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SEMI-AUTOMATIC CLASSIFICATION OF TREE SPECIES USING A 

COMBINATION OF RGB DRONE IMAGERY AND MASK RCNN  

 

 

A case study of the highveld region of Eswatini  
 

 

Abstract 

Tree species identification forms an integral part of biodiversity monitoring. Locating at-risk 

species and predicting their distribution is equally as important as tracing invasive alien plant 

species distributions. The high prevalence of the latter and their destructive impact on the 

environment is the focus for this thesis. In areas of the world where technology limitations are 

restrictive, an approach using low-cost, available RGB drone imagery is proposed to train 

advanced deep learning models to distinguish individual tree species; three dominant species 

(Pinus elliotti, Eucalyptus grandis and Syzygium cordatum) providing the bulk of sampling data, 

of which the first two are highly invasive in the region. This study explored the efficacy of 

utilizing Mask RCNN, an instance segmentation deep neural network, in identifying multiple 

classes of trees within the same image. In line with the low-cost approach, Google Colaboratory 

was utilized which drastically lowers the training time necessary and alleviates the need for high 

GPU systems. The model was trained on imagery from three study areas which were 

representative of three distinct landscapes: very dense forest, moderately dense forest with 

overlapping canopies, and open forest. The results indicate decent performance in open forest 

landscapes where overlapping tree crowns is infrequent with mean Average Precision of 0.71. 

On the contrary, in a dense forest landscape with many interlocking tree crowns, a mean 

Average Precision of 0.43 is highly indicative of the model’s poor performance in such 

environments. The trained network was also observed to have higher confidence scores of 

detected objects within the open forest study areas as opposed to dense forest. 
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1 Introduction 

1.1 Contextual Background 

Under the current critical climate change situation, biotic invasions by exotic plants are 

one of the most significant threats to vital ecosystem functioning(Kumar Rai & Singh, 

2020). According to the International Union for Conservation of Nature (IUCN) the 

definition of Invasive Alien species are “…species that are introduced, accidentally or 

intentionally, outside of their natural geographic range and that become 

problematic”(IUCN, 2018). Apart from impacts on biodiversity, biological invasions 

affect environmental, socio-economic, and cultural changes on impacted areas.  

Invasive plants across the world, although not as noticeable as natural disasters, 

contribute to losses and hardships faced by people that are proposed to be an order of 

magnitude higher than natural disasters(Ricciardi et al., 2011). They disrupt food chains 

and affect specific mutualisms between plants and animals which are felt in pollination 

and seed dispersal. Additionally, their invasive nature itself poses a threat to local 

biodiversity, often leading to catastrophic changes in local populations and in some 

cases, the extinction of indigenous species. Their incursion has been linked to land use 

change such as forest to grassland/savannah via alterations in the natural fire 

regimes(Pyšek et al., 2012). This has further implications for carbon sequestration and 

therefore cumulative impact on climate change. In light of the shifting climate and 

globalisation, the influence of Invasive Alien Plant Species(IAPS) is expanding rapidly in 

a positive feedback loop, with “transport, climate change and socio-economic change” 

being cited(Essl et al., 2020) as the main drivers for alien species invasion. IAPS further 

have repercussions for human health either directly by releasing certain toxins which 

can cause diseases or allergies, or indirectly as vectors for other pathogens to leverage 

in their propagation (Lantana camara for tsetse fly that causes sleeping sickness)(Kumar 

Rai & Singh, 2020).  
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In the Kingdom of Eswatini, the introduction of exotic plant species began with 

European colonisers bringing species such as Australian wattle for firewood and 

Eucalyptus and Pine for timber and building materials. These and many other 

introduced species have gained a foothold in Eswatini to such an extent that indigenous 

plants are outcompeted, and natural ecosystems heavily disrupted. A cascade effect 

follows their incursion, affecting aspects such as water availability, land use and 

cultivation, etc. Under the UN’s Sustainable Development Goals, IAPS are highlighted 

under Goal 15, Life on Land as they pose a threat to ecosystem functioning.   

Monitoring and detecting IAPS is the first step towards their control. In the latest report 

of the national strategy for the control of IAPS in Swaziland(Dlamini, 2020), a dedicated 

group is to be established to deal with the growing threat of IAPS. Yet it begs the 

question, how can we survey large plots of land for the presence of IAPS with limited 

technology at a low cost? Remote Sensing and Earth observation offer some of the most 

promising approaches to effective IAPS monitoring. With satellite data, airborne 

imagery and drone photography progressing rapidly and becoming increasingly 

available, people on the ground have many more tools at their disposal for plant 

monitoring and management. 

The development of Unmanned Aerial Vehicles (UAVs) presents huge potential for 

advances in ecosystem monitoring. They drastically reduce surveying time and can take 

high resolution snapshots of areas that can be stored, combined, and then analysed with 

machine-learning, the use of UAV for the management of IAPS holds vast potential. 

There is growing interest in the combination of machine-learning with UAV imagery to 

build better classification models. The advent of deep learning, which utilizes not just 

the spectral information, but shapes and sizes of objects in imagery is at the forefront 

of these developments. Thus, this thesis proposes to use UAV imagery in combination 

with a deep learning algorithm (Mask RCNN) to build a semi-automatic classifier for 

detecting IAPS in Eswatini.   
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1.2 Problem Statement and Motivation 

Plants and animals have been transported outside of their original ranges for centuries 

(accidentally or intentionally: alien/exotic), and a necessary definition for distinguishing 

between naturalised and invasive species was proposed by David M. Richardson. The 

definition of IAPS in this paper follows this concept, which in short states that 

naturalized plants are exotic plants that can sustain populations over many life cycles 

without human intervention. These essentially differ from invasive plants which are 

“Naturalized plants that produce reproductive offspring, often in very large numbers, at 

considerable distances from parents plants…”(Richardson et al., 2000).  

Invasive species not only have effects on the natural environment and its wildlife, but 

they also exert pressure on agriculture and water security, with further effects on 

economy and livelihood of people. A study aimed at investigating the impact of IAPS on 

water flows in South Africa estimated that through the increased evaporation and 

transpiration losses that IAPS bring, an estimated 1.44-2.44 billion m3 per year is lost in 

surface run-off in South Africa, and an estimated 193 million m3 annually in 

Swaziland(Le Maitre et al., 2020). These are expected to increase with further invasions 

of IAPS and under existing shifting climatic conditions.  

Many emaSwati are dependent on the land they live on, and the presence of IAPS 

reduces their ability to cultivate land, access to water and threatens their livelihoods. As 

invaders are foreign, the local people usually do not exploit them for their potential uses, 

they face no natural predators and may pose a threat to locals or wildlife if they are 

poisonous. Furthermore, invaders usually spread rapidly, taking up valuable land which 

becomes harder to cultivate or use and outcompetes local flora and fauna. All these 

factors indicate that IAPS in Southern Africa pose a threat to sustainability in the regions 

they invade. In Eswatini where a large portion of the economy is dominated by 

agriculture, the management of IAPS is important to improving living standards.  
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1.3 Research Questions 

This work is aimed at assessing the use of the deep learning model Mask RCNN towards 

identifying and locating IAPS in natural environments. To fulfil this aim, the following 

research questions are specified:  

a) What are the optimal hyperparameters to train the Mask RCNN model 

towards identifying multi-class trees in natural environments? 

b) What forest classes are suitable for implementation of the Mask RCNN 

deep learning model for classification and localization of tree species? 

1.4 Contribution  

To the author’s knowledge, this study is one of the first forays into exploring the 

use of high-resolution drone imagery in combination with instance 

segmentation to perform multi-class tree detection. The main contributions of 

this thesis consist of:  

• Exploring feasibility of low-cost drone equipment to survey IAPS 

impacted ecosystems.  

• Evaluating the performance of Mask RCNN for multi-class tree extraction 

in varying natural forest landscapes 
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1.5 Methodology 

This thesis is structured into 4 stages namely, i) review and choice of method to detect 

IAPS; ii) data collection and processing; iii) Implementation and optimization of chosen 

method and iv) evaluation and performance comparison.  

Figure 1: Thesis workflow 
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In the first stage, a review of the traditional approaches to IAPS monitoring was 

conducted. Given the available avenues of data collection and equipment, Mask-RCNN 

was selected as the most suitable architecture that could produce good object detection 

and classification results from high resolution RGB drone imagery.  Mask-RCNN also 

outputs masks of the identified objects which would be vital towards the IAPS 

management process.  

In the second stage, existing bastions of established IAPS were evaluated in the 

Highveld region in consultation with local plant ecologists. The Highveld Region of 

Eswatini where the capital is located has many riparian areas and the montane 

environment of Pine Valley is self-indicative of the extent of IAPS. As exotic species 

(gum, pine and wattle) grow exceptionally well in disturbed environments and 

outcompete local flora, they have established themselves heavily in this area which was 

selected. Data collection consisted of drone imagery acquired via drone pilots with 

guidance from the ecologists who also provided the ground truth data via in-situ field 

sampling between August and October. The images obtained were stitched together 

using DroneDeploy and visualised with QGIS to provide accurate field site maps of the 

study areas. Individual photos were then labelled with VGG Image annotator to produce 

labelled ground truth data to train the Mask RCNN models.  

The third stage consisted of designing and implementing the Mask RCNN model with 

the dataset pre-processed from stage 2. After initial literature review and study, Mask 

RCNN was chosen as the suitable architecture to base the model on as the instance 

segmentation advantages can generate relevant output for IAPS management. 

Exploration of the best hyperparameters and backbone architecture for Mask RCNN 

was followed by extensive training of the model with optimal parameters with the 

prepared dataset.  

In the final phase, the performance of the model was evaluated keeping in mind the two 

stages that Mask RCNN is composed of; namely the Region Proposal Network (RPN) 
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and the ensuing Classification, Bounding Box and Mask Generation that make up the 

second part of Mask RCNN. The metrics used were both qualitative with visualization of 

detection results using validation imagery, and quantitative in the form of calculations 

of average precision for evaluation and allowing a mean Average Precision (mAP) to be 

calculated for the dataset.  
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2 Literature Review 

This chapter elucidates the reasoning behind the direction of this thesis and the 

considerations taken towards building new knowledge in remote sensing of invasive 

plants. The review begins with section 2.1 analysing the approaches previously trialled 

with satellite and airborne surveillance towards IAPS detection and monitoring. 

Following this, in section 2.2 a review of the advancements in Unmanned Aerial Vehicle 

(UAV) plant detection is expounded upon with the considerations towards low-cost 

drone surveillance and the new approaches that deep learning can leverage with only 

high-resolution RGB imagery.   

2.1 Traditional approaches to Tree Species Identification 

Remote sensing techniques serve as an effective way to monitor environmental 

problems such as IAPS. Satellites have the advantage of being equipped with advanced 

sensors and can capture vast swathes of land at once. However, the resolution of free 

satellite imagery is typically not high enough for species level distinction and individual 

location of IAPS especially in complex natural landscapes, which is the case for IAPS 

invasions.  

The Sentinel-2 constellation has been investigated for the potential to identify forest 

species using spectral data with low accuracy after cross-validation (65%)(Immitzer et 

al., 2016). In a separate study investigating mangroves in coastal areas, (Wang et al., 

2018) evaluated the use of Sentinel-2, Landsat 8 and Pleiades-1 in mapping mangrove 

extent and species. The results indicated good mapping of mangrove extents, but when 

it came to community level species identification, the findings had low-medium 

accuracy when using free satellite data from Sentinel and Landsat (70.95% and 68.57% 

respectively). Although Pleiades-1 imagery yielded decent accuracy (78.57%) it should 

be noted that the study area comprised of 17 different species, from which their Random 

Forest Model classified them into a total of 6 communities. This approach of grouping 
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species into community levels makes sense depending on the objective of the project 

and the morphological species variation.  

Even when using higher resolution satellite data replete with more spectral information, 

(Abutaleb et al., 2020) found that when researchers used machine learning algorithms 

with Worldview-2 and Spot-7 imagery to map eucalyptus trees in Johannesburg city, the  

overall accuracies were 81.67% using Worldview-2 and 72.78% using SPOT-7 imagery 

and lower user accuracy of 73.77% and 60% respectively using the better performing 

Random Forest algorithm. Although imagery from Worldview-2, of higher spatial and 

spectral resolution performed better, the results for eucalyptus mapping was still below 

or at 80%. Understandably higher resolution imagery is only available commercially and 

this has proved to be both expensive and data heavy. These costs are significant 

obstacles to IAPS management and alternatives to IAPS monitoring have been 

discovered with the entrance of Unmanned Aerial Vehicles. 

2.2 Unmanned Aerial Vehicles and Deep Learning 

Alternately, drones are becoming more common and their incorporation for remote 

sensing due to their low-cost and rapid deployment in various situations makes them 

very attractive for areas that have technological constraints. UAVs can be equipped with 

increasingly complex sensors like hyperspectral (HS) and LiDAR to differentiate tree 

species and the combination of these sensors have yielded high accuracies. A study by 

(Nezami et al., 2020), compared the efficacy of Deep Learning Convolutional Neural 

Networks (DL CNN) with various datasets ranging from simple RGB channels, 

Hyperspectral and, a Canopy Height Model (CHM) separately and in a combination to 

classify trees into the 3 most common types of tree in a forest in Finland. Demonstrably 

high accuracies were obtained for each “species” using a 3D-CNN (between 99.6-94.8% 

producer’s accuracy) that were also markedly better than classification with a Multi-

Layer Perceptron (MLP) model.  The trees were being classified into spruce, pine, and 

birch.  
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However, these sensors are usually rather expensive, and processing of this data 

requires a level of expertise and processing power that is not always available.  Recent 

developments of drones and low-cost sensors are establishing an important place for 

UAV monitoring of IAPS. As most drones nowadays come with a standard high-

resolution RGB camera, leveraging these cameras for IAPS identification is suitable for 

areas where IAPS are problematic but funding is not readily available for more advanced 

sensors. The limitations of RGB cameras in plant identification is slowly being overcome 

with the advent of computer vision. Deep Learning that uses Convolutional Neural 

Networks (CNNs) have been tested with high resolution drone imagery in segmenting 

plant species with successful results, better than typical pixel-based 

methods(Kattenborn, Eichel, et al., 2019). The authors mention the further exploration 

of similar CNN based tree segmentation either semantically, or using instance 

segmentation methods, such as Mask-RCNN. 

Machine-learning methods can be applied to a plethora of imagery, ranging from simple 

RGB to Light Detection and Ranging (LiDAR to enhance and infer more information. 

Although advanced sensors have been found to generate highly accurate predictions of 

tree identification and spread  when combined with machine learning(Underwood et al., 

2003)(Naidoo et al., 2012), advances in convolutional neural networks in combination 

with simple RGB imagery has been found to have equal or even better predictions than 

standard machine learning algorithms. Researchers have found that convolutional 

layers successfully predict certain plant species using more than just spectral indices. 

Other factors such as shape and texture are successfully incorporated by deep learning 

to generate more accurate predictions on plant species.  

Despite their ability to leverage more features of objects for segmentation and 

classification prediction,(Kattenborn, Eichel, et al., 2019) discussed how limitations 

exist for such methods. They propose further exploration into CNN models and how the 

performance of said models would in landscapes with varying vegetation patterns. In 
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increasing spatial resolution of UAV imagery, the trade-off lies in the total area coverage 

for plant monitoring decreasing. As drones must fly lower to get higher detail photos, 

the total area they can cover will then decrease. Mask RCNN was mentioned as one of 

the alternatives to semantic segmentation, by being able to detect individuals within 

object classes, more detail can be extracted and used for plant monitoring. The masks 

generated could also be used to provide estimates of plant cover on the ground. By 

combining raw RGB imagery with ancillary products such as elevation and Structure 

from Motion 3D data, accurate classification maps could be generated.  

Given that this project intends to explore the use of drone RGB imagery for plant 

monitoring, the suggested Mask RCNN model is attractive for several reasons. Firstly, 

multiple CNN models have been shown to perform well in tree and plant cover detection. 

Most focus on binary classification methods run for separate species over various 

landscapes. An exploration into multi-class species detection is proposed that aims to 

identify multiple species in the same image. Mask RCNN is one of the few models that 

allows for instance segmentation, which differs from semantic segmentation in that 

individual objects are clearly delineated, and masks of these individuals generated. This 

is desirable for IAPS monitoring as it allows for counts of trees to be generated as well 

as the total plant cover.   
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3 Theoretical Background 

The following chapter lays the theoretical foundation that form the backbone for the 

concepts utilized in this thesis. Primarily, it provides information on classical deep 

learning models used in Object Detection and Classification. Further it explains the 

framework and inner workings of the Mask RCNN model and expounds on both the 

benefits and drawbacks of using such a model.  

3.1 Traditional Machine Learning approaches to plant monitoring 

Much of the research into plant monitoring has utilized descriptive analysis and 

traditional machine learning methods such as Support Vector Machine (SVM) and 

Random Forest (RF) models to solve the problems of invasive tree location. Whilst these 

approaches are powerful and in some scenarios are superior to the chosen deep-

learning tactic employed in this thesis, relying on these descriptive models has a pitfall 

when one considers that there still be some unmodelled variables that the engineers 

and scientists have failed to consider due to their hidden, complex, or non-intuitive 

nature. In comparison, predictive analysis, which forms the core of deep-learning 

models, seeks to minimise the error between the actual and predicted outcome. This is 

tackled by feeding the model a large set of training data which inherently possess 

certain patterns that will play a part in the model’s computation of new patterns which 

are relevant to the problem at hand.  

3.2 Artificial Neural Networks (ANN) and Deep Learning 

ANNs were born from a deeper understanding of the human central nervous system and 

borrows from the biological framework of our brain. By mimicking this structure 

researchers can build more intuitive models for problem solving. One implication of an 

inter-connected structure of “neurons”, is that Artificial Neural Networks eliminate the 

need for an all-inclusive understanding of all problem variables. This predictive 

approach has been shown to produce highly accurate models. It should be noted, 

however, that this may be sacrificing a deeper understanding of the variables that 
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contribute towards a pattern. Given that this study is not seeking to discover or explain 

new variables in invasive tree species distribution, ANNs are a valid methodology for 

this objective. The goal of this work is to explore whether deep learning can produce 

accurate and reliable IAPS output for better management without burdening itself with 

explaining the distribution on an ecological level. Stemming from the core ANN, Deep 

Learning delved to utilize more complex layers which can better capture the intricacies 

of the input data or phenomenon. Whilst Deep-Learning (DL) further branches into 

many separate models we will be focusing on Convolutional Neural Networks which 

have been recognised as a high performing model in the object detection field.  

3.3 Convolutional Neural Networks (CNN) 

CNNs are characterised by the addition of multiple hidden convolutional layers and 

filters, the hierarchy of which allows input data to be organized into smaller and simpler 

patterns from which more complex patterns arise. CNN research and application has 

made rapid progress in recent years, this boost can be largely attributed to 2 factors: the 

development and availability of high computing power which has sped up the training 

time and feasibility of such grand projects and secondly, the availability of large 

amounts of data to train these networks with. This section will explain the general 

framework of CNNs followed by a review of a few landmark models developed for object 

detection.  
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As an end-to-end learning framework, CNN models rely on updating weights between 

each layer which play a part in the model’s ability to make more accurate predictions. 

The defining feature of a CNN are the convolutional layers, hidden layers between the 

input and output layer which are made up of learnable kernels (also called filters). These 

filters are applied over an image in a sliding-window fashion typically dealing with an n 

x n pixel size of the image. As this n x n sized filter slides across the image, the scalar 

product is calculated for each value in the kernel.  The kernels extract features which are 

captured as output and fed-forward to the next layer.  

The diagram illustrates how inputs pass to outputs, the input is multiplied by the 

weights and the bias value. Weights define the strength between the input and output. 

Stronger weights will influence more and vice versa. Additionally, the bias value is 

introduced as constants. They are not influenced by the training and updates that 

previous layers impart on the model, instead they serve to ensure that activation will be 

achieved even in the case that all inputs result in zero. The sum of all the weights as well 

as the bias are then passed to an activation function which produce the output. 

The activation function that the sum of the values is passed into allows for non-linearity 

to be embedded into the model. There are various activation functions such as the 

Rectified Linear Unit (ReLU) and Sigmoid. With typical Sigmoid activation functions, 

there is a problem with a vanishing or exploding gradient which occurs with high 

Figure 3.1: Fundamental building block of CNN, a fully connected neuron 
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initialized weights or a vanishing gradient when the gradient tends to zero. To avoid this, 

ReLU activation function thresholds the negative values to zero and allows positive 

values to retain their original value.  

A core part of Neural Networks is their ability to backpropagate. This is achieved by 

taking the weights that have been calculated across layers and feeding them backwards 

into previous layers which will then update their weights after each iteration.  

Pooling is done to reduce the stress on computation that arises from such complex 

networks. By reducing the dimensions by taking the maximum value or average value 

of the pre-defined filter (e.g 3x3) and using those as the values for the neuron in the next 

layer, a pooling of the prior layer’s values is performed.  

When the outputs are calculated in layers, a loss value can be calculated. This is 

understood as the difference between the predicted value and the true value of the 

object. For example, if the final predicted value is 0.75 and the actual value is 1, the loss 

is then 0.25. By minimizing these losses after many iterations, the model can make more 

accurate predictions which are in effect, closer to the true value of the object. In this 

regard, optimization algorithms are applied so that these loss functions can be 

decreased, and the prediction capability maximized.  

Stochastic Gradient Descent (SGD) with momentum  

During training, the loss is calculated for each of our inputs. The gradient of that loss is 

then obtained with respect to each of the weights in the model. The addition of 

momentum remembers the updated change in weights at each iteration. The term 

momentum is borrowed from physics, where a particle accelerating in a direction, the 

predicted value, still travels even after no further acceleration or force is applied. This 

prevents the value from getting stuck in a local minimal and streamlines the learning in 

the direction of the actual value. By using SGD, the exponentially weighted average of 

the weights is calculated. This is done in conjunction with the learning rate, a pre-
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defined hyper-parameter that indicates how big of a step that the model should take in 

the direction of its weights. Finally, the dot product of learning rate and gradient will be 

used when updating the weights during backpropagation as the model learns.  

Backbone architecture 

A powerful ability of CNNs is that after a framework or “backbone” has been decided, 

additional segments can be added to address different objectives such as object 

recognition, image segmentation and instance segmentation. Many backbones have 

been built and trialled on various datasets to further computer vision. Of these, the 

Resnet Family of backbones is utilized by our chosen Mask RCNN model. When deep 

learning models first appeared, researchers showed a problem regarding the number of 

layers involved. By comparing 20 layer and 56 layer networks, they found that the 

deeper layers resulted in higher training and test errors(He et al., 2016). ResNet 

architecture overcomes this problem by introducing a skip connection function between 

layers. This circumvents the errors that arise when the spatial resolution of an image 

changes (e.g. by a 3x3 convolution on a 32x32 image resulting in a 30x30 image). By 

adding the original identity to the final weight output, the original “identity” or value is 

preserved despite learning of the model pushing it further from the original.  

Figure 3.2: Skip connection for 2 layers introduced by ResNet (He at al. 2015) 
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ResNet50 and ResNet101 are two such models that adopt the deep residual learning 

approach mentioned above. They vary in complexity of the number of convolutional 

layers used with 3-layer block skip connections. Smaller ResNet models (ResNet34) 

use 2-layer block skip connections.  

3.4 Region-Proposal Convolutional Neural Networks (RCNN) 

In computer vision, object recognition is a term that is used to describe a collection of 

tasks that are used to identify objects from a digital image input. RCNNs were 

developed to better localize where individual objects were within an image which had 

multiple objects from the background. To better understand this, we can group these 

into 4 tasks: Image Classification, Object Localization, Object Detection and, Object 

Segmentation.  

Image classification predicts the type or classes of object that are present in an image. 

The input being an image with a single object present and the output being a class label 

that has corresponding labels associated with them.  

Object localization deals with locating an object within an image and proposing a 

bounding box that localizes where the object is in said image. The input is an image with 

one or more objects present and the output is the bounding box(es) generated around 

said objects.  

Object detection is the cumulative product of the previously mentioned tasks, it detects 

the location of objects within an image and produces a bounding box as well as 

corresponding class label predictions for these proposed objects. Input is an image with 

one or more objects and its outputs bounding box(es) with a class label for each 

bounding box. From this output RCNNs branch into providing either semantic 

segmentation, all objects with the same class label were labelled collectively, or 

instance segmentation which defined each object as individuals within the image.  
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Object segmentation is performed after the detection of the object within an image and 

defines the areas taken up by recognized objects on a pixel-by-pixel basis. This is 

superior to the localization step because the object is not delineated by a rough 

bounding box but instead the edges are clearly defined and can be associated with the 

object more accurately. In the final chosen model, Mask RCNN explicitly describes a 

mask for each object detected.  

3.2.1 RCNN 

When object detection first arose, researchers built the first R-CNN. The following figure 

details how this was structured.  

This can be summarized into a few steps:  

1. Generate proposals for bounding boxes (bbox) 

2. Pass the areas in the bounding boxes through a pre-trained model to 

determine the label of the object.  

3. Pass the box through a linear regression model to improve the 

coordinates and tighten the boundaries once the object has been 

classified.  

To produce the bounding boxes, a process called Selective Search is used where 

windows of different sizes are placed over the image and by grouping together pixels 

Figure 3.3: Object detection steps by a RCNN model (Girshick et al.,2016) 
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from varying windows of the same texture, colour and intensity, final boxes are 

proposed. It should be noted that although this method was accurate, it involves a lot 

of computing power.  

3.5 Faster RCNN 

Scientists discovered that the selective search process was still a major bottleneck for 

the process. A workaround was proposed where instead of the region proposer relying 

on this method it would reuse the results from the first classification step performed by 

the CNN. Thus, the proposed regions would borrow feature maps that had already been 

generated and would not have to be run separately(Ren et al., 2017). 

3.6 Mask RCNN 

Previous developments had optimized the runtime of RCNNs toward object detection. 

Although still heavy on computing power, there was a great improvement in the times 

needed to run the models. Up to this stage, the object localization was narrowed down 

to the bounding boxes generated by the RCNN models, researchers now moved 

Figure 3.4: Region Proposal Network stage 
feeding Region of Interest layer (Ren et al. 2017) 
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towards object segmentation. Various researchers attempted to build on the Faster-

RCNN framework and improve segmentation, and of these Mask RCNN has proved to 

be the most viable model leading the field of object detection. The method proposed 

functioned in parallel with the classification and bounding box generation and created 

masks of the objects. This feature map is made up of binary output detailing whether 

the pixel was part of the object (1) or not (0). The hurdle of losing information from 

pooling features was overcome by their novel RoI Align method.  

Region of Interest Align solves the issue that arises from loss of information when 

feature maps are pooled in convolutional layers. As max pooling occurs, the dimensions 

of the feature map decrease, as bounding boxes are generated over only images, by 

reducing the size of the image, the similar transformation for the bounding box occurs 

and intuitively the aspect ratio for the objects bounding box may not match and 

typically the values are rounded because they are stored as integers. RoI Align enables 

these values to be stored as floats using bilinear interpolation which retains values while 

still undergoing the relevant transformations. The final output consists of the bounding 

box around predicted objects, the class label, and a mask of where it resides in the image. 

This thesis will focus on leveraging Mask RCNN to identify and generate masks for 

identified trees in Eswatini.   

Figure 3.5: Mask RCNN architecture building on Faster RCNN (He at al. 2018) 
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4 Study area and methodology 

This chapter provides background into the study areas chosen for this project in 

the first section. Further, data acquisition, visualization and pre-processing are 

the focus of the second section and finally image annotation is described in the 

last section.  

4. 1.1 Study area 

Eswatini is a landlocked country found between Mozambique and South Africa. There 

are 4 ecological regions, and this study focuses on the Highveld region, which is more 

mountainous, higher in elevation with cooler temperatures. The region’s climate is 

characterised by mild winters when most rainfall is recorded and hot arid summers. The 

mountainous terrain dictates the course of runoff and the valleys and interlocking spurs 

between ranges are where the unique Afromontane forests (mist belt forest) can be 

Figure 4.1: Study Area locations in Pine Valley, eSwatini 
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found. With increasing human settlement, these valleys and riparian areas have become 

gradually more disturbed which allows for invasion by IAPS.  

Under consultation from local ecologists, the Pine Valley locality was explored for viable 

study areas using verification with Google Earth. Six sites were examined in total and 

after reconnaissance of the six by the ground truth team, 4 final sites were selected. This 

selection was based on the number of mature tree species present, the accessibility of 

the sites for field studies and the tree cover (open forest, moderately dense forest, and 

very dense forest). This study followed the definition of forest cover by (Forest Survey 

of India, 2013), which details that very dense forest is land with a tree canopy density of 

70% or more, moderately dense is tree canopy density between 40 and 70% and open 

forest has more than 10% but less than 40% tree canopy density. The three final study 

areas are representative of these different landscapes and the plant ecologists helped 

to choose the study sites based on their classification of these landscapes into the three 

aforementioned forest classes. 

4.1.2 Ground truth collection 

As this study aims to identify trees, the dominant invasive species were established to 

be 1) Slash Pine (Pinus elliottii), 2) Black Wattle (Acacia mearnsii), 3) Red gum (Eucalyptus 

grandis). Additionally, dominant indigenous trees included: 4) Waterberry (Syzigium 

Cordatum) and 5) Fig (Ficus bubu), with waterberry being the class in majority. Although 

this project undertakes to detect Invasive Alien Plant Species, the ability of the model 

to also classify commonly occurring indigenous species was investigated. Taking into 

consideration the model will be trained on drone imagery, it was decided that grouping 

indigenous trees into one class would only lower the classification ability especially since 

their morphology varied greatly between species. Morphological differences are 

hypothesized to assist in the model’s learning. 

Ground truth collection consisted of field visits to the sites and convenient random 

sampling whereby the tallest trees with the most exposed crowns were chosen. GPS 
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coordinates of trees were taken by laying a Garmin GPS instrument at the trunk. Upon 

inspection of these GPS coordinates overlaid with the orthoimages, it was found that 

some coordinates were offset from trees and this was accredited to poor GPS signal 

resulting from dense canopy cover.  Site B was determined by ground crew to be difficult 

to traverse and collect data, so a plant specialist assisted to perform visual inspection of 

the stitched orthoimage to determine tree species from drone imagery.  

4.1.3 UAV data collection 

Each study area was 50m x 50m in dimension. The study areas were mapped with google 

earth and the kmz files were supplied to drone pilots so that they could plan appropriate 

grid missions with a mobile app drone route planner. Pix4D and DroneDeploy apps were 

used by the drone pilots. The first two study areas (A and B) were surveyed with a DJI 

Mavic Pro with a set altitude of 50meters above ground level. Unfortunately, when 

surveying Site C, the drone pilot crashed his drone into a tree. This resulted in the hiring 

of a second drone pilot to survey Sites C and D at an altitude of 56meters above ground 

level with a DJI Phantom 4. Both drones had similar camera specs of 12.3 Megapixels 

with a CMOS sensor of ½.3. The image sizes were 4000 x 3000 pixels, and the sensors 

were only capable of collecting RGB data. Site C drone imagery was collected near dusk 

and shadow was deemed to add too much noise to the imagery, thus it was omitted.  
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4.2.1 Image Processing 

After drone imagery was collected, they were processed with DroneDeploy software to 

provide stitched orthomosaics, Digital Elevation Models and Visible Atmospherically 

Resistant Index (VARI) maps. VARI maps were used in lieu of NDVI maps because no 

NDVI sensors are available and it was deemed the next best visualization method to 

measure plant health. Orthomosaics of all 4 study sites are presented in the following 

figures. 

Figure 4.2: Orthomosaic of Site A Figure 4.3: Orthomosaic of Site B 

Figure 4.4: Orthomosaic of Site C (ommitted) Figure 4.5: Orthomosaic of Site D 
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With assistance from the plant specialist, more ground truth via visual inspection was 

achieved by inspecting the orthoimages with the GPS coordinates overlaid in QGIS. This 

was further supplemented with inference drawn from the VARI and DEM map which 

identified the crowns of individual trees. The final ground truth results are thus a 

combination of field site visits and visual inspection aided by DEM and VARI models of 

the study areas.  

Site Pine Wattle Gum Waterberry Fig Total 

A 6 2 12 6 3 29 

B 7 2 2 7 0 18 

D 4 2 11 7 0 24 

Total 17 6 25 20 3 71 

Table 4.1: Species count for study sites (ground truth and visual inspection) 

4.2.2 Image annotation 

Once pre-processing was completed, the individual imagery was prepared for training 

in the Mask RCNN model. This involved annotating the individual photos with polygons 

designating the trees and class labels for each species. Instead of standard bounding 

boxes, it was decided that polygons detailing tree crowns would facilitate better 

learning as some of the imagery was of mixed canopy. The tree crown edges are more 

obvious to the human eye and this was leveraged to train the model. It should be noted 

that whilst manually delineating tree crowns is possible by visual inspection, in natural 

environments, the canopies of trees may overlap, especially in mixed forest 

environments. Frequently, the branches of one individual extend into the main tree 

crown of those adjacent as they compete for sunlight. Thus, while polygons are drawn 

over the effective tree crowns of species with ground truth, the actual discrepancy 

between tree crowns is typically blurred. The VGG image annotator (VIA) tool was used 

for this project after trialling LabelMe online annotator. VGG software runs as an offline 

application in a browser window which was superior to LabelMe that stores the data 
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online which leads to bottlenecks in the annotation because of load times in the browser. 

Images are loaded into VIA and class labels created in the region attribute section. The 

output is in JSON format with the x, y co-ordinates for the object saved as well as any 

labels that the user creates.  

The total dataset of 121 images was split into train and validation sets with a proportion 

of 77.5%(92), and 22.5%(29) respectively. To balance the splitting more appropriately, 

this ratio of train and validation was applied to each study site separately and then all 

training imagery was agglomerated, and all validation grouped. This was to prevent 

validation data coming mostly from one study area and becoming imbalanced.  

4.3 Setup on local system 

Once all the data is prepared, a virtual environment was set up to train the model on 

local CPU. This was performed first to check if the annotations generated were suitable 

to the task and debug any problems that would occur when implementing the model. 

Using Anaconda and Jupyter Notebook, a virtual environment was setup to run the code 

from the github repository of the source Matterport Mask RCNN model(Abdulla, 2017). 

This code runs using Tensorflow 1.3 and Keras 2.0.8 and the appropriate packages were 

installed once the virtual environment was activated. One of the differences from the 

original code is that our model will be used to determine multi-class object detection, 

the 5 different species of trees. With online resources and forums, even with beginner 

level coding it was possible to alter the code to accommodate these changes through 

trial and error.  
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4.4 Implementation of Mask RCNN 

4.4.1 Training on local system CPU 

Initial trials were run on Local CPU to test training times and to check for any errors that 

would arise. The Mask RCNN implementation uses a MIT license and from this 

generosity, many users and programmers have adapted code to suit various objectives. 

Additionally, they have updated the base code from Matterport to function on 

TensorFlow versions > 2.x. Using later releases of TensorFlow will allow for better 

visualization and inference tracking with Tensorboard which we will explore later. 

Initially, a train, validation and test set from Study site A and B was used to see how long 

it would take to run with a smaller dataset. The default hyper-parameters were used 

(Table 4.2), the parameters of most importance being: learning rate, backbone, and pre-

trained weights from benchmark datasets. The model can be trained from scratch which 

updates the weights for all layers. However, many similar works found that by freezing 

the training layers and using pre-trained MS Coco or ImageNet weights which are large-

scale image datasets, the performances of the model were better able to learn and 

detect objects. This also serves to reduce run time of the model as it uses weights from 

previously learned objects to make inferences. Both these benchmark datasets allow 

the model to begin learning from an established checkpoint of machine learning instead 

of learning from scratch. Initial training with training images from Site A and B (78 

images) took approximately 80 hours running on local CPU. This was deemed too time-

intensive and a more appropriate method for training the model was explored.  

4.4.2 Google Colaboratory (Google Colab) 

Cloud computing services offered by Google have greatly assisted deep learning 

research. Dedicated Graphics Processing Units (GPU) and Tensor Processing Units (TPU) 

are available for data scientists either free of charge, or via a subscription for Google 

Colab Pro. This project utilized first Google Colab as a free service to check the 

capabilities and improvements in model training. After initial testing, a subscription to 

Google Colab was purchased for increased TPU RAM and longer runtime disconnection 
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timeout limits since prior experiments ran for 10+ hours. Google Colab can be linked to 

individual’s Google Drive accounts, which is where the dataset containing train and 

validation images and their associated annotation files were stored. By using Google 

Colab, researchers are working in a virtual environment with many packages pre-

installed such as TensorFlow and TensorBoard 2.4. This project mounted supporting 

python files made by contributors to the Mask-RCNN source code for Tensorflow 2.4. 

Default parameters were used in the first experiment which included all labelled training 

and validation images mounted from the google drive folder where they are stored. 

Hyper 

parameters 

Learning 

Rate 

Epochs Steps 

p/epoch 

Backbone Optimizer Momentum Pre-

trained 

weights 

Values 0.001 10 100 ResNet101 SGD 

w/momentum 

0.9 MSCoco 

Dataset 

Table 4.2: Default hyperparameters 

Elapsed time for the first experiment was approximately 9.7 hours using TPU and High-

RAM as runtime shape. Whilst still a very long runtime, the loss values calculated were 

observed to be fruitful and further experimentation was conducted with various 

changes to the hyper-parameters.  Before elaborating on the changing loss values of the 

experiment, a short explanation of these values is given.  

The following losses are output after each iteration, continuously updated as the model 

learns: 

1. epoch_loss,  

2. mrcnn_bbox_loss,  

3. mrcnn_class_loss,  

4. mrcnn_mask_loss,  

5. rpn_bbox_loss  

6. rpn_class_loss.  
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After every epoch, a validation check is performed with the validation set. The validation 

check uses the validation set of images and calculates the losses for the images based 

on the weights generated from the epoch on training data. A total of 50 validation steps 

is used to calculate these values after each epoch.  

4.4.3 Loss metrics 

The loss metrics listed above can be grouped into 3 categories, ones that relate to mrcnn, 

rpn and the overall epoch loss metric. Stage 1 of Mask RCNN involves a Region Proposal 

Network layer which precedes the multi-class object classifier, bounding box and mask 

generation neural networks. Understandably the RPN loss metrics will not include a 

mask loss segment.  

Classification Loss 

In the theoretical background section, the concept of loss was explained to be the 

difference between the actual value of the object and the predicted value. Therefore, 

classification loss reflects how much confidence the model has in predicting the object’s 

class. Mrcnn_class_loss covers all the object classes, different from rpn_class_loss 

because the RPN stage only determines whether it is classifying foreground or 

background (object or not). Therefore, rpn_class_loss values are typically lower than 

mrcnn_class_loss. Less classes mean less chances for the classification to incorrectly 

make predictions.  

Bounding box loss (bbox_loss) 

The model will output a predicted bounding box and by comparing this to the labelled 

true bounding box provided, the difference in x and y coordinates (height and width) are 

computed. As a result of its regression loss nature, larger absolute differences between 

the true box and the predicted box are penalized and will result in higher bbox_loss 

values. Rpn_bbox_loss is the ability of the model to locate objects within the image and 
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mrcnn_bbox_loss refers to how well the model is at predicting the areas in an image 

corresponding to the different objects.  

Mask Loss 

In the second stage of Mask RCNN, masks are generated in parallel with the classifier 

and bbox networks. The model generates a binary mask for each class in the RoIs. 

Mask_loss is then calculated based on the difference in binary pixel classification of the 

mask (background, foreground) corresponding to its true class. This prevents it from 

being affected by class predictions.  

The epoch loss can be understood as the sum of all the other losses generated during 

that iteration. Generally, this will gradually decrease as losses are minimized for each of 

the networks. Metrics that are prefixed by “val” indicate that the metrics are for the 

validation set.  
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5 Results  

5.1 Experiment 1: Default values 

Through inspection of the loss graphs at default hyperparameters, the performance of 

the model was evaluated. In the figures below (Figure 6.1.1 and 6.1.2), epoch loss is 

plotted on the secondary axis. All other loss metrics are plotted to the primary axis. 

Epoch loss descends to 0.6944 after 10 epochs and the values are not plateauing if we 

inspect the curve of loss over time. Regarding classification loss the RPN classifier has a 

simpler task compared with the multi-class mrcnn classifier. This is evident in the final 

values for RPN class loss (0.0352) and mrcnn class loss (0.1523). In object detection, 

epoch loss for the validation set close to the training set is most preferable. Otherwise, 

a case of underfitting or overfitting is occurring with the model predicting very well on 

only the training set but failing to generalise (underfitting) or performing badly at 

prediction in general (overfitting).  

 

Figure 5.1.1: Loss metrics (primary axis) and epoch loss (secondary axis) for the training 
dataset using default hyperparameters for 10 epochs each of 100 steps 
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Examining the bounding box loss metrics, both the validation and training sets had 

improved loss values for Mrcnn_bbox. RPN_bbox_loss descends to 0.1359 and the 

mrcnn_bbox_loss drops to 0.1169. Therefore, using default settings, the model has an 

improved ability to locate the precise location of the multi-class objects in the study area 

but the Region Proposal Network does not perform as well in locating Regions of 

Interest within the images.  

 

 

 

 

 

Figure 5.1.2: Loss metrics (primary axis) and epoch loss (secondary axis) for the 
validation dataset using default hyperparameters for 10 epochs each of 100 steps 
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Further experimentation was done to optimize the model’s performance. Below is a 

table (Table 6.1) of the experiments.  

Experiment  Learning Rate Backbone BenchmarkDataset Epoch  

1 0.001 ResNet101 Ms Coco 1-10 

2 0.001 ResNet101 ImageNet 1-10 

3 0.002 ResNet101 Ms Coco 1-10 

4 0.002 ResNet101 ImageNet 1-10 

5 0.004 ResNet101 Ms Coco 1-10 

6 0.002 ResNet50 Ms Coco 1-10 

7 0.004 ResNet50 Ms Coco 1-10 

8 0.008 ResNet50 Ms Coco 1-10 

9 0.01 ResNet50 Ms Coco 1-10 

10 0.012 ResNet50 Ms Coco 1-10 

11 0.008 ResNet50 Ms Coco 10-20 

12 0.01 ResNet50 Ms Coco 10-20 

Table 5.1: Experiments performed and associated hyper-parameters 

5.2 Effect of benchmark datasets 

Running further experiments (#2-4) whilst altering learning rate and pre-trained 

weights enabled us to compare which pre-trained weights from datasets yielded better 

results. The pre-trained weights available for Mask RCNN were the MS Coco dataset 

and the ImageNet dataset. Both these datasets were created to advance object 

recognition. MS Coco is a large-scale dataset with 91 object classes of everyday objects, 

and over 2.5 million labelled instances in 328,000 images. To further the field of object 

detection, the collaborators recognized that for computer vision to progress, machine 

learning must incorporate not just single object imagery, but be able to identify multiple 

objects in a scene. Thus, with multiple labelled objects in an image, the scope of 

computer vision is enhanced by bringing context to the task and function.   
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The alternative benchmark dataset, ImageNet, is a large-scale ontology of images. 

Although both projects are on-going, ImageNet included over 14 million images with 

over a million objects annotated and delineated with bounding boxes. The ontology of 

WordNet is utilized by ImageNet to add context and enable stepwise filtering of objects 

towards their final label. Keeping this project’s objectives in mind, the MS Coco dataset 

is believed to be better at optimizing the model’s performance as each drone image is a 

snapshot of the scenery below, made up of the landscape and populated by trees.  

 

The graph above shows four experiments (Experiment 1-4) that trialled a learning rate 

of 0.001 and 0.002 with the weights from two pretrained datasets. The relative times for 

completion vary between the datasets, but this can be attributed to the random 

allocation of a TPU from Google Colab. Researchers are guaranteed a dedicated GPU or 

TPU but cannot choose any specific units. Further trials showed that the training times 

for each step varied between 22 seconds to 32 seconds.  

Figure 5.2.1: Comparison of Epoch loss with MS Coco and ImageNet pre-trained 
weights at increasing learning rates (0.001-0.002). Experiments 1(teal), 2(orange), 

3(navy blue), and 4(red). 
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The MS Coco dataset has better loss values when compared to ImageNet experiments. 

This improved performance does not apply to every loss metric, and the TensorBoard 

graphs for the specific loss metrics are shown in the annex. Upon closer inspection the 

ImageNet dataset has superior performance for all metrics save two: mrcnn_bbox_loss 

and mrcnn_mask_loss. Using ImageNet with a learning rate of 0.002 resulted in mask 

loss values of 0.3614 compared to 0.2162 using MS Coco at the same learning rate.  

Thus, whilst there were more metrics that ImageNet performed better in, the 

improvements were minor. However, this does signal that ImageNet as a dataset may 

provide better results if the object detection models were not concerned with 

generating masks (i.e Faster-RCNN) because there are consistent improvements in 

classification loss and RPN bbox loss. 

Figure 5.2.2: Comparison of mask loss for MS Coco and ImageNet pre-trained weights 
and increasing learning rate. Experiments 1(teal), 2(orange), 3(navy blue) and 4(red). 
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5.3 Effect of backbone architecture 

Loss values for the training set were noticeably improved with ResNet101. With a 

learning rate of 0.002, ResNet101 reached an overall loss of 0.48 whilst ResNet50 only 

reached 0.51. At an increased learning rate of 0.004, ResNet101 again outperformed 

ResNet50 reaching 0.38 overall loss compared to 0.43.  

Figure 5.3.1: Comparison of epoch loss for ResNet50 and ResNet101 backbone and 
increasing learning rate. Experiments 3(orange), 5(teal), 6(navy blue) and 7(red) 

Figure 5.3.2: Comparison of epoch loss for validation dataset with ResNet50 and 
ResNet101 backbone and increasing learning rate. Experiments 3(orange), 5(teal), 

6(navy blue) and 7(red) 
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The issue was that the validation losses resulting from using the ResNet101 backbone 

were observed to be much higher than the training losses. At a higher learning rate of 

0.004, ResNet50 backbone had an epoch loss of 1.129 whilst ResNet101 logged a loss of 

1.624, an even higher validation loss than its 0.002 model trained with the same 

backbone.  

The metrics attributing to these higher validation loss values were found to be 

Mrcnn_class_loss and RPN_Bbox_loss. ResNet101 at the higher learning rate of 0.004 

resulted in 0.4353 losses for mrcnn classification and 0.3947 loss for RPN object 

localization. These are indicative that the increased complexity of the backbone is 

performing well for the training dataset but struggled to apply the classification and 

detection to validation imagery. Thus, a case of overfitting was occurring with the 

deeper ResNet101 architecture.  

There are four common ways to reduce overfitting: 1) adding data, 2) data 

augmentation, 3) reducing complexity of the model and, 4) dropout. This project could 

not afford to charter more drone flights and add ground truth surveys so there was not 

an option to add data. Regarding data augmentation, as the images included landscape 

views of mixed forest, rotation and cropping of the images was thought to be 

inapplicable since overlapping tree canopies may add more confusion to the classifier. 

Additionally, augmentation methods were outside of the scope of this thesis as it would 

require more time to adapt the original source code and dataset. Mask RCNN is easily 

implemented with the two types of ResNet, thus by reducing the complexity of the 

model to ResNet50, validation loss could be restricted from exploding. Finally, with this 

project’s size of dataset, by including dropout to the model, valuable data and weights 

could be lost from the model so this option was disregarded.  
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5.4 Effect of Learning Rate (LR) 

After running experiments with gradually increasing learning rates (0.002, 0.004, 0.008, 

0.01, 0.012) it was found that a learning rate greater than 0.01 did not result in significant 

loss decrease. Loss began rising when learning rate was 0.012, coupled with increased 

validation loss. A learning rate of 0.008 and 0.01 had very similar overall loss, 0.3968 and 

0.3918 respectively. The model trained on 0.01 had better validation loss (1.062) 

compared to a learning rate of 0.008 (1.236).  

 

By comparing the epoch loss and validation epoch loss values of the two experiments, 

validation loss is significantly higher than the training loss. In ideal circumstances, if the 

model were learning substantially on the training set, its ability to generalize or predict 

on datasets it was not trained on or had not seen before (validation set) then the 

validation loss would be close to the values of the training loss. This is not the case for 

our model as we can see a general trend of decreasing loss for the training dataset as 

learning rate increases, but validation loss seems to plateau at a point or increase. Thus, 

further experimentation with these two learning rates was performed to discover how 

loss metrics for training and validation sets would develop.  

Figure 5.4.1: Comparison of learning rate (0.002-0.012) with ResNet50 backbone and 
pre-trained weights from the MS Coco dataset.  

Experiments 6(orange), 7(navy blue), 8(pink), 9(teal) and 10(red). 
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5.5 Effects of optimal learning rates 

At the end of each experiment, weights are updated and saved as h5 files after every 

epoch. Further training was performed using these weights to explore the performance. 

Experiment 11 uses weights from the previous experiment with a learning rate of 0.008 

whilst Experiment 12 uses those with a LR of 0.01. Although the initial 10 epochs trained 

at a LR of 0.01 exhibited better performance than the alternative learning rates, what 

can be seen in Figure 6.5.1 is that at additional epochs, training loss descends to 0.2199 

with a LR of 0.01 compared to 0.1455 at a LR of 0.008.  

Experiment 11 had superior Mrcnn classification (0.0033) compared to Experiment 12 

(0.0449). This is indicative of the LR at 0.008 performing better at classifying individual 

objects in the 2nd stage.  For Mrcnn bbox loss, Experiment 11 displayed superior loss 

values after training, reaching <0.01, compared to Experiment 12 which never 

decreased below 0.02. The main contributor to epoch loss for both experiments was 

mask Loss. A learning rate of 0.008 achieves better loss values than at higher learning 

rates. Epoch loss for experiment 11 increases to 1.12 but is still superior to experiment 

12 at 1.52. Whilst the validation loss does increase, the associated training loss 

Figure 5.4.2: Comparison of learning rates (0.002-0.012) on epoch loss for validation 
dataset with ResNet50 backbone and Ms Coco. Experiments 6(orange), 7(navy blue), 

8(pink), 9(teal) and 10(red). 
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significantly decreases such that this project decides to use the weights generated after 

training on 20 epochs using a learning rate of 0.008.   

Figure 5.5.1: Training loss metrics for experiment with a learning rate of 0.008, epoch 
loss and mask loss shown on secondary axis. All other loss metrics on primary axis 

Figure 5.5.2: Training loss metrics for experiment with a learning rate of 0.01, epoch loss 
and mask loss plotted on secondary axis. All other loss metrics on primary axis 
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Figure 5.5.3: Validation loss metrics with a learning rate of 0.008, epoch loss plotted 
on secondary axis. All other loss metrics plotted on primary axis 

Figure 5.5.4: Validation loss metrics with a learning rate of 0.01, epoch loss plotted on 
secondary axis. All other loss metrics plotted on primary axis 
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6 Visualization of results 
In this section the weights generated from the trained models are used to visualize 

object detection using Jupyter Notebook with notebooks that were provided with the 

source code of Mask RCNN. After adapting these notebooks to perform multi-class 

object classification, the weights are loaded and run detection is done on images from 

the validation dataset to evaluate how well the Region Proposal Network stage is 

performing and the following Regions of Interest are localized and classified through 

the predictive capability of the model. All images were inspected with run detection and 

relevant examples were chosen to discuss the results. The evaluation is done separately 

for moderately dense and very dense forest (Site A and B) and open woodland (Site D) 

followed by a comparison of the mean Average Precision (mAP) for the study areas.  

6.1 Very Dense Forest Landscape (Site B) 

Stage 1: Region Proposal Network 

The model first generates targets using a grid of anchors that encompass the entire 

image at varying scales. By computing the Intersection over Union (IoU) of these 

anchors with ground truth objects, anchors are defined as positive, neutral, or negative. 

Intersection over Union quantifies the percent overlap between the predicted mask and 

its target mask, that of ground truth. Positive anchors have an IoU greater than 70%, 

negative anchors have IoU less than 30% and neutral anchors are any that are between 

these values. Neutral anchors are then excluded from the training. Thus, we can see that 

if more ground truth is supplied of an image, more meaningful anchors will be produced 

allowing the model to generate positive and negative anchors. The first image 

evaluated is from the very dense forest study area, Site B, for which visual interpretation 

was performed to identify tree species. Oftentimes many positive anchors are 

generated for the same objects. These undergo a process of refinement by taking the 

multiple offsets of these anchors from the ground truth bounding box and by applying 

a standard deviation function that allows a final refined anchor to be generated 
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(Fig.6.6.1). After normalization they are converted back to standard x,y coordinates in 

the image.  

Figure 6.1.2: RPN Predictions after NMS 

Figure 6.1.1: RPN Targets from ground truth 
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The model then proceeds to make predictions based on the data it was trained with in 

the RPN target stage. By setting a limit for these RPNs, the amount of predicted RPNs 

is controlled as many overlapping RPN anchors are generated, especially in a very dense 

forest environment with large variance in tree crown area. Then a Non-Max Suppression 

(NMS) filter is applied which sorts the overlapping anchors over one object by the 

objectivity score, keeping the proposed region with the highest score. 

Stage 2: Proposal Classification 

The model now attempts to classify the Regions of Interest (RoIs) by applying model 

weights and running the classifier heads on the proposals from the first stage to produce 

class probabilities and bounding box regressions. Using positive RoIs and refined 

bounding boxes the model outputs the image overlaid with predicted objects, their class 

probabilities, and bounding boxes. Two more steps refine the results, first a filtering of 

low confidence detections, with the percentage specified by the user. In this case it was 

set at 55% because valid objects were identified with low confidence. The final step 

applies Non-Max Suppression on each class to remove any overlapping anchors that 

would result in duplicate image detection.  

Figure 6.1.3: Final RoIs after per-class NMS 
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Stage 2: Mask Generation 

Mask generation occurs in parallel to the bounding box regression and classification. 

Using training masks, which are generated from the RPN layer and making predictions 

of masks, the final masks are generated over the final image RoIs (Figure 6.6.4). 

Comparing this output with the labelled image provided to the model, classification and 

bounding boxes generated are mostly for objects with ground truth. Duplicate mask 

Figure 6.1.4: Annotated image with polygons darkened for 
contrast(top) and final prediction result (bottom) 
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generation is occurring between the pink and dark blue polygon and between the teal 

polygon and the green and yellow polygons. Additionally, a pine tree is detected in the 

bottom left corner of the image with a low objectivity score of 61.4%.  

The pine tree is labelled in other images but was unlabelled in this image because most 

of the object was occluded. Regarding mask generation, there is a case of duplication 

following the bounding box error. Using a rectangular bounding box is not intuitive 

when object overlap is high which is the case for mixed forest canopies. Compared with 

the ground truth polygons, smoother edges are observed delineating the crowns of the 

pines in the left of the image, but the dark blue mask is under segmented and the actual 

tree crown extent is inaccurate. When the final RPN predictions are compared with the 

final product, we see that the model is struggling to detect trees that do not have 

supporting ground truth. Accuracies for detecting trees with ground truth verification 

vary from 61-94%.  

6.2 Moderately Dense Forest Landscape (Site A) 

Stage 1: Region Proposal Network 

Site A has less dense forest cover than Site B and has ground truth. In this image more 

ground truth was available for the indigenous waterberry tree species. From this the 

RPN targets were formed and the final RPN predictions were produced. In this 

Figure 6.2.1: RPN targets (left) and RPN predictions after NMS (right) 
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prediction image, instances of duplicate object prediction occur in the dense canopy in 

the bottom left of the image. However, the bounding boxes are not fitted perfectly over 

tree crowns compared to the open area in the bottom right of the image. RPN bounding 

box predictions are also seen over tree crowns in the centre left and amongst the dense 

canopy in the bottom left where no ground truth is supplied. After Non-Max 

Suppression the model is making predictions on where objects are in the first stage.  

Stage 2: Proposal Classification 

Final RoI Predictions are shown in Figure 6.2.2 with tree detections and localization 

shown next to the ground truth labelled image. Objectivity scores of the species were 

high: Pine at 92.8%, Gum at 88.6%, Wattle at 72.6% and the average score for 

waterberry trees was 90.48% with 5 predicted objects. Waterberry trees with tree 

crowns that were not overlapping other trees had higher objectivity scores whereas with 

dense canopy, the model has lower confidence predictions. By comparing the labelled 

images used to train the model with the final predictions it is observed that the model 

is making predictions on individuals of waterberry that are clustered together. The 

model failed to detect one individual for pine, gum, and wattle classes. The pine in the 

top right of the image, although proposed in the RPN layer, was not detected by the 

second stage classifier after refinement. The wattle was not detected at Stage 2 despite 

it being proposed in the RPN layer. Total ground truth of wattle in the project was very 

low, thus detection for this class was greatly impeded.  

Stage 2: Mask Generation 

In the final output, masks are generated alongside the bounding boxes and classification 

scores of individual trees. The masks generated accurately delineate almost all the tree 

crowns in the image save for the gum detected whereby overlap from another tree was 

included as part of the mask. Additionally, the mask generated for the purple polygon 

excludes some of the tree crown towards the left and includes partial crown of another 

waterberry adjacent on the right to it. Masks of the pine were well defined and 
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waterberry individuals that did not have overlapping canopies exhibited good mask 

generation. 

Figure 6.2.2: Annotated image darkened for contrast(top) and final output of detected trees 
with scores and masks in a moderately dense forest landscape (bottom) 
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UAV flights provide valuable sweeps of landscapes from above, but flights have 

varying altitudes. Multi-scale UAV imagery thus has implications on building classifiers 

for the same species of trees. Since different scenarios require different flight altitudes 

this could inhibit the model’s learning. Additionally, varying heights of trees and the 

tight interlocked crowns in a very dense forest landscape will result in shadows. These 

shadows can influence a model’s ability to learn from labelled data and make 

predictions on other images that are captured at different angles.  

6.3 Open Forest Landscape (Site D) 

Stage 1: Region Proposal Network 

Site D differed from other study sites in that the altitude for the drone flight was higher 

by 6m, the lighting conditions had cloud cover and, the landscape was an open forest 

with mature trees having distinct crowns that did not overlap as much as the first two 

study sites. In the RPN target step in the first stage, ground truth instances were 

available for more trees and the angle as well as crown extent were more distinct than 

the previous study sites with overlapping canopies. In the RPN prediction stage after 

NMS we see many more proposed Regions of Interest that encompass the tree crowns 

of tree individuals. Some errors are also present such as in the bottom left corner where 

a patch of grass was proposed as an object, as well as some instances of multiple tree 

Figure 6.3.1: RPN training targets (left) and RPN predictions after NMS (right) 
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crowns being conglomerated into one object. In this first stage, the model does well to 

localize objects proposed using the RPN targets it was trained on. 

Stage 2: Proposal Classification 

The second stage of the model performs much better for objectivity scores of the 

objects detected when compared to the scores of the first two study sites. The average 

scores for pine, gum and waterberry were 93.5%, 96.5% and, 96.75% respectively. A 

total of 2 pines, 10 gums and 4 waterberry trees were detected in this image. The RoI 

classification and detection layer again has fewer final detections when compared with 

the RPN predictions layer that preceded it. Basing the detections on ground truth 

instances, the model detects species accurately if they are close to the morphology of 

trees used to train the model, yet here it is evident that overfitting is imparting effects 

on the model’s performance to detect species that are outside of training data. With 

such a small field sample, the model detects 16 trees from an image with 14 ground 

truths. Therefore, the model’s recall ability is high, but with so many more trees 

undetected in the image, improvements to further lessen overfitting should be 

implemented. When compared with the labelled data provided to the model, the RoI 

predictions manage to predict two trees that are without ground truth instances but 

fails to detect a waterberry tree numbered “3” in the labelled image. Keeping in mind 

the grid mission route that the drone flies over the study area, individuals that are 

labelled in one image may not be annotated in another adjacent image. This may assist 

the model in making predictions using ground truth from very similar imagery that it 

also learned on to make predictions.  

Stage 2: Mask Generation 

Masks generated for this image only had one occurrence of overlap in the fuchsia pink 

polygon mixing with the yellow polygon. Overall, the masks delineated tree crowns 

correctly which can be partially attributed to the open woodland form of the landscape 

as opposed to densely crowded forests with interlocking canopies. Alongside this the 
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higher altitude allowed for the same ground truth instances to be viewed at various 

angles resulting in more valuable training data for the model to train on.  

Figure 6.3.2: Annotated image (top) and final output of detected trees 
with scores and masks in an open woodland landscape (bottom) 
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6.4 Precision and Recall 

Evaluation of Object detection models varies with many proposed evaluation 

approaches. One of the key concepts involved is the Intersection over Union (IoU) value. 

Many approaches use an IoU threshold at 0.5, where the predicted bounding box 

overlaps that of the ground truth by at least 50%. This is used to calculate the precision 

and recall of the model whereby positive values must have an IoU of 50% or higher. 

Precision in our dataset is a measure of how accurate the predictions are for that class, 

the percentage of correct predictions. Recall is a measure of how well the model detects 

all the positives.  

True Positives are objects correctly classified in the image and False Positives are 

objects that have been detected but classified incorrectly. True Negatives and False 

Negatives in object detection are usually more difficult to quantify as the labelling does 

not include areas that are not objects in this study. However, the RPN stage defines 

negative anchors as areas where an IoU < 0.3. By creating a set of negative anchors in 

the image, the model learns areas that would not be Regions of Interest and then would 

not consider these regions for object detection. False Negatives are areas labelled as 

negative anchors but are areas where objects are in fact located in the ground truth. 

Unlabelled objects in the image would incur this error if not all trees are labelled which 

was the case due to incomplete ground truth and visual interpretation.  

An example of the precision and recall for this dataset is the object detection of pine 

class. The number of pines correctly identified in the image by the model is divided by 

the total number of pines detected. For the recall, the number of correctly detected 

pines would be divided by the total number of pines that are present in the ground truth 

dataset for the image. The average precision for each class is calculated separately, and 
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with these APs, the mean average precision for each class is calculated. Following this 

the mean Average Precision of the image is calculated by averaging the AP for all the 

classes within the image. 

6.5 mean Average Precision (mAP) 

The Mask RCNN and similar RCNN models utilize the evaluation metric of mAP at an 

Intersection over Union threshold of 0.5. Due to the multi-class nature of our dataset, 

this was found to be more appropriate as this is defined by the AP for each class 

averaged for the image. By computing this mAP value for all the validation images, the 

relevant overall mAP was computed.  

 

The overall mAP value for the validation dataset was 0.508857. The disparity between 

scene views of the study sites however, prompted mAP to be calculated separately for 

the Study Sites A and B combined, and Study Site D. Site B is a very dense forest with 

lots of overlapping canopy, Site A is a moderately dense forest landscape, whereas Site 

D is a simpler landscape with open woodland. 

Equation 1: Mathematical definition of 
mean Average Precision 
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Findings indicated that in mixed forest landscape, the mean Average Precision was 

0.4295 whilst the mAP in Site D was 0.7074. These findings suggest that the model has 

higher precision in areas with less overlapping canopies where tree crowns have clear 

disparity with others.  

Figure 6.5.2: mean Average Precision across study sites 
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Figure 6.5.1: Average Precision for each image in the validation dataset. Site 
A(navy blue), Site B (orange) and Site D(yellow) 
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6.6 Confidence Scores 

The confidence scores of the detected trees were averaged for the study sites per class. 

The overall confidence score for pines, gums, wattles and waterberry were 0.879, 0.896, 

0.782 and 0.891, respectively. Noticeably, wattles were only present in the first two 

study sites and there were no detections of figs by the model which can be attributed to 

the low sample size provided for the model to learn on.  
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Figure 6.6: Confidence scores per tree species by landscape type 
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7 Conclusion and final remarks 

7.1 Findings 

The use of accessible UAV imagery for plant monitoring is being developed on many 

fronts in the field of remote sensing. This study used readily available UAV capability 

and coordinated with local plant ecologists to acquire relevant ground truth and 

imagery without the need for the primary researcher to be present in-situ. This project 

presents elements for studying tree species distributions and IAPS invasions remotely.  

Regarding the research question: “Which landscapes are suitable for implementation 

of the Mask RCNN deep learning model…” it was shown that the Mask RCNN model 

provided a mean Average Precision of 0.71 in open forest landscapes with less 

overlapping tree crowns and in cloud cover lighting conditions. However, in 

environments with dense canopies, the model is shown to have unexceptional results 

for detection, between 0.44 and 0.39 mean Average Precision in moderately dense 

forest and very dense forest landscapes.  

The results also indicate overfitting with the available dataset despite extensive 

testing with various hyperparameters, of which a learning rate of 0.008, ResNet50 

backbone and pre-trained weights from MS Coco dataset was the best performing. 

These parameters resulted in an epoch loss of 0.15 after 20 epochs with a validation 

epoch loss of 1.12 which were found to be the optimal hyper parameters to train this 

model on for this project answering the first research question of this thesis.  

7.2 Limitations 

Major limitations for this study were the low amount of ground truth available to train 

the model and the extensive time periods needed to train the models. Limited ground 

truth and therefore annotation resulted in overfitting occurring which inhibited the 

model’s ability to detect trees that did not have ground truth available. Images were 

not tiled with the perspective that in complex landscapes, valuable tree crowns would 

be occluded since ground truth was lacking. Further, this project annotated individual 
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UAV imagery that had 70% overlap with the perspective that different angles of the 

same trees would assist the model to make predictions. Using this approach, default 

imagery sizes of 4000 x 3000 pixels resulted in extensive training times when input to 

the Mask RCNN model. 

Ideally the final output imagery would be stitched together with the masks generated 

and these would provide orthomosaics with extracted tree crowns that forestry 

managers could use to rapidly assess tree diversity and invasive tree presence within 

landscapes. Due to limitations of the researcher’s programming abilities, masks could 

not be exported from the imagery. Masks are overlaid over the images after resizing and 

to generate polygons which could be used as layers in GIS software proved to be out of 

the scope for this project.  

7.3 Future Studies and similar works 

Combinations of RGB imagery with other data such as hyperspectral, LiDAR or 

elevation models has been proposed to increase the accuracy of deep learning models 

with similar plant monitoring objectives.  

Multi-temporal collection over the same study areas have been leveraged to obtain 

images of plants in different seasons which have resulted in high average precision of 

around 92% by (Santos et al., 2019) albeit with only one tree species. A similar study 

comparing classification from three acquisition years compared to just one acquisition 

date with high resolution UAV imagery and ResNet found that classification accuracy 

increased greatly, from 51% to 80% of two Pine tree species(Natesan et al., 2019). The 

impact of multi-temporal data for classification improvement identifies one of the 

future approaches for this study as seasonal differences in tree morphology can be 

incorporated to provide a better benchmark for tree species object detection libraries.  

Object based tree crown segmentation aids in the generation of labelled data to feed 

CNNs for learning. Whilst Mask RCNN may overcome this by performing both mask 

generation (segmentation) as well as classification, the advantage of Object based 
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segmentation lies in producing polygons over large study areas that can be reviewed 

and labelled, optimizing the workflow of researchers towards annotating data that will 

enhance the model’s performance. This approach has been trialled by (Onishi & Ise, 

2021) which classified 7 different tree classes with up to 90% accuracy using an object-

based CNN. Further, (Schiefer et al., 2020) have utilized CNNs and a semantic 

segmentation approach to accurately map tree species in a mixed forest environment 

with a mean F1 score of 0.73. Employing specialists to check the labels of the trees over 

the generated segments is an effective way to obtain accurate ground truth. Given 

that this study had limited ground truth data available to train the model, 

incorporation of these methods offers avenues for improvement towards faster 

annotation and generation of objects over diverse landscapes.  

Drones can be rapidly deployed in various environments, yet the forest types change 

for every scenario. This varying forest type was of interest to (Weinstein et al., 2020) 

who investigated how cross-site learning would affect RGB tree crown detection. By 

including data from a range of forest types they found that using pre-trained weights 

generated from various forest types and fine-tuned with hand annotated data from 

evaluation sites resulted in the same performance as local site models. They 

determined that a model fit to data from all sites performed better or as well as 

individual models trained for the local sites. Therefore if further models were to be 

built from this study, by introducing more sites and then fine tuning with hand-labelled 

data, more accurate classifiers may be constructed. 

A recommendation for future studies with similar objectives is to stitch together 

individual imagery of the study sites and then to tile these into smaller images. After 

tiling, manual image annotation can be performed which will enable the researcher to 

feed smaller images to the deep learning model, but also contain enough relevant data 

to train it with. The output images could then be restitched together easier allowing for 

improved transferability. 
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As drones become more available at lower prices, many flights are being performed by 

hobbyists and professionals alike. By utilizing UAV-based visual interpretation as an 

alternative for ground sampling as suggested by (Kattenborn, Lopatin, et al., 2019), 

plant specialists may approach tree identification studies by identifying trees using 

annotation software on the giant bank of cloud based drone data. Forestry monitoring 

could benefit greatly if publicly available drone imagery were labelled by plant 

specialists for use in further deep learning object detection projects. Perhaps an image 

library of trees of interest may one day be available for better computer vision 

techniques involving plant monitoring.  

7.4 Conclusion 

This thesis presents the use of the Mask RCNN model towards detecting tree species in 

natural environments. The project leveraged low-cost and accessible drone imagery 

over areas with presence of well-established invasive tree species. The results indicate 

that more work needs to be performed if a generalized classifier is to be built using the 

Mask RCNN architecture. As a simple method with limited resources, Mask RCNN has 

potential in detecting various classes of tree species at an individual level from UAV 

imagery but improvements in runtime through image tiling and combinations with 

other data are necessary. 

At times, one species of tree dominates certain landscapes, and in others various IAPS 

are present at once. Depending on the study area, Mask RCNN is suitable to be 

implemented as a framework for monitoring multiple IAPS presence within disturbed 

environments. The advantages that instance segmentation offer over semantic 

segmentation are only applicable within environments with multiple IAPS presence, in 

mostly homogeneous IAPS landscapes, simpler CNN’s will fulfil objectives of plant cover 

and distribution mapping sufficiently.  

The optimization process of Mask RCNN to multi-class object detection indicates that 

with the available dataset, less complex backbone architecture using the MS Coco 
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pretrained weights with a learning rate of 0.008 results in the best performance. Despite 

this, the model still exhibits overfitting which can be overcome with a variety of 

suggested methods but at this stage is unable to confidently predict trees out of ground 

truth sample. The run times necessary to train the model were long and the use of 

Google Colaboratory greatly assists but the time taken for training is still a huge 

obstacle that researchers will face using Mask RCNN.  

Evaluation of object detection projects is subjective; the mean Average Precision 

method is proposed in this project. These findings indicate the Mask RCNN model has 

low performance in dense forest environments and much more encouraging results for 

open forest landscapes. Confidence scores of the predicted trees indicate high 

performance but when considering the mean Average Precision, the model’s 

performance in actual forestry monitoring applications has lots of potential for 

improvement. Natural environment tree monitoring in diverse ecosystems still has the 

hurdle of dense overlapping canopies to solve, Mask RCNN deep learning models in 

combination with more complex data (i.e LiDAR or multispectral) could potentially offer 

solutions.  
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Annexes 
DroneDeploy stitched maps of study areas A,B,C and D 

Figure i: NDVI(VARI) map for Site A 

Figure ii: Digital Elevation Model for Site A 
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Figure iv: Digital Elevation Model for Site B 

Figure iii: NDVI(VARI) map for Site B 
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Figure vi: Digital Elevation Map of Site C 

Figure v: NDVI(VARI) map of Site C 
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Figure vii: NDVI(VARI) map of Site D 

Figure viii: Digital Elevation map of Site D 
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Loss metrics for Finetuning on pre-trained weights 

 

 

 

Figure x: RPN Bbox Loss 

Figure viiii: RPN Class Loss 
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Figure xi: MRCNN Class Loss 

Figure xii: MRCNN Bbox Loss 
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Figure xiii: MRCNN Mask Loss 
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