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Above Ground Biomass and Carbon
Sequestration Estimation

Implementation of a Sentinel-2 based exploratory workflow

Abstract

This work presents a Sentinel-2 based exploratory workflow for the estimation of Above
Ground Biomass (AGB) and Carbon Sequestration (CS) in a subtropical forest. In the last
decades, remote sensing-based studies on AGB have been widely investigated alongside
with a variety of sensors, features and Machine Learning (ML) algorithms. Up-to-date
and reliable mapping of such measures have been increasingly required by international
commitments under the climate convention as well as by sustainable forest management
practices.

The proposed approach consists of 5 major steps: 1) generation of several Vegetation In-
dices (VI), biophysical parameters and texture measures; 2) feature selection with Mean
Decrease in Impurity (MDI), Mean Decrease in Accuracy (MDA), L1 Regularization
(LASSO), and Principal Component Analysis (PCA); 3) feature selection testing with
k-Nearest Neighbour (kNN), Random Forest (RF), Extreme Gradient Boosting (XGB),
and Artificial Neural Network (ANN); 4) hyper-parameters fine-tuning with Grid Search,
Random Search and Bayesian Optimization; and finally, 5) model explanation with the
SHapley Additive exPlanations (SHAP) package, which to this day has not been investi-
gated in the context of AGB mapping.

The following results were obtained: 1) MDI was chosen as the best performing feature
selection method by the XGB and the Deep Neural Network (DNN), MDA was chosen
by the RF and the kNN, while LASSO was chosen by the Shallow Neural Network (SNN)
and the Linear Neural Network (LNN); 2) before hyper-parameters optimization, the Deep
Neural Network (DNN) yielded the best performance with a Root Mean Squared Error
(RMSE) of 42.30 t/ha; 3) after hyper-parameters fine-tuning with Bayesian Optimization,
the XGB model yielded the best performance with a RMSE of 37.79 t/ha; 4) model
explanation with SHAP allowed for a deeper understanding of the features impact on
the model predictions. Finally, the predicted AGB throughout the study area showed
an average value of 83 t/ha, ranging from 0 t/ha to 346.56 t/ha. The related CS was
estimated by using a conversion factor of 0.47.

All the illustrations were done by the author
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Chapter 1

Introduction

The following thesis was funded by the MAIL project 1, a framework aiming to identifying

marginal lands in Europe and strengthening their contribution potentialities in a Carbon

sequestration strategy. The entire project involves a total of 6 academic and non academic

partners 2 from 4 European Member States. Furthermore, the project has received funding from

the European Union’s Horizon 2020 research and innovation program under the Marie

Sk lodowska-Curie grant agreement. This thesis and its findings represent part of the work being

developed for the MAIL project.

International commitments under the climate convention (UNFCCC, 1997) as well as sus-
tainable forest management practices, require accurate and up-to-date mapping of forested
areas. Forests are the largest terrestrial carbon pool, counting about 85% of the total land
vegetation biomass, and in them it is found 73% of the global soil carbon (Schimel et al.,
2001). Additionally, global warming reports require detailed information on the forests’
carbon content (IPCC, 2006). Hence, reliable and up-to-date Above Ground Biomass
(AGB) and Carbon Sequestration (CS) mapping has become worldwide essential.

Within the terrestrial pool, CS can be defined as the sum of carbon stored in vegeta-
tion biomass and soil, and it is often expressed in tonnes over hectares (t/ha) (Salem
et al., 2020). Nonetheless, this work focuses exclusively on the portion of carbon stored in
vegetation biomass, more exactly on the above ground portion of a forested area, which
includes stems, stumps, branches, bark, seeds, foliage etc., also known as AGB and ex-
pressed in tonnes over hectares (t/ha). The decision of predicting only the above-ground
portion of the forested area is justified by the fact that, while on one hand the Below
Ground Biomass (BGB) can be estimated to be around 20% of the predicted AGB, on
the other hand, the estimation of AGB itself is not straightforward, as it requires reliable
field measures, images, and algorithms. Moreover, the majority of the remote-sensing
based studies on biomass estimation focus on AGB and the related CS.

The encounter of Earth Observation (EO) technologies with AGB and CS mapping
brought multiple advantages to this field. Traditional forest inventory methods - i.e.
field plots surveys - are expensive, time-consuming, and can demand for the destruction

1https://marginallands.eu/
2Space Research Centre of the Polish Academy of Sciences, AUTH, HOMEOTECH, Universitat

Politècnica de València, IABG, and CESEFOR.
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of portion of the forest (Salem et al., 2020). Remote sensing allows for a time-effective,
affordable and, constant monitoring of the state of forests. Moreover, these advantages
enable for a larger scale mapping compared to the sole use of traditional methods. Es-
timation of AGB has been widely explored in the context of EO and GIS technologies
(Zheng et al., 2004; Pandit et al., 2018; Gao et al., 2018; Cairns et al., 1997). Remote
sensing-based estimations of AGB utilise a variety of sensors, features, methods to select
the optimal features combination, as well as several regression models (Galidaki et al.,
2017; Lu, 2006). In a literature review carried on by Salem et al. (2020), over 150 peer-
reviewed articles on AGB and CS were analysed; their review highlights how these studies
tend to follow a similar recurrent workflow, which can be parted into the following ma-
jor steps: collection of forestry’s inventory measures, of images, as well as of GIS-based
miscellany data, preprocessing, features generation and selection, regression algorithms
training and comparison, and production of the final maps. Up until now, many studies
have tested the use of different sensors, predictors, and regression models; the ones which
were considered relevant for this work are investigated in more detail in Chapter 2.

This work aims to asses the capabilities of Sentinel-2 derived measures for the estimation
AGB in a subtropical forest. More specifically, the author aims to identify an optimal
Season for satellite data acquisition, a ranking of the most influential satellite-generated
features, and to build an optimal regression model. Based on these three objectives, the
following Research Questions (RQs) were defined:

1. Feature selection is a widely known important step in helping against the risk of
model over-fitting and long training time. Hence, the most representative features
are going to be identified and used as model inputs by answering to the following
question: aiming to the identification of an optimal number and type of features,
which is the best performing feature selection method when predicting AGB in the
study area?

2. Highly connected to the previous RQ, this work seeks to understand which are the
most influential features - i.e. season, Vegetation Indices (VIs), texture measures,
etc. - when predicting AGB?

3. Machine Learning (ML) regression algorithms can be characterised by many hyper-
parameters which require to be fine-tuned in order to improve the model predictions.
Manual hyper-parameter fine-tuning is time consuming and non-reproducible, thus,
the following question was posed: which hyper-parameter fine-tuning method yields
the best performance for the chosen regression models?

4. In terms of Root Mean Squared Error (RMSE), which ML regression algorithm
produces the most accurate estimate?

5. Finally, other than evaluating the model solely based on its error, a deeper un-
derstanding of how the selected features influence the model predictions can bring
valuable insights in the field of AGB and CS mapping. This is achieved by answer-
ing to the following question: how do the top-ranked features and their interaction
impact on the model output?

With the intention of answering the stated RQs, our methodology is going to broadly
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follow the aforementioned commonly implemented steps. Additionally, touches of novelty
will be introduced throughout the entire workflow.

In order to select which features - i.e. VIs, texture measures, etc. - allow for a bet-
ter performing model, features selection is often implemented; previous studies on AGB
tend to follow one of these approaches: step-wise regression analysis, a linear method,
or measures obtained from the Random Forest (RF) algorithm (Gao et al., 2018; Lu,
2006). Hence, with the purpose of answering the 1st and 2nd RQs, 4 features selection
techniques - Mean Decrease in Impurity (MDI), Mean Decrease in Accuracy (MDA), L1
Regularization (LASSO), and Principal Component Analysis (PCA) - are tested and the
features rankings analysed. Subsequently, the comparison among features selection meth-
ods is performed by implementing commonly used regression algorithms in this field -
RF, K-Nearest Neighbour (kNN) and Artificial Neural Networks (ANN). Furthermore,
we introduce and compare the Extreme Gradient Boosting (XGB) algorithm (Chen and
Guestrin, 2016); which is amongst the most popular variants of the Gradient Boosting
algorithm and it has been the winner of many Machine Learning (ML) competitions (Seif,
2019).

RF and XGB are characterised by several hyper-parameters which can be adjusted by the
user. While some of these do not have a major impact of the model’s predictive capacity,
others, such as the number of estimators, can quite influence the predictions. In order
to answer the 3rd and 4th RQs, this work aims to make the most of such a characteristic
by exploring and comparing 3 types of hyper-parameters searches - Grid, Random, and
Bayesian search.

Additionally, AGB will be mapped by using the predictions from the better performing
feature selection method, regression model and hyper-parameter search method.

Finally, the last step of this workflow aims to answer the 5th and last RQ, which seeks to
understand how the model output is influenced by the selected features. ML algorithms
are often seen as black boxes, which refers to the difficulty in understanding how and
to what extent the inputs and other components of a model impact on the final output
(Dallas, 2017). Therefore, with the purpose of bringing the research surrounding AGB
and CS a step forward, we are going to investigate how certain features influence the
model output. To do this, a model explainer is introduced; these algorithms have the
ability to explain the output of ML models; SHapley Additive exPlanations (SHAP),
recently proposed by Lundberg et al. (2020), achieves that by showing how each features
contributes to push the model output from a baseline - identified as the average model
output over the training dataset - to the final output for each instance. This allows to
assess the influence that the inputs have in the predictions, which can be of interest for
future studies, especially when dealing with similar environmental conditions. To our best
knowledge and up to this day, the SHAP package was never implemented in the context
of Above Ground Biomass (AGB) mapping.
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Chapter 2

Background & Related Work

Carbon Sequestration (CS) is a natural process involving the capture of carbon dioxide
from the atmosphere and its long-term storage into 3 major carbon pools; namely, terres-
trial, oceanic, and geological pools (IPCC, 2006; Salem et al., 2020). Furthermore, carbon
can be stored in either a liquid or a solid state by different means such as trees, soil, ocean
or organic matter (Lackner, 2003).

The Intergovernmental Panel on Climate Change (IPCC, 2006) divides the terrestrial pool
into 5 main reservoirs: Above Ground Biomass (AGB), Below Ground Biomass (BGB),
litter, woody debris, and Soil Organic Matter (SOM).

2.1 Above Ground Biomass and Current Carbon Se-

questration

Carbon Sequestration (CS) in the terrestrial pool is the sum of the amounts of carbon
in vegetation biomass and soil (Salem et al., 2020). Accounting for largest portion of the
the terrestrial vegetation biomass, forests have been widely studied; Indeed, forests are
characterized by the highest carbon density compared to other terrestrial environments
(Stinson et al., 2011), building up to circa 80% of the above-ground carbon stored in
the terrestrial pool (IPCC, 2006). However, because forests are affected by many dis-
turbances - i.e. fires, deforestation, parasites, land use change, etc. - around 60% of
newly stored carbon is cyclically returned to the atmosphere (Salem et al., 2020). These
characteristics make forest monitoring an important step towards up-to-date and reliable
information about the state global carbon budget, particularly in the context of climate
change mitigation (Galidaki et al., 2017).

Estimation of AGB has been widely explored in the context of remote sensing and GIS
(Zheng et al., 2004; Pandit et al., 2018; Gao et al., 2018; Cairns et al., 1997). Previous
studies estimate BGB and litter in mature forests to be around 20% and 10-20% of the
predicted AGB, respectively (Cairns et al., 1997; Kankare et al., 2013).

If on one hand, BGB and litter can be estimated to be a fraction of AGB, on the other
hand, providing a reliable estimation of the latter is not straightforward. Furthermore, the
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estimation of CS from AGB is commonly performed by multiplying AGB by an average
conversion factor of 0.5, which assumes the 50% of the dry biomass to be carbon (Khan
et al., 2020). More precise factors have been provided for different ecological zones; the
IPCC (2006) suggests a factor of 0.47 for tropical and subtropical forests. However, when
the estimation of CS requires for higher precision, it should be noticed that the carbon
content in dry matter changes between tree species, as well as amongst climate zones,
and it is correlated to the species wood density; species with higher wood density store
higher quantities of carbon; that is Mediterranean species have higher carbon content
than tropical species, despite their extent and density being more limited (Thomas and
Martin, 2012)

2.2 Above Ground Biomass estimation

AGB estimation has been the subject of extensive research, given its importance in plan-
ning carbon emission mitigation strategies and sustainable forest management. The esti-
mation of AGB can be performed through direct or indirect methods (Salem et al., 2020;
Galidaki et al., 2017; Lu, 2006)

Direct methods, also known as destructive, call for the harvesting, separation into com-
ponents, oven drying, and weighing of the tree components as fractions of the biomass.
These methods are highly precise, however, they are also expensive, destructive, and
time-consuming, which makes them unsustainable to be used in large scale (Salem et al.,
2020; Picard et al., 2012). The outputs from direct methods have been used through the
years for building allometric equations - i.e. statistical models belonging to the indirect
methods category.

Indirect methods, also known as non-destructive, do not require the physical destruction
of trees. These can be further divided into two main approaches: allometric equations
and Remote Sensing-based estimations (Galidaki et al., 2017), the latter being dependent
on the first one for model training.

Allometric equations are statistical models that use forest measurable biophysical char-
acteristics - i.e. Height (H), Diameter at Breast Height (DBH) or crown size - in order to
estimate either tree volume or biomass; such models allow for the estimation of biomass
without the need of harvesting (Vashum, 2012). Allometric equations have been devel-
oped for many tree species as well as for the most common species combination (Salem
et al., 2020).
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2.3 Remote sensing and GIS-based Above Ground

Biomass estimation

Remote sensing-based estimation of AGB utilizes a variety of sensors, features and sev-
eral regression models (Salem et al., 2020; Galidaki et al., 2017; Lu, 2006). Furthermore,
another recurrent and important aspect to be considered when developing such method-
ologies is the ecological zone in which the forest is located, as each zone differs in terms
of forest carbon content (Liu et al., 2012).

In their review with a focus on Mediterranean areas, Galidaki et al. (2017), assessed that,
in terms of climate zones, AGB estimation has been extensively studied in boreal and
tropical environments; this might be explained by the wide extent of tropical forests.
Whereas, there is a limited amount of research on forests located in subtropical zone,
especially Mediterranean forests. Despite these forests cover barely 85 million hectares
(ha), representing only 2% of the world’s forest area (FAO, 2012), the mean wood carbon
content in the Mediterranean region, as well as in boreal and temperate regions, has been
measured to be higher the tropical forests content (Thomas and Martin, 2012), between
45.7% and 60.7%; this makes Mediterranean forests valuable carbon pools and interesting
areas to monitor.

Consequently, AGB estimation in tropical (Hernandez-Stefanoni et al., 2020; Nuthamma-
chot et al., 2020; Wani et al., 2015; Vicharnakorn et al., 2014), subtropical (Pandit et al.,
2018; Gao et al., 2018), temperate (Khan et al., 2020; Coulibaly et al., 2008; Zheng et al.,
2004) and boreal (Puliti et al., 2020) forests is expected to result in different ranges of
biomass and carbon content.

Sensors

It their extensive literature review, Salem et al. (2020), analysed over 150 peer-reviewed
articled on AGB and CS estimation. Only 25% of these studies use imagery data from
active sensors, almost equally divided into LiDAR (laser imaging, detection, and ranging)
and Radar (radio detection and ranging) technologies; while the majority of the them
deals with imagery collected from various passive sensors. Hereafter, passive sensors are
going to be divided based on their spatial resolution into 3 categories: coarse (> 100 m),
moderate (10 - 100 m), and fine (sub-meter to 5 m) resolution.

Coarse resolution images, such as MODIS, SPOT Vegetation, and National Oceanic and
Atmospheric Administration (NOAA), are valuable products when working at the con-
tinental or global extent as they provide consistent spatial and temporal data, which
increases the probability to collect cloud-free images. However, these images perform
poorly in discriminating the vegetation structure and data saturation occurs in high den-
sity forests (Salem et al., 2020); furthermore, mixed pixels can be an issue at this resolu-
tion, as there is no accordance between the size of the pixels and of the forestry inventory
field plots.
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SPOT, Landsat and Sentinel-2 provide medium spatial resolution images, these have been
often used for AGB estimation (Zheng et al., 2004; Vicharnakorn et al., 2014; Wani et al.,
2015). Zheng et al. (2004) use DBH together with various Vegetation Indices (VI) derived
from Landsat 7 ETM+ to produce an initial biomass map in a temperate forest. This
first map, together with land cover information, was then used to retrieve forest age as a
further parameter in order to improve the predictions. Landsat TM and 5 images have
been explored in tropical forests (Vicharnakorn et al., 2014; Wani et al., 2015) to extract
VIs to be used as inputs in the regression model together with a Digital Elevation Model
(DEM).

Zhao et al. (2016) proved that, when working with Landsat images, the performance of
the regression models starts decreasing as the biomass density surpasses a threshold value
of 130 t/ha; this value decreases as the forest structure becomes more heterogeneous. On
the other hand, the temporal continuity of the Landsat mission provides with valuable
data, especially when the focus resides on change detection at regional extents and on
monitoring vegetation over long periods of time.

Sentinel-2A was launched in 2015 by the European Space Agency (ESA) and since then its
potential in AGB estimation has been evaluated by several authors and within a variety
of ecological zones (Pandit et al., 2018; Khan et al., 2020; Puliti et al., 2020).

The work of Pandit et al. (2018) explores the performance of spectrally derived indices
from Sentinel-2A as inputs in a Random Forest (RF) model in a subtropical forest in
Nepal. Field-based AGB values were estimated by applying an allometric equation using
forestry inventory data from 113 measured plots with a radius of 12 m. The model
performance was assessed by using a 10-fold cross-validation. The predicted AGB ranged
from a minimum of 35.42 t/ha to a maximum of 276.92 t/ha, with a mean of 160 t/ha;
the final model resulted in a Root Mean Squared Error (RMSE) of 25.32 t/ha between
the observed and the predicted biomass.

Khan et al. (2020) explored the use of Sentinel-2 images in a mountainous temperate
forests in Pakistan. Their study examines the performance of 3 categories of spectrally
derived VIs - i.e. Broadband, Canopy Water Content, and Narrow band red-edge VIs.
Out of 25 indices, only 11 were used as inputs in the linear regression model, most of
which were red-edge VIs. The predicted AGB ranged from a minimum of 46.45 t/ha
to a maximum of 279.59 t/ha, and a mean of 148.79 t/ha. The final biomass map was
validated using 10 out of the 55 plots, with a radius of 17 m, and resulted in a RMSE of
35.23 t/ha between observed and predicted biomass.

Additionally, Sentinel-2 single bands have been used in boreal areas for estimating AGB
over the entire Norwegian territory. In their work, Puliti et al. (2020), used the whole
Norwegian forestry inventory, composed of 7710 plots with a radius of 9 m. Furthermore,
a Canopy Height Model (CHM) was included as model input; this was generated by
normalising a freely available 2 m resolution DEM covering the entire area north of 60
degrees of latitude with a freely available 10 m resolution Digital Terrain Model (DTM).
The final maps were evaluated using cross-validation, resulting in a a RMSE of 45.8 t/ha
when using solely Sentinel-2 single bands; a similar performance was achieved from using
solely the CHM, with a RMSE OF 47.7 t/ha; finally, a noticeable synergy was found when
using both, with a decrease of the error down to 41.4 t/ha.
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Studies involving the twin satellites Sentinel-2A and 2B show higher performance in AGB
estimation compared to working with Landsat images. The better performance that
characterizes Sentinel-2 can be attributed to its higher spectral, spatial and temporal
resolution compared to the Landsat mission. Specially, the presence of red-edge bands
makes these images highly valuable for vegetation analysis (Pandit et al., 2018).

Additionally, studies which use fine spatial resolution sensors such as Quickbird, WorldView-
2, or IKONOS, have been reviewed by Salem et al. (2020); these images require for a large
storage space and the high cost of image acquisition limites their use to small study areas.
IKONOS, together with topographic, soil type, and precipitation data were utilized to
map AGB in a temperate forest in Canada for 5 species groups (Coulibaly et al., 2008).
For this work, texture measures and VIs were generated, and AGB estimation was com-
puted using an Artificial Neural Network (ANN) and multiple regression models, as well
as stratification based on species and Diameter at the Breast Height (DBH). The lowest
RMSE (0.011 t/ha) was recorded by using the ANN for mapping spruce for the 9-18 cm
DBH class.

The performance of Radar sensors in AGB estimation depends on which bands are in-
stalled on the sensor. L and P-bands are often used for predicting AGB as they showed
to be highly correlated with such measure, while C-band resulted in little to none cor-
relation with it (Salem et al., 2020). ALOS PALSAR is a L-band Synthetic Aperture
Radar widely used in AGB mapping until 2011, when it stopped being operational. In
a study from Hernandez-Stefanoni et al. (2020), ALOS PALSAR was integrated with
LiDAR and climate data for estimating AGB in a tropical forest in Mexico. A total
of 287 forestry inventory plots from 2009 and 2014 were corrected and used for model
training and validation. Additionally, LiDAR was used to collect vegetation measures
complementary to the National Forestry Inventory. Climatic water deficit, back-scatter
and texture measures were used as inputs in RF models, by using different combination
of training and validation samples. The residuals of the 4 models were further analysed
showing no significant spatial auto-correlation. The average estimated AGB values was
99.2 t/ha with a standard deviation of 48.1 t/ha. Finally, the models were evaluated
using cross-validation, which yield to a RMSE of 48.8 t/ha when modelling with field
data, of 86.7 t/ha with LiDAR data, and of 57.1 t/ha with a combination of the two.
Overall, L-Band encountered saturation issues in areas with an AGB values higher than
150 t/ha; however, the authors points out that this value is subject to change depending
on vegetation type, complexity, or topography (Hernandez-Stefanoni et al., 2020), making
radar sub-optimal for mountainous regions (Salem et al., 2020).

Other studies explored the combination of several datasets, such as Sentinel-1, Sentinel-
2, ALOS PALSAR, and Landsat. Landsat TM, ALOS PALSAR and their combination
was explored in a mountainous subtropical forest by Gao et al. (2018). In this study,
regression models were tested and compared with and without stratification - i.e. per-
forming the estimation at the species or forest type level - by utilizing a forest types
map. Spectral signatures, back-scatter and texture measures were extracted from Land-
sat TM and ALOS PALSAR images and the selection of variables to input in the models
was done using both step-wise regression and random forest measures. Finally, several
models were tested, including linear regression and non-parametric algorithms. Under
non-stratification conditions, the estimated AGB ranged from 25.7 to 180.7 t/ha, with a
standard deviation of 33.9 t/ha. The results show a better performance of Landsat TM
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with a RMSE of 27.7–29.3 t/ha compared to ALOS PALSAR which yielded a RMSE
of 30.3–33.7 t/ha, while the combination of the two gave none to slightly improved per-
formances depending on the model used. Moreover, overestimation and underestimation
occurred independently on the dataset used. Gao et al. (2018) observe that for Landsat
images, when AGB was within 50–130 t/ha, the residuals were relatively small, while for
ALOS PALSAR this range was narrower, of about 90–120 t/ha. Such conclusion confirm
that overestimation of small AGB values and underestimation of large ones are an issue
for both optical and active sensors, such residuals increase as AGB values are higher than
150 t/ha or lower than 40 t/ha (Zhao et al., 2016; Gao et al., 2018)

Furthermore, a few studies explored the combination of Sentinel-2 and Sentinel-1 images
estimating AGB (Nuthammachot et al., 2020; Forkuor et al., 2020). In a recent study
carried out in an Indonesian tropical forest, AGB was modelled by 3 multiple linear
regression models, using as inputs, Sentinel-2, Sentinel-1 and the combination of the two,
and 45 forestry inventory plots (Nuthammachot et al., 2020). The models were then
evaluated using 15 plots and showing RMSE of 37.35 t/ha for the model using solely
Sentinel-1 back-scatter; Sentinel-2 derived indices shown higher performance, yielding to
a RMSE of 19.08 t/ha; the poor performance is explained by the fact that Sentinel-1
works on the C-band. Finally, a combination of the two resulted in a slightly improved
performance with a RMSE of 18.71 t/ha. The predicted average value from the best
model was was 70.38t/ha, with a minimum of 21t/ha and a maximum of 226t/ha.

Another study carried out in a tropical forest in West Africa explored the potential of
Sentinel-1 and 2 in AGB estimation (Forkuor et al., 2020). Spectral signature, biophysical
parameters, VIs, Radar back-scatter and Radar difference and sum bands were used in
different combination as inputs in RF models, together with 218 forestry plots. Validation
was performed by using 40% of the forestry samples; modeling with Sentinel-2 achieved
better results than using Sentinel-1 data, with a RMSE of 60.6 t/ha, and a RMSE of 78.6
t/ha, respectively. The best performance was reached by the combination of the two, with
a RMSE 45.4 t/ha. Furthermore, modeling with solely Sentinel-2 spectral bands would
sill achieve better results than using all Sentinel-1 generated features or subsets of it. The
best model estimated AGB values ranging from 0.1 t/ha to 1042 t/ha, with 90% of the
study area characterised by value of less than 90 t/ha.

Features

The choice of which and how many features to include when modelling a regression al-
gorithm has an impact on the model performance. A summary of the commonly used
features in AGB was done by Salem et al. (2020), and these are: spectral bands and
derived measures such as VIs, biophysical parameters and texture; other ancillary data
often used are topographic information, weather data, soil maps as well as land cover
maps; another important factor is the season in which the images are collected. Fur-
thermore, complex measures do not always perform as better predictors, this is the case
in a study carried out in a tropical dry forest, where Sentinel-2 single bands resulted in
more accurate outcomes compared to different combinations of SAR data (Forkuor et al.,
2020).
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Vegetation Indices (VIs) are mathematical transformations of the original spectral bands
(Salem et al., 2020); different combinations perform better depending on certain forest
characteristics - i.e. slope, density, complexity, etc. Khan et al. (2020), in his study for
AGB mapping, divides VIs into 3 categories: Broadband, Canopy Water Content and
Narrow red-edge band VIs.

Broadband VIs use the Near-infrared (NIR) band together with either the red or the green
band; these VIs are sensitive to canopy leaf area, however they suffer from saturation
problems as the forest density increases (Khan et al., 2020). The so called Canopy Water
Content VIs utilise NIR and Short-wave infrared (SWIR) spectral bands; these VIs help
understanding the forest health as vegetation in water stress has less carbon storage
capacity compared to healthy individuals (Khan et al., 2020). Narrow red-edge band
VIs utilise NIR together with Red-Edge bands; such indices are often used in vegetation
studies as they detect photosynthesis in more detail and are less affected by saturation
problems than broadband VIs (Khan et al., 2020; Pandit et al., 2018).

Biophysical parameters can also be detected through remotely-sensed images. These
manifest themselves through roughness, shadow and spectral response, and are often used
in vegetation studies as they help discriminating the spatial distribution and dynamics of
vegetation (Forkuor et al., 2020). One of the most used biophysical parameter is the Leaf
Area Index (LAI), which is derived from VIs. In its review, Salem et al. (2020) defines
LAI as the area of one-sided leaf tissue per unit ground; this measures the density of
the leaves surface in a canopy. Other often used biophysical parameters are Fractional
vegetation cover (FCOVER) or fraction of photo-synthetically active radiation (FAPAR).

Finally, texture measures have also been proved to increase the prediction of AGB, in a few
studies this happens to a greater extent compared to VIs (Pandit et al., 2019; Hall-Beyer,
2017b). Texture measures are based on a local variance function, on the image spatial
resolution and on the size of the dominant objects, which helps identifying spectrally
unique objects; the most often used in forest studies is the Grey-Level Co-occurrence Ma-
trix (GLCM), which allows for the extraction of second-order texture measures (Haralick
et al., 1973; Pandit et al., 2019).

Feature selection methods

AGB may have linear, non-linear or no relation at all with the model inputs, however, as a
general rule, the features to be added in the regression model should have high correlation
with AGB and low correlation among each others. Feature selection is often performed
in order to rank which of the generated predictors would allow for a better performing
regression model. Previous studies on AGB tend to follow two approaches: step-wise
regression analysis or Random Forest derived measures (Gao et al., 2018; Lu, 2006).

Step-wise regression is often used to select features and it is simple to perform, however
it is capable to account only for linear relationships (Gao et al., 2018; Lu et al., 2016).
Random Forest (RF) is a Machine Learning (ML) non parametric algorithm, it is able
to account for non-linear relationships between the features and AGB, and can provide a
ranking of features based on their importance (Gao et al., 2018).
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Regression models

Once the most adequate sensor and features are selected, the next important step is the
choice of a regression model. Independently on the model, a satisfactory number of field
measures are a prerequisite for the training and the validation of any supervised model
(Lu, 2006).

In their survey on remote sensing-based AGB estimation methods in forest ecosystems, Lu
et al. (2016) reviewed the most commonly used regression models in the field, starting with
dividing them into parametric and non-parametric models. They found that parametric
models are the most commonly used for estimating AGB, these are not data driven as they
assume that the relationship between AGB and the selected predictors can be expressed a
priori through parameters. As already mentioned in Section 2.3, the relationship between
AGB and the predictors can be linear, non-linear or there can be no relationship at
all; Parametric models which assume linear relationship are simple linear regression or
multiple linear regression, and are often used for AGB estimation (Zheng et al., 2004;
Wani et al., 2015; Nuthammachot et al., 2020), non-linear relationships can be accounted
for by using a logistic regression model (Lu et al., 2016).

However, whenever an insufficient number of sample plots is available or the linear rela-
tionship between variables and biomass is weak, parametric model can result in a poor
performance, which non-parametric models may lead to more accurate predictions (Lu,
2006). Non-parametric models are data-driven algorithms and do not make a priori as-
sumptions on model structure (Lu et al., 2016). Commonly used non-parametric algo-
rithms for AGB estimation are K-Nearest neighbor (kNN), RF, Support Vector Regression
(SVR) and ANN (Coulibaly et al., 2008; Pandit et al., 2018; Gao et al., 2018; Puliti et al.,
2020).

A few studies focus on the comparison among non-parametric and parametric models (Gao
et al., 2018; Coulibaly et al., 2008). Gao et al. (2018) performed a comparative analysis
between SVR, ANN, kNN, RF and Linear Regression (LR) using both a stratification and
a non-stratification approach in a subtropical mountainous forest. The features selection
was carried out with step-wise regression for the LR model, and with RF algorithm
for the non-parametric models. ANN provided the best overall estimation in the non-
stratification scenario with a RMSE of 27.6 t/ha, while LR provided a better estimation
for broad-leaf and bamboo forests, when the stratification approach was used, with a
RMSE of 24.9t/ha and 20.9t/ha, respectively. Furthermore, this study found that LR is
a valuable model with biomass ranging from 40 to 120 t/ha, however ANN led to better
accuracy in biomass higher than 120 t/ha. Gao et al. (2018) concluded that there is not
an unique modeling algorithm optimal for all forest types and AGB ranges, that is each
scenario should be evaluated in its peculiarities.

Finally, once the model is trained, assessing its accuracy is the final step. Models are
usually evaluated through the Root Mean Square Error (RMSE) and the Coefficient of
determination (R2). However, the use of R2 has been proved by several authors to be
an unreliable measure for evaluating non-linear problems, as explained in Appendix A.
Furthermore, in a few studies other measures are included, such as relative RMSE, bias,
standard deviation or p-value (Wani et al., 2015; Gao et al., 2018; Zheng et al., 2004;
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Coulibaly et al., 2008; Vicharnakorn et al., 2014; Lu, 2006).
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Chapter 3

Materials & Methodology

The following chapter contains a description of the study area, as well as data collection
and preprocessing. Additionally, the methodology workflow is introduced. Each step of
the methodology is covered in more detail in Chapter 4.

3.1 Study Area

The following description of the study area was provided by a study from Torralba and
Crespo-Peremarch (2018). The area object of study covers a total of 3741.5 ha and is
located in the Natural Park of Serra de Espadan, in the eastern Spain province of Castellon
(Figure 3.1). This natural park is a Mediterranean forest with soft and rounded hills,
presence of abandoned farming with artificial terraces, and mountain peaks up to 1100
meters of altitude. An European Environment Agency report from 2017 classified this area
as a semi-natural forest with a natural function, composition and structure, but modified
by human activities throughout history (EEA, 2017). Forest types and conditions have
been influenced by human needs and changes in land use, as well as reforestation of
single species policies from the last century. This area displays a heterogeneous landscape
dominated by pure and mixed native coniferous and deciduous forests, with species of the
genera Pinus and Quercus.

In accordance to the global ecological zones described by FAO and to the Köppen-
Trewartha Climatic groups, the Mediterranean climate is a variety of the subtropical
climate, together with the Oceanic, the Humid subtropical, the Semi-desert, and desert
climate (FAO, 2012). Hence, since many of the authors mentioned in Chapter 2 refer to
their area of interest by using the climate domain - i.e. tropical, subtropical, temperate,
boreal, polar - from now on, our area of study will be referred to by the mane of its major
climate domain, that is subtropical.
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3.2 Field data and field-based Above Ground Biomass

A field inventory with measured Above Ground Biomass (AGB) at the plot level was
provided by the Geo-Environmental Cartography and Remote Sensing Group (CGAT) at
the Universitat Politècnica de València (UPV) 1; the collection of this forestry inventory
was funded by the Spanish Ministerio de Economı́a y Competitividad, in the framework
of the project CGL2016-80705-R. The field data was collected in September 2015 for a
total of 73 circular plots with a radius of 15 m distributed throughout the study area.
Diameter at Breast Height (DBH) and height were measured for trees with a DBH above
5 cm. For each species or forest type within a plot, AGB was estimated in t/plots using
species-specific and forest type-specific allometric equations from Gregorio et al. (2005).
As showed in equation 3.1 and 3.2, the provided field-based AGB was then converted from
t/plots into t/ha.

1http://cgat.webs.upv.es/
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Location of Serra de Espadan Natural Park, Spain (a). Location of the study area within Serra

de Espadan Natural Park (b). Distribution of the forestry inventory plots within the area (c).

Figure 3.1: Study area and location of Forestry Inventory plots.
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The field-based AGB ranges from a minimum of 0.35 t/ha to a maximum of 274.50 t/ha,
with a mean value of 92.49 t/ha; the distribution appears right-skewed (Figure 3.2). It
must be noticed that the values on the vertical axis in Figure 3.2 are referred to the status
of data after preprocessing, that is once the forestry plots - now represented as polygons
- are transformed into a feature point class where each plot results in 6 to 7 points; more
information on this can be found in Section 3.5.

Area plot (ha) =
πr2

10000
(3.1)

AGB (t/ha) =
AGB (t/plot)

Area plot (ha)

(3.2)

Figure 3.2: Distribution of the measured AGB.

3.3 Sentinel-2 collection and processing

The study area is covered by one single Sentinel-2A Level-1C tile. From the Copernicus
Open Access Hub 2, 2 images were downloaded, so as to cover 2 seasons: Summer (August
2015 3) and Autumn (November 2016 4). Both dates are close to the time the forestry’s
inventory measures were collected and have a cloud coverage of less than 5%. However,
clouds are absent in the spatial subset where the study area is located. This product is
an ortho-image provided in the UTM/WGS84 projection, and composed of 13 spectral
bands: visible, NIR, red-edge, and shortwave infrared (SWIR), which spatial resolution
varies from 10, 20 and 60 m.

2https://scihub.copernicus.eu/
3S2A MSIL1C 20150825T105046 N9999 R051 T30TYK 20200922T122045
4S2A MSIL1C 20161107T105242 N9999 R051 T30TYK 20200923T092135
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The first preprocessing steps were carried out using licence free tools 5 provided by the
European Spatial Agency (ESA). Hence, in order to adjust the images from Top of the
Atmosphere (ToA, L1C) to Bottom of the Atmosphere (BoA, L2A) reflectance, Sen2Cor
was used; this plugin allows for atmospheric, terrain and cirrus correction. Further pre-
processing was carried out using the Sentinel Application Platform (SNAP); red-edge and
SWIR bands were re-sampled from 20 to 10 m using the nearest neighbor method; subse-
quently, the 3 bands with a spatial resolution of 60 m (band 1, 9 and 10) were excluded
from the analysis by using the subset tool in SNAP, as these are mostly used for climate
and atmospheric related studies. Finally, the remaining bands were clipped to the extent
of the study area.

3.3.1 Vegetation Indices and biophysical parameters generation

Vegetation Indices (VI) and biophysical parameters have been proved to increase the
performance of regression algorithms for AGB estimation in different ecological zones and
forest types (Pandit et al., 2018; Forkuor et al., 2020; Galidaki et al., 2017). With the
purpose of evaluating the performance of several feature selection methods, a wide range
of VIs was generated using the calculator in SNAP. Particular care was taken in including
VIs which required SWIR and red-edge bands, as shown in Table 3.1.

A total of 20 VIs were generated: Normalized Difference Vegetation Index (NDVI) (Rouse
et al., 1973), Green Normalized Difference Vegetation Index (GNDVI) (Gitelson et al.,
1996), Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), Modified Soil Adjusted Veg-
etation Index (MSAVI) (Huete, 1994), Global Environmental Monitoring Index (GEMI)
(Pinty and Verstraete, 1992), Normalized Difference Vegetation Index red-edge 1, 2 and
3 (NDVIre1, NDVIre2 and NDVIre3) (Delegido et al., 2011), Chlorophyll red-edge index
(Clre) (Gitelson et al., 2003) and Normalized Difference Water Index (NDWI) (Bo-cai,
1996). Hence, VIs were calculated for both dates, that is August 2015 and November
2016.

Furthermore, 5 biophysical parameters (Table 3.2) - Leaf Area Index (LAI), Canopy Water
Content (LAI cwc), Canopy Chlorophyll Content (LAI cab), Fraction of absorbed photo-
synthetically active radiation (FAPAR) and Fraction of vegetation cover (FCOVER) -
were calculated for each image by using the biophysical processor in SNAP. Such variables
have been found to enhance the estimation of biomass by describing spatial distribution
and dynamics of vegetation (Forkuor et al., 2020).

5https://step.esa.int/main/toolboxes/
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Index Definition Reference

NDVI (B8-B4)/(B8+B4) (Rouse et al., 1973)

GNDVI (B8-B3)/(B8+B3) (Gitelson et al., 1996)

SAVI [(1+L*)(B8-B4)]/(B8+B4+L*) (Huete, 1988)

MSAVI [B8+1-
√

(2B8 + 1)2 − 8(B8−B4)]/2 (Huete, 1994)

GEMI n**(1-0.25n**)-(B4-0.125)/(1-B4) (Pinty and Verstraete, 1992)

NDVIre1 (B8-B5)/(B8+B5) (Delegido et al., 2011)

NDVIre2 (B8-B6)/(B8+B6) (Delegido et al., 2011)

NDVIre3 (B8-B7)/(B8+B7) (Delegido et al., 2011)

Clre (B7/B8)-1 (Gitelson et al., 2003)

NDWI (B8-B12)/(B8+B12) (Bo-cai, 1996)

L* = 0.5, n**= (2( B82 − B42) + 1.5B8 + 0.5B4)/(B8 + B4 + 0.5)

Table 3.1: Sentinel-2 generated Vegetation Indices

Biophysical

parameter
Definition

LAI Leaf Area Index

LAIcw Canopy Water Content

LAIcb Canopy Chlorophyll Content

FAPAR Fraction of Absorbed Radiation

FCOVER Fraction of vegetation Cover

Table 3.2: Sentinel-2 generated biophysical parameters
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3.3.2 Texture measures generation

Once several spectral variables were generated - VIs and biophysical parameters -, further
spatial predictors were included. This allows to consider not only the spectral response of
different surfaces, but also the spatial relationships among these surfaces. For this pur-
pose, texture measures derived from the Gray Level Co-occurrence Matrix (GLCM) were
included, as they have been widely used for enhancing remote sensing-based classification
and regression forestry-related problems (Pandit et al., 2019; Kelsey and Neff, 2014).

As Hall-Beyer (2017a) points out in her tutorial on GLCM texture, a GLCM is not an
image, it is rather a tabulation expressing how often different combinations of Digital
Numbers (Gray Levels) occur in an image band, showing all the possible combinations of
value pairs and their frequency. This table is constructed by using each and every pixel
of the image (reference pixel) and considering its neighbouring pixel or pixels (neighbour
pixel). Texture measures derived from the GLCM consider the relationship between 2
pixels (GLCM) in the original image, as opposite to first order texture measures which
are calculated directly from the original image pixels values without considering how this
are related to one another (Haralick et al., 1973); most of GLCM derived measures used
in Remote Sensing come from a series of papers of Haralick and colleagues in the 60s.

GLCM derived texture measures do not have a single way to be classified, hence, we
are going to use the division used by Hall-Beyer in her tutorial (Hall-Beyer, 2017a); in
this work, these measures are divided into 3 categories depending on the weights in the
equations: measures related to contrast, measures related to orderliness and GLCM de-
scriptive statistics. Pandit et al. (2019) explored the use of Sentinel-2 extracted GLCM
texture measures in AGB estimation, and concluded that GLCM mean, variance, and dis-
similarity from band 2 (blue), with a window size of 7x7, yield to the best AGB predictor
for tropical and subtropical forests dominated by Shorea robusta and Pinus roxburghii,
located in Parsa National Park, Nepal. In another study, AGB was estimated in the San
Juan National Forest located in the southwest of Colorado; the area is characterised by
Ponderosa Pine woodlands, Warm-Dry Mixed Conifer forests, Cool-Moist Mixed Conifer
forests, and Spruce-Fir forests. In order to estimate AGB in such a context, a GLCM was
derived from Landsat TM band 2; entropy, mean, and correlation were found to be the
best predictors for that region (Kelsey and Neff, 2014). Thus, the importance of GLCM
measures can vary based on sensor and study area, however, to minimize correlation
among measures, Hall-Beyer suggests to use one measure from each category.

In the following study, 3 different GLCM texture measures were chosen, for a total of 12
new features to be tested.

These are divided as follows: contrast, entropy, and GLCM-mean were derived from both
Sentinel-2 band-2 (blue) and NDVI generated for August 2015 and November 2016 to
assess whether images from a certain season might provide better results (Table 3.3).
The following definitions of contrast, entropy, and GLCM-mean used in remote sensing
are taken from Hall-Beyer (2017b,a).

Entropy belongs to the category of measures related to orderliness, referring to how regular
the differences between pixel value are within the window size - i.e. highly ordered images
are characterized by frequently having the same combination of pixel pairs throughout
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the image itself. For generating entropy texture measures, the weights in the equation are
related to how many times a given pair occurs, by decreasing weights with the increasing
of orderliness.

Texture measure Definition
Original

band

Entropy
∑N−1

i,j=0 iPi,j(−lnPi,j)
Band 2

NDVI

Contrast
∑N−1

i,j=0 iPi,j(i− j)2
Band 2

NDVI

GLCM-Mean
∑N−1

i,j=0 iPi,j

Band 2

NDVI

P (i, j) is the normalized co-occurrence matrix such that SUM (i, j = 0, N-1) (P(i, j)) = 1

(Pandit et al., 2019)

Table 3.3: Sentinel-2 generated texture measures

Contrast belongs to the category of measures related to contrast, for which weights are
dependent on the distance from the GLCM diagonal, with contrast increasing the further
away from the diagonal. This results in pixel values of the generated measure increasing
with the increasing of the contrast between two adjacent pixels in the original image.

Descriptive statistics derived from the GLCM work with the same principle as for common
descriptive statistics, however in this case they are computed from the entries of the
GLCM, whereas, common statistics are generated from the image original pixel values.
That is GLCM-mean is not an average of the pixel values occurring in a window, but rather
an average of how frequently certain pixel values combinations appear in the window.

Entropy, contrast and GLCM-mean were generated using SNAP software, setting a 7x7
window-size, 32 bit quantization level and a displacement of 1; this last measure indicates
that the neighbour pixel is the one sited east of the reference pixel; higher displacement
values mean that more than one neighbour pixel is considered in the calculations, however,
previous studies proved that values higher than 1 do not lead to better performance
(Pandit et al., 2019; Kelsey and Neff, 2014; Hall-Beyer, 2017b).
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3.4 Digital Elevation Model collection

The European Digital Elevation Model (DEM) and derived slope were downloaded in the
section Imagery and Reference Data of the Copernicus website 6. These products have a
spatial resolution of 25m. DEM and slope were re-sampled to the same spatial resolution
as the Sentinel-2 images (10m) by making sure that cell size and cell positioning matched.
DEM up-sampling is carried out in ArcGIS Pro using the nearest neighbor assignment
method, since it does not alter the input cell value. Furthermore, DEM and slope are
clipped to the study area extent.

3.5 Methodology workflow

Once every feature - VIs, biophysical parameters, texture measures, spectral bands, DEM
and slope - was generated or collected, re-sampled to 10 m, and clipped to the study
area extent, a total of 63 features was transformed from their original raster format to
vector format (points) by using the Raster to Point (Conversion) tool in ArcGIS Pro;
subsequently, the Extract multiple values to points tool was used in order to create a final
feature point with associated table containing a total of 64 columns, representing the
63 features and the geometry field. This last column allows for the feature point to be
transformed back into a raster format so as to subsequently generate the final maps.

In parallel, the circular forestry plots were converted from the vector format (polygons)
into raster cells, as represented in Figure 3.3, a) and b). Pixels with the measured AGB
as value, were generated only when more than 50% of the area of the reference pixel was
covered by the forestry plot; a Sentinel-2 10 m preprocessed image was used as reference
pixel. Additionally, this raster layer was transformed back into a vector (points) as shown
in Figure 3.3, c).

Henceforth, all the analysis are performed using the generated vector file (points) com-
posed of 65 columns, of which 63 represent each of the generated features, 1 represents
the field-based AGB values, and the last one represents the geometry field.

Before proceeding with the analysis, the 63 features were normalized. This step is neces-
sary as the features differ in both range and unit of measure. Moreover, certain regression
models as well as feature selection methods can result in a sub-optimal performance when
the inputs are not normalized, in the sense that such algorithms tend to give more im-
portance to high cardinality and continuous features.

The 63 features were normalized using the RobustScaler from Scikit-learn 7. The Ro-
bustScaler normalizes the dataset according to the interquartile range, such an approach
offers a good handle of outliers compared to mean- and variance-based normalization
methods (Pedregosa et al., 2011).

6https://land.copernicus.eu/
7https://scikit-learn.org/stable/index.html
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Circular forestry plots in vector format (polygon) (a). Rasterization of the forestry plots (b),

vectorization to points of each layer including forestry plots (c), and division in training and

validation set (d).

Figure 3.3: Explanation of preprocessing steps.

Dividing the labelled portion of the dataset into training and validation set using auto-
matic methods could lead to overoptimistic results; with this approach labelled points
belonging to the same forestry plot can be automatically parted to be part of both the
training and the validation set, this issue is also known as data pollution. With the
purpose of generating reliable results, the author built a function which performs data
normalization with the RobustScaler and a 7-folds cross-validation by posing 2 constraints
within the function. Firstly, points belonging to the same original forestry plot can be in-
cluded exclusively in the training or in the validation set (Figure 3.3, c) and d)). Secondly,
only the training set is used to fit the scaler, this allows validation data to remain un-
seen throughout the process. The entire dataset is finally normalized utilizing the trained
scaler. This function is used before each step, that is feature selection, feature selection
testing, and hyper-parameters fine-tuning.

As briefly mentioned in Chapter 1 and illustrated in Figure 3.4, the 63 features are going
to be ranked using 4 different methods - Mean Decrease in Accuracy (MDA), Mean De-
crease in Impurity (MDI), L1 Regularization (LASSO) and Principal Component Analysis
(PCA). The features ranking provided by these methods is then going to be tested by
implementing different regression algorithms: Random Forest (RF), K-Nearest Neighbour
(KNN), Extreme Gradient Boosting (XGB), and 3 Artificial Neural Networks (ANN) char-
acterized by various levels of complexity. Hyper-parameters fine-tuning is then performed
with the purpose of enhancing the performance of KNN, RF and XGB. Subsequently,
the final number and type of features, as well as the final predictive model with opti-
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mal hyper-parameters are going to be chosen based on the model performance, expressed
in Root Mean Squared Error (RMSE). The RMSE is calculated using the equation 3.3,
where yp is the predicted AGB of a ni point, yo is the observed AGB of the ni point, and
n is the number of validation points. Besides, it must be mentioned that the coefficient
of determination (R2) will not be used for model evaluation since it has been proved to
be an unreliable measure for evaluating non-linear problems; more information are found
in Appendix A.

¨
RMSE =

√
1

n
Σn

i=1

(
yp − yo

)2
(3.3)

Finally, the best performing model and features are going be used for generating the final
maps, as well as for performing model explanation with SHapley Additive exPlanations
(SHAP), recently proposed by Lundberg et al. (2020) for tree-based Machine Learning
models.
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Figure 3.4: Methodology workflow.
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Chapter 4

Implementation & Results

The following chapter covers the implementation and results of this study. Specifically, we
are going to answer each of the Research Questions (RQ) stated in Chapter 1. Both the
preprocessing steps and following analysis in this Chapter were performed by scripting
in Python3, a licence-free general-purpose programming language. Additionally, the final
maps were generated using ArcGIS Pro software, version 2.15.

4.1 Features selection

In order to build a reliable model for the estimation of Above Ground Biomass (AGB),
careful evaluation is required when deciding which and how many features to include in the
predictive model. To the best of our knowledge, step-wise regression and Random Forest
(RF) measures are amongst the most frequently used approaches for feature selection in
the field of AGB (Zheng et al., 2004; Vicharnakorn et al., 2014; Puliti et al., 2020; Forkuor
et al., 2020).

Despite step-wise regression is nowadays still widely used for this purpose, the author
decided not to include it. Such a decision is legitimized by the work of several authors
proving its unsuitability for feature selection (Babyak, 2004; Smith, 2018). By going
through a series of automatic steps, step-wise regression chooses a number of features from
a group of available potential variables; this is done via either forward, backward or bi-
directional elimination; at each step, features are evaluated typically through a t-statistic
test (Efroymson, 1960) and either eliminated or included in the model. Authors from
different fields affirm its unsuitability for feature selection, pointing out the misapplication
of what is supposed to be a single-step statistical tests to a multi-step procedure, this was
proved to lead to over-fitting and to create a false confidence in the final model. Smith
(2018) carried out an experiment by introducing false variable into an existing data-set;
his work shows how step-wise regression may choose nuisance variables rather than true
variables and that the out-of-sample accuracy of the model may be far worse than the
training accuracy. Smith (2018) concludes that such issues exacerbate when a larger
number of features is tested.

A total of 4 features selection methods are evaluated, including both supervised and
unsupervised approaches. Other than the Mean Decrease in Impurity (MDI) and the
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Mean Decrease in Accuracy (MDA), this work explores the potential of L1 Regularization
(LASSO); both of which are supervised methods - i.e. the target is known. Hence, an
unsupervised method, Principal Component Analysis (PCA) is included, and its perfor-
mance evaluated.

4.1.1 Random Forest for feature selection

RF is an ensemble Machine Learning (ML) algorithm constituted of several decision trees
(Breiman, 2001), and it is widely used for classification, regression, and other tasks. This
algorithm is often used for feature selection as it contains built-in methods able to generate
a ranking of the best features to include in the model. In this work, feature selection with
RF is performed by using 2 of these methods: Mean Decrease in Impurity (MDI) and
Mean Decrease in Accuracy (MDA). Most authors either use the MDI, an impurity based
measure or MDA, a permutation-based measure (Pandit et al., 2018; Puliti et al., 2020;
Hernandez-Stefanoni et al., 2020).

A RF was modelled by using all the 63 features, the measured AGB, and default hyper-
parameters showed in Table 4.5. Hence, the dataset was normalized and cross-validated
by using the previously described cross-validation function with 7 folds (Section 3.5).

Mean Decrease in Impurity (MDI)

The RF algorithm provides 3 measures of impurity: Gini index, entropy, and variance.
Variance, or residual sum of squares, is used to measure node impurity in regression
problems, and it represents the total reduction of the variance of the target variable due
to the split of a certain feature at the node (Lewinson, 2019). Impurity measures can be
used for feature selection by evaluating the extent to which each feature contributes to
decreasing the averaged impurity in each tree composing the forest (Lewinson, 2019), so
as to calculate the MDI for each feature. The feature able to account for more variance
decrease is going to be at the top of the ranking (Lewinson, 2019). Therefore, the MDI
can be see as the total decrease in node impurity from splitting on the variable, averaged
over all trees (Hong Han et al., 2016).

Despite impurity-based importance evaluation being widely used for feature selection, this
has been proved to be biased towards continuous or high cardinality features (Hong Han
et al., 2016). Another often mentioned critique about this approach is that impurity is
not a direct measure of a model performance, and it might lead to a false confidence in
the chosen variables (Lewinson, 2019).

Figure 4.1 shows the MDI that each feature brings to the model. We can observe that the
first 9 selected features, apart from the DEM, were all extracted from the Summer image.
Furthermore, biophysical parameters were often selected, specifically Canopy Chlorophyll
Content (LAIcb), Canopy Water Content (LAIcw), and a chlorophyll index calculated
using red-edge bands (Clre). A SWIR band (b12), the DEM, and a texture measure, the
entropy measure derived from the summer NDVI, were also included in the top selected
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features.

Figure 4.1: Feature selection based on the MDI measure.

Mean Decrease in Accuracy (MDA)

Permutation-based feature importance, henceforth MDA, performs a ranking of features
based on the increasing mean error of a tree in the forest when the feature values are
randomly shuffled though maintaining their distribution (Genuer et al., 2010). For re-
gression problems, the error refers to the Mean Squared Error (MSE). MDA is performed
by measuring the impact of each feature on the model MSE by starting from a MSE
baseline (Altmann et al., 2010). On the downside, permutation-based measures tend to
overestimate the importance of highly correlated features (Lewinson, 2019).

The general idea is to train a baseline model with all the original features and computing
its MSE with unseen data; the values of one of the features are then permuted and the
change in error is measured by subtracting the baseline MSE with the MSE generated after
the feature permutation. This is repeated for every feature. When a non-important feature
is permuted, this has little to none influence on the error, while when an important feature
is permuted, this corresponds to an increases of the MSE. Features which permutation
increases the validation error the most, will be found at the top places of the features
ranking.

Figure 4.2 illustrates the feature ranking performed using MDA. Looking at the first 10
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features it can be noticed how the order is slightly different than the one individualized
with the MDI method. The model performance suffers the most when biophysical param-
eters from the Summer image (LAI cb, LAI cw and Clre), the DEM and the SWIR band
(b12) are permuted. The Entropy measure (Ent VI Aug) and the fraction of absorbed
photo-synthetically active radiation (FAPAR Aug and Nov) were also included among
the most influential features, as it happened in the MDI ranking. Overall, permutation
feature importance is privileging features extracted from the Summer image.

Figure 4.2: Feature selection based on the MDA measure.

4.1.2 L1 Regularization for feature selection

Regularization algorithms aim to minimize the residual sum of squares of the model
by using the Ordinary Least Square (OLS); this is achieved by shrinking the estimated
regression coefficients approaching to zero (Muthukrishnan and Rohini, 2016). The Least
Absolute Shrinkage and Selection Operator (LASSO) was proposed by Tibshirani (1996);
LASSO regression is an L1 Regularization technique, which minimizes the absolute sum
of the coefficients; while L2 regularization minimizes the squared sum of the coefficients
(Muthukrishnan and Rohini, 2016).

Feature selection with LASSO is performed by multiplying every coefficient by a constant,
that is the regularization parameter alpha (α). Alpha controls the strength of penalty,
meaning that for large values of alpha, a large number of coefficients is forced to zero,
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which corresponds to the exclusion of those features from the model; on the other hand,
when alpha is equal to zero, we have the classic OLS (Fonti, 2017).

LASSO has been proved to perform well in case of multicollinearity, that is if there is high
correlation between the features, LASSO chooses only one of them and forces the others
to a coefficient of zero (Muthukrishnan and Rohini, 2016). In other words, regularization
consists in adding penalty to features introduced in the model in order to decrease the
freedom of the model and avoid over-fitting. In linear models this penalty is added in the
weights (or coefficients) that multiply each features. Working with LASSO gives us the
ability of bringing weights all the way down to zero, so as to drop less relevant features
from the model, while those which weights are not zero are added into it.

By keeping in mind that increasing the penalty alpha (α) will increase the number of
features removed, we need to keep an eye on this parameter and monitor that we do not
set a penalty too high so that it removes important features, or too low so that does not
remove unimportant features.

Therefore, in order to better explain LASSO and its regularization parameter, it helps
having a look at the classic linear model. This searches for weights to associate to each
feature (w0, w1, w2 . . . wn), such that:

¨X0w0 +X1w1 +X2w2 + . . .+Xnwn = y (4.1)

where y is the target and Xi are the input features. Hence, the error in the linear model
is given by:

¨error = ‖y −X0w0 +X1w1 +X2w2 + . . .+Xnwn‖ (4.2)

LASSO introduces a regularization term, which penalizes the model for high value of the
weights.

¨
error = ‖y −X0w0 +X1w1 +X2w2 + . . .+Xnwn‖+ α

∑
|wi|︸ ︷︷ ︸

regularization term

(4.3)

The regularization term can be seen as the opportunity cost of choosing to use a given
feature in the model, and the regularization parameter, α, controls how much we value
this cost. Therefore, for high values of α the model will select a small number of features
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because the opportunity cost of including each of them increases. On the other hand, by
relaxing the regularization term - i.e. lowering the value of α - the model starts including
more and more features in an order of importance.

This behaviour can be better understood by observing Figure 4.3, showing how the number
of features included in the model decreases as α increases from 0 to 10.

Figure 4.3: Regularization parameter and number of selected features.

In this work, LASSO was computed 1000 times, by ranging the value of α from 0 to 10,
with 1000 intervals. A ranking of the selected features was finally generated by doing
a sum of the frequency of their appearance throughout the 1000 iterations, as shown in
Figure 4.4, a). For instance, the first 3 selected features (LAIcwAug, LAIcwNov and
LAIcbAug) were included in the model for every value of α, while the forth one (LAINov)
was included 950 times out of the 1000 iterations. Moreover, Figure 4.4, b), shows the
sum of each feature coefficient (or weight) throughout the 1000 iterations. Overall, the
sum of weights tends to be higher for the most frequently included features.

Finally, LASSO frequently selected biophysical parameters from both August 2015 and
November 2016, as well as texture measures (Entropy and Contrast) and the DEM.
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Frequency of selection of each feature throughout the 1000 iterations (a) and sum of each

feature’s weight throughout the 1000 iterations (b); features are ordered based on their

frequency of selection.

Figure 4.4: Feature selection based on LASSO.31



4.1.3 Principal Component Analysis for feature selection

It is well-known that feature selection is not the primarily use of Principal Component
Analysis (PCA) (Walker, 2019). However, the author decided to incorporate it in this
work so as to explore the performance of an unsupervised approach.

PCA performs dimensionality reduction by transforming a coordinate system into another
in a way to capture the variation in the data, that is preserving as much information
present in the original dataset as possible (Guo et al., 2002). After its implementation,
the first dimension, henceforward component, in the new coordinate system is a linear
combination of the features and it has the maximum variance, while the second dimension
represents the maximum of the remaining variance and so on; in dataset composed of a
small number of features, the first few components usually explain most of the dataset
variance (Malhi and Gao, 2004).

It is considered acceptable to use PCA as a feature selection method if features are ranked
based on the amount of variance they explain in each component (Walker, 2019). That
was here achieved by using the loadings, which can be seen as the weight that each feature
has in a component of the PCA. Variables with higher loading values have higher influence
in explaining the variance of the dataset.

Visually, this can be observed in Figure 4.5, which displays the loading values of each
feature within the first Principal Component. However, the first Principal Component
only accounts for 50% of the total variance of the dataset; while first and second Principal
Components together add up to explaining circa 65% of it (Figure 4.6). With the purpose
of finding a sufficient number of Components, the percentage of variance explained by
adding an increasing number of them was tested. As showed in Figure 4.6, the total
explained variance eventually starts to converge as we add more components; the first
10 Principal Components already explain 95% of the total variance. Moreover, it can be
noticed in Figure 4.7 that after reaching 10 Principal Components the feature loadings
and ranking tend to stabilize when further Components are included; 10 was then chosen
as an appropriate number of Components for unsupervised feature selection.
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Figure 4.5: Loading values for the first Principal Component.

Figure 4.6: Cumulative explained variance.

Following this logic, the feature ranking was generated by doing a weighted sum of the
feature loadings over the 10 Principal Components, weighting them by the explained
variance ratio of each Component.

In Figure 4.7 a), we can observe that the features with higher loading values are Entropy
measures from August 2015 extracted from both band 2 (Ent b2 Aug) and the Normalized
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Difference Vegetation Index (Ent VI Aug), as well as band 2, band 3, band 4 and band 5
from the month of August (b2 Aug, b3 Aug, b4 Aug, b5 Aug). Features extracted from
the month of November as well as topographic measures are lower in the ranking.

Figure 4.7: Loading values of features using 10 Principal Components (a) and Loading

values of features using 20 Principal Components (b).
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4.2 Feature selection testing

In this section, the previously explained feature selection methods are tested and evaluated
using several non-parametric Machine Learning (ML) algorithms: K-Nearest Neighbour
(kNN), Random Forest (RF), Extreme Gradient Boosting (XGB) and, lastly, 3 Artificial
Neural Networks (ANN).

4.2.1 Feature selection testing with K-Nearest Neighbour

kNN is a ML algorithm and it does not assume normal distribution or linear relationships;
furthermore, it can be used for regression and classification problems. This non-parametric
algorithm has been widely tested for the prediction of AGB (Gao et al., 2018; Salem
et al., 2020). With ”k” representing the number of neighbours taken amongst the points
belonging to the training set. In the following section the default value of 5 was used
for ”k”, as indicated in Table 4.4. The estimation of the queried points is given by
the weighted average of the k nearest neighbours. The weights are set higher for those
neighbours spectrally similar to the queried point; while, smaller weights are set for those
neighbours spectrally less similar to it.

In order to test the 4 features rankings, several kNN regression models were trained.
More specifically, one kNN model was generated for each combination. For instance, the
performance of the features ranking resulted from the MDI measure (Figure 4.8) was
evaluated by testing 63 models with the first one having as input only the first-place
ranked feature (LAI cb Aug), the second model having as inputs only the first two top-
ranked features (LAI cb Aug and LAI cwAug), and so on, until the last model which was
built using as inputs all the 63 features. Hence, each model was cross-validated by using
the cross-validation and scaling function defined in Chapter 3.

The performance of the implemented models is illustrated in Figure 4.8, a); this shows how
the RMSE behaves when an increasing number of features is included in the model in a
certain order. Overall, it can been observed that, after an initial arise of the performance
i.e. decrease of the RMSE, the error started steadily increasing once more than circa
25 features are included in the model; the error converges when all the 63 features are
included, independently on the feature selection method. Furthermore, PCA was, at every
point, the worst performing method, while feature selection with MDA, MDI and LASSO
brought to similar errors. The lowest RMSE (43.93 t/ha) was reached when the first 25
features selected by MDA were included; these features are summarized in Table 4.4.
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Figure 4.8: Feature selection methods testing with K-NN (a) and

magnification over the best performing number of features (b).

In Figure 4.9, the measured AGB values of each validation folds were plotted together
with the model predictions. It can be noticed that low and high values were over- and
underestimated, respectively.

Figure 4.9: Goodness of fit on unseen data with kNN.

4.2.2 Feature selection testing with Random Forest

In order to test the 4 feature selection rankings, several RF algorithms were trained
using default hyper-parameters (Table 4.5). One RF was generated for each features
combination with the same logic as for the kNN, explained in Section 4.2.1. Hence, each
model was cross-validated by using the cross-validation and scaling function defined in
Chapter 3.

The performance of the implemented RFs is illustrated in Figure 4.10, a); this shows how
the RMSE behaves when an increasing number of features is included in the model in a
certain order. Overall, it can been observed that, after an initial arise of the performance
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i.e. decrease of the RMSE, the error started steadily increasing once more than circa 5
features were included in the model.

When analysing the same graph in more detail, it can be observed that the RF modelled
using the features selected by PCA hold the highest RMSE independently on how many
of them were included in the model. Furthermore, the magnified plot in Figure 4.10 b),
shows that the lowest RMSE corresponds to 44.29 t/ha and it is achieved by using the
first 3 features of the ranking generated by MDA.

Figure 4.10: Feature selection methods testing with RF (a) and

magnification over the best performing number of features (b).

Finally, the measured and unseen AGB values were plotted together with the prediction
for each folder of the RF model yielding to the lowest RMSE amongst those tested (Figure
4.11). Here, it can be noticed that values lower than 40 t/ha and higher than 160 t/ha
were over- and underestimated, respectively.

Figure 4.11: Goodness of fit on unseen data with RF.
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4.2.3 Feature selection testing with Extreme Gradient Boosting

Increasing the predictive power of a regression model, by decreasing its validation error, is
often achieved through performing either Regularization, Boosting or Bagging techniques
(Sutton, 2005).

In Random Forest (RF), bagging is used to average the results of the trees composing
the forest. Bagging involves the generation of a bootstrap dataset by randomly select-
ing samples from the original dataset, and averaging the prediction of the single trees
(Breiman, 2001); in the RF algorithms each tree is independent of the others and has
the same weight on the final model predictions. On the other hand, in the Boosting
algorithm, single trees depend on each other. Boosting was first introduced by Schapire
(1990), and it works by transforming several so called weak learners in a strong learner
so as to improve the model performance; this is achieved by iteratively adding individual
weak learners, in this case decision trees, into a stronger model. Weak learners can be
defined models which output is only moderately correlated with the true value, while still
yielding a better performance than using random guesses (Schapire, 1990). These trees
are not built on random subsets of the original dataset as for the RF algorithm, but rather
each new tree is built in a way to focus on those instances affected by bigger errors, so as
to take into account the previous tree mistakes. This is possible by adjusting the weights
that each instance has, starting with the same weight all-over the dataset and increasing
it for those instances affected by high prediction errors.

Gradient Boosting and Adaptive Boosting are two often used Boosting algorithms. In this
work, the focus is on an implementation of Gradient Boosting, namely Extreme Gradient
Boosting (XGB), recently introduced by Chen and Guestrin (2016). The Gradient Boost-
ing algorithm combines the Boosting principles with the gradient descent. Each time a
new tree is built, the gradient is utilized for minimizing a loss function; the predictions of
the tree are compared with the correct output, and the errors are used for calculating the
gradient. This describes the steepness of the error function and it is found by doing the
partial derivative of the loss function (Friedman, 2002), such measure is utilized for boost
the model predictions by adjusting the prediction of the next tree, and so on (Friedman,
2002); the learning rate can be seen as the speed at which the gradient descends.

The Extreme Gradient Boosting (XGB) is amongst the most popular variants of the
Gradient Boosting algorithm and it has been the winner of many Machine Learnig (ML)
competitions (Seif, 2019); Gradient Boosting can be seen as one of the parts composing
this algorithm. XGB is a big ML algorithm composed of many parts such as gradient
boosting, regularization, cache aware access, variables splitting into quantiles, and so on.
Here, only 3 of its major differences with the classic Gradient Boosting are mentioned.
Firstly, Regularization using Ridge (L2) and LASSO (L1) regression is performed each
time a new tree is added, this decreases the importance given to the training set so as
to improve the model generalization which allows a better performance on unseen data
(Chen and Guestrin, 2016). Secondly, instead of computing the first partial derivative,
XGB speed is increased by computing the second partial derivative, or second order
gradient, of the loss function (Chen and Guestrin, 2016). Lastly, XGB allows for quick
computation timing; this is possible thanks to a cache aware access which allows to utilize
cache memory for calculating similar scenario without the need of accessing the slower
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hard drive memory,

In order to test the 4 feature selection rankings, several Extreme Gradient Boosting
algorithms were trained using default hyper-parameters, as showed in Table 4.6. Hence,
each model was cross-validated by using the cross-validation and scaling function defined
in Chapter 3.

The performance of XGB is illustrated in Figure 4.12, a). Overall, it can been observed
that, after an initial arise of the model performance, the error started erratically increasing
once more than 23 features were included in the model. Moreover, the XGB algorithm
modelled using the features selected by PCA held the highest RMSE independently on
how many features were included in the model. Hence, the magnified plot in Figure 4.12
b), shows that the lowest RMSE corresponds to 45.44 t/ha and it is achieved by using
the first 23 features of the ranking generated by MDI.

Figure 4.12: Feature selection methods testing with XGB (a) and

magnification over the best performing number of features (b).

Finally, measured AGB values were plotted together with the best model predictions
(Figure 4.13). For this model, values lower than 40 t/ha and higher than 160 t/ha were
over- and underestimated, respectively.
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Figure 4.13: Goodness of fit on unseen data with XGB.

4.2.4 Feature selection testing with Artificial Neural Networks

The following section includes a brief description of the 3 implemented Artificial Neural
Networks (ANN). Hence, a Linear (LNN), a Shallow (SNN) and a Deep Neural Network
(DNN) were generated in order to test the 4 feature selection methods.

An ANN can be defined as a structure made up of densely interconnected simple processing
units - also known as neurons - capable of performing considerably parallel computations
(Basheer and Hajmeer, 2000). These neurons are the core processing units of the network.
Hence, neurons of one layer are connected to the ones of the next layer via channels which
are in charge of assigning weights. A brief and general description of the main components
of these models is provided:

1. Input layer: this is constituted by the chosen features used to train the model. The
inputs are multiplied by their corresponding weights and their sum is then sent to
the first hidden layer, if there are any.

2. Hidden layer(s): each of the neurons belonging to this layer is associated with a
value, the bias, which is added to the inputs sum received from the input layer or
from a previous hidden layer. Hence, this new value is passed through an activation
function which decides whether a neuron gets activated of not; therefore, activated
neurons transmit the data to the next layer.

3. Output layer: the predicted output is compared to the actual output, hence the
magnitude of the error is calculated, transferred backwards to our network and
used for adjusting the inputs weights.

This process keeps adjusting the weights until a given number of epochs is reached; an
epoch can be defined as the dataset passing forward and backward through the ANN only
one time (Sharma, 2017).
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Linear Neural Network

The hyper-parameters used to build the LNN are listed in Table 4.1. In order to test the
4 feature selection rankings, several LNN were trained so that each features combination
could be tested.

Their performance is illustrated in Figure 4.14, a). Overall, it can been observed that the
RMSE erratically decreases as new features are added into the model. The minimum error
(76.42 t/ha) was achieved by using the the first 39 features identified by L1 Regularization
(LASSO). Additionally, the features selected by Principal Component Analysis (PCA)
held the highest RMSE independently on how many features were included into the model.

Figure 4.14: Feature selection methods testing with the Linear Neural Network (a) and

magnification over the best performing number of features (b).
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Linear Neural Network

Selected variables

(39 from LASSO)

LAINov, LAIcwNov, LAIcwAug, LAIcbAug, LAIcbNov,

EntVIAug, DEM, ConVINov, Entb2Aug, ClreNov, b12Aug,

b8Aug, NDVIre3Aug, b2Aug, b3Aug, NDVINov, EntVINov,

Conb2Aug, GNDVINov, b8Nov, GNDVIAug, ConVIAug,

b4Aug, NDVIre3Nov, NDVIAug, b3Nov, NDVIre2Aug, LAIAug,

slope, b4Nov, MeaVINov, Meab2Nov, Meab2Aug, b6Nov,

MeaVIAug, NDVIre1Aug, FAPARAugust, b2Nov, Entb2Nov

Hidden layers Neurons Optimizer Epochs Activation Function

0 1 Adam 500 Linear

RMSE (t/ha) 76.42

Table 4.1: Construction and performance of the Linear Neural Network

The measured AGB values were plotted together with the predictions of the best per-
forming LNN (Figure 4.15). Hence, it can be noticed that most of the values were under-
predicted.

Finally, the model was tested for over-fitting by plotting its training and validation loss.
No considerable over-fitting was found for the LNN, as visible in Figure 4.16.

Figure 4.15: Goodness of fit on unseen data with the Linear Neural Network.
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Figure 4.16: Training and Validation loss in the Linear Neural Network.

Shallow Neural Network

A Shallow Neural Network (SNN) was built by using the hyper-parameters listed in Table
4.2. This is composed of 2 hidden layers made up of 8 and 4 neurons; hence, a rectified
linear activation function (Relu) was used for the inner layers. This function works by
directly outputting the input value when this is positive and outputting zero when the it
is negative. Finally, a linear function is used for the last layer.

In order to evaluate the feature selection rankings, several SNN were trained so that each
features combination could be tested. Their performance is illustrated in Figure 4.17,
a). Overall, the RMSE showed a very erratic pace, and reached a minimum (42.62 t/ha)
when 15 features identified by LASSO were added to the model.

Figure 4.17: Feature selection methods testing with the Shallow Neural Network (a) and

magnification over the best number of features (b).
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Shallow Neural Network

Selected variables

(15 from LASSO)

LAINov, LAIcwNov, LAIcwAug, LAIcbAug, LAIcbNov,

EntVIAug, DEM, ConVINov, Entb2Aug, ClreNov, b12Aug,

b8Aug, NDVIre3Aug, b2Aug, b3Aug

Hidden layers Neurons Optimizer Epochs Activation Function

2 8, 4, 1 Adam 500 Relu & Linear

RMSE (t/ha) 42.62

Table 4.2: Construction and performance of the Shallow Neural Network

Additionally, the measured AGB values were plotted together with the prediction of the
SNN yielding to the lowest RMSE (Figure 4.18). Hence, it can be noticed that values
lower than 40 t/ha and higher than 160 t/ha were over- and under-predicted, respectively.

Finally, the SNN was tested for over-fitting (Figure 4.19). It can be observed that, as
the number of epochs increased, the training and validation loss started diverging; this
indicates that the model was over-fitting the training data.

Figure 4.18: Goodness of fit on unseen data with the Shallow Neural Network.
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Figure 4.19: Training and Validation loss in the Shallow Neural Network.

Deep Neural Network

The hyper-parameters set to build the Deep Neural Network (DNN) are listed in Table
4.3. This has 5 hidden layers made up of 128, 64, 32, 16 and 8 neurons; hence, a Relu
activation function is used for the inner layers, while a linear function is set for the output
layer. Moreover, 2 dropouts are added. Briefly, by setting a dropout the network ignores
certain neurons during the training phase; this is an approach to Regularization in ANNs,
and is used to prevent over-fitting in Deep Neural Networks (DNN) (Srivastava et al.,
2014).

With the scope to evaluate the feature selection rankings, several DNN were trained so
that each features combination would be tested. Their performance is illustrated in Figure
4.20, a). Overall, it can been observed that the RMSE had a very erratic pace, and after
and initial decrease, it started increasing after more than circa 5 features were added. The
best performing DNN was achieved when using the 5 features identified by MDI, which
yielded an error of 42.30 t/ha.
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Figure 4.20: Feature selection methods testing with the Deep Neural Network (a) and

magnification over the best performing number of features (b).

Deep Neural Network

Selected variables

(5 from MDI)
LAIcbAug, LAIcwAug, ClreAug, b12Aug, DEM,

Hidden layers Neurons Optimizer Epochs Activation Function

5 + 2 dropouts*
128, 64, 32,

16, 8, 1
Adam 500 Relu & Linear

RMSE (t/ha) 42.30

*A dropout of 0.3 is found between the first and second hidden layer, and another dropout of

0.1 is found between the third and the fourth hidden layer.

Table 4.3: Construction and performance of the Deep Neural Network

Therefore, the unseen AGB values were plotted together with the prediction of the DNN
yielding to the lowest RMSE (Figure 4.21). Hence, it can be noticed that values lower
than 40 t/ha and higher than 160 t/ha were over- and under-predicted, respectively.

Finally, the DNN was tested for over-fitting (Figure 4.22). It can be observed that the
training and validation loss diverged and the first was over-fitting the training data.
Hence, the validation loss stayed constant throughout the epochs.
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Figure 4.21: Goodness of fit on unseen data with the Deep Neural Network.

Figure 4.22: Training and Validation loss in the Deep Neural Network.

Overall, all of the tested models selected different feature selection methods, without
showing any evident preference; an exception was found for the PCA method, which
yielded to the worst predictions for every model. Specifically, the feature ranking gen-
erated by the MDI method resulted in lower RMSE for XGB and DNN. These features
mostly included biophysical parameters from the Summer month, a Short-wave infrared
band (band 12), a chlorophyll index derived from the red-edge bands and topographic
variables. The XGB, which included more features, was modelled using also biophysical
parameters from the Autumn month and texture measures. The MDA method, which
was chosen by RF and kNN, ranked the features is a similar way to MDA; the best per-
forming included topographic variables, biophysical parameters from the Summer month,
band 12, and a chlorophyll index derived from the red-edge bands. Finally, LASSO was
chosen by the LNN and the SNN; this method identified, as most important features,
biophysical parameters and texture measures from August and November, band 2, 3, 8
and 12 and Vegetation Indices derived from the red-edge bands.
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4.3 Hyper-parameters fine-tuning

L1 Regularization (LASSO) for feature selection was introduced in Section 4.1.2. Such a
model attempts to find the values for the weights w0, w1, . . . , wn which minimize the error
given by the formula 4.4. The way in which weights are optimized is heavily dependent
on the value of alpha (α), which is not being tuned by the model itself, but it is rather
predefined by the user. Therefore, α is what is known as a hyper-parameter.

¨
error = ‖y −X0w0 +X1w1 +X2w2 + . . .+Xnwn‖+ α

∑
|wi|︸ ︷︷ ︸

regularization term

(4.4)

Other examples include the number of trees in a Random Forest (RF), the number of
neighbours in K-Nearest Neighbour (kNN), as well as the learning rate of an Artificial
Neural Network (ANN). Therefore, in order to improve the model performance, the user
must optimize its hyper-parameters by following different approaches. The following sec-
tion illustrates 3 hyper-parameters optimization methods - Grid Search, Random Search
and Bayesian Search - for 3 of the previously tested algorithms - KNN, RF, and Extreme
Gradient Boosting (XGB). Hence, a range of values for each tested hyper-parameter was
predefined by the author before any search method was applied.

Hyper-parameters optimization with Grid Search involves the generation of many models,
so as to test all the possible hyper-parameters combinations. This approach always yields
to the combination resulting in the best performing model; on the other hand, when the
problem is multidimensional - i.e. more than one hyper-parameter needs to be fine-tuned
- the computation can become extremely time-consuming. A visual explanation of hyper-
parameter fine-tuning using the Grid Search method is found in Figure 4.23, where a
1-dimensional problem is illustrated.

Figure 4.23: Grid Search with a 1-dimensional problem.
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Random Search looks for the best hyper-parameters combination by creating as many
models as the number of predefined iterations. The success or failure of this approach
in increasing the model performance is totally random and it cannot give the user any
guarantees; on the other hand, the computation is very fast if the number of iteration is
kept low. A visual explanation of hyper-parameter fine-tuning using the Random Search
method is found in Figure 4.24, where a 1-dimensional problem is illustrated.

Figure 4.24: Random Search with a 1-dimensional problem.

Bayesian optimization was implemented by using a python package created by Nogueira
(2014); who defines this algorithm as a constrained global optimization tool which needs
a performance metric to be maximized in as few iterations as possible, through Bayesian
inference and Gaussian process. For this work, the negative RMSE (-RMSE) was set
as the value to be maximised. Subsequently, the hyper-parameters which want to be
tested for each algorithm and their respective ranges were identified. Hence, Bayesian
optimization builds a probabilistic model for the selected performance metric and search
for the hyper-parameters combination which maximises the value of such a chosen metric.

Hyper-parameters optimization with Bayesian Search has been proved useful for high-
dimensional problems (Snoek et al., 2012); this approach is here used as an alternative
to the long computational time characterizing a Grid Search and to the pure randomness
which we deal with when using Random Search.

A visual explanation of hyper-parameter fine-tuning using the Bayesian optimization
method is found in Figure 4.25, where a 1-dimensional problem is illustrated. In this
example, we have a certain performance metric to be maximised, and one only hyper-
parameter that is going to be tested and for a given range. Hence, the algorithm is
initialized with 5 randomly chosen values for the hyper-parameter. Next, the optimiza-
tion process starts and it can be divided into 3 major steps: updating the probability
model of the loss function; choosing a new hyper-parameter value (next best guess); and
evaluating the model performance for that new value.

The probability model of the loss function - or prediction objective function - is evaluated
by using Bayesian inference - a method used for updating a probability once new infor-
mation is available - and Gaussian process. The Gaussian Process is the generalization of
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a Gaussian distribution where, instead of over random numbers, the distribution is over
a function; furthermore, just like the Gaussian distribution is defined by its mean and its
variance, a Gaussian Process is defined by its mean function and its standard deviation
function (Brochu et al., 2010). Hence, for every point in our prediction function, the
Gaussian Process returns the mean and standard deviation of the normal distribution at
that point. Figure 4.25 shows some areas with known values around which the uncertainty
of the prediction is very low, whereas areas in which no value was sampled the uncertainty
of the prediction is very high.

Once the initial probability model is generated, a new value for the hyper-parameter
is tested. Bayesian optimization does this thanks to an utility function (or acquisition
function) (Snoek et al., 2012). High values for the acquisition function are found in
regions where the Gaussian Process predicted high performance (exploitation zone) or in
regions where uncertainty is very high (exploration zone); areas characterized by both
exploration and exploration are sampled first as next best guess (Brochu et al., 2010).
Once the new hyper-parameter value is sampled, the model performance is evaluated, and
the probability model is updated with the new information; this cycle is repeated until a
certain threshold is reached or once the iterations are over.

Figure 4.25: Bayesian Search with a 1-dimensional problem.

K-Nearest Neighbour fine-tuning

The Grid Search hyper-parameter optimization for the kNN algorithms was performed
by using as model input the 25 previously selected variables from the MDA feature selec-
tion method, and by fine-tuning the number of neighbours (k) is order to find the best
performing kNN model. As showed in Figure 4.26, a range of values from 0 to 50 were
tested. By observing the left-hand-side of the graph, it can be noticed that the RMSE
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plummet when higher number of neighbours was added, until reaching 11 neighbours,
which produced the lowest validation error. Furthermore, as more neighbours are added
the performance of the model starts decreasing again.

The best performing kNN model was finally defined; this yielded an error of 42.68 t/ha,
which was achieved by using as independent variables the 25 features selected by the
MDA measure, and 11 neighbours (Table 4.4).

Figure 4.26: KNN optimization with Grid Search.
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K-Nearest Neighbour

Selected variables

(25 from MDA)

DEM, LAIcbAug, b12Aug, LAIcwAug,

ClreAug, EntVIAug, FAPARAug,

FAPARNov, slope, GNDVIAug,

LAINov, LAIcbNov, Conb2Aug,

FCOVERNov, MeaVINov, LAIAug,

Entb2Aug, EntVINov, LAIcwNov,

Entb2Nov, b3Aug, b11Aug,

GEMINov, MeaVIAug, Meab2Aug

Hyper-parameter Default Grid Search

Number of

Neighbours
5 11

RMSE (t/ha) 43.93 42.68

Table 4.4: K-Nearest Neighbour model construction.

Random Forest fine-tuning

Hyper-parameters optimization for Random Forest (RF) was performed by using as model
input the 3 previously selected variables from the MDI feature selection method, and by
fine-tuning 4 hyper-parameters within their respective range of values: maximum depth
(from 10 to 100), minimum sample leaf (from 1 to 2), number of estimators (from 30 to
1000), and the minimum sample split (from 2 to 5). Hence, the performance reached by
each optimization approach is showed in Table 4.5.

It can be observed that the Grid Search method yielded the lowest validation error (44.13
t/ha) amongst the tested RFs, however it also required over 96 hours of computational
time. On the other hand, the Random Search was the worst hyper-parameters fine-tuning
method with a RMSE of 44.26 t/ha. Overall, all the optimization approaches yielded a
better performance compared to using default hyper-parameters; however, it should be
noticed that such differences in errors are still too small to be considered relevant.
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Random Forest

Selected variables

(3 from MDA)
DEM, LAIcbAug, b12Aug

Hyper-parameters Default Grid Search Random Search Bayesian Search

Max depth none 19 30 24

Min samples leaf 1 1 1 1

Number of

estimators
100 95 140 96

Min samples split 2 2 2 2

RMSE (t/ha) 44.29 44.13 44.26 44.16

Table 4.5: Random Forest model construction.

Extreme Gradient Boosting fine-tuning

Hyper-parameters optimization for XGB was performed by using as model input the 23
previously selected variables from the MDI feature selection method, and by fine-tuning 6
hyper-parameters within their respective range of values: Alpha (from 0 to 0.9), Gamma
(from 0 to 0.9), learning rate (from 0 to 0.9), Number of estimators (from 30 to 1000),
maximum depth (from 1 to 8), and the sub-sample (from 0 to 0.9). Hence, the performance
reached by each of the tested optimization approaches is illustrated in Table 4.6.

Due to its long computation time, Grid Search was not tested for the XGB algorithm.
However, an important decrease in error was reached by implementing Bayesian opti-
mization (37.79 t/ha). On the other hand, the Random Search was again the worst
hyper-parameters fine-tuning method with a RMSE of 94.34 t/ha. Overall, not all the
optimization approaches yielded a better performance compared to using default hyper-
parameters.
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Extreme Gradient Boosting

Selected variables

(23 from MDI)

LAIcbAug, LAIcwAug, ClreAug, b12Aug, DEM,

FAPARAug, EntVIAug, GNDVIAug, FAPARNov,

slope, LAINov, LAIcbNov, LAIAug, Conb2Aug,

FCOVERNov, MeaVINov, EntVINov, Entb2Aug,

LAIcwNov, GEMINov, ClreNov, Entb2Nov, b4Aug

Hyper-parameters Default Random Search Bayesian Search

Alpha 0 0 0.05

Gamma 0 0 0.30

Learning rate 0.30 0 0.40

Number of

estimators
100 178 130

Max depth 6 1 1

Subsample 1 0 0.7

RMSE (t/ha) 45.44 94.35 37.79

Table 4.6: Extreme Gradient Boosting model construction.
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4.4 Above Ground Biomass and Carbon Sequestra-

tion mapping

The following section contains a usual comparison amongst Above Ground Biomass
(AGB) maps generated by using the prediction of 3 different models. Hence, the final
AGB map and related Carbon Sequestration (CS) map are presented.

Figure 4.27: Comparison between AGB maps generated from different models.

Amongst the tested RF models, the one which yielded the best performance was used to
produce the first AGB map of Figure 4.27. This model was built by using the 3 top-ranked
features selected by the MDA measure, and hyper-parameters optimization with the Grid
Search. Such a model led to a validation error of 44.16 t/ha. The estimated AGB ranges
from 0.72 t/ha to 274 t/ha, with an average value of 81.31 t/ha and a standard deviation
of 52.14 t/ha (Figure 4.28). The second map of Figure 4.27 was generated by using the
Deep Neural Network (DNN) predictions, which yielded to the best performance amongst
the tested ANN. This model was built by using the 5 top-ranked features selected by the
MDI measure. Such predictions led to a validation error of 42.30 t/ha. The estimated
AGB ranges from 9.18 t/ha to 500 t/ha, with an average AGB value of 76.69 t/ha, and
a standard deviation of 56.87 t/ha (Figure 4.28). The final map depicted in Figure 4.27
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was generated by using the prediction from the XGB model which yielded the lowest error
compared to all of the previously tested algorithms. This model was built by using the
23 top-ranked features selected by the MDI measure, and hyper-parameters optimization
with the Bayesian Search. The model led to a validation error of 37.79 t/ha, an estimated
average AGB value of 83 t/ha, a minimum of 0 t/ha, a maximum of 346.56 t/ha and a
standard deviation of 51.3 t/ha (Figure 4.28).

Overall, the predictions from all of the mentioned models as well as the field-based AGB
values resulted in distributions skewed to the right, with a higher frequency of low to
average values. The DNN predictions resulted in a lower average value compared to the
other models.

Figure 4.28: Comparison between AGB predictions generated from different models.

The XGB model was used for the generation of the final AGB and CS maps. The AGB
map in Figure 4.29 was generated by using 6 manual classes; it can be observed that
the majority of the territory located on the south-west of map is covered by AGB values
ranging from 0 t/ha to 100 t/ha, with spread high values ranging from 101 t/ha to 200
t/ha. On the other hand, the second portion of the study area, located on the north-east
side of the map, is characterized by higher AGB values, with areas reaching over 250 t/ha.

Finally, a Carbon Sequestration (CS) map was generated by using the conversion factor
suggested by the IPCC (2006), that is multiplying the predicted AGB values for 0.47.
The CS map in Figure 4.30 was generated by manually defining 6 classes; the portion of
the study area located on the south-west of map is sequestrating 0 t/ha to 40 t/ha, with
spread higher values ranging from 41 t/ha to 80 t/ha. On the other hand, the second
portion of the study area, located on the north-east side of the map, is characterized by
higher CS, with areas storing over 120 t/ha.
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Figure 4.29: Map of estimated Above Ground Biomass.

Figure 4.30: Map of estimated Carbon Sequestration.
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4.5 Model explanation with Shapley values

Ideally, a Machine Learning (ML) model should be highly accurate and simple to interpret.
By ”simple to interpret” is intended the ability to expose its performance in an under-
standable and intuitive way. Unfortunately, the more the model complexity increases,
the harder it is to understand how certain values were predicted and which features had
contributed more to those predictions. When working with a simple model, the impact
that a feature has on the model output is easily interpretable by looking at its weights;
whereas, complex models such as ensemble methods or deep networks are not as easy to
understand; in this scenario, a model explainer can help interpreting the model results
(Lundberg and Lee, 2017).

In the following section, the SHapley Additive exPlanations (SHAP) package was used as
model explainer for the best performing Extreme Gradient Boosting (XGB) model. SHAP
was created by Lundberg et al. (2020) 1 and, according to its author, its implementation
allows for appropriate user trust, provides insights for model improvement, and supports
the understanding of the problem being modelled (Lundberg and Lee, 2017). It should
be noticed that only the 20 first most influential features can be visualised by the SHAP
package.

This approach differs from the more common feature importance methods such as the
previously explained MDA, which solely compute the global feature importance. Whereas,
SHAP is a local method, meaning that a local feature importance is calculated for every
observation. This is performed by holding out the feature value before predicting each
instance; which is then repeated for each feature and each instance of the entire training
set so as to measure the local importance of each feature. The computation of each
instance for big dataset can become time consuming, however, in 2020 a fast and precise
algorithm was created for tree-based models (Lundberg et al., 2020).

A global feature importance can be obtained by aggregating the local feature importance
of each instance, as shown in the summary plot in Figure 4.31, where each dot represents
an observation of the dataset. This plot illustrates how the model predictions were in-
fluenced by each feature. More specifically, it shows the features contribution, for each
instance, in pushing the model output from a base value to the output value; where the
base value is defined as the average model output over the training set (Lundberg et al.,
2020). When a feature has negative SHAP value, the dot representing that instance is
found on the left-side of the plot and it means that that feature value pushed the predic-
tion for that instance (or dot) to be lower than the base value; on the other hand, if a dot
is found on the right-hand side of the plot, the observed feature value pushed the model
output to be higher than the base value. Furthermore, for each feature, overlapping points
are visualized in the y-axis direction so to give an idea of the feature values distribution.
Additionally, the colour of the dots refers to the features value.

Finally, by observing the summary plot in Figure 4.31 the features can be divided into 2
groups: 1) features which increasing in values pushed the model to output AGB higher
than the base value; 2) features which increasing in values would push the model to
output AGB lower than the base value. Belonging to the first group are: The Chloro-

1https://github.com/slundberg/shap
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phyll index based on red-edge bands from the Summer month (ClreAug), the Fraction of
absorbed radiation from both months (FAPARAug and FAPARNov), the Canopy Chloro-
phyll Content from the Summer month (LAIcbAug), and the slope; while, band 12 from
the Summer image (b12Aug) and the DEM belong to the second group. The remaining
features do not show any clear visual pattern in the way they impacted the model output.

Figure 4.31: Summary plot with SHAP.
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Chapter 5

Discussion

The presented work aimed to assess the potential of Sentinel-2 for Above Ground Biomass
(AGB) estimation by exploring a broad palette of methods from the domain of Machine
Learning (ML). The following Chapter discusses the findings, strengths and limitations
of this work and it is structured in the form of answers to the Research Questions (RQ)
stated in Chapter 1.

The 1st and 2nd RQs sought to identify an optimal feature selection method
and which of these features would yield to an optimal model performance,
respectively. This work tested 4 feature selection methods: Mean Decrease in Impurity
(MDI), Mean Decrease in Accuracy (MDA), Principal Component Analysis (PCA) and
L1 Regularization (LASSO). Hence, their performance was tested by several regression
models: K-Nearest Neighbour (K-NN), Random Forest (RF), Extreme Gradient Boosting
(XGB), a Linear Neural Network (LNN), a Shallow Neural Network (SNN) and a Deep
Neural Network(DNN).

The features ranking resulted from MDI, MDA and LASSO were chosen equally often by
the models, resulting in none of these methods clearly standing out. Whereas, PCA gave
the worst performance for every model. Being PCA an unsupervised algorithm based
on variance, we can say that none of the models benefited from using features which,
despite explaining a high percentage of variance in the dataset, were not necessarily cor-
related with the target. The ranking provided by MDA and MDI resulted to be very
similar; this is sustained by the fact that both of them are measures derived from the
RF algorithm. Moreover, RF and XGB chose the features ranking by MDA and MDI,
respectively. Therefore, tree-based models performed better with RF derived features
rankings. The two methods (MDA and MDI) are advantageous as they are of easy im-
plementation, with MDI having a slightly faster computational time. Moreover, despite
LASSO ranked the features in a different order compared to MDI and MDA, it showed a
very similar performance in terms of model accuracy and quick computation time. Also,
despite its implementation not being very straightforward, feature selection with LASSO
should be further explored especially when working with models which are not tree-based
- i.e. Artificial Neural Networks (ANN).

Overall, Summer features were selected more often than Winter features by all feature
selection methods. Out of the 63 initially generated variables, only 23 features selected
by MDI were used for the final model. The highest ranking features by their importance
are: biophysical parameters (LAI, LAI cw, FAPAR) from the Summer month, the Digital
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Elevation Model (DEM), a SWIR band(band 12) and a Chlorophyll index generated from
the red-edge bands (Clre), both from the Summer month.

Still, there was a significant difference among the number of selected features, with the
lowest number (n = 3) selected for the RF by MDA, and the highest number (n = 39)
selected for the LNN. This fact, together with the fact that there was not a clear winner
among the feature selection methods, suggest that regression models may be expressing
preference to a specific feature selection method. Indeed, the models tended to need a
lesser number of features when these were ranked by MDI and MDA.

In the context of AGB estimation, several authors have been performing feature selection
based on either stepwise regression or RF derived measures (Gao et al., 2018; Lu, 2006).
However, further studies including more feature selection methods testing (such as Monte
Carlo simulations) should be performed in order to confirm or deny the hypothesis of
preference towards any methods.

The 3rd and 4th RQs aimed to identify the optimal hyper-parameters fine-
tuning method and regression model, respectively, for the estimation of AGB
in the study area. The following hyper-parameters optimization methods were tested:
Random, Grid and Bayesian Search. Hence, the Grid Search provided the lowest errors for
the tested models. However, due to its long computation time, it was inconvenient for it
to be tested in models requiring many hyper-parameters. Moreover, the decrease in error
achieved when using Grid and Random Search, was small and irrelevant, as this was only
a few decimal points. On the other hand, Bayesian Search significantly improved the XGB
model predictions; this Search method had advantageous computation time compared to
the Grid Search, yet its implementation was slightly more complex.

The models with high number of free hyper-parameters exhibited the highest improve-
ment of predictive performance after hyper-parameter fine-tuning. Therefore, we can say
that the importance of hyper-parameters optimization depended on the model used. In
this work, the XGB was found to be the best performing algorithm when used in combi-
nation with MDI and Bayesian Search. The importance of hyper-parameter fine tuning
for models with many hyper-parameters was confirmed by Pandit et al. (2018); how-
ever, the manual hyper-parameters optimization implemented in their study improved
the performance of only a few irrelevant decimal points.

For all the tested models, AGB values lower than 40-50 t/ha were slightly overpredicted
whereas values higher than 150-160 t/ha were underpredicted. As it was confirmed by
previous studies (Galidaki et al., 2017; Salem et al., 2020; Forkuor et al., 2020), this is
a typical issue when estimating AGB with the use of ML and satellite images, and it is
exacerbated by a limited number of representative samples for low and high values of the
forestry inventory.

Answering to the 5th RQ allowed for collecting more insights on the input
features and their influence on the model output. This was achieved thanks to
a model explainer, that was the SHapley Additive exPlanations (SHAP) package. It
was found that high values of a Vegetation Index generated from the red-edge bands and
biophysical parameters extracted from the Summer season, lead to an increase in predicted
AGB. The same positive behaviour was found for certain biophysical parameters extracted
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from the Autumn Season. In contrast, high values of the Summer SWIR band and high
elevation pushed the predicted AGB to values lower than the baseline. Those findings
are in agreement with the scientific consensus on the relationship between elevation and
biomass.

The insights gathered with SHAP showed the utility of a model explainer for the scientific
community. Further work should be focusing on the exploration of model explainers so
as to allow for appropriate user trust, to provide insights for model improvement, and
to support the understanding of the problem being modelled (Lundberg and Lee, 2017).
Hence, a model explainer is a beneficial tool to use when communicating the study results
to clients.

Finally, by comparing different methods for each of the main methodological cornerstones
(Figure 3.4), this work contributed to our understanding of the limitations and strengths
of those approaches and underlines the importance of feature selection and well as of
model optimization and explainability.
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Chapter 6

Conclusion

This work implemented a Sentinel-2 based exploratory workflow for the estimation of
Above Ground Biomass (AGB) and Carbon Sequestration (CS). In the last decades,
remote sensing-based studies on AGB have been widely investigated. Up-to-date mapping
of such measures are required by international commitments under the climate convention
as well as by sustainable forest management practices. Hence, this study explored a
palette of feature selection methods, regression models, hyper-parameters optimization
approaches, and a model explainer. We conclude that:

• Sentinel-2 images - especially when collected in the Summer month - effectively pre-
dicted AGB. The most influential features were found to be: a Vegetation Index
(VI) derived from red-edge bands (Clre Aug), a SWIR band (b12 Aug), and bio-
physical parameters (FAPAR Aug, LAI cb Aug, FAPAR Nov). Also, the Digital
Elevation Model (DEM) showed strong influence on the predictions.

• Amongst the 4 tested feature selection methods - Mean Decrease in Impurity (MDI),
Mean Decrease in Accuracy (MDA), L1 Regularization (LASSO) and Principal
Component Analysis (PCA) -, MDI, MDA and LASSO led to similar results in
terms of models performance; therefore, the easiness of use and fast speed of MDI
makes it more advantageous. It is unclear which feature selection method performed
the best, this will need further studies and depends on the model used. On the other
hand, the PCA method was constantly unsuccessful.

• All of the tested regression models - k-Nearest Neighbour (kNN), Random Forest
(RF), Extreme Gradient Boosting (XGB), Linear Neural Network (LNN), Shallow
Neural Network (SNN), and Deep Neural Network (DNN) - benefited from feature
selection. After this step, the lowest error was reached by the DNN with the first 5
features ranked with the MDI.

• The hyper-parameters optimization step with Bayesian search was beneficial. While
Grid search was very time-consuming, and Random search was too unpredictable,
Bayesian search proved to be an interesting tool for improving the performance of
the XGB model.

• Of all the tested combinations, the most reliable ensemble for predicting AGB in our
study area was found to be: MDI for feature selection, XGB as regression model,
and Bayesian Search for hyper-parameters optimization.
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• Finally, the insights that this study gathered by using the SHAP package, showed its
potential utility for the community. However, a single prospective is never enough
in the scientific community; therefore, further work should be focusing on the ex-
ploration model explainers so as to support a deeper understanding of the problem
being modelled, to gather insights on how that can be improved and it can also be
used as a straightforward means to communicate results to clients.

64



References
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Appendix A

Coefficient of determination (R2)

The following Appendix contains a brief introduction on the coefficient of determination
(R2) and shortly covers the reason why this is not an adequate measure for non-linear
models. Lastly, this section includes an explanation on why it is safe to assume that the
problem object of this study can be considered non-linear.

The inadequacy of using R2 as a measure of goodness of fit for non-linear models has
been well known within the mathematical literature for many years (Kvalseth, 1983).
Nevertheless, R2 keeps often being used by the scientific community in many fields of
study such as vegetation mapping. Indeed, this was the case for all of the studies on
Above Ground Biomass (AGB) estimation that were reviewed in this work.

R2 is a metric of correlation easy to compute and straightforward to interpret. Its value
is given by:

R2 =
Explained variance

Total variance
(6.1)

Where:

Total variance = Explained variance + Error variance (6.2)

This arrangement ends up in R2 ranging from 0 to 1. Such an assumption holds true in
linear models, however, this is not the case in non-linear models because the sum between
the variance explained by the model and the error variance does not correspond to the
total variance (Kvalseth, 1983; Spiess and Neumeyer, 2010). Therefore, the underlying
assumptions for R2 are invalidated when this measure is used for non-linear models.

In a Monte Carlo simulation carried out by Spiess and Neumeyer (2010), the performance
of R2 for validating non-linear models was tested. After performing thousands of simula-
tions, they found out that using R2 for assessing the goodness of fit in non-linear models
leads to false conclusions about the best performing models. Hence, R2 was found to
be high for both effective and terrible models, and it would not always increase in value
whenever better performing models were presented. They conclude that using R2 for
choosing the most appropriate regression model amongst non-linear ones rarely leads to
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choosing the actual best model. Hence, R2 was not able to discriminate between good
and bad non-linear models.

This thesis tested a palette of Machine Learning algorithms for the estimation of Above
Ground Biomass (AGB). Thus, with the purpose of proving the non-linearity of the prob-
lem investigated, the relationships between each of the explanatory variables and the
target were tested. This was achieved by fitting a linear regression and a quadratic poly-
nomial for each of the 63 features and the measured AGB (target); therefore, it was
assessed whether a higher amount of variance was explained by the linear or by the
quadratic model. Hence, figure 6.1 illustrates how the two models were fitted to predict
AGB by using one of the features - the Normalized Difference Vegetation Index from the
Summer image. Both the feature and the target were normalized with the scaler explained
in the main text, Chapter 3.

Figure 6.1: Testing of a linear and a quadratic model.

Subsequently, the ratio between the amount of variance explained by the linear model and
the one explained by the quadratic model (Equation 6.3) was represented in figure 6.2.
Thus, for any feature for which the value of this ratio is not equal to or larger than one,
the relationship between that feature and the target cannot be considered to be linear. In
fact, by fitting a linear model on non-linear data, the variance explained by that model is
going to be lower than if using a non-linear model; hence, using a line only explains the
amount of variance over one direction. Therefore, figure 6.2 shows that, every features, the
relationship between them and the target is better represented by the non-linear model.
Additionally, it must be kept in mind that this simple experiment only took into account
one feature at the time, therefore it does not consider the possible non-linear interaction
between features whenever a model is built using more than one, as it is often the case.

Explained variance =
Explained variance (linear)

Explained variance (quadratic)
(6.3)
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Figure 6.2: Ratio of explained variance of a linear and a quadratic model.
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