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ABSTRACT 

 

The detection of road features from remotely sensed images has become a 

critical factor in maintaining a reliable and updated road network in a country 

to provide a base reference for transportation, emergency planning, and 

navigation. With the recent advances of convolutional neural networks in image 

processing, several publications are devoted to the development of a method for 

automatically extract roads from satellite images. However, a reliable feature 

extraction method has not yet been developed with the desired accuracy and 

precision, and always seems to be a proportionality between the accuracy and 

the complexity of these developed methods. The aim of this study was therefore 

to develop an accurate road extraction method without compromising 

computational efficiency. In this paper, a semantic segmentation neural 

network that combines the strengths of transfer learning and U-net architecture 

is proposed with a minimal network complexity. Further, post-processing based 

on morphological operations and regional properties of the extracted segments 

were used to remove the noises from the final output. The results have been 

compared with different automatic classification and segmentation methods 

and the results of the proposed method produced an F1 score of 0.83 and high 

accuracy of 95.57%, more accurate and precise than all the other models for the 

freely available Massachusetts dataset. Finally, the developed method stood 

superior to the preexisting methods in terms of performance measure and 

network complexity. 
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1 

 INTRODUCTION 

1.1 Overview of the study 

The surface of the Earth can be divided into natural and artificial features via 

aerial imagery, and the ability to extract such features has played a pivotal role 

in the development and planning of nations (Shrestha and Vanneschi, 2018), 

(Wijesingha et al., 2012). Road networks, an example of artificial features that 

can be extracted as artificial features in aerial imagery, provide a baseline 

reference for city, transportation, and emergency planning to database or 

resource management (Singh and Garg, 2013). Each of the applications 

requires a reliable road network dataset and with the rapidly changing human 

environment, these datasets need constant updating (Singh and Garg, 2013). 

In recent years, more attention has been paid to investigating newer and more 

robust methods to create or update existing road network databases 

(Wijesingha et al., 2012), (Mahdianpari et al., 2018). Historically, the primary 

method for developing or updating road network datasets relied on land surveys 

or digitization on scanned maps, however, those methods were more time and 

cost intensive. After a few decades of technical innovation, the availability of 

remote sensing images by means of artificial satellites or aircraft systems 

enables more information about features of the earth's surface to be collected 

at a low cost and with higher resolution in a short time. However, to make the 

remotely sensed imagery more meaningful for data extraction, it is crucial that 

advancements in information extraction methods continued to be pursued 

within the scientific community (F. F. Ahmadi, M.J.V. Zoej, H. Ebadi, 2008). 

Road extraction is one of the main tasks in the field of information extraction 

and in particular, it is a challenging task because of its complexity due to the 

availability of noise and occlusion in the satellite imagery and due to the 

different types of background in which they are located (Zhang, Liu and Wang, 

2018).  This difficult problem has been tackled in many different ways in the 

past and many road extraction algorithms have been proposed, such as global 

thresholding and morphological analysis (J. Wang et al., 2016), texture and 

hypothesis testing (Bakhtiari, Abdollahi and Rezaeian, 2017), edge detection, 

support vector machine classification (SVM) and mathematical morphology (F. 



 

2 

F. Ahmadi, M.J.V. Zoej, H. Ebadi, 2008), as well as deep convolutional neural 

networks (Singh and Garg, 2013). Each of these analyses is based on either 

spectral information, spatial information, or both together (Singh and Garg, 

2013), (F. F. Ahmadi, M.J.V. Zoej, H. Ebadi, 2008), (Bakhtiari, Abdollahi and 

Rezaeian, 2017).  However, each of the algorithms mentioned above had its 

weaknesses and strengths; for instance, threshold-based road extraction can 

face problems with noise in their outputs due to the reflectivity values and 

artifacts (J. Wang et al., 2016), or edge detection methods can often lead to 

decision-making problems when overlapping features are present (F. F. 

Ahmadi, M.J.V. Zoej, H. Ebadi, 2008). Because of these problems, methods 

focusing on spectral or spatial characteristics to extract road features continue 

to face challenges in their accuracies and most road extraction methods must 

undergo a large number of image preprocessing and post-processing steps 

before and after they are applied to an extraction algorithm or process. 

(Wijesingha et al., 2012), (Alshaikhli, Liu, and Maruyama, 2019).  This could 

adversely affect the development of the automatic feature extraction methods 

to delineate roads from high-resolution images. However, Deep Convolutional 

Neural Network (DCNN) architectures, inspired by artificial neural networks 

that follow the same process as in a biological neuronal system, have given 

comparatively better results for the road extraction projects due to their ability 

to effectively combine both spectral ranges and spatial information from 

remotely sensed images without image preprocessing and little post-processing 

(Shrestha and Vanneschi, 2018), (Wijesingha et al., 2012). Moreover, DCNN 

performs incredibly better than the other established methods for this 

application because of the following factors. 

1. They consist of a series of layers made of filters having weights and biases 

that learn directly from raw input which makes them more suitable in 

spatial data-related applications, as they can adjust to spatial 

heterogeneity. 

2. In contrast to other methods, which rely on spatial and contextual 

features of roads that depend on the shape and neighboring objects, 

DCNNs are not based on assumptions about what roads or their 

surroundings look like. (Sirefelt Rickard, 2004)  
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3. The structure of the interconnected nonlinear neurons up to unlimited 

hidden layers allows an infinite number of neurons to be used for the 

process, which allows the use of a large amount of data to be involved to 

get the maximum degree of discrimination to obtain an almost perfect 

result for the system output. (Shrestha and Vanneschi, 2018) 

Therefore, this project will aim to develop an automatic road extraction method 

using deep convolution neural networks. 

1.1 Research Gap 

With a sharp increase in the availability of digital imagery and the possibility of 

getting better results with the DCNN architectures, numerous publications on 

the subject of road extraction have been published over the past few decades. 

However, there seems to be a proportionality between the accuracy and the 

complexity of these developed methods. Most of them require a lot of 

processing power, computational time, and too much hardware (GPU, 

processor, and RAM) to get a better result. (Saifi, Singla and Nikita, 2020) Also, 

although the number of publications shows that the field of road extraction 

using CNN architectures is improving, reliable feature extraction has not yet 

been developed with the desired accuracy and precision. Therefore, this study 

aims to improve the relative accuracy of the extraction of road features in high-

resolution images without compromising computational efficiency. 

1.2 Research Objectives 

The main aim of the research is to formulate a method of road extraction from 

high-resolution images that uses a deep learning approach based on a 

convolutional neural network. In order to achieve the main research goal, the 

following sub-goals are also addressed: 

1. Review and assess the potential of the latest deep learning algorithms for 

automatic road extraction using high-resolution aerial / satellite images. 

2. Compare several image classifiers and CNN based segmentation 

architectures based on accuracies to find out the best method to extract 

roads using high-resolution aerial/satellite imagery. 
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3. Enhance the accuracy of the chosen method by changing the chosen 

network architecture and applying transfer learning. 

1.3 Thesis Organization 

The thesis consists of 6 chapters, Chapter 1 describes the overview of the work 

including the research gap and the objectives considered in the project. Chapter 

2 reviews the existing literature on road extraction methods using 

aerial/remote sensing imagery and explains the properties of road features that 

can be used as parameters for these methods. It also covers the CNN-based U-

Net image segmentation architecture and its uses in the field of remote sensing 

and GIS. Chapter 3 presents the theoretical background of deep convolution 

neural networks and their architectures and also the concept of transfer 

learning in CNN applications. Chapter 4 describes the study area, the data sets, 

and the methodology and tools used for the research. Chapter 5 presents the 

results of the study while deals with the analysis and discussion of the results. 

Finally, Chapter 6 summarizes the conclusions by answering key research 

questions and recommendations for future work. 
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 LITERATURE REVIEW 

 

This chapter is intended to give a brief overview of existing literature in the field 

of road extraction. The first section of the chapter describes the basic knowledge 

about road extraction using remotely sensed images and is divided into two 

subsections as classical approaches and deep learning-based approaches. The 

next subsection compacts with the application of deep learning algorithms for 

semantic segmentation and reviews the U-Net architecture for semantic 

segmentation. Finally, the last subsection introduces the concept of transfer 

learning for deep learning. 

2.1 Automatic road extraction using Remote Sensing 

Imagery 

Collecting road data for use in geographic information systems (GIS), 

navigation, transportation, and emergency planning has played a major role in 

the advancements of human civilization and constantly requires updating due 

to the dynamic human environment (Alshaikhli, Liu and Maruyama, 2019). A 

great effort has been made to automate the task of creating and updating road 

network datasets through feature extraction methods using remotely sensed 

imagery (F. F. Ahmadi, M.J.V. Zoej, H. Ebadi, 2008). Many studies recognize 

the effectiveness of feature extraction in remotely sensed imagery as the 

development of these methods have been of great benefit to mapping 

applications, navigation systems, and computer vision (Alshaikhli, Liu and 

Maruyama, 2019), (F. F. Ahmadi, M.J.V. Zoej, H. Ebadi, 2008).  In a meta-

analysis by Mena (2003), various road extraction methods were described to 

explain the growth of the topic over the last 30 years (Mena, 2003). The author 

classified different methods by their parameters, as well as their advantages and 

disadvantages while providing an exhaustive review of the existing literature, 

allowing one to make inferences on which methods would serve best in certain 

circumstances (Mena, 2003).  These extraction methods can be broadly divided 

into two classes, as classic approaches and deep learning approaches are 

described below. 
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2.2 Classical approaches for road extraction 

Roads in remotely sensed images can be identified based on their features, 

which can be summarized as geometric, spectral, structural, topological, and 

functional aspects (W. Wang et al., 2016). Generally, they appear as stripes with 

a high ratio between their width and length, and the spectral values of a road 

change slowly along its path and suddenly changes at the edges of the road (J. 

Wang et al., 2016). The classical approaches for road extraction have mainly 

used these features as fundamental properties to detect and extract the roads 

from other features in the digital images (Mena, 2003).  Many researchers have 

used spectral feature information, such as a combination of adaptive global 

thresholding and morphological operations (Singh and Garg, 2013), Support 

vector machine classifier (Bakhtiari, Abdollahi and Rezaeian, 2017), principal 

component analysis (PCA) (Talal et al., 2014). Image segmentation using 

gradient and edge detection filters (Hormese and Saravanan, 2016) to extract 

roads and similarly, the spatial properties of the road segments have also been 

used in some methods, such as the Hough transform, which uses the shape of 

the features to identify the incomplete instances of the objects and snakes, the 

deformable lines that adapt to features of interests such as roads. (Sirefelt 

Rickard, 2004), (Bakhtiari, Abdollahi and Rezaeian, 2017) Additionally, 

J.Wang used a knowledge-based approach that utilized the previously derived 

information about the brightness, aspect ratio, and rectangularity of the road 

segments to develop a  hypothesis model (J. Wang et al., 2016). The 

performance of these classical approaches are depending on the illumination 

condition, type of surface material, and presence of disturbing objects yielded a 

much higher classification accuracy than direct application (J. Wang et al., 

2016),(Pasquali, Iannelli and Dell’Acqua, 2019). 

2.3 Convolutional neural networks for road extraction 

With the advent of artificial neural networks inspired by human biological 

neurons, they have become a popular tool for analyzing data for various 

applications. The state of the art in the field of object extraction was later 

considerably improved with the introduction of convolutional neural networks, 

in which it is explicitly assumed that the inputs are images. (Shrestha and 
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Vanneschi, 2018),(Boyagoda and Da Silva, 2020), (Wijesingha et al., 2012).  

The ability to effectively combine both spectral ranges and spatial information 

from remotely sensed images without image preprocessing and little post-

processing (Shrestha and Vanneschi, 2018), (Wijesingha et al., 2012) makes 

CNN dominant in the field of road extraction. This subsection discusses the 

main contributions of the CNN networks to the road extraction projects, 

highlighting the algorithms used and the architectures developed.  

In 2013, Minh developed a CNN-based method to automatically extract 

features such as streets, buildings, and trees directly from digital images. In his 

method, a new approach called patch-based CNN was introduced into the 

semantic segmentation family, in which image patches with a size of 64 * 64 are 

used as input to the CNN after applying principal component analysis, which 

reduces the dimensions and increases the interpretability of the images, that 

allows the creation of uncorrelated variables for the CNN input. (Mnih, 2013).  

Former research (Alshehhi et al., 2017) used a modified patch-based CNN by 

replacing fully connected layers with global average poolings and also 

introducing an enhanced post-processing step to extracts roads and buildings 

from high-resolution images. In this work as the post-processing, a simple 

linear interactive clustering that measures the compactness and asymmetry of 

the extracted features was used to filter out the misclassified regions (Alshehhi 

et al., 2017). Wijesinghe et al. (2012) extracted road networks in suburban and 

rural areas from high-resolution which consisted of a two-part methodology: a 

self-organizing supervised learning neural network for road feature extraction 

and a typical pattern recognition neural network for comparing performances 

(Wijesingha et al., 2012). The results showed an accuracy of 70 percent when 

compared with the existing road network dataset of the same area (Wijesingha 

et al., 2012).   

Buslaev (Buslaev et al., 2018) evaluated the performance of a new CNN model 

consisted of a ResNet-34 encoder and a decoder extracted from vanilla U-Net 

architecture on Digital Globe’s satellite dataset. In this research, they also used 

the Jaccard index (intersection over union) for the evaluation matrix to the 

training phase with the binary cross-entropy to improve the performance 

(Buslaev et al., 2018). Due to the occlusions and the complex backgrounds of 

the images, these methods produced low accuracy in some images. Thus, to 



 

8 

minimize those drawbacks, in 2020, Lan developed a new approach called 

global context-based dilated convolutional neural network (GC-DCNN)  (Lan et 

al., 2020). The structure was similar to the U-net image segmentation 

architecture and pooling layers were replaces with pyramid pooling module and 

dice coefficient loss is used for the loss function in the training phase. And his 

method produced better results over the aforementioned problems (Lan et al., 

2020).  Alshaikhli, Liu, and Maruyama (2019) more recently proposed a new 

road extraction method by use of deep convolutional neural networks (DCNN) 

and presented a new model for encoding the Deep CNN through residual blocks 

and U-Net (Alshaikhli, Liu and Maruyama, 2019). With these methods, the 

authors were able to a better result in terms of image prediction when compared 

to other top models (Alshaikhli, Liu and Maruyama, 2019). Based on the 

literature review, the approach to be used in this study for detecting road 

features in remotely sensed images will be Convolution neural networks as 

proposed by Alshaikhli, Liu and Maruyama (2019) and Wijesinghe et al. (2012) 

(Alshaikhli, Liu and Maruyama, 2019), (Wijesingha et al., 2012).  

2.4 Convolutional neural networks for semantic 

segmentation 

Image segmentation can divide a digital image into smaller subsets of pixels by 

grouping those with similarity in color, texture, or intensity to tackling the 

complexity is known as image segmentation (Buslaev et al., 2018). When these 

subdivisions are raised to the pixel level, the segmentation process is explicitly 

called semantic segmentation. In recent years, there have been several attempts 

to develop an efficient architecture for pixel-by-pixel semantic segmentation 

(Buslaev et al., 2018). Among them, fully convolution neural networks (FCN) 

can be identified as one of the successful deep learning CNN, which has been 

produced by replacing the fully connected layers with convolutions which are 

working as feature extractors for the segmentation process. This can aid in 

producing feature maps for the image segmentation problems that can be 

upsampled to obtain an image with the same image dimensions as the input 

image (Buslaev et al., 2018). The recent trends in image segmentation with deep 

neural networks are discussed below. 
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Almost all semantic segmentation architectures consist of two main steps, 

downsampling to capture the contextual information of the digital image to 

determine WHAT objects are present and upsampling to restore them to find 

out WHERE those objects can be detected (Saifi, Singla and Nikita, 2020) 

Different segmentation architectures have been developed in the past by 

modifying how these architectures use downsampling and upsampling 

functions to detect and locate the different objects. For instance, FCN 8, FCN 

16, FCN 32, three separate FCN models follow the same up and downsampling 

method with different skip connections and final convolution layer. The skip 

connections of the method reduce the overfitting of the model, reasoned to 

enhance accuracy. Khan, (Khan et al., 2020) evaluates several deep neural 

network models for semantic segmentation in 2020, in his method he worked 

with four selected convolutional neural network architectures (FCN, SegNet, U-

Net, and DeepLabV3+), and class weight balancing was used to avoid the effect 

of unbalancing the number of pixels in background and prostate. The results of 

the research conclude that the best results of 92.58% accuracy were given by 

the DEepLab V3+ model (Khan et al., 2020).  Research by (Noh et al., 2015) 

proposed a novel image segmentation algorithm that consisted of two parts: 

convolution and deconvolution networks, where the convolution network was 

adopted from the pre-trained VGG-16 model and the deconvolution network 

includes unpooling, deconvolution - and rectification layers to get the final 

segmentation map.  A study conducted by (Badrinarayanan, Kendall and 

Cipolla, 2017) developed a novel decoder-encoder architecture followed by a 

final pixel-wise classification layer for semantic segmentation called SegNet. 

The encoder of this architecture consisted of 16 Convolution layers, which are 

built based on VGG 16 and the method produced an outstanding performance 

for both road scenes and SUN RGB-D indoor scene segmentation tasks 

(Badrinarayanan, Kendall and Cipolla, 2017). 

2.5 U net image segmentation architecture for semantic 

segmentation 

The U-Net image segmentation architecture is an asymmetrical FCN (Fully 

Convolutional Network) that was introduced by Ronneberger in 2015 and 
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consists of a contracting and expanding path combined with an intermediate 

bridge. In contrast to other image segmentation models, U-Net consists of 

intermediate concatenation connections, which make it possible to transfer 

information directly from low to high levels, whereby more precise 

segmentation results can be achieved with just a few training images 

(Ronneberger, Fischer and Brox, 2015), (Barrile and Bilotta, 2016), (Saifi, 

Singla and Nikita, 2020). It has been widely used in medical image 

segmentation applications, and there are also some contributions in the road 

extraction field.  Abderrahim evaluated the performance of the U-Net 

architecture via three segmentation models (FCN, RSRCNN, SegNet) for 

Minh's data set gives the highest accuracy of 97.7% compared to the other 

methods. (Abderrahim, Abderrahim and Rida, 2020). In this method, data 

augmentation is used to improve the accuracy and precision of the segmented 

image (Abderrahim, Abderrahim and Rida, 2020).  The road extraction method 

proposed by Zhang improved the U net architecture by applying residual 

learning into the encoder part instead of using plain neural units (Zhang, Liu 

and Wang, 2018). In this method, the skip connections within a residual unit, 

that were innate through residual learning and skip connections between low 

and high levels of the network, that were innate by U-Net architecture, were 

used at the same time to minimize information degradation allows obtaining 

better accuracy for the road extraction (Zhang, Liu and Wang, 2018). Later a 

study conducted by Alshaikhli modified Zhang’s deep residual U-Net model by 

applying plain convolution layers, produced more enhanced outputs for the 

road extraction challenges (Alshaikhli, Liu and Maruyama, 2019). Compared to 

the other state of the art in road extraction methods, U-Net-based methods led 

to more accurate results (Zhang et al., 2018). By examining the trend and the 

results of previous work in the field of road extraction, it is confirmed that CNN, 

which is developed based on a U-Net architecture, can perform more accurately 

and precisely. Therefore, a U-Net network architecture was selected for the 

study. 
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2.6 Transfer learning for deep convolution neural 

networks 

Because of the structure of the interconnected nonlinear neurons into unlimited 

hidden layers, an infinite number of neurons can be used for a CNN model, 

which could result in a gigantic number of training parameters for a particular 

CNN model. Therefore, training such a model required a considerable amount 

of training data and also a lot of computing power (Shrestha and Vanneschi, 

2018).  The most recent developments in machine learning therefore tried to 

transfer the knowledge of one model (source domain) to another similar model 

(target domain) (Huang, Pan and Lei, 2017). This process of transferring 

weights and biases of a  pre-trained model to another specific model is known 

as transfer learning and is an efficient way to train a CNN model with a small 

number of training patterns and less processing time and power (Huang, Pan 

and Lei, 2017). Research conducted by Xie sought to develop a CNN model to 

map poverty in Uganda. Due to the lack of reliable data to train the network, 

they used transfer learning to train the model with the pre-trained VGG 16 

model, which has facilitated an increase in the accuracy of the extraction model 

from 0.63 to 0.76 (Xie et al., 2016).  Therefore, in this study, the concept of 

transfer learning is used to train the developed U-Net network using a pre-

trained VGG 16 model to further improve the accuracy of the work. 
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 THEORETICAL BACKGROUND 
 

This chapter provides a background overview of the theories that were involved 

in the study. The first section describes the concepts of artificial neural 

networks in detail. The second section covers the CNN architecture, training 

approaches, and hyperparameters tuned for optimal performance, and the last 

section gives a brief explanation of the architectures of U-Net and VGG 16 

models. 

3.1 Artificial neural networks 

As computer science has advanced, scientists have attempted to build computer 

software that simulates the human mind and performs an intelligent task 

(Alshaikhli, Liu and Maruyama, 2019). As a result, unused innovation which is 

called Artificial Neural Networks (ANN) that are motivated by biological 

neurons has been presented to the family of statistical learning algorithms 

(Alshaikhli, Liu and Maruyama, 2019) (Khan et al., 2020).  A biological neuron 

receives signals from dendrites, processes them within a cell body, and finally 

transmits the processed information to the brain via an axon and vice versa. 

Artificial Neural Networks follow the same process as the biological neurons in 

which they receive the signals from input layers, process them within the 

neuron, and finally produce an output that represents the processed 

information from the ANN (Shrestha and Vanneschi, 2018). 

An ANN is made up of multiple perceptron (non-linearly connected neurons), 

most often arranged in layers so that each neuron is connected to the other 

neurons in the previous layer, as shown in Figure 3.2, which is called the feed-

forward neuron Networks (FFNN). Therefore, each perceptron in a neural 

network receives a set of input signals (𝑥1, 𝑥2, 𝑥3, … ) from the neurons of the 

previous layer or the environment, which are then fed in via connections with 

weights to calculate the weighted sum plus a bias value (𝑏) (𝑙 = 𝑤1 ∗ 𝑥1 + 𝑤2 ∗

𝑥2 + 𝑤3 ∗ 𝑥3 + ⋯ + 𝑏) in order to obtain the activation value. Then the 

activation value is "squeezed" by an activation function to determine the output 

value 𝑧, 𝑧 = 𝑓(𝑙) which is the input for the next neuron or the final output of the 

network (Sirefelt Rickard, 2004), (Ayo and Da Silva, 2020), (Boyagoda and Da 

Silva, 2020). 
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When then FFNN consists of more than one layer stacked with each other, it is 

said to be a deep neural network (Sirefelt Rickard, 2004).  To empower an 

artificial neural network to generate the desired output, regardless of whether 

it is an FFNN or a Deep NN, the weights and biases of each neuron should be 

determined by a learning algorithm using a set of training data (inputs and their 

corresponding labels) before it uses for any application. This enables the 

artificial neural networks to learn from experience and to make predictions for 

unknown future operations. If the structure of the data fed to the ANN is 

images, this particular branch of artificial neural networks is called CNN (Ayo 

and Da Silva, 2020). 

 

(𝑙 = 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 + ⋯ + 𝑏) 𝑧 = 𝑓(𝑙) 

𝑤1 

𝑤2 

𝑤3 

𝑙 

𝑥1 

𝑥2 

𝑥3 

𝑧 

Input layer 

Hidden layer 

Output layer 

Figure 3.2: Structure of an artificial neural network 

Perceptron 

Connections 

Figure 3.1: Functionality of a perceptron 
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3.2 Convolution neural networks, training and 

hyperparameters 

3.2.1 Convolution neural networks (CNN)  

 

Convolution neural networks (CNN) have been a straightforward approach in 

the field of computer vision for many applications such as object recognition 

(Boyagoda and Da Silva, 2020), feature extraction (Saifi, Singla and Nikita, 

2020), image classification (Ayo and Da Silva, 2020), semantic segmentation 

(Tran and Le, 2019), and character recognition. The CNNs are a form of ANN 

that has been expressly developed to detect objects in the images (Ayo and Da 

Silva, 2020). Therefore, the input layers of the CN network are made up of 

neurons that accept three-dimensional responses correspond to the image 

width, height, and the number of spectral bands (usually 3 for R, G, B, channels) 

(Boyagoda and Da Silva, 2020). As shown in figure 3.3, traditionally, the 

structure of the CNN is mainly composed of a convolution layer followed by a 

fully connected layer, which is alternatively stacked, and the main components 

of the convolution layer are composed of a convolution, an activation layer, and 

a pooling layer (Alshehhi et al., 2017). Various CNN architectures have been 

proposed for image segmentation in the past, e.g., B. Seg Net and Google Net, 

Alex Net, etc. 

 

Figure 3.3: The standard architecture of the CNN, A: Main components B: 

Components of the Convolution layer (Alshehhi et al., 2017) 

The convolutional layers in the CNN capture the contextual information of the 

digital image and generate a new image called a feature map, formed by 

computing the dot product between the coefficients of the spatial filter and the 

pixel values of the image at each position in the image. After completing a full 

forward pass across the width and height of the image, the resulting feature map 

is passed through a nonlinear activation function, which squeezed the values in 
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the feature map according to a certain function (e.g., ReLU, tanh, etc.). Then 

after the altered feature map is passed through a pooling operation to reduce 

the dimensions and the complexity of the feature map via a pre-defined 

function (Maximum, Average, Minimum, etc.). It is generally done by moving a 

filter across the width and height of the input with a specified stride size (usually 

2) while taking the maximum within the filter which is called Max pooling. Then 

finally a fully connected layer, which is comprising of neurons, in which each 

neuron is connected to all others in the previous layer is used to getting a 

meaningful network output.  Once an image has been completely passed 

through CNN, it predicts the class of the object in the image as the output. In 

the case of a road extraction application, the final output layer defines whether 

or not each pixel of the image represents a road (Shrestha and Vanneschi, 

2018), (Boyagoda and Da Silva, 2020), (Ayo and Da Silva, 2020), (Sirefelt 

Rickard, 2004), (Alshehhi et al., 2017), (Wulamu et al., 2019). 

3.2.2 Training approach 

 

Once a CNN architecture has been developed, it should train on a range of 

known data before using it for the desired application. For this step, it is 

important to have a set of accurate training data that represents the inputs into 

the CNN as well as the desired labels for the outputs. The training process of 

the CNN modifies the weights and biases of the convolutions in such a way that 

a given set of inputs achieve their desired output and this process consists of 

three steps: namely forward computation, loss optimization, back-propagation 

and parameter updating. Forward computation returns the class labels for 

input images as a probability to belongs to a certain class, then loss 

optimization, optimize the probability scores by adjusting the weights and 

biases of the convolutions which have been trained over the network. Finally, 

backpropagation gradually updates the weight and biases of the whole networks 

using error surface derivatives (Shrestha and Vanneschi, 2018). 

3.2.3 Hyperparameters 

 

Hyperparameters are the parameters that must be set before the training 

process, e.g. Learning rate, number of epochs, weight and bias initializations, 

etc. (Sirefelt Rickard, 2004). There are three ways of setting these parameters. 
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1. Manual: the basic method where initial parameters are set by hand, 

considering the prior knowledge of the application, or predicting the 

values. 

2. Search algorithms: provides the feasible ranges and combinations of 

parameters to train the network for the optimal solutions. 

3. Automatic approach: Create an automatic method to initialize the 

parameters for an optimal solution (Shrestha and Vanneschi, 2018). 

In this study, all three methods were used to set the hyperparameters, initial 

weights, and biases of the network were initialized with the kernel initializer 

"he_normal" of the Keras working environment which assigns a random value 

from a normal distribution, centered on 0. The learning rate was initially set to 

0.0001 and gradually reduced with the number of epochs using an automatic 

function. The number of iterations was initially set at 100 and the early stop 

principle was used to stop the training process as soon as the validation set's 

performance stopped increasing. 

3.3 U Net network architecture 

The following subsection describes the U-Net convolutional neural networks 

that Ronneberger proposed in 2015 for biomedical image segmentation 

(Ronneberger, Fischer and Brox, 2015). It has been recognized as one of the 

highly successful CNN architectures for segmenting different medical images in 

the field of cardiology and neurology (Abderrahim, Abderrahim and Rida, 

2020).  The U-Net network architecture is shown in Figure 3.4 and is essentially 

similar to the letter “U” in the English alphabet. The architecture mainly 

consists of three modules, an encoder (contraction path), a decoder (expansion 

path), and a bridge in between them to connect the output of the encoder to the 

decoder (Zhang, Liu and Wang, 2018) and a total of 23 convolution layers are 

used in all three modules.  The contraction path consists of repeated 

convolution blocks made up of a 3 * 3 convolution layer followed by a ReLu 

activation layer and a 2 * 2 max-pooling layer. within each contraction block, 

the number of feature maps is doubled, and the size of the feature map is halved. 

The network expansion path consists of a sequence of up sampling 

convolutional layers that double the size of the feature map and halve the 
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number of feature maps. Additionally, these up sampling layers combine the 

high-level features of the image objects using intermediate concatenations. 

Finally, the output layer uses a 1 * 1 size convolution layer to output the 

segmented image in the same dimensions as the input image (Abderrahim, 

Abderrahim and Rida, 2020), (Zhang, Liu and Wang, 2018), (Ronneberger, 

Fischer and Brox, 2015). The symmetrical structure and the process of 

combining the properties of the image objects at high and low level through 

concatenation make the U-Net structure unique from the other available 

segmentation models (Tran and Le, 2019). 

 

 

Figure 3.4: U-net architecture (example for 32x32 pixels in the lowest 

resolution) (Ronneberger, Fischer and Brox, 2015) 

3.4 VGG 16 pre-trained model 

VGG 16 is a convolutional neural network model that has been proposed by K. 

Simonyan and A. Zisserman in 2015 (Simonyan and Zisserman, 2015). This 

model has two different architectures as VGG 16 and VGG 19, VGG 16 network 

configuration consist of 16 layers and 19 layers in the VGG 19. It has been 



 

18 

recognized as an extremely successful feature extractor in the field of image 

segmentation (Boyagoda and Da Silva, 2020). The following figure 3.5 shows 

the architecture of the VGG-16, it consisted of five repeated convolution layers 

(3*3 filter size) and each of them is followed by a max-pooling layer that is 

performed over a 2×2-pixel window, with stride 2.  

 

Figure 3.5: VGG 16 network architecture 

The convolutional blocks are then followed by three fully connected layers; The 

first two each have 4096 channels and the last layer is a Softmax layer. This 

VGG 16 model has already been trained on a data set of over 14 million images 

from 1000 classes (ImageNet data set) and has achieved a test accuracy of 

92.5% (Simonyan and Zisserman, 2015).  Weights of this trained model are 

used in this research project to increase the accuracy of the developed U-Net 

architecture.  The main reason that makes the VGG 16 most suitable in this 

project is that the repeated convolutions of both models i.e. VGG 16 and the U- 

Net has the same initial formation (filter size (3*3) and the size (2*2) and stride 

(2) of the max-pooling layer).  
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 DATA AND METHOD 
 

This chapter contains a description of the dataset used and the methodology 

followed for the study. The first subsection reviews the properties of the data 

set and the second section covers each step of the methodology; preprocessing 

and data preparation steps, method selection, model optimization, 

hyperparameter selection, and transfer learning with the predefined VGG 16 

model. The next subsection provides an overview of the software, hardware, and 

tools utilized to implement the proposed method, and the comparison 

measures used in the study are described in the last section. 

4.1 Data Description 

In this experimental project, a freely available road dataset prepared by Mnih 

was used (Mnih, 2013). The dataset consists of ariel photographs covering the 

entire state of Massachusetts in the United States, and their respective ground 

truth raster images (labels), which were created using open street maps (OSM). 

The dimensions of the image were initially 1500 * 1500 pixels and comprised 

Figure 4.1: Three samples of Massachusetts data set a) Aerial Images, b) their 
respective ground truth images from OSM 
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of three spectral bands (Red, Green, and Blue) cover 2.25 square kilometers 

targeted to develop images with a spatial resolution of 1 meter. The sample of a 

data set is shown in figure 4.1. 

4.2 Method 

In this thesis, a new method for delineating roads from high-resolution images 

was proposed and this subsection describes the methodological framework of 

the study in detail. The main outline of the procedure is shown in Figure 4.2, 

which comprises five main steps: data preprocessing, method selection, model 

development and hyperparameter selection, transfer learning, and post-

processing. All six steps of the method were coded utilizing Python 

programming language and the corresponding libraries that are installed in the 

Anaconda working environment. The implemented codes can be found at this 

link. 

4.2.1 Data pre-processing  

 

Data preprocessing is vital in deep learning applications (Shrestha and 

Vanneschi, 2018). The main purpose of data preprocessing is to transform or 

encode the data set used in the application so that the characteristics of the data 

can be identified and easily interpreted by the learning algorithm (Sirefelt 

Rickard, 2004). Therefore, the first step in the method was to convert the data 

set into a suitable format that was best fitted to the network. Since the 

developed method attempting to delineate roads using deep CNN without 

compromising the computational efficiency, the first step of the image 

preprocessing was to reduce the dimensions of the images to preserve the 

memory while the CNN algorithm is running. So, in this step, the dimensions 

of the images were lowered from 1500 pixels to 300 pixels by dividing an 

original image into 25 components. 

As a result, as shown in Table 1, the number of images is increased by 25 times. 

Then the images were arbitrarily split into three separate parts to be used for 

training, validation, and testing purposes.  
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Table 4.1: Number of randomly distributed Training, validation, and testing 
images before and after image cropping. 
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Ground truth labels of the respective images were also passed through the same 

steps to reduce the dimension to be reconciled with the input data. The training 

data set together with its respective ground truth labels were used to train the 

developed methods and the validation set was used to validate the best possible 

model during the training process and finally, the test data set was used to 

evaluate the models through comparative measures. As the next step in the 

image preprocessing, the texture bands and the outputs of the edge detection 

filters for the original images were derived to quantify the spatial variability of 

the neighborhood. The dissimilarity feature of the grayscale coexistence matrix 

and the standard deviation of the spectral values in the images across a 3 * 3 

filter was used as the texture measures. Similarly, three readily available edge 

detectors, Canny, Sobel, and Prewitt, were used for edge detection. these all five 

output bands were used as the secondary measures for the classification 

algorithms. 

4.2.2 Method Selection 

 

At the beginning of the method selection process, four feature extraction 

algorithms were chosen due to their balance of accuracy and network 

complexity as tested in the previous literature. These four methods included 

two image classifiers, namely, a support vector machine classifier, a random 

forest classifier, and two image segmentation architectures as U-Net image 

segmentation architecture and SegNet image segmentation architecture. After 

implementing the methods using Python’s executable code, the performance of 

each method was assessed using four comparative measures: Accuracy, 

Precision, F1 Score, and Recall.  Then, the method which produced the highest 

F1 score was selected as the best model to proceed with the research. Detail 

explanation of comparison measures is written in section 4.4. 

4.2.3 Model development and hyperparameter selection. 

 

In this step,  A new model based on U-Net image segmentation architecture was 

developed and the sensitivity to the hyperparameters on the designed CNN was 

tested. This experiment was mostly built on top of the TensorFlow learning 

platform working in the python environment and additionally, the Keras 

application programming interface was also used to reduce the cognitive load.  

https://www.tensorflow.org/
https://keras.io/
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During the model development, the number of the convolutional and pooling 

layers in the architecture, the convolution size, and the operation of the pooling 

layer in the algorithm was changed sequentially to find the best model and in 

the case of hyperparameters, the learning rate, the number of iterations, the 

kernel initializer, the activation function, and the cost function have also been 

optimized in order to train the network with the lowest losses for validation 

while protecting the network from overfitting. 

4.2.4 Transfer learning  

 

The concept of transfer learning was used in this step, 

to transfer the knowledge from a trained VGG-16 

model to enhance the accuracy of the designed 

method. As visualized in figure 4.3, the first 13 layers, 

10 convolutions, and 3 pooling layers of the 

contraction path (encoder) were set as nontrainable 

to replace the weights and biases of the layers with 

the VGG 16 ideals.  

4.2.5 Post-processing 

 

The final step of the methodology was to enhance the 

visual interpretation of the final road map by 

applying post-processing strategies. After extracting 

the roads with the developed U-Net model, the 

segmented output consists of noise due to the spectral 

similarities that exist between streets and other man-

made structures, particularly buildings. The post-

processing technique developed in this step combines the morphological 

operations and the factors calculated on the minimally bounded rectangular 

box (MBRB). Specifically, the first step was to draw the minimal bounding 

rectangle for the objects in the segmented image to better describe the shape 

features of the polygons. Then the features with an aspect ratio of 1 and areas 

of less than 10 pixels were removed to overcome the negative influences of the 

buildings. Then, the basic operations of the mathematical morphology include 

dilation and erosion were used to further remove the noises and fill the gaps 

Figure 4.3: Trainable and no 
trainable layers of the developed 
U-Net based road extraction 
model 
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between the road segments. The image closing that is dilation (⊕) followed by 

erosion (⊖) is described as follows. 

𝐴 ∙ 𝐵 =  (𝐴 ⊕ 𝐵) ⊖ 𝐵 

Where A is the binary image and B represents the structuring element. The 

structuring element proposed in (Talal et al., 2014) was used for the study due 

to its high performance and effectiveness. consequently, roads are detected 

more completely. 

4.3 Tools and Hardware 

The entire model described in subsection 4.2 has been implemented using open 

source software and packages. The implemented codes executed on a laptop 

with an Intel Core i3 CPU running at 2.0 GHz and 8 GB of RAM, can be found 

in this GitHub repository. The resources used are described below. 

Anaconda: Anaconda is a popular open-source distribution that comes with 

over 200 automatically installed packages and is aiming to simplify the python 

package management and deployment by providing suitable working 

environments for Windows, Linux, and macOS operating systems.  

Python: Python is a programming language that supports the development of 

logical code to work with multiple approaches to programming, including 

structured (especially procedural), object-oriented, and functional 

programming for end users. The python version of 3.7 installed on Anaconda 

was used in the study. 

Spyder: Spyder is an integrated development environment (IDE) that supports 

programming in the python language for scientific studies, which is already 

packed with frequently used dependencies as NumPy, NumPy, SciPy, 

Matplotlib, and pandas. In this study, code development and visualization were 

carried out using the Spyder IDE. 

TensorFlow with Keras: TensorFlow is an open-source library designed for in-

depth neural network training and interference for machine learning 

applications developed by the Google Brain team. It can be installed as a GPU 

or CPU deployment, depending on the requirements and hardware used for the 

study.  Lightweight CPU deployment was used in this study to create the code 

in a way that is able to execute with the least hardware requirement. Keras is 

https://github.com/PrasadiSenadeera/Road_Extraction-
https://www.anaconda.com/
https://www.python.org/
https://www.spyder-ide.org/
https://www.tensorflow.org/
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the official high-level API that facilitates the reduction of the cognitive load and 

supports multiple backends as Theano, CNTK, etc. 

In addition to the aforementioned, various python libraries and tools as Skit 

Learn, Geopandas, Pillows, OpenCV were also used for the implementation 

when it is required. 

4.4 Comparison measures 

This final subsection focuses on describing the accuracy assessment process 

that was carried out to validate the performance of the model and for the 

method selection phase discussed in section 4.2.2. The accuracy assessment 

aims to identify and quantify the errors by comparing the pixels or polygons 

from a segmented map with the known reference data set called the ground 

truth or image labels (Itza Alejandra et al., 2020). Four comparison measures; 

Accuracy, Precision, Recall, and F1 Score were used in this study. Since road 

extraction is viewed as a binary problem consisting of pixels representing roads 

and non-roads in output segmented images or labeled known images, there are 

four possible states for the confusion matrix as true positives, true negatives, 

false positives, and false negatives. They can be defined as follows, 

1. True positives (TP): Number of correctly classified target pixels (roads) 

2. True negatives (TN): Number of incorrectly classified target pixels 

(roads) 

3. False positives (FP): Number of correctly classified background pixels 

(non-roads) 

4. False negatives (FN): Number of incorrectly classified background pixels 

(non-roads) 

The following formulas were used to define the comparative dimensions. 

1. Precision (correctness): The ratio between the true positives and all 

positives captured by the model, namely true and false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

2. Recall (completeness): measures the proportion of correctly classified 

target pixels to all true target pixels. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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3. Accuracy: Is refers to the ratio between the number of correctly classified 

pixels (true positives) to the total number of pixels, that is the sum of 

true positives, true negatives, false negatives, and false positives. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

4. F1 Score: defines the harmonic mean of precision and recall, is mainly 

used to assess the accuracy of an unbalanced data set where the number 

of target pixels and background pixels are different in amounts (Shrestha 

and Vanneschi, 2018). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Additionally, the computing time and the network complexity were also taken 

into account for the comparative approach in order to obtain a model with less 

complexity. 
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 RESULTS AND DISCUSSION 
 

 

This section is devoted to visualizing and discuss the results of the experimental 

study. The first two sections display the output of the preprocessing steps and 

method selections. The subsequent section presents the output obtained during 

the model development and hyperparameter selection. The results obtained 

after applying transfer learning and post-processing are described in the last 

two sections. 

5.1 Image Preprocessing 

This section summarizes the outputs of the steps described in section 4.2.1.  

Figure 5.1 shows a sample of original images from the Massachusetts road data 

set and the corresponding 25 image tiles after the images were cropped to 300 

* 300 pixels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Image cropping resulted in reducing the capacity of the digital images thus 

allowing to save the memory while executing the codes for training the models. 

The sample outputs of the edge detection filters and textures are shown in 

Figure 5.2.  Edge detection filters capture the rapid changes and discontinuities 

in the spectral values of digital images. They are often used in image 

Figure 5.1:One sample image from Massachusetts road data set (a) original 
image (b) after reducing the image dimensions in to 300*300 pixels 

(a) (b) 
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classification to enhance the rate of change in the spectral value along the edges 

of the streets (Sirefelt Rickard, 2004).  

 

Prewitt edge detector 

 

 

 

 

 

 

 

 

 

 

 

 

The classification models were 

catalysts using the second-order 

information bands above. The 

individual contribution of each 

band to the final classified output 

is shown in Table 1. The Prewitt 

and Sobel edge detection bands 

mark the classification with the 

height contribution, and the 

Canny edge detector contributes 

the least to the process. 

 

Input band Individual 

Contribution 

Prewitt edge detection 0.282562 

Sobel edge detection 0.282240 

Original Image 0.181503 

Gaussian filter 0.165455 

STD texture 0.081202 

Canny edge detection 0.007037 

Table 5.1: Feature importance of Random forest classifier 

Sobel edge detector Canny edge detector 

Standard deviation 
texture 

Gaussian filter 

Figure 5.2: Output bands of edge detection filters and textures 
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5.2 Method Selection 

A sample of 250 images was used to evaluate all four models by providing the 

same initial states. The outputs of the Random Forest Classifier (RF) for the 

training and testing images are shown in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The outputs of the Support vector machine classifier (SVM) for the training and 

testing images are shown in Figure 5.4 and 5.5. 
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Figure 5.3: A sample input image its corresponding image labels and output from 
random forest classifier for train and test data sets 

Figure 5.4: A sample input image its corresponding image labels and output from 
support vector machine classifier for test data set 
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Based on the accuracy assessment results above, both classifiers are not well 

suited to the problem. The random forest classifier tends to produce an over-

fitted output resulting in very accurate results being produced for the training 

set and poor performance for the test set. The outputs of the U- Net image 

segmentation model (U-Net ISM) for the training and testing images are shown 

in Figures 5.6 and 5.7. 

 

 

 

 

 

 

 

 

 Support vector machine classifier Random forest classifier 

Train data Test data Train data Test data 

Accuracy 0.53 0.75 0.97 0.88 

Precision 0.11 0.20 0.94 0.63 

Recall 0.70 0.07 0.62 0.02 

F1 score 0.19 0.11 0.75 0.05 

Table 5.2: Accuracy score values for support vector machine classifier and 
random forest classifier. 

True labels Output from SVM 
classifier 

Input image 

T
ra

in
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a
ta

 

Input image True labels Output from U-Net 
Segmentation model 

T
es

t 
d

a
ta

 

Figure 5.5: A sample input image its corresponding image labels and output from 
support vector machine classifier for train data set 

Figure 5.6: A sample input image its corresponding image labels and output from U-
Net Image Segmentation model for test data set 
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The outputs of the Seg- Net image segmentation model for the training and 

testing images are shown in Figure 5.8. 
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Figure 5.7: A sample input image its corresponding image labels and output from U-
Net Image Segmentation model for train data set 

Figure 5.8: A sample input image its corresponding image labels and output from Seg-Net 
Image Segmentation model for test and Train data sets 
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The prediction accuracies for the U-Net image segmentation model were higher 

than for the Seg-Net image segmentation model and were good enough to 

comfortably continue the study with the architecture. 

5.3 Model development and hyperparameter selection 

5.3.1 Implementation 

 

This section presents the results of the model development process performed 

by changing the size of the convolution, the number of convolution and pooling 

layers of the U-Net model, as well as the hyperparameters used for training the 

CNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The U-Net image segmentation 

model 

The seg-Net image 

segmentation model 

Train data Test data Train data Test data 

Accuracy 0.7440 0.8677 0.8368 0.7185 

Precision 0.3336 0.7819 0.2364  0.0175 

Recall 0.4529 0.3531 0.1742 0.1766 

F1 score 0.3842 0.4865 0.2006 0.0749 

Table 5.3: Accuracy score values for U-Net and Seg-Net Image Segmentation models 

Convolution size 
3*3 

Convolution size 
5*5 

Convolution size 
7*7 

Convolution size 
9*9 

Figure 5.9: Classification performance of the U-Net ISM for different convolution 
sizes from 3*3, 5*5,7*7, and 9*9 
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Figure 5. 9 illustrates the classification performance of the U-Net for different 

convolution sizes from 3*3, 5*5,7*7, and 9*9. With an increase of convolution 

size from 3 to 9 there is a decrease of F1 score starting from 0.4850 to 0.2156. 

The highest F1 score of 0.4850 was observed for convolution size 3*3, was 

selected for the study. The original U-Net architecture (referred to as U-Net (9) 

in this study) comprised 9 CNN blocks, with a total of 8 blocks for the encoder 

path and the decoder path (4 blocks each), and the remaining block for the 

bridge between encoder and decoder. Similarly, U-Net (5) and U-Net (7) consist 

of 5 and 7 blocks, respectively. The number of CNN blocks indicates the 

complexity of the model and the time required for training, as the number of 

parameters in the model varies. The results observed in U-Net (5), (7), (9), and 

(11) are shown in Figure 5.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Input Image Labelled Image 

Segmented map of 
U-Net (11) 

Segmented map of 
U-Net (9) 

Segmented map of 
U-Net (7) 

Segmented map of 
U-Net (5) 

Training time: 
29m 44s 

Training time: 
34m 24s 

Training time: 
42m 41s 

Training time: 
50m 32s 

Figure 5.10: Classification performance and computing time of the U-Net ISM for different 
numbers of CNN blocks 
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In figure 5.10 it is observable that, as the number of blocks increases, the 

training time has also increased. The highest performance was observed with 

U-Net (5). Therefore, the U-Net architecture consisting of 5 blocks, 2 each for 

encoder and decoder, was selected as the optimized model which balanced 

complexity and performance. 

5.3.2 Hyperparameters 

 

Hyperparameters are the parameters that must be set before the training 

process, e.g., Learning rate, number of epochs, weight, and bias initializations, 

etc. (Sirefelt Rickard, 2004). This study used initial hyperparameters as 

described in Table 5.2 and the selection process was based on the performance 

of the previous image segmentation studies. 

 

Parameter Initial State Remark 

Number of 

Iterations 

1000 The process was stopped early when 

there was slight progress on the 

validation dataset 

Cost function Binary cross entropy (Boyagoda and Da Silva, 2020) 

Activation function Rectified Linear Unit (Abderrahim, Abderrahim and 

Rida, 2020) 

Learning rate 0.0001 Reduced with the iterations (Zhang, 

Liu and Wang, 2018) 

Initial weights he_normal 

(Keras) 

a random value from a normal 

distribution centered on 0 

Table 5.4: Hyperparameters assigned for CNN training. 

5.4 Transfer Learning 

The final network architecture is illustrated in figure 5.11, which is consisting 

of 11 convolution layers, 2 pooling layers, 2 convolution transpose layers, and 

2 concatenations. 
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Deep learning models often achieve increased accuracy with a transfer learning 

approach. Figure 5.12 visualizes the segmented output from the developed 

network trained by the VGG16 pre-trained feature extractor. 

 

The final proposed model shows clear results with a high F1 score after transfer 

training, with less noise and breaks in the road segment. However, the second 

example visualized in the figure shows that the low F1 score is about 0.1241. 

We conclude that this is due to the inaccuracy of the labeled data in the source 

image and that the model could recognize the road if it were not in the source 

data. Also, we noticed few noisy objects as indicated in the red circles, mainly 

because of building roofs and parking slots having similar spectral properties 

as road features. Additionally, there were also eroded road segments, as shown 

in blue rectangles due to the background clutter, such as trees and shadows. 

However, the quantitative and visual analysis of the segmented output shows a 

Input Image 

 (256*256*3) 
 

Output segmentation map 

(256*256*1) 

Conv 1-1  Conv 5-2 

Conv 1-2  Conv 5-1 

Pooling 1-1  Concatenate (CT5-1 +C1-2) 

  Conv- Transpose 5-1 

   

Conv 2-1  Conv 4-2 

Conv 2-2  Conv 4-1 

Pooling 2-1  Concatenate (CT4-1 +C2-2) 

  Conv- Transpose 4-1 

   

 Conv 3-1  

 Conv 3-2  

 Conv 3-3  

Figure 5.11: Implemented U Net based CNN model 
for road extraction. 
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good improvement in the prediction results, which is further passed through 

post-processing steps to improve the visual interpretation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Three sample input images with the corresponding image names and 
outputs from the implemented CNN model after applying the transfer learning 
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5.5 Post-processing 

 Minimum Boundary Area Rectangle (MBAR) of the extracted features (see 

Figure 5.13. [b]) was 

used to remove the 

noises indicated with 

red circles in Figure 5.9. 

then the extracted 

shape features, the 

area, and the aspect 

ratio were used to 

eliminate the nonroad 

segments as shown in 

figure 5.13.[c]. finally, 

after applying the 

morphological opening 

to fill the eroded 

segments the final 

output from the 

developed U-Net model 

is visualized in figure 

5.13.[d]. the output is 

very close to its 

respective known labels 

and the F1 score of the 

output was 0. 8320 

with 0. 9693 recall.  The results discussed in this chapter conclude the work in 

the next chapter, in which the goals presented in chapter 1 are checked in 

accordance with our results and the discussion from the experiments and 

analyses carried out. 

 

 

 

 

[a] Segmented output from 
developed U-Net model 

[b] MBA rectangles of 
road segments 

[c] After removing areas < 
10 or Aspect ratio =1  

 

[d] Final output  

 

Figure 5.13: Outputs of post processing steps  



 

38 

 CONCLUSIONS AND RECOMMENDATIONS 
 

This chapter summarizes the conclusion of the study described in accordance 

with the goals of the study. Also, it includes the limitations and future 

recommendations to further improve the results of the study. 

6.1 Conclusions 

The main aim of the research was to formulate a method of road extraction from 

high-resolution images that uses a deep learning approach based on a 

convolutional neural network. For this, First, existing CNN-based image 

segmentation architectures and classification algorithms were reviewed and 

two image segmentation architectures as U-Net image segmentation 

architectures and SegNet Net image segmentation architectures and two image 

classification algorithms were selected for the study, mainly due to their 

efficiency and accurate performance from the past studies. The best model 

among these four options was then selected based on an experimental study 

conducted on a freely available Massachusetts dataset developed by (Mnih, 

2013). Because of the superior results of the U-Net Net image segmentation 

architectures compared to the other methods, this one was chosen to continue 

the study by changing the original network architecture and hyperparameters 

of CNN training. Subsequently, the developed model is further improved by 

transfer learning using an already existing VGG16 function extractor trained on 

the ImageNet data set. Finally, the segmented output of the model was 

enhanced by the post-processing strategies developed using parameters 

measured on minimally bounded rectangles covering the extracted road 

segments and morphological operations. The method developed in the study 

was superior to the elaborated application and was performed with an F1 value 

of 0.8230 and a recall of 0.9693. In addition, the network architecture was less 

complex than the original U-Net architecture and the processing time was 

comparatively shorter than the other three methods used in the study. 

The study's minor objectives are discussed below with an explanation. 

1. Review and assess the potential of the latest algorithms for automatic 

road extraction using high-resolution aerial / satellite images. 
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In chapter 2, the latest algorithms and models developed to extract the road 

features were discussed. Among the available methods, Deep Convolutional 

Neural Networks was chosen for the study because of its various advantages: 

independence from the spatial and contextual features of roads, adaptability to 

spatial heterogeneity, allowing a large amount of data for the process, and the 

ability to use data without preprocessing steps. Then some recent 

improvements of DCNN, their architectures, and the concepts of transfer 

learning were used for potential improvements. 

2. Compare several image classifiers and CNN based segmentation 

architectures based on accuracies to find out the best method to 

extract roads using high-resolution aerial/satellite imagery. 

Based on the previous studies, two image classification algorithms based on 

deep learning and two image segmentation architectures were selected for 

performance comparison through accuracy ratings using F1 score, recall, 

precision, visual inspection, and computation time taken during the training. 

Subsection 5.2 shows the results of the performance evaluations where the U 

Net image segmentation architecture produced the best results for road 

extraction. 

3. Enhance the accuracy of the chosen method by changing the chosen 

network architecture and applying transfer learning. 

To determine the optimal structure of the U-Net image segmentation 

architecture, various design experiments were carried out, as shown in Section 

5.3. The effects of varying the folding size, the number of folding and pooling 

layers used in the model, and the hyperparameters of CNN training, were 

experimented within the process. The model is shown in Figure 5.9, which 

consists of 10 convolutions, 2 pooling operations, 2 convolution transposition 

layers, and two concatenation layers was implemented in the process. 

Additionally, transfer learning by the pre-trained feature extractor VGG16 was 

used to further increase accuracy up to an accuracy of 0.9557. When comparing 

the results achieved with and without transfer learning, as shown in Figures 5.8 

and 5.9, it can be concluded that transfer learning has significantly improved 

the implemented model. Additionally, this model is much lighter than the 

original U-Net structure which consists of a total of 23 convolution layers and 
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it is free in terms of GPU memory requirement in machine learning. In the end, 

the thesis presented a CNN based deep learning approach that follows the U-

Net image segmentation architecture for automatic road extraction.  

6.2 Limitations and Recommendations 

During the execution of this experiment, some directions for future 

development emerged, which are summarized below: 

1. It is still possible to further improve the network’s performance by 

applying data augmentation steps which are resulting in to increase in 

the amount of data for the training process. 

2. It is recommended to use undistorted comparison matrices such as 

AUROC (Area Under the Receiver Operating Characteristic Curve) in the 

statistics because of the unbalanced ratios of the pixels belong to the road 

and non-road features. 

3. The current study assigns the hyperparameters that ensure satisfactory 

performance in previous studies. However, an investigation should be 

conducted to optimize the hyperparameters for the CNN training as done 

in (Shrestha and Vanneschi, 2018). 

4. Many cases have been observed where the freely downloaded road labels 

did not exactly match the high-resolution color images, resulting in a 

decrease in the accuracy of the test data and training the model with 

unsuitable features that do not represent roads. Therefore, it is 

recommended to perform a visual inspection and possible corrections to 

the label images before using them for the application. 

5. Explorations of new post-processing methods are also recommended for 

future works. 
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