we first determine the End of Life modifier in future years 

as: 

𝐸𝑜𝐿𝑌(𝑛) = 𝐸𝑜𝐿𝑌(0)𝑒𝑏∆𝑇 (19) 

Where ΔT represents the time between years 0 and n. Using the expected life of the asset as ΔT, and the 

max and min EoLs as EoL(Yn) and EoL(Y0) respectively, it is also possible to calculate all other variables, 

therefore allowing to estimate variable b. Similar to the initial and current health score, it is necessary 

to capture the effect of the aging rate in the EoL, which we will now express as: 

𝛽𝐹𝑖𝑛𝑎𝑙,𝑖 = 𝑀𝑎𝑥 [
ln (

𝐸𝑜𝐿𝑌0
𝐸𝑜𝐿𝑁𝐸𝑊

)

𝐴𝑔𝑒𝑖
, 𝛽1,𝑖 × 𝛽𝑅𝑎𝑡𝑖𝑜] (20) 

Where βRatio is the max ratio between the final aging rate and the initial aging rate. Therefore, we have 

all the necessary factors and conditions to estimate the forecasting the End of Life of an asset:   

𝐸𝑜𝐿𝑌𝑁,1 = 𝑀𝑎𝑥 (𝐸𝑜𝐿𝑌0,𝑖 × 𝑒
(

𝛽𝐹𝑖𝑛𝑎𝑙,𝑖×(𝑡𝑌𝑁−𝑡𝑌0)

𝐹𝑎𝑔𝑒,𝑖
)
, 𝐸𝑜𝐿𝑌𝑁,𝑚𝑎𝑥) (21) 

Where EoLYN,i represents the EoL modifier of asset i in future year Yn, βFinal,i the final aging rate of asset 

i, FAge,i the aging reduction factor for asset i,(tYN – tY0) the number of years over which the asset moves 

from EoLY0,i to EoLYN,i, and EoLYN,max the maximum allowable value for the future indicator, typically 

set to 15 years in the future. 

2.3.4. Forecasting Proof of Failure 

Besides an evaluation of the health status of an asset, OFGEM also allows for an estimation of the 

likelihood of an asset to fail, in the short, and long-term. To do so, it is necessary to translate the EoL 

values into a probability, which depends on the specific asset type. This approach is not only influenced 

by the aging process but from external events as well, such as environmental conditions and poor 

installation. The distribution curve that represents the probability of failure can be expressed using two 

functions: An exponential function (x2) which provides a rapid rise in the probability of failure as the 

EoL modifier value increases, e.g. as deterioration approaches the point of failure, and a cubic expression 

(x3), e.g. the first three terms of a Taylor series for an exponential function. 

The use of an exponential function provides a predicted failure rate that generally falls in the range of 

simulated predictions around 15 years ahead (Black et al., 2005). After this period, the predicted failure 

rates start to overestimate. Therefore, a better solution is a hybrid form of the cubic function (see 

Equation 22). This allows for the probability of failure to be constant for low EoL modifier values, e.g. 

an asset in excellent condition, before increasing rapidly as the EoL Modifier increases, e.g. as the asset 

begins to degrade significantly. The cubic function is responsible for modeling the asset’s behavior more 
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closely than the exponential. To determine at which point the probability of failure is derived using the 

cubic expression, a threshold, or calibration value, called EoLLim is used. Below the EoLLim threshold, 

the probability of failure is set at a constant value (see Equation 22); above the EoLLim the cubic function 

applies (see Equation 23).  

𝑃𝑜𝐹 = 𝑘 × (1 + (𝐸𝑜𝐿 × 𝐶) + 
(𝐸𝑜𝐿 × 𝐶)2

2!
+

(𝐸𝑜𝐿 × 𝐶)3

3!
) , 𝐸𝑜𝐿 > 𝐸𝑜𝐿𝐿𝑖𝑚 (22) 

And 

𝑃𝑜𝐹 = 𝑘 × (1 + (𝐸𝑜𝐿𝐿𝑖𝑚 × 𝐶) + 
(𝐸𝑜𝐿𝐿𝑖𝑚 × 𝐶)2

2!
+

(𝐸𝑜𝐿𝐿𝑖𝑚 × 𝐶)3

3!
) , 𝐸𝑜𝐿 ≤ 𝐸𝑜𝐿𝐿𝑖𝑚 (23) 

Where PoF is the probability of failure, EoL represents the end of life modifiers, K and C are pre-

determined constants, and EoLLim is the EoL modifier limit below which the probability of failure is 

constant. Regarding the constants, C is responsible for fixing the relative values of the PoF for different 

modifiers, acting as the slope of the curve, while K determines the absolute value. These constants must 

be calibrated for each different asset. Along with this report, we will discuss a practical implementation 

of the OFGEM formula and its adaptation to the EDP D assets. 
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3. FRAMEWORK AND DATA ARCHITECTURE 

In the practical examples discussed further in this report, due to the processing and ingestion of high 

amounts of data required, Big Data-oriented solutions were also a must. Having said this, all tools and 

technologies used to fall under the Microsoft Azure Cloud Ecosystem2, to increase the synergies 

between services and deploying at-scale solutions. To better understand what was used, I divided the 

technologies into 4 major components: Big Data Storing & Analytics, Relational Database Storing, 

Systems Integration and Deployment, and Reporting and Dashboards. In all referred projects, the same 

data architecture and sources were used (see Figure 10). 

 

Figure 10. Data flow for EDP D projects 

Big Data Storing & Analytics: 

• Microsoft Azure Data Lake - Azure Data Lake is a centralized cloud repository built on YARN 

that holds structured and unstructured data, highly accessible, scalable, and quick to update that 

can be used for analytical tasks.  

• Microsoft Azure Blob Storage - Azure Blob Storage is Microsoft’s cloud-focused storage 

solution. It is optimized for storing huge amounts of unstructured data, such as text or images, 

and allows users to access information via HTTP/HTTPS, from anywhere, at any desired 

moment.  Objects stored in Blob storage are also available through different languages, 

including .NET, Java, Node.Js, Python, Go, PHP, and Ruby. 

• Microsoft Azure Storage Explorer - Azure Storage Explorer is a useful tool to manage Azure 

cloud Blob storage resources, anywhere, anytime. It includes features such as create and/or 

delete containers, upload files, create and/or delete folders within a container, amongst others. 

• Microsoft Azure Databricks - Azure Databricks is an Apache Spark-based unified platform 

for data and AI that allows for large-scale data processing inside the Microsoft Azure Cloud, 

useful for analytics tasks, allowing an interactive workspace with code in several programming 

languages and collaborative work between different users and developers, as well as the 

deployment of Machine Learning algorithms into production. In a Big Data environment, the 

data is ingested into Databricks using Azure Data Factory in batches. The analytics platform 

inside the Apache Spark ecosystem contains five key components: 

 
2 https://azure.microsoft.com/pt-pt/ 
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o Spark SQL and DataFrames – Spark module for structured data. DataFrames in Spark 

is the distributed equivalent of relational database tables or Python DataFrames. 

o Streaming – Real-time data processing and analysis for analytics purposes. It integrates 

with HDFS, Flume, and Kafka. 

o MLlib – Machine Learning oriented library that offers advanced analytic solutions, 

such as supervised and unsupervised algorithms, utilities, and optimization primitives.  

o GraphX – Graphs computation that yields cognitive analytics to data exploration. 

o Spark Core API – Includes development in R, SQL, Python, Scala, and Java. 

Database Storing: 

• Microsoft Azure SQL Database - Azure SQL Database is a component inside Azure SQL 

Family, offering scalable relational database services for the cloud. It is always based on the 

latest version of Microsoft SQL Server. With it, it is possible to create highly available and high-

performance data storage layers for applications and solutions within Azure. 

• Microsoft SQL Server Management Studio (SSMS) - SQL Server Management Studio is an 

integrated Azure environment for managing any SQL infrastructure. It allows for data 

governance capabilities such as access, configure, manage, administer, and develop all 

components of Azure SQL family services, providing a single comprehensive utility that 

combines several graphical tools with script editors, serving developers and users of all skill 

levels. 

Systems Integration and Deployment: 

• Microsoft Azure Data Factory - Azure Data Factory is a service that allows integrating hybrid 

data at-scale. It grants access to on-premises data in SQL Server and Cloud data both in Azure 

Data Lake and Azure Blob Storage and in Azure SQL Databases. With Data Factory, it is 

possible to build ETL and ELT pipelines easily and code-free inside an interactive visual 

environment. 

Reporting and Dashboards: 

• Microsoft Azure Power BI - In Power BI it is possible to create powerful, visually immersive, 

and interactive visualizations by connecting different services and/or data sources from local 

Excel files to cloud-based stored data. The built dashboards allow for actionable insights and 

support decision-making, easily accessed, and used by a broad range of final users. 
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4. QUALITY ASSURANCE GUIDELINES 

As a Data Scientist at EDP D, one of my main tasks is to audit projects that aim to solve business 

problems employing analytics, validating methodology; documentation; models; and promoting the 

highest possible quality. This is done by assuming and establishing Quality Assurance (QA) activities, 

which are fundamental. Furthermore, given the high number of products at EDP D, most projects are 

only possible by outsourcing specialized consulting teams that focus only on a specific problem. 

Therefore, a significant part of my role is to be accountable, to some extent, investing time in oversight 

analytics techniques and steps implemented, and recommend solutions that aim towards a long-term and 

reliable final product.  

During my experience as a Data Scientist and projects in which I assumed QA roles, I intend to 

summarize the lessons learned; main pitfalls and problems encountered; and the systemized advised 

solutions that are being used as a baseline for similar future projects. 

4.1. DOCUMENTATION: HANDOVER AND CODE 

During the making of any project, the active developers and contributors can identify where every step 

and/or decision is being made and why it is being made. However, this may not be so transparent for 

someone who did not follow the working developments of this work, or for future contributors. As it is 

often done in Academia, this problem can be solved with a document that states the entire problem and 

defines every step of the delivered product. Ultimately, it represents the best knowledge source for 

anyone who seeks more information on the subject. Thus, a handover document structure and coding 

documentation rules should become the best practices to be adopted.  

For example, after the conclusion of any project, improvements along the time are expected to be done. 

However, if the original developing team is not present, which happens mostly with outsourced projects, 

and there is a lack of information and code documentation, changes and understanding of what was done 

will be remarkably hard, delaying project schedules. Despite such documentation being a short-term 

effort by the developers, it may result in significant time-consuming tasks of understanding the work 

done. 

In this situation, my recommendation was inspired by the CRISP-DM methodology (Shearer et al., 

2000) and OSEMN (Mason, 2010) framework steps, by creating two main knowledge transfer sources 

that can support anyone who needs them: and Handover document and Code documentation guidelines. 

Regarding the Handover document, this should contain the main and irreplaceable topics that fit the 

knowledge transfer needs. I recommended that it should start by clearly stating the Problem and 

Objectives of the problem at hand, from a business and/or business perspective, as well as the proposed 

product. Then, to set who are the key-experts of the project, the document should define the developing 

Team and the Project Plan, that will support future similar tasks planning. The identification of all 

data sources and where they are stored and/or processed (Hardware and Software) is also a must, framing 

the Data Architecture of the project and defining how the sources and different tools are connected. 

This information should also be supported by a visual representation of the data flow. To conclude the 

introductory part of the document, the Business Problem Relevant Definitions should be presented, in 

other words, a glossary of all domain-knowledge terms and/or explanation and relevant definitions of 

domain-knowledge concepts. Having said this, a Methodology segment should follow, where it defines 

the overview of the project’s methodology, specifying all steps and techniques used to achieve the final 

product. It should allow the reader to assess the validity and reliability of the decisions made. Ultimately, 

it must describe how the data was collected and how it was processed/analyzed. Then, the Exploratory 
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Data Analysis phase should summarize the main aspects of the data, allowing to make early 

conclusions, describe trends, associations, and/or patterns in the data, as well as the identification of 

outliers, missing values, and other noisy data. It is of high importance that this chapter’s conclusions are 

supported by visualizations. After the exploratory phase, a detailed description of all transformations 

applied to data follows, stating the Data Preparation steps, including and justifying the reasoning 

behind every significant decision, such as imputing missing values, dealing with outliers, feature 

engineering, feature selection, and extraction, amongst others. After this phase, I suggested the 

Modelling chapter, in which the models and algorithms used are described, summarizing how they 

work, and a benchmark of the tested models, clearly allowing a comparison between parameters and 

results, both in training, validation, and testing data. Closing the developments, a presentation of the 

obtained results is fundamental, showcasing the final model, the parameters, and the corresponding 

metrics that support such conclusions. In the case of a forecasting or classification problem, the final 

metrics should reflect the model’s performance on testing data. It is also important that those theoretical 

metrics are translated into business gains and costs. I also suggested the inclusion of Improvements 

and Follow-up Work to identify the main obstacles encountered during the project, clearly 

summarizing what should be done differently to improve the final product. Additional Support is also 

relevant to support the reader’s understanding of the problem, such as detailed model benchmarks or 

detailed feature mappings that allow to trace back the entire source path. Lastly, a User-Manual is a 

good knowledge source on how to use the delivered product, containing information on, for example, 

what each notebook does or how to change certain parameters. 

Furthermore, regarding the code documentation, all relevant steps of code should be followed by a small 

description of their nature. This is a harder aspect to assure, given that each developer has a coding 

behavior and relative documentation can be subjective to some. However, I recommended the use of 

Markdown titles to separate blocks and the use of functions to optimize the code and avoid repeating 

tasks. Functions are not only reusable, meaning that they can be used repeatedly, but they are abstract 

as well since we do not need to know how a function works, only its name, location, inputs, and outputs. 

However, it is expected that functions may encapsulate complicated logic tasks, thus, achieving a high 

complexity level. So, to understand its objective, the solution advised was to structure the documentation 

in three parts: Description, a summary of what the function does; the Inputs, the arguments of the 

function; and the Outputs, what is returned or transformed by the function. 

Figure 11. Documentation of code - Function example 
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4.2. DATA VISUALIZATION CAN BE MISLEADING 

When presenting the major findings in Data conclusions must be supported by visual methods. By using 

visual representation, it is easier for the speaker to communicate his conclusion and, for the reader and/or 

audience, easily understand patterns in data. Furthermore, I am an advocate of the idea that results are 

only as good as the way they are communicated. The problem is that data visualization can be misleading 

as well, having a snowball effect, especially if it is done incorrectly during the Exploratory Data Analysis 

(EDA) phase, where a summarization of data and early conclusions are made to proceed with certain 

transformations in the data preprocessing phase. 

A common example of how visualization can be misleading is the over-beautification of data in 

presentation support. Usually, to “sell an idea”, data conclusions are presented using 3D charts, visual 

templates; illustrations of infographics that, even though more attractive to the eye and easier to 

communicate, can exaggerate the reality. Common charts can also suffer from incorrect plotting 

inaccuracies, such as truncated axis, data aggregation (e.g. cumulative graphs), or ignoring conventions 

where standard visualization practices are violated (e.g. Pie charts that do not account for 100%). To 

tackle possible misleading conclusions when data is presented using 3D charts, visual templates; 

illustrations of infographics, the Lie Factor (Tufte, 1988) is a good metric on the relationship between 

the size of the effect shown in a graphic and the size of effect shown in data: 

𝐿𝑖𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝑔𝑟𝑎𝑝ℎ𝑖𝑐

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑖𝑛 𝐷𝑎𝑡𝑎
(22) 

Where the size of the effect can be described as the relative proportional change of the second observed 

value with the first observed value. If data is well represented, the Lie factor accounts for a value 

between 0.95 and 1.05. This range allows for some minor inaccuracies, caused by plotting, for example, 

however, a Lie Factor value higher than this range indicates intended distortions. 

In the given example (see Figure 12), a bar chart is presented with 2 models, and their corresponding 

recorded values. The effect shown in the data is 50%, while the effect shown in the graphic is 338.7%, 

leading to a Lie Factor of 6.774, clearly showing this data was intentionally distorted by a visual 

representation. For other misleading conclusions from charts, it is necessary to have an idea of data 

visualization best practices and it is a part of the QA process to assess if these rules are being complied 

with. Another recommendation is to change the charts used according to the data they are representing. 

Listing the most common charts, Line Plots are good when showing time evolutions, trends and how 

data is connected; Bar Plots to represent categories, whereas the length of each bar is proportional to the 

value it represents; Pie Charts to express how a whole is divided into parts, however, it is a very specific 

visualization that should only be used when plotting 5 to 7 categories maximum; Scatter Plots for 

Figure 12. Lie Factor (illustrative example) 
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representing how numerical data associate with each other; and lastly Box Plots that allow to summarize 

high quantities of data and to visualize data distributions. 

4.3. DATA LEAKAGE BY IGNORING TIME IN TIME-SERIES DATA 

As discussed previously on the theoretical framework, cross-validation is an excellent way of reducing 

the risk of overfitting, by dividing the training set into mutually exclusive and equal-sized subsets of 

data during n iterations. In each iteration, most of the subsets are used to train the classifier, while the 

remaining subset has a validation role. In the end, the classifier’s performance on the data will be the 

average of the classifier’s performance on each iteration. However, this can prove to be problematic 

when dealing with time-series by risking data leakage problems in the analysis.  

Traditional cross-validation for time series data should not be used mainly because of temporal 

dependencies. When developing predictive analytical models, we want to simulate the “real world” the 

best way possible, which leads to algorithms being more robust to unseen data. Thus, events that occur 

chronologically after the events within the data subset that is being used for train, should not be 

considered (Bergmeir & Benítez, 2012). Using K-Fold Cross Validation, for example, the partition of 

data into folds is done randomly, not considering this chronological order, e.g. having data from 2010 

to 2020, we are introducing data leakage in our analysis by, in a certain iteration of K-Fold Cross 

Validation, we use data points from 2019 and 2020 to predict data points labels from 2015. In other 

words, we would introduce a look-ahead bias by predicting the “past” using “future” data, when, we are 

achieving the exact opposite. 

 

To solve this, it is first important to understand if the problem we are aiming to solve with analytical 

methods has time dependencies. If it has, variations of the K-Fold cross-validations can be used. Two 

simple examples are by using sliding windows (see Figure 13), which uses data points from time t-1 to 

train and data points from time t to validate results, or by using expanding windows (see Figure 14), or 

nested cross-validation, which use data points from time t to validate results as well but also use the 

cumulative data points from previous time to t to train the classifier. (Bergmeir et al., 2018). This is an 

often-good solution that despite reducing the overfitting risk and solving the time-series problem, 

provides good insights on how much data from t time is needed to correctly predict labels. 

Figure 13. Sliding window cross-validation 

Figure 14. Nested cross-validation 
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4.4. BLINDLY ENCODING CATEGORICAL DATA 

Many existing algorithms do not support a categorical Input, for example, text fields in a table. They 

are, however, ready to process numerical data. Even though some algorithms allow these types of 

variables, it is a good practice to apply transformations that fit the data in question, which will, most 

likely, lead to better results. From the many ways to encode categorical data, the most common relies 

on creating a column for each possible category, or k-1 columns to avoid multicollinearity issues, a 

strong dependency between independent predictor features, where k is the number of distinct values, 

and filling that new feature with a 1, if that category applies to a certain row, and 0 otherwise. This 

technique of creating binary features is called One-Hot-Encoding (see Table 3).  

Id Category 

 

Id A B C 

Id2 A Id2 1 0 0 

Id2 B Id2 0 1 0 

Id3 C Id3 0 0 1 

Table 3. One-Hot-Encoding (illustrative example) 

Despite all the benefits, encoding categorical variables without any ponderation on how many distinct 

values exist can lead to numerous new features, therefore, facing the curse of dimensionality (Shultz et 

al., 2011). For example, if we consider a dataset containing one categorical feature with one thousand 

possible distinct values, a simple application of the One-Hot-Encoding technique would lead to one 

thousand new binary features, or a nice hundred and ninety-nine if it was decided to drop one value for 

multicollinearity issues. Furthermore, contrary to Ordinal Encoding, where categorical values are 

replaced by rank, the new binary features created by a One-Hot-Encoding transformation will be 

independent amongst themselves. Thus, if a prior ordinal relationship of greatness between the values 

of a categorical variable exists, this relationship will be lost after applying this encoding technique. 

Even though I see One-Hot-Encoding as a technique that generally provides good results, and it is an 

easy and fast method for dealing with categorical variables, when facing many unique values within a 

category, this blind application of the technique must be thought carefully. As a solution, in these cases 

and the scope of a supervised classification problem, I advise creating a single binary feature, instead of 

k new variables. This feature will represent the relationship between the variable categories and the 

target labels and aims to group categories that lead to a similar class (see Figure 15). From several 

existing options, this is a simple approach that estimates the average positive target class distribution of 

the sample, for binary problems, and then estimate the same but for each unique value of the categorical 

features, as in a frequency table. Categories with an average target class higher than the sample average, 

are encoded to one, otherwise zero. 

Figure 15. An alternative to One-Hot-Encoding to high dimensional 

classification datasets 
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4.5. DEMOCRATIZING KNOWLEDGE AND MANAGING EXPECTATIONS 

As time and technology progress, companies generate ever larger and more variated data sets, which 

also comes with the challenge of how to analyze that data, since traditional techniques and tools are 

falling behind. Data Scientists aim to tackle this problem by acquiring data and transform it into 

actionable insights and wisdom that support decision making. However, for any project whose objective 

is to solve a business problem using analytics, a multidisciplinary team is required. However, a common 

mistake is to delegate all analytical tasks exclusively to the Data Scientists or Data Analysts of a team: 

In the long run, this is unsustainable. In every problem, the analytics experts should have, at least, some 

basic knowledge about the business domain, and vice-versa. This leads to a better model of the reality 

of the problem and, on the other hand, a better interpretation of the results. It is also important to 

democratize this knowledge with business stakeholders, particularly on how to read the metrics returned 

by predictive models, e.g. avoid making decisions based on Accuracy. This will help to build a data-

driven and data-informed culture within a company. 

Furthermore, it is necessary to manage some expectations. Developing classification and prediction 

models is not an exact science, instead, it resembles more trial-and-error experiments. The time it will 

take to achieve desirable results depends on the availability and familiarity with data, the familiarity 

with the problem domain, the availability of all intervening contributors, the available time, and 

ultimately, the budget. In fact, after the first results, it is expected and recommended to fine-tune 

parameters or implement new techniques into the analysis. It is also fundamental not to rely too much 

on the modeling phase and overlook what is behind, since in most cases, problems and improvements 

start at data identification, extraction, and pre-processing. 

4.6. MODEL INTERPRETABILITY VS PREDICTIVE PERFORMANCE 

When talking about the universe of existing analytical models, it is easier to understand if we separate 

them into two classes: White Box models & Black Box models. As described earlier, White Box models 

are explainable AI and interpretable models that can easily be understood by business-oriented 

professionals. Such models include algorithms as Linear Regressions, Logistic Regression, and 

Decision-Trees. In all the mentioned models, it is possible to identify the importance of each variable 

towards the output, the weight of the variable, and how it affects the result. On the other specter, Black 

Box models are high-performance algorithms that provide generally better results than the ones obtained 

with White Box models. However, it is very hard to explain what is happening inside these algorithms, 

or how a specific predictive feature impacts the outcome. Black Box algorithms include ensemble 

methods, such as Random Forest and XGBoost, Support Vector Machines, and Neural Networks such 

as LSTM or CNN. 

To tackle this pitfall it is necessary to, in the beginning, and modeling phase of a project, clearly explain 

the difference between these two types of models and evaluate the trade-off for each one. If the business 

interpretability of the outcome and understanding of the algorithm's calculations is of high importance 

towards the project, then a White Box model is recommended, even though it might compromise the 

performance. On the other hand, if the business is willing to compromise interpretability and trust in the 

algorithm predictions and evaluation of the data received, then a Black Box method should yield better 

results. In summary, if the project’s stakeholders require to have something “palpable” that they can 

interpret easily, then you can skip on exploring more advanced Black Box models, it is just necessary 

that they understand the trade-off between interpretability and performance. 
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4.7. ONE METRIC (DOES NOT) FIT ALL 

When dealing with supervised problems, it is possible to measure the performance of a model by 

comparing its Output with the observed labels or values. Since this report focuses on Supervised 

Classification problems, the commonly used metrics are the Confusion Matrix, Accuracy, Precision, 

Recall, F1-Score, ROC-AUC, and Lift Curve. When evaluating performance, one metric is not above 

the other, instead, it is necessary to carefully balance these metrics with the problem at hand. In a real 

problem, it is very difficult to encounter a perfectly balanced classification problem, and referring to 

some use-cases such as Fraud Detection or Failure Detection, the bias between classes can be as 

significant as over 90% since normal behaviors are far more common than fraudulent or failures ones. 

Ultimately, it is very common to have a majority class that can overshadow the minority class. Like data 

visualization, making conclusions from only one metric can be misleading, as it is commonly done with 

Accuracy. Furthermore, it is important to highlight these are only theoretical metrics, that can and should 

be adapted to the problem in question. When developing a model, one should ask “What has more 

impact? False Positives or False Negatives?” and how to translate the results into business metrics, 

passible of estimating the return over investment (ROI) of the delivered product. 

To illustrate this pitfall (see Figure 16), let’s assume we have a supervised binary classification problem, 

where the target variable can be either 0 or 1. After an analysis of the class distribution, we conclude we 

are dealing with an Imbalanced problem, whereas from the 10 000 data points, class 0 accounts for 9 

849 observations (98.4%) of the data points, while class 1 for the 160 observations (1.6%). To accurately 

predict this label for unseen data, after the exploration and transformation of data, three models are built 

and compared using the Confusion Matrix and consequent metrics, Accuracy, Precision, Recall, and F1-

Score. As illustrated, it is possible to observe the best Accuracy score belongs to Model A, however, it 

appears for any input this model receives, it will always output the target 0. These kinds of models are 

commonly called Dummy Models, and since the proportion of data points of the majority class is 98.4%, 

the accuracy will naturally have equal value. Without any positive prediction of class 1, it is not possible 

to estimate Precision, Recall, and F1-Score. Focusing on Models B and C, the Accuracy is the same, 

however, by balancing other metrics with the imbalanced problem at hand, it is easy to conclude that 

Model C has the best performance, since the other metrics are more favorable. 

 

Figure 16. Classifier metrics comparison - How accuracy can be misleading 



28 
 

Thus, regarding this pitfall, all main stakeholders must understand what is being presented to them, 

which is done by sharing knowledge on this subject. Furthermore, I also recommended that conclusions 

based on simply Accuracy were not enough to assume anything about the model, instead, with 

imbalanced problems, I highlighted the importance of understanding the impact of False Positives and 

False Negatives: If, for some problem, the impact of having False Positives was much greater, then the 

Recall should have more weight in the analysis. On the other hand, if False Negatives are more relevant, 

then Precision should have more weight. Ultimately, when this does not apply, the F1-Score is a good 

measure that averages the results obtained in the previous two metrics.  
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5. QUALITY ASSURANCE IN PRACTICE: PROJECTS 

Having systemized the major pitfalls found while performing Quality Assurance as a Data Scientist at 

EDP D, we will now discuss three practical cases where such problems are more likely to be found. It 

is also important to notice that, despite having some participation as a developer in these projects, my 

main responsibilities here were the ones of quality assurance, by validating methodology, 

documentation, models, promoting the highest possible quality, and recommending solutions. The 

objective was to ensure the final product, developed mainly by the consulting outsourced team, had the 

reliability and quality that responded to the EDP D standards. Furthermore, to protect the integrity and 

confidentiality of the project and EDP data, most of the findings and/ or concrete examples are given in 

each project are anonymously encoded or just an illustrative example. 

EDP D is aiming to achieve its digital strategy and vision by unlocking business value through advanced 

analytics and its use on asset management. In this context, three projects with the prime objective of 

applying Data-Driven approaches to solve a business problem were born. The first project, which is also 

called Minimum Viable Products (MVP), was regarding Failure Prediction, to predict possible failures 

15 days into the future. Then, the estimation of the Health Index scores of each asset according to the 

OFGEM formula and its factors adaptation to EDP D reality. Lastly, all previous findings would be 

made accessible using Investment and Maintenance Planning Dashboards that allow the monitorization 

of the asset’s health score, probability of failure, and other relevant insights that support decision-

making. The scope of these projects regarded Overhead Lines, Transformers, and Circuit-Breakers. 

These projects started in September 2019 and ended in May 2020 

All projects required enormous data ingestion and transformations. In other words, we had Big-Data 

problems that required Big-Data solutions. Therefore, the data that was ingested from several different 

sources and systems, such as Geographical systems, Weather systems, Asset Sensors, amongst others, 

was stored in the EDP Distribuição Microsoft Azure Data Lake, a centralized repository that holds 

structured and unstructured data, highly accessible and quick to update that can be used for analytical 

tasks. Afterward, this data was replicated into a project-specific Data lake, where four databases were 

created, each one with a specific purpose. The first one (Raw) was a full copy of the data from all 

sources, then a second database (Curated) was created with processed and ready to use data tables, later 

a third database (Publish Zone) was generated, representing an easy access point for consumers, and 

lastly, a final database (Analytics Zone) where data was used and modeled to solve the specific business 

problems, including the failure prediction and health index calculations.  

All development in the Analytics Zone was made possible using Azure Databricks, an Apache-Spark 

unified platform for data and AI that allows for large-scale data processing inside the Microsoft Azure 

Cloud, useful for analytics tasks, allowing the development of code in several programming languages 

and collaborative work, as well as the deployment of Machine Learning algorithms into production. The 

developed steps in this phase are organized in different Databricks notebooks and then compiled and 

structured into a pipeline that runs inside Microsoft Azure Data Factory, a service that allows integrating 

of hybrid data at-scale, simplifying ETL tasks. The result of this pipeline returns information into a 

structured Microsoft Azure SQL Database that holds structured information to be read by the Investment 

and Maintenance Planning Dashboards, implemented in Microsoft Power BI, accessible to be analyzed 

by final users, supporting decision-making. 
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5.1. PREDICTIVE FAILURE CLASSIFICATION 

The asset failure prediction project, which aimed at predicting possible asset failures within 15 days, 

followed a similar methodology to the ones found in the CRISP-DM and OSEMN frameworks. It began 

by understanding the data, including ingestion, exploratory data analysis, and data quality verification. 

Then, the data was preprocessed in a Data Preparation phase, where it was consolidated and cleaned, as 

well as the modeling hypothesis, based on predefined scope key objectives and data. Lastly, the Data 

Modelling phase where models were developed in an iterative supervised process, and results were 

evaluated concerning evaluation criteria and metrics. 

5.1.1. Data Understanding 

The data understanding phase was one of the most relevant steps in the entire project. It was where the 

knowledge of the data sources, in this case, asset sensor data, maintenance data, geographical data, 

weather data, and others, helped to understand how all this was connected. After the data was ingested 

and replicated, the data was split into two sets: Training and Testing (see Figure 17). Most of the data 

points, around 80%, were placed in the training set, representing the part of the data where all decisions 

and training of algorithms were made. The remaining data points, around 20%, were held in the testing 

set, where the performance of the final models was going to be evaluated. It is also important to highlight 

that, due to the high-class imbalance in this problem, where the minority class – failures – was around 

0.7% for circuit breakers and 10% for overhead lines (after aggregating incipient and catastrophic 

failures), a stratified split was requiring, to ensure both training and testing sets had the same class 

proportion. 

After the split, an Exploratory Data Analysis (EDA) phase was required to summarize the data and make 

some early findings. Using data visualization techniques, the team began to analyze the distribution of 

failures by asset types, models, geographical location (districts), year, and month, amongst other 

relevant visualizations. The business and domain-knowledge in this phase were highly important 

because it validated some early findings and point out anomalous conclusions from data points that 

require additional attention. As a main task in the EDA phase, a verification of noisy data, such as 

Missing Values and Outliers was also performed.  

5.1.2. Data Preparation 

Having searched for anomalous values, missing values, or outliers, we proceeded to correct them. When 

dealing with outliers, we used a univariate simple technique that established the percentile 1 and 

percentile 99 of the identified predictive features to clean as a threshold limiter – All values below or 

above the thresholds would be considered as outliers, therefore, they would be corrected and their value 

would be set to the correspondent percentile, 1 or 99. This way, we ended up not removing any extreme 

observations but correcting them instead. Most of the missing information was filled by extracting 

additional data with the help of business-experts, leading to an overall higher quality dataset. When the 

information could not be extracted from other sources, an imputation step was applied by using the 

median value, which is a more suitable solution when compared to the mean value since it reduces the 

bias of more extreme observations. 

Figure 17. Train (80%) Test (20%) Split 
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Furthermore, in the data preparation phase, new features and transformations were also created, to 

extract the most information out of our data. One of the first transformations was regarding categorical 

variables. Since most algorithms cannot deal with categorical data, e.g. text, as Input, a One-Hot-

Encoding technique was used to transform these variables into numerical data. This approach converts 

categorical columns by creating a binary feature for each unique category. The disadvantage of this, 

however, is the risk of increasing the dataset dimension in a significant way – the curse of 

dimensionality.  At the end of this process, and creating several new variables, the dimension of the 

dataset was higher than what was required. Furthermore, there was also multicollinearity and 

redundancy between predictive variables, followed by a significant linear correlation. To avoid this 

problem, two variable selection techniques were applied: Feature selection using correlation, where a 

pairwise linear correlation between predictive features was performed, and all pairs with a value higher 

than 70% were filtered by keeping only the predictor that presented higher correlation with the target 

variable. This helped to reduce the dimensionality by half. Then, a feature selection using the purity 

measure was performed, which uses tree-based methods to evaluate the Information Gain and Gini index 

of the features. The importance of each feature was measured by the number of times each attribute split 

improved the performance measure, weighted by the number of observations the node was responsible 

for. After features were ranked and compared, the most important ones were selected based on a 

minimum defined criterion. 

5.1.3. Data Modelling 

In terms of modeling, there were two possible approaches to this supervised classification problem. We 

could either use White Box models, that are simpler and have a weaker predictive capability, however, 

they are more interpretable, or Black Box models, that despite losing significant interpretation ability, 

are more powerful. Regarding White Box algorithms, we tested a Logistic Regression and a Decision 

Tree classifier, which also worked as performance baselines for stronger Black Box models, which were 

a Random Forest classifier and an XGBoost classifier. 

Asset Model AUC 

Overhead Lines 

Logistic Regression 0.78 

Random Forest Classifier 0.79 

XGBoost Classifier 0.80 

Circuit Breakers 

Decision Tree Classifier 0.61 

Random Forest Classifier 0.67 

XGBoost Classifier 0.73 

Table 4. Final model iterations comparison using AUC as the decisive metric 

After trying and tuning several hyperparameters in each algorithm, the final assessment in the testing 

data was made using several metrics, however, the final decisions were made using the Area Under the 

Curve (AUC) that measures the area underneath a Receiver Operating Characteristic Curve (ROC), 

establishing a relationship between the true positive rates and false-positive rates at different 

classification threshold. Despite the differences being marginal (see table 4), they revealed the XGBoost 

classifier as the winning model. Therefore, this algorithm was selected and a pipeline to extract, process, 

and predict the target class from future unseen data was developed. 
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5.1.4. Quality Assurance 

During this project, several improvements were identified, and solutions were advised, with the due 

corrections taking place. However, due to time and budget limitations, some of the discussed 

recommendations were left as future improvements that are now being developed. Furthermore, they 

served as lessons learned that will now be applied to future analytics projects. 

Since this work followed a similar methodology to the one found in traditional supervised classification 

machine learning approaches, some of the identified and most significant Quality Assurance guidelines 

are more likely to appear in some specific phases. In the Data Understanding phase, it is required special 

attention to how visualizations are built, analyzed, and the importance of democratizing knowledge in 

this phase to better explore data and interpret early results. In this project, some conclusions were 

initially incorrectly interpreted due to visualization reasons.  

When talking about asset failures, we had the objective of plotting which specific assets were most likely 

to fail, when compared to the training sample. Therefore, a bar plot was built that distributed the absolute 

number of failures for each specific asset (see Figure 18). The problem was that this visualization did 

not account for the distribution of the assets. The recommended solution was that every visualization 

whose objective was to relate a categorical feature with the failure rate should be done considering the 

category values distribution. Observing the example above, it is possible to see that if we only count the 

number of failures, in absolute or percentage, of the total number of failures per asset, we get a very 

similar distribution, that can lead to conclusions such as “Model B tends to fail more”, however, this is 

incorrect since we are not taking into consideration the distribution of the asset. In fact, despite having 

fewer registered failures than models A and B, model C failed around 50% of the time, making it the 

faultiest asset model. 

  

Figure 18. Asset Failure - How visualizing failure rate can be misleading (illustrative example) 
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Then, while preparing the data, it is likely to face some pitfalls such as data leakage and ignoring time 

in time-series, data and blindly encoding categorical data. Data leakage will happen if the proper 

separation between train and testing data does not occur. During this project, it was early decided that 

the definition of an asset’s failure did not change during the years, thus, time was not considered as a 

key component of the analysis. While doing so, partitioning the data randomly between train and test 

and applying kcross-validation techniques in the training set will lead to data points from different years 

to be scattered in different partitions. In the end, the algorithm was likely to be trained using data from 

“future” years, e.g. 2018, 2019, and 2020, and tested with data points from “past” years, e.g. 2013, 2014, 

2015. Despite the definition of failures not changing during the time, some predictive features had some 

time dependency that biased the results, thus, predicting on past data was likely overfitted. The solution 

was to consider and respect the time factor in this analysis, and to use cross-validation techniques that 

solved this problem, such as nested cross-validation (see Figure 13). However, due to the big structural 

changes, this would bring towards the project, this was identified as an improvement that is now being 

worked on. 

County Relative Freq. Failures (%)  County Risk County 

Ponte de Lima 15%  Ponte de Lima 1 

Loures 12%  Loures 1 

Abrantes 1%  Abrantes 0 

Lagos 2%  Lagos 0 

Gouveia 5%  Gouveia 0 

Matosinhos 20%  Matosinhos 1 

Note Illustrative values if the average county fails rate was 10%. Relative failure rates above this threshold 

would lead to a Risk County of 1, otherwise 0. 

Table 5. One-Hot-Encoding alternative (illustrative example) 

Furthermore, when encoding categorical variables, a One-Hot-Encoding technique was applied, not 

considering the number of unique possible values. In the dataset used, there was a variable that indicated 

the Portuguese county in which a certain asset was located. Therefore, when applied to this encoding 

technique, 278 dummy variables were created, one for each county in Mainland Portugal. A better 

solution was later advised and discussed in chapter 4.5 Blindly encoding categorical data, which aims 

to solve this problem by accessing the categories relationship with the target variable and encode it 

binarily, which we would then call Risk Features. These would be the comparison of each category 

failure rate with the average sample failure rate, creating a binary column that would indicate if a 

category presented had a higher or lower failure rate when compared to the average. In the county 

example (see table 5), the relative frequency of failures regarding the number of existing assets in each 

county would be calculated. If that value was above the sample average of all counties, then the Risk 

Feature would be 1, otherwise 0. This solution was scaled for the remaining categorical variables that 

presented a high number of unique values. 

Then, during the data modeling phase, it necessary to be aware of the model interpretability vs. 

performance trade-off, as well as the evaluation and comparison using the right metrics. On one 

occasion, one of the main challenges in this project was to explain and extract the importance of each 

variable towards the outcome to business stakeholders. Since the selected model was an XGBoost 

ensemble, a black-box model that, despite the power, lacks interpretability, the developing team decided 

to use a decision tree to explain the importance of each predictive feature and how it affected the output. 

This approach was identified as incorrect since the conclusions drawn from a Decision Tree classifier 

are most likely different from what the XGBoost classifier is doing. So, the difference between these 
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types of models and the trade-off was clearly explained, and some other techniques to highlight feature 

importance, such as SHAP (Lundberg & Lee, 2017), were explored.  

Lastly, the documentation was one of the most relevant guidelines that are cross-sectional to all 

framework phases. The description and identification of all sources, data, tools, and decisions made 

during the project should be stored in a document that is easily accessed and understood by anyone who 

wishes more knowledge about the subject. Due to the ambition of this project, the available time was 

short, so documentation was flagged as a minor priority when compared to the analysis itself. Having 

recommended some guidelines towards this documentation, denoted previously in this report, there was 

not enough time for the developing team to apply them all, especially regarding the documentation of 

code. Now, during improvements, changes are harder to perform, since you must trace back decisions 

to the core. This led to an understanding of the importance of documentation, where, in future projects, 

this will be a guideline to highlight from the very beginning. 

5.2. HEALTH INDEX 

To assess the asset's state of deterioration, EDP D decided to elevate its current manual formulas, which 

we call the Health Index, and innovate, automate and scale them to all assets nationally. To do so, a 

benchmark of three distinct methodologies was conducted. The objective was to assess which one 

strengthens the current EDP D Health Index methodology and obtain better results. The tested 

methodologies were OFGEM (Office of Gas and Electricity Markets), WAPA (Western Area Power 

Administration), and UNITEN (University Tenaga Nasional). After a close analysis from all involved 

teams, the OFGEM methodology was selected and we began adapting its formula, factors, and weights 

to the EDP assets reality. 

5.2.1. OFGEM Methodology 

The OFGEM approach starts from the premise that the health of a certain asset evolves along an 

increasing exponential curve: The higher the health value, the worse the asset’s health. This curve is 

affected by several factors, such as the asset’s expected life, aging factor, and many others. It is also 

allowed to forecast the health score of each asset 10 years into the future and estimate current and future 

failure probabilities, which complements the previous failure prediction project. A simplification of 

relevant factors and estimations can be found in Figure 19. 

Figure 19. OFGEM framework architecture - How factors influence Health score and Probability of 

Failure 
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5.2.2.  Health Index Work and Results 

After several sessions adapting each factor and corresponding weights to the EDP D assets reality, a 

pipeline of Databricks notebooks containing the necessary Python code to estimate the health index of 

each asset was developed and connected using Microsoft Azure Data Factory. The result was a Health 

Index score on a continuous scale between 0.5 and 10 and extended up to 15 when forecasting future 

health, and assets were grouped into 5 Health Index bands according to the OFGEM’s methodology, to 

make the results easier to understand (see Table 6).  

Health Index Band 
Health Index Banding Criteria 

Lower Limit of Health Score Upper Limit of Health Score 

HI1 ≥ 0.5 ˂ 4.0 

HI2 ≥ 4.0 ˂ 5.5 

HI3 ≥ 5.5 ˂ 6.5 

HI4 ≥ 6.5 ˂ 8.0 

HI5 ≥ 8.0 ≤ 15.0 

Table 6. Health Index Bands – HI1 (New condition) to HI5 (Poor condition) 

As denoted, a HI5 will represent an asset in a poor deterioration state, while HI1 an asset in new 

conditions. However, users are more used to perceive high values as good, and low values as otherwise, 

so, to feed the planning and investment dashboards, transformations were made to make the health index 

more understandable (see Figure 20). The first step was to invert the OFGEM scale, where an excellent 

condition of 0.5 now represents a bad score. Then, the 0-10 scale was transformed into a 0-100 scale, 

for values to be read similarly to a percentage: 0% represents a significantly deteriorated asset while 

100% a factory-new asset.  

Calculating the scores massively, to every Transformer, Circuit breaker, and Overhead Line, we 

concluded Circuit Breakers were the assets in better conditions (see Figure 21), whereas 94.9% of them 

are in the first and second Health Index Band, with a HI score between 0.5 and 4.0  for the first HI band 

and 4.0 to 5.5 in the second HI band. On the other hand. 87.7% of Transformers' assets are in good 

conditions, despite having the highest proportion of deteriorated assets, around 5%. Lastly, Overhead 

Lines reveal 75% to be in good condition while 19.2% are classified as being in Health Index Band 3, 

an intermediate health score. 

Figure 20. Health Index understandability adaptation 
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5.2.3. Quality Assurance 

Despite the health index calculations being quite different from the predictive failure classification 

project, it still left some room for quality assurance guidelines. However, the validation effort here 

requires less analytics knowledge and more business-domain expertise, since the major tasks were 

adapting EDP D assets factors to the OFGEM methodology. The main identified topic I identified in 

this project was code documentation. There was unused code in production pipelines and little code 

documentation. My recommendation here was to cleanse all unnecessary code and to utilize functions 

to avoid code redundancy. Furthermore, I also highlighted the importance of documenting these newly 

created functions with a description of the function, the inputs, and the outputs, for future developers to 

understand.  

 

 

 

 

  

Figure 21. Health Index results by asset 
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5.3. INVESTMENT AND MAINTENANCE PLANNING DASHBOARDS 

After all, data was ingested, prepared and ready to use from the previous two projects, a pipeline in Data 

Factory was built that processed the necessary code to export the data, refreshed twice a day, to feed 

investment and maintenance planning dashboards, built-in PowerBI, a powerful, visually immersive, 

and interactive visualization platform that allows for actionable insights and support decision-making.  

For the Investment Planning Dashboard (see Figure 22), the objective is to allow an overview of all 

assets in the project's scope, to observe future projections of asset investment needs, to analyze and filter 

asset characteristics for prioritization and investment allocation, and to monitor the distribution network 

asset condition. Furthermore, in the Maintenance Planning Dashboard, the purpose is that this becomes 

a centralized and unified solution for parameter analysis by an asset, including data from multiple 

sources. It also provides actionable insights such as current and future asset condition and deterioration 

status and failure prediction. Lastly, it allows for higher visibility over-scheduled interventions on 

simple and complex assets, in an easy-to-use platform for the end-user. The dashboards account for 

multiple asset visibility and focus on four main views: Global view, Condition and Risk view, Complex 

Asset view, and Asset Detailed view.  

5.3.1. Quality Assurance 

During this project, I had no role as a developer, working only on accessing the validity of the results. 

However, since this is only a platform that summarizes the major findings in the previous two projects, 

my focus was mainly on the validation of the predictive failure classification and health index. 

Nevertheless, I was able to identify some gaps in the documentation of this project and advise more 

information on the sources, the DAX code necessary to build tables in PowerBI, and how to read all 

indicators available in the dashboard.  

Figure 22. Investment Planning Dashboard snapshot 
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6. CONCLUSIONS 

This report explores the importance of Quality Assurance in the development of a data science project. 

In particular, it focuses on a set of recommendations delivered during the development of two projects 

by the EDP Distribuição Data Science team. The report highlights several pitfalls, solutions, and 

guidelines that sum up the lessons learned by the team and that can be applied in future projects. 

Furthermore, despite the project time limitations, the quality assurance validations were key to ensure 

minimum bias during analysis and that business rules were respected, as well as ensuring there was a 

solid knowledge base to support future developments that are now being made. In the end, these short-

term validations can be the key to a long-term reliable final product.    

Commonly, data science professionals will only focus on minimizing bias when developing analytical 

models, while forgetting some best practices when it comes to documenting the project or code, for 

example. Besides all cutting-edge tools or algorithms, it is necessary to learn from QA methodologies 

such as the Six Sigma DMAIC and apply them in these kinds of projects to ensure viability and 

continuity. As processes become more complex to model, the existence and importance of the role of a 

“Quality Assurance Data Scientist” professional in Data Science projects becomes increasingly 

relevant. His focus would be on bridging the gap between business and analytical processes 

understanding, as well as ensuring a transversal quality to the project, something only an expert on both 

fields, business, and analytics, would be able to do. 
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