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Thesis Outline 

Chapter 1 provides the motivation, theoretical framework and the related literature 

to this research as introduction, as well as software and PC specifications used. In 

Chapter 2, the theoretical background of the methods is described and also how to 

evaluate them. 

 

Chapter 3 presents the study area and data in detail, methodology used in this thesis, 

data pre-processing and its result, and the experimental design applied to the data. 

In Chapter 4, the results of each method used in this the research are shown. 

 

Finally, Chapter 5 argues and discusses the findings throughout the thesis and 

Chapter 6 comments the limitations and suggests recommendations for further 

research. 
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Chapter 1 

Introduction 

1.1 Motivation, theoretical framework and literature review 

Soil moisture is the total amount of water present in the upper 10 cm of soil and it 

represents the water in land surface which resides in the pores of the soil which is not in 

river, lakes or groundwater and which depends of the weather conditions, soil type and 

associated vegetation, among others. Soil moisture assessments are important to 

understand the hydrological cycles and biophysical processes caused by global climate 

changes (Finn et al., 2011). Usually, soil moisture has been mapped with airborne 

microwave radiometers (Klemas et al., 2014) to measure the water retained in the spaces 

between soil particles. Its importance is due to the microorganism metabolic activity, 

regulation of the soil temperature and carriage of nutrients, among others. Soil moisture 

typically takes the form of small ice crystals, vapour, or small parts of liquid water in cold 

desert soils (Campbell & Claridge, 1982). 

 

Antarctic soils are composed by basically no organic and very low moisture content 

(Campbell and Claridge, 1987). Antarctica is a sensitive area to balance the global climate 

and its changes and its soil ecosystems are strongly regulated by variables of the abiotic 

environment and due to this, a research measures the incidence and spatial occurrence of 

the layer freezing to know how regional climate change could affect the energy exchange 

of this layer and its invertebrate communities (Wlostowski et al., 2017). Also, knowing how 

the dynamic of the surface varies in polar regions is transcendent to predict the impact of 

climate change in global sea-level rise in the future (Quincey & Luckman, 2009). 

 

The soils present in McMurdo Dry Valleys are a central component of the polar desert 

ecosystem which are very susceptible to human activities (Campbell & Claridge, 2013). 

Over ten years of monitoring, Seybold et al. (2010) found a very low water content without 

any increasing or decreasing tend in McMurdo Sound Region soils. 

 



  

2 
 

A research conducted by Levy et al. (2014) was performed to determine if remote sensing 

techniques could be used to assess the conditions of soil moisture in the McMurdo Dry 

Valleys, Antarctica. A spectrometer to measure the wetted samples collected in this area 

under natural illumination conditions was used in order to evaluate their reflectance in the 

laboratory. The results suggested airborne hyperspectral imagery as adequate to generate 

soil moisture maps for the McMurdo Dry Valleys due to the measurement in the laboratory 

of the soil moisture values from the samples taken in the study area and their reflectance 

in the spectra at 1.4 μm and 1.9 μm. Moreover, in another research (Tian & Philpot, 2015), 

three soil samples with different properties were taken and measured using a spectrometer 

ASD FieldSpec® Proin in the laboratory with a spectral range of 350–2500 nm to know 

the relationship between the surface soil water content and SWIR bands reflectance. From 

saturated to dry water soil content, the bands present at 1440 nm and 1930 nm were shown 

very susceptive of these changes.  

 

Also, Sadeghi et al. (2015) performed a research to create a linear physically-based model 

for remote sensing of soil moisture using SWIR bands and verifies these bands as the most 

appropriate to detect the surface water content in the solar domain (350 – 2500 nm) and 

the accuracy shown in the band 7 of Landsat and MODIS satellites (SWIR – 2210 nm) 

exhibits an optimistic method to detect soil moisture through laboratory-measured spectral 

reflectance data of different soils datasets from Lobell & Asner (2002) and Whiting et al. 

(2004). To see the result in different kind of soils, a study by Lobell & Asner (2002) 

measures the reflectance in four soils taken from temperate and arid ecosystems with 

different characteristics where the connection of SWIR reflectance and water saturation 

degree shows the most useful remote sensing relationship, mostly when moisture values 

are over 20%.  

 

In other paper, authors argue that NSMI (Normalized Soil Moisture Index), an index based 

in the reflectance of the SWIR bands (σ[1800 nm]−σ[2119 nm] / σ[1800 nm]+σ[2119 nm]) 

was successfully measured in the laboratory to quantify surface soil moisture from a high 

resolution hyperspectral airborne sensor data (HyMap) and field soil samples taken from a 

mine of lignite in Germany from low to absent vegetation density and sandy/clayey 

composition (Haubrock et al., 2008). Also, Jibo et al (2019) studied the application of three 
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normalized shortwave-infrared difference bare soil moisture indices (NSDSIs) based on 

the water absorption difference between shortwave-infrared (SWIR) bands to estimate the 

soil moisture content in bare soils with an R2 around 0.8. In this study, Sentinel 2 data was 

acquired and compared to field measurements, also field samples were collected and 

measured their reflectance in a laboratory using an ASD FieldSpec 3 spectrometer. Authors 

concluded that values to estimate soil moisture got from NSDSIs work well when the 

values of these three proposed indices have a range between 0–50%. 

 

In this research a new approach is going to be implemented using Landsat 8 (L8) imagery 

and climate stations series analysis data as a base to estimate soil moisture in McMurdo Dry 

Valleys (MDV), Antarctica. 

 

1.2 Problem Statement 

The problem statement of this research is the use of remote sensing imagery to detect soil 

moisture in a cold desert as McMurdo Dry Valleys, Antarctica.  

 

The results of this study examining the significance and relationship between Landsat 8 

satellite imagery and climate stations data on the estimation of the soil moisture in the cold 

desert of McMurdo Dry Valleys, Antarctica. 

 

1.3 Aim and Research Question 

Through the comparison of satellite imagery which provides information in a wider spatial 

context and time series data from climate stations located in the study area, the aim of this 

research is testing the potential of the Landsat 8 and climate stations time series data to 

predict soil moisture.  

 

Therefore, this study wants to answer the research question about which relationship 

patterns follow Landsat 8 imagery data and climate stations data to estimate soil moisture 

in McMurdo Dry Valleys, Antarctica. 
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1.4 Software and PC specification 

The system of the laptop used during this research has a processor Intel® Core™ i7-7500U 

CPU @ 2.70GHz 2.90 GHz, a RAM memory of 8 GB and a system type of 64-bit 

Operating System, x64-based processor.  

 

R (version 4.0.3) is the programming language used to build whole code in the integrated 

development environment software RStudio Version 1.3.1093. Also, the software ArcGIS 

Pro version 2.5 is used to locate the climate stations in the study area and for creating maps. 
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Chapter 2 

Theoretical background 

2.1 NSDSI indices 

Three normalized shortwave-infrared difference bare soil moisture indices (NSDSIs) based 

on the water absorption difference between shortwave-infrared bands (SWIR) were 

developed to estimate the soil moisture content (Jibo et al., 2019) using next formulas: 

 

NSDSI1 = (SWIR1-SWIR2) / SWIR1 

NSDSI2 = (SWIR1-SWIR2) / SWIR2 

NSDSI3 = (SWIR1-SWIR2) / (SWIR1+SWIR2) 

 

2.2 Statistical Analysis - Graphics 

For visualizing quantitative data, statistical graphics are used. The most common plot is 

the scatterplot for data analysis when is necessary to understand the nature of the 

association between two variables. 

 

2.3 Statistical Analysis - Linear Regression Model and Multiple Linear 

Regression Model 

Linear regression model (LRM) is a statistical procedure for predicting the dependent 

variable from an independent variable, measuring thus the relationship between them 

(Kumari, 2018): 

Y = β0 + β1 X 

 

Multiple Linear Regression Model (MLR) is the statistical method to predict the values of 

a dependent variable from a set of independent variable values (Sinharay, 2010) as follows: 

 

Y = β0 + β1 X1 + β2 X2 + ...+ βi Xi 
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Where (in both formulas) Y is the dependent variable, X the independent(s) variable, β0 is 

the intercept (the predicted value of Y when X is 0) and βi is the regression coefficient 

(how much we expect Y to change as X increases).  

 

2.4 Evaluation of Regression Models 

R-squared (R2), or coefficient of determination, p-values and Root Mean Square Error 

(RMSE) values are calculated to evaluate the fit of each LRM and MLR models, the 

significance of the relationships between independent and dependent variables and the 

validity of the models, respectively. 

 

R-squared (R2) or coefficient of determination is the proportion of the variation in the 

dependent variable (Y) which is described by the independent variable in the model (X) 

(Peng et al., 2002) and it ranges between 0 and 1. Apart of this, and assuming that the null 

hypothesis is right, the p-value is the likelihood of producing outcomes at least as extreme 

as the results of a statistical hypothesis test obtained. Getting low p-value means better 

evidence for the alternative hypothesis is available (Beers, 2021). The Root Mean Square 

Error (RMSE) is a standard way to measure the error of a model in predicting quantitative 

data (Moody, 2021) as next: 

 

 
 

Where ŷ is the predicted values, y are the values measured and n is the total of observations 

measured.  
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Chapter 3 

Methodology 

3.1 Study Area 

The study area for this research are the McMurdo Dry Valleys (Figure 1), one of the coldest 

and driest extreme deserts on Earth which is located along the western coast of the Ross 

Sea in east of Antarctica (77-78°S 160-164°E), a continent where about 98% of the 

continent is covered by ice. MDV cover a total area of 22700 km2 and its ice-free area has 

4500 km2. (Levy, 2013). The mean air temperature measured between 1986 and 2017 in 

the MDV varied between -14.7°C and -29.6°C (Obryk et al., 2020). 

 

McMurdo Dry Valleys are ice-free because of the presence of the Transantarctic Mountains 

which stop the ice from the polar plateau and avoid it goes to these valleys. This cold desert 

creates an important arid environment as the evaporation in the area is over the usual 

snowfall of 1cm approx. annually (Bromley, 1986). This snow is mostly transformed to gas 

and the rest is melted and infiltrated into the soil (Gooseff et al. 2006, Fountain et al. 2009). 

 

 

Fig.1. Location of the McMurdo Dry Valleys in Antarctica. 
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3.2 Data 

3.2.1 Satellite data 

Landsat 8 is the satellite chosen to perform this research as a useful and important amount 

of data from April 2013 to December 2019 can be obtained free of charge to be analysed. 

It is provided by USGS (United States Geological Survey) and was ordered and 

downloaded in its website (https://espa.cr.usgs.gov/). This data is Landsat 8 Level-2 Data 

Products at a 30 and 100-meter spatial resolution which contains Operational Land Imager 

(OLI) and Thermal Infrared Sensor (TIRS) Surface Reflectance (Figure 2). 

 

These products include, according to the USGS, an approximation of surface spectral 

reflectance as determined at ground level in the absence of atmospheric dispersion or 

absorption. At a 30-meter spatial resolution, the Surface Reflectance products are produced 

at the Earth Resources Observation and Science (EROS) Center. To build Level-2 data 

items, the EROS Science Processing Architecture (ESPA) on-demand interface corrects 

satellite images for atmospheric effects.  

 

 
Fig. 2. Landsat 8 bands wavelength and resolution. 

 
 
3.2.2 Climate Stations data 

The Antarctica Soil Climate Research Stations data is managed and owned by NRCS - 

USDA (Natural Resources Conservation Services – United States Department of 

Agriculture), which is involved in a project originally lead by Landcare Research (New 

Zealand) with a total of nine climate stations (Bull Pass, Bull Pass East, Don Juan Pond, 
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Granite Harbour, Marble Point, Minna Bluff, Mt. Fleming, Scott Base and Victoria Valley). 

However, two of them (Minna Bluff and Mt. Fleming) are not used in our further analysis 

as both get the soil moisture values in a depth (over 3cm) which is not suitable for this 

study.   

 

Therefore, data from seven climate stations from 2013 to 2019 is downloaded from 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/climate/. Soil moisture 

data is measured every day and hourly with the hydra-probe sensors from the company 

‘Stevens Water Monitoring Systems’ - Portland (USA), which are installed at various depths 

in the active layer of the soil. In this research, just the shallowest soil moisture values are 

considered which are the measurements taken between at 2 and 3 cm depth. The reason 

of considering these soil moisture values is due to L8 imagery data, which are compared 

with, does not penetrate deeper layers of the soil. 

 

The climate stations involved in this study are located in ice-free areas of the McMurdo 

Dry Valleys (Antarctica) to get the soil moisture values for further analysis (Figure 3).  

 

 

Fig. 3. Location of the Soil Climate Research Stations (in red dots) in McMurdo Dry Valleys, Antarctica. 
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3.3 Methods 

3.3.1 Methodology workflow overview 

An overview of the methodology workflow is displayed in Figure 4 and the steps followed 

toward to get the results. 

 

 

Fig. 4. Methodology workflow overview. 
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3.3.2 Data pre-processing 

3.3.2.1 Climate Stations data 

This data is pre-processed in order to be prepared it for further analysis, selecting just what 

is important for this research including date, hour, soil moisture value between 2 and 3 cm 

and name of the climate station. Between two and three measurements of soil moisture 

values were taken in five of the seven climate stations each day at the same time, therefore 

in these cases a new column was created in which the mean of these measurements was 

calculated which will be used for further analysis. Soil moisture values are measured in 

water fraction volume (m3/m3).  

  

Also, all climate stations take their data in NZ standard time except for the Victoria Valley 

station which takes in NZ savings time which was corrected as the other ones for data 

harmonization.   

 

3.3.2.2 Satellite data  

A total of 180 images were downloaded for the years compressed between 2013 and 2019 

(Table 1). L8 images used for this study area are only available from October to February 

coinciding with the austral summer. Imagery cannot be captured properly by L8 satellite 

during the remaining months as Antarctica is under constant darkness. Each L8 image 

downloaded from 2013 to 2019 has 9 different images inside them related to band 1 

(Coastal Aerosol), band 2 (Blue), band 3 (Green),  band 4 (Red), band 5 (Near Infrared - 

NIR), band 6 (SWIR-1), band 7 (SWIR-2), band 10 (Thermal Infrared) and band 11 

(Thermal Infrared). These images have a cloud cover less than 10% and each of these 

images come with an associated file with _pixel_qa.tif extension. 

 

Year Images 

2013 18 

2014 36 

2015 18 

2016 30 

2017 26 

2018 22 

2019 30 

Total 180 
 

Table 1. Total of images downloaded for each year. 
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The clouds present in these images are defined through different pixel values known for 

these features. To remove them, an atmospheric correction process is carried out which 

iterates individually in each image downloaded. During this process, TIRS bands (band 10 

and band 11) are resampled to 30x30 meters of resolution to have all bands in same 

resolution for further statistical analysis.  

 

This process runs as follows: if any of the pixel values related to clouds are found in the 

file with _pixel_qa.tif extension, this will be automatically removed from the image. After 

this, a new image without clouds for each image of each band is created.  

 

Also, each Landsat 8 image comes with an .xml document which contains information 

about when (date and hour) the image was taken in UTM time. This time was transformed 

to New Zealand time to match with the climate stations date and time.  

 

From each of the new images created without clouds during the atmospheric correction 

process, the values of the pixels of each band images are extracted in the same location 

where the climate stations are located when date and time (in New Zealand time) of each 

of these images and climate stations data matched at o'clock times during any day. 

 

3.3.2.3 Pre-processing result  

The result of the processes performed above for each year between 2013 and 2019 is a 

final data frame containing all the information needed for further analysis between these 

years (scene number, date/time, climate station name, soil moisture values and pixel values) 

with a total of 737 rows/observations. Some of these rows of this final data frame obtained 

are removed for a better data analysis performance in further analysis process as is 

explained in the corresponding section of this research when this occurs.  

 

3.4 Experimental design 

3.4.1 NSDSI indices 

The NSDSI indices are applied to the data using SWIR bands as is required by these indices 

as have been mentioned using next formulas: 
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NSDSI1 = (SWIR1-SWIR2) / SWIR1 

NSDSI2 = (SWIR1-SWIR2) / SWIR2 

NSDSI3 = (SWIR1-SWIR2) / (SWIR1+SWIR2) 

 

Where SWIR1 is band 6 and SWIR2 is band 7 of Landsat 8 satellite data. 

 

Values obtained are compared to the original soil moisture values measured to check the 

suitability of the application of these indices to estimate soil moisture in the study area. 

 

3.4.2 Statistical Analysis - Graphics 

To find if there is any correlation between soil moisture values measured by the climate 

stations and L8 pixel values in same location, we make plots and calculate their coefficients 

of determination (R2) between these two variables for each band of L8 in each image 

downloaded. These bands are: band 1 (Coastal Aerosol), band 2 (Blue), band 3 (Green),  

band 4 (Red), band 5 (Near Infrared - NIR), band 6 (SWIR-1), band 7 (SWIR-2), band 10 

(TIRS) and band 11 (TI). 

 

This graphic procedure and obtaining R2 is also performed for soil moisture estimation 

values from NSDSI indices, mentioned above, and the original measured soil moisture 

values by the climate stations. 

 

3.4.3 Statistical Analysis - Linear Regression Model and Multiple Linear Regression 

Model 

Linear Regression Model is applied to predict the dependent variable which is soil moisture 

(Y) based on the independent variable (X) which is a Thermal Infrared (TIRS) band of 

Landsat 8 (band 10 or band 11) as follows: 

Y = β0 + β1 X 

 

Multiple Linear Regression Model is also used to explain the relationship between the two 

TIRS bands of Landsat 8 (bands 10 and 11) as independent variables (X) and soil moisture 

values as dependent variable (Y) as follows: 
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Y = β0 + β1 X1 + β2 X2 

 

Apart of this MLR model mentioned, more covariates information about location, 

elevation and slope of the climate stations are added to the MLR models to know their 

significance into it. Two of the climate stations (Granite Harbour and Victoria Valley) do 

not present the slope information which are stated as 0 to carry on the research.  

 

Y = β0 + β1 X1 + β2 X2 + ...+ βi Xi 

 

3.4.4 Spatial Analysis – Spatial Prediction 

Based on the Central Limit Theorem which declares that the distribution of the samples 

approximates to a normal distribution when the data increases the size assuming all samples 

are equal in size and independently of the population distribution pattern (Kwak and Kim, 

2017) and also taking into account the continuous satellite data, a spatial soil moisture 

prediction map in a large ice-free area in MDV is performed.  

 

In this section, soil moisture values are spatially predicted in one of the biggest ice-free 

areas in McMurdo Dry Valleys which contains four of the climate stations involved in this 

research (Bull Pass, Bull Pass East, Don Juan Pond and Victoria Valley) as can be seen in 

Figure 5. To this purpose, a Landsat 8 image obtained in 26th December 2019 which 

contains these climate stations mentioned is selected to be used.  

 

The goal of the spatial soil moisture prediction map process is the estimation of the soil 

moisture values at the locations where no measurements have been made using the best 

regression model obtained. This is performed using the climate stations data and pixels 

values of the L8 image selected within the ice-free area on interest drawn as mentioned.  
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Fig. 5. Area chosen for spatial soil moisture prediction. 
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Chapter 4 

Results 

4.1 NSDSI indices 

First, the final data frame obtained is reduced until containing soil moisture values 

measured from 0 to 0,205 (m3/m3) to apply the NSDSI indices. This range contains almost 

92% of soil moisture values measured, therefore the data frame used to calculate NSDSIs 

has 668 lines/observations.  

 

Based on NSDSIs formulas, estimated soil moisture values are obtained and are compared 

to soil moisture values measured in all climate stations to check the suitability of the 

application of these indices to estimate soil moisture in the study area. The coefficient of 

determination (R2) of these comparisons between measured and predicted soil moisture 

values can be seen in the first column of Table 2. Also, each climate station is checked 

individually to find in which one of them these NSDSI indices have the best performing. 

The best climate station to estimate soil moisture applying NSDSI indices is Scott Base and 

its R2 obtained throughout the comparisons between measured and predicted soil moisture 

values can be find in the second column of Table 2. 

 

NSDSI indices R2 (All Climate Stations) R2 (Scott Base) 

NSDSI1 0.019 0.088 

NSDSI2 0.032 0.075 

NSDSI3 0.026 0.085 

 

Table 2. R2 values obtained in NSDSIs computation. 

 

As Table 2 shows, for all climate stations data, NSDSI2 is the best performing index, 

however and looking individually in each climate station, Scott Base is the one which 

presents the highest R2 values compared with other climate stations with its highest value 

in the NSDSI1 index (0.088). 
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4.2 Statistical Analysis - Graphics 

Same data frame which contains 668 lines/observations mentioned in last section (4.1) is 

used to plot and obtaining the R2 between the pixel values of Landsat 8 bands and soil 

moisture values measured by all climate stations.  R2 obtained can be seen in first column 

of the Table 3.  

 

Also, Don Juan Pond climate station is removed as it has all its soil moisture values 

measured as 0. Therefore, a data frame with six climate stations and a total of 614 

lines/observation are used to obtain the coefficient of determination (R2) which can be 

seen in second column of Table 3.  

 

Landsat 8 bands R2 (All Climate Stations) R2 (All except Don Juan Pond) 

Band 1 (Coastal Aerosol) 0.0098 0.0041 

Band 2 (Blue) 0.0064 0.0021 

Band 3 (Green) 0.0032 0.00067 

Band 4 (Red) 0.0019 0.00029 

Band 5 (NIR) 0.0018 0.00028 

Band 6 (SWIR1) 0.00069 0.00084 

Band 7 (SWIR2) 0.0054 0.0042 

Band 10 (Thermal) 0.031 0.032 

Band 10 (Thermal) 0.026 0.028 

 

Table 3. R2 values obtained in graphs calculation between soil moisture values and pixel values of each 

band of Landsat 8. 

 

TIRS bands (bands 10 and 11) obtained the highest results in terms of R2. Considering this 

results and the literature review presented which mentions SWIR as most successful bands 

to detect soil moisture content, R2 is also calculated for each climate station individually 

for SWIR and TIRS bands of L8 to test which of these bands have a higher correlation 

detecting soil moisture content. Highest R2 for SWIR and TIRS bands and its climate 

stations related are shown in Table 4. 
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Landsat 8 bands R2 and Climate Station 

Band 6 (SWIR1) 0.2 (Granite Harbour) 

Band 7 (SWIR2) 0.22 (Granite Harbour) 

Band 10 (Thermal) 0.43 (Scott Base) 

Band 11 (Thermal) 0.41 (Scott Base) 

 

Table 4. Highest R2 values obtained in graphs computation for each climate station between soil moisture 

values, and SWIR and TIRS bands of Landsat 8.   

 

Granite Harbour and Scott Base climate stations exhibit the highest R2 value for SWIR 

and TIRS bands, respectively. Granite Harbour individual data frame contains 87 

lines/observations and Scott Base has 68 lines/observations. 

 

4.3 Statistical Analysis – Linear Regression Model and Multiple Linear 

Regression Model 

The data frame used in sections 4.1 and 4.2 which contains 668 lines/observations is also 

used to run LRM and MLR models. A total of 24 models are performed (see Appendix) to 

check the covariance between Landsat 8 bands, soil moisture values, and location, elevation 

and slope of the climate stations. Also, R2 values are obtained which show the correlation 

between the covariates. However, only 5 models are displayed in Table 5. As can be seen, 

these models which present the highest R2 are the ones which contain the covariates 

location, elevation and slope.   

 

 

Table 5. Covariates used and highest R2 values obtained in regression models computation. 

Models 

Covariates Evaluation 

Soil 
moisture 

Band 1 + 2 + 
3 + 4 + 5 

Band 
6 + 7 

Band 
10 + 11 

All 
bands Location Elevation Slope R2 

MLR4 x x    x x x 0.2939 

MLR6 x x x   x x x 0.2973 

MLR10 x   x  x x x 0.2818 

MLR13 x    x    0.2446 

MLR14 x    x x x x 0.3187 
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Better performing models are the ones which include all bands (pixel values) information, 

soil moisture data measured from all climate stations and all covariates data. Also, MLR13 

model has a R2 value of 0.2446 not far from others, being the model without location, 

elevation and slope information which has the highest goodness-of-fit in our data. 

 

4.4 Spatial Analysis – Spatial Prediction 

The data frame used keep being the same as sections 4.1, 4.2 and 4.3. To estimate soil 

moisture in the ice-free area of interest drawn, this data frame is split into two smaller 

datasets, one contains 75% (training dataset) of the data frame used chosen randomly and 

other has the remaining 25% of it (test dataset). Training dataset is taken for fitting the 

model and test dataset is used for validation. A new model (NM) is built using all bands 

data and soil moisture values measured using the training dataset which obtains a R2 of 

0.2466. To validate the test dataset, NM is used for this purpose creating a new column of 

predicted soil moisture values. These values are compared with the soil moisture values 

measured with a R2 of 0.198 which means 19.8% of the values predicted are well fitted in 

the model. Also, a prediction soil moisture map (Figure 6) is created using the NM 

described before and the bands of the Landsat 8 image mentioned in section 3.4.4.  
 

 

Fig. 6. Prediction soil moisture map using one L8 image from 2019. 
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The interpolation is made to estimate the soil water content at locations where no 

measurements have been taken by the climate stations in McMurdo Dry Valleys. This 

prediction result can be improved with the addition of all covariates (location, elevation 

and slope) information to the model used to create a more accurate prediction soil moisture 

map through the soil moisture values predicted. 

 

The MLR14 model and the prediction soil moisture map model present a not much 

difference RMSE value which tells us that their amount of error in terms of comparing 

predicted and known values is similar (Table 6). However, as the difference between soil 

moisture values measured is really low this can play an important role. As is mentioned, all 

covariates information would be relevant in the prediction soil moisture map model as can 

be seen comparing both RMSE values as MLR14 (with covariates information) has a 

smaller error between predicted and measured soil moisture values. The significance of 

each covariate in each model is shown in Table 6. Elevation and slope covariates have 

importance in the MLR14 model so they would be transcendent in any prediction model. 
 

 Models 

MLR14 Prediction Map Model 

RMSE 0.0239 0.0264 

   

Covariates p-values (significance) 

Band 1 (Coastal Aerosol) *** *** 

Band 2 (Blue) *** ** 

Band 3 (Green) . . 

Band 4 (Red) . *** 

Band 5 (NIR)  *** 

Band 6 (SWIR1)  *** 

Band 7 (SWIR2) * *** 

Band 10 (Thermal)   

Band 11 (Thermal)   

Location  No data 

Elevation * No data 

Slope ** No data 

*** 0 to 0.001  

** 0.001 to 0.01  

* 0.01 to 0.05  

. 0.05 to 0.1  

Blank No significance  
 

Table 6. RMSE and p-values obtained in MLR14 and Prediction Map Model.  
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Chapter 5 

Conclusions and Discussion 

In this research a prediction soil moisture model has been applied to a remote and 

inaccessible region as the cold desert McMurdo Dry Valleys which demonstrates the power 

of remotely sensed data. This model can be applied without the need to move to the area 

of interest to predict soil moisture in an environmentally sustainable way with minimum 

economical costs to easily analyse large areas. This model could be applicable to other 

regions of the Dry Valleys, but caution is necessary as it would have to be used always in 

ice-free areas. 

  

The significance of the relationship patterns between Landsat 8 imagery and climate 

stations soil moisture time series data have been also evaluated concluding that the data of 

these two covariates are not strongly related and that the addition of more information of 

other covariates would improve the results to predict soil moisture in McMurdo Dry 

Valleys, Antarctica. Despite what the literature review pointing out SWIR bands as the 

most useful to detect soil moisture, the spectral reflectance of the TIRS bands has been 

found as the most related with the soil moisture data got from the seven climate stations 

used in this research. The TIRS bands of L8 satellite have been used in others studies 

(Wicki & Parlow, 2017; Zubair & Iqbal, 2015) with vegetation as a covariate, factor that is 

not possible to be included in our models as our study area lacks of it. Our models revealed 

the importance of all covariates data applied into them in this research, which should be 

included in case these models wanted to be enhanced as has been proved the increasing of 

the goodness-of-fit using them. This strength observed highlights the sensitivity of the 

model depending the information contributed. The incorporation of these covariates 

would also provide a substantial benefit to the prediction soil moisture map, being a 

preliminary study of soil moisture estimation in this area, the result gotten a satisfactory 

seeing the peculiarity of the area and the data collected. 

 

In this research just NSDSI indices (Jibo et al., 2019) can be applied as they were developed 

to predict soil moisture in bare surfaces as our study area is. However, and opposite to this 
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research mentioned in which soil moisture values reach until 80%, our soil moisture values 

measured range from 0 to 20% which could be the reason as these NSDSI indices are not 

relevant to McMurdo Dry Valleys. This argument is supported by Lobell & Asner (2002) 

as they assumed that a soil water saturation degree over 20% can be easier detected and 

reveal a stronger relationship with SWIR bands. 

 

It is well known that soil reflectance is affected not only by soil moisture, but also by many 

other factors as soil characteristics, vegetation cover, topography, hydrology, atmospheric 

and weather conditions, soil particle size and sensor noise, among others (Ben-Dor & 

Irons, 1999) which prevent direct observations of soil responses in terms of spectral 

information (Muller & Decamps, 2001). Therefore, as more covariates information is 

included, more accurate performance model is assumed. 

 

McMurdo Dry Valleys are an extreme, arid and cold desert where just 1cm (approx.) of 

snow falls annually (Bromley, 1986), however in terms of environmental factors, many 

more should be taken into account to assess the soil moisture in the area. Knowing the 

depth of the permafrost located in the soil layers would have to be studied which would 

be highly complex and difficult to quantify. Also, which areas of the Valleys receive the 

melt snow from the mountains and the topography would increase the knowledge of the 

area to evaluate the soil moisture.  

 

Looking each climate station individually, Granite Harbour and Scott Base reveal more 

relationship between soil moisture values and the pixel values of SWIR and TIRS bands, 

respectively. Comparing to others, is outstanding the R2 values of 0.43 and 0.41 in Scott 

Base for TIRS bands (band 10 and 11). Water retention in this climate station can be 

explained because of its soil composition as it has a higher concentration of clay in the 

topsoil between 0 and 3 cm depth, this is around six times more than the others climate 

stations (NRCS - USDA, n.d.). This is because the soil's capacity to maintain water is closely 

related to particle size (Leeper & Uren, 1993) as water molecules keep more adhered to 

small particles (as clays) than thick particles (as sands). 
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Chapter 6 

Limitations and Further Research 

McMurdo Dry Valleys are a very special area as it holds very low soil moisture values 

without any clear tend observed in its values (Seybold et al., 2010). This desert does not 

have homogeneity and its area contains different environments as land covered by snow, 

lakes and rivers and bare soils, all of them with different topography which contributes 

negatively to the detection of a continuous feature as soil moisture. 

 

Landsat 8 satellite imagery possess 30 meters and 100 meters (for TIRS bands) resolution, 

however the soil moisture is captured by sensors in the climate stations in an exact location 

point. Due to the spatial resolution, soil moisture is difficult to be detected by the pixel 

values of the images giving this a measurement error as their pixel size is much bigger than 

the point soil moisture measurement mentioned. Due to the nature of the study area, L8 

satellite imagery can only be acquired within a short time window (November to February) 

because of the Antarctica has six months of darkness during its Austral winter. Also, the 

images downloaded have a high probability to contain clouds which could cover some 

climate stations making it impossible to compare the pixel value from the image with the 

climate stations data affected. 

 

In terms of data, some climate stations can have erroneous measurements as has been seen 

in several outliers collected by the sensors which have to be considered for a correct 

analysis. Moreover, due to Landsat 8 available data just climate stations data from 2013 to 

2019 could be used in this research. Important variables as location and topography data 

(for elevation and slope covariates) are not added to the model which might improve the 

results of the spatial soil moisture prediction map.  

 

As soil moisture is dependent on other environmental factors, we recommend that for 

further studies models used in predicting soil moisture in McMurdo Dry Valleys should 

include and analyse relevant covariates such as soil composition, hydrology and 

topography, among others. The addition of these factors as covariates might help the 



  

24 
 

model in improving the prediction of the water soil content. Similarly, the temporal 

autocorrelation of the soil moisture is not considered in this research i.e. the dependence 

of the soil moisture in a time could be able to account for the temporal trends in the soil 

moisture. Apart of this, applying more advanced statistical models might improve the 

accuracy of the prediction of the soil moisture using the covariates mentioned. 

 

In our study we only consider images from Landsat 8, trying other imagery from different 

satellites with other capabilities as higher resolution or/and different sensors (as microwave 

in radar satellites) would increase the results in our study area. In this research soil moisture 

data from 2013 to 2019 measured between 0 and 3 cm has been used, however soil 

moisture data taken more depth can be added and analysed to check their relationship with 

the pixel values from the satellite imagery in further research. Additionally, more soil 

moisture data can be incorporated to be evaluated with the satellite imagery, depending of 

the availability of these images. The methods used in this study could also be tested in other 

warm and cold deserts, or bare-soil areas to assess if soil moisture can be predicted in other 

region of the world with the appropriate data. 

 

Finally, the spatial soil moisture prediction map is executed using a single Landsat 8 image, 

this gives us a static view for an exact date which represents a moment in time, therefore 

the model used in this prediction, or new models developed, can be applied to other 

satellite scenes collected. 
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APPENDIX 
 

 
NSDSI indices - Graphics 
 

 
Fig. 1. Scatterplot of NSDSI1 index and soil moisture values measured in all climate stations. 

 

 
 
 
 

 
Fig. 2. Scatterplot of NSDSI2 index and soil moisture values measured in all climate stations. 
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Fig. 3. Scatterplot of NSDSI3 index and soil moisture values measured in all climate stations. 

 

 
 
 
 
 
 

 
Fig. 4. Scatterplot of NSDSI1 index and soil moisture values measured in Scott Base climate station. 
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Fig. 5. Scatterplot of NSDSI2 index and soil moisture values measured in Scott Base climate station. 

 
 
 
 
 
 

 
Fig. 6. Scatterplot of NSDSI1 index and soil moisture values measured in Scott Base climate station. 
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Statistical Analysis - Graphics 

Soil moisture values and all climate stations involved 
 

 
Fig. 7. Scatterplot of L8 Costal Aerosol band and soil moisture values measured in all climate stations. 

 
 
 
 
 

 
Fig. 8. Scatterplot of L8 Blue band and soil moisture values measured in all climate stations. 
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Fig. 9. Scatterplot of L8 Green band and soil moisture values measured in all climate stations. 

 
 
 
 
 
 

 
Fig. 10. Scatterplot of L8 Red band and soil moisture values measured in all climate stations. 
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Fig. 11. Scatterplot of L8 NIR band and soil moisture values measured in all climate stations. 

 
 
 
 
 
 

 
Fig. 12. Scatterplot of L8 SWIR 1 band and soil moisture values measured in all climate stations. 
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Fig. 13. Scatterplot of L8 SWIR 2 band and soil moisture values measured in all climate stations. 

 
 
 
 
 
 

 
Fig. 14. Scatterplot of L8 TIRS 1 band and soil moisture values measured in all climate stations. 
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Fig. 15. Scatterplot of L8 TIRS 2 band and soil moisture values measured in all climate stations. 

 
 
 
 

Soil moisture values and all climate stations involved except Don Juan Pond 
 

 
Fig. 16. Scatterplot of L8 Coastal Aerosol band and soil moisture values measured in all climate stations 

except Don Juan Pond. 
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Fig. 17. Scatterplot of L8 Blue band and soil moisture values measured in all climate stations except Don 

Juan Pond. 

 
 
 
 
 
 

 
Fig. 18. Scatterplot of L8 Green band and soil moisture values measured in all climate stations except 

Don Juan Pond. 
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Fig. 19. Scatterplot of L8 Red band and soil moisture values measured in all climate stations except Don 

Juan Pond. 

 
 
 
 
 
 

 
Fig. 20. Scatterplot of L8 NIR band and soil moisture values measured in all climate stations except Don 

Juan Pond. 
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Fig. 21. Scatterplot of L8 SWIR 1 band and soil moisture values measured in all climate stations except 

Don Juan Pond. 

 
 
 
 
 
 

 
Fig. 22. Scatterplot of L8 SWIR 2 band and soil moisture values measured in all climate stations except 

Don Juan Pond. 
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Fig. 23. Scatterplot of L8 TIRS 1 band and soil moisture values measured in all climate stations except 

Don Juan Pond. 

 
 
 
 
 
 

 
Fig. 24. Scatterplot of L8 TIRS 2 band and soil moisture values measured in all climate stations except 

Don Juan Pond. 
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Best performing scatterplots found for L8 SWIR 1, SWIR 2, TIRS 1 and TIRS 
2 bands and soil moisture values looking into the climate stations individually 
 

SWIR bands - Granite Harbour 
 

 
Fig. 25. Scatterplot of L8 SWIR 1 band and soil moisture values measured in Granite Harbour climate 

station.  

 
 
 
 

 
Fig. 26. Scatterplot of L8 SWIR 2 band and soil moisture values measured in Granite Harbour climate 

station.  
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Thermal Infrared bands - Scott Base 
 

 
Fig. 27. Scatterplot of L8 TIRS 1 band and soil moisture values measured in Scott Base climate station.  

 
 
 
 
 
 

 
Fig. 28. Scatterplot of L8 TIRS 2 band and soil moisture values measured in Scott Base climate station.  
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3. Statistical Analysis – Linear Regression Model and Multiple Linear Regression 

Table 1. Total of LRM and MLR models performed in Statistical Analysis 

Models 

Covariates Evaluation 

Soil moisture Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 10 Band 11 All bands Location Elevation Slope R2 

LRM1 x x             0.009762 

LRM2 x  x            0.006354 

LRM3 x   x           0.003152 

LRM4 x    x          0.001936 

LRM5 x     x         0.001795 

LRM6 x      x        0.0006869 

LRM7 x       x       0.005356 

LRM8 x        x      0.0286 

LRM9 x         x     0.02557 

MLR1 x x x x           0.08924 

MLR2 x x x x        x x x 0.2913 

MLR3 x x x x x x         0.1168 

MLR4 x x x x x x      x x x 0.2939 

MLR5 x x x x x x x x       0.169 

MLR6 x x x x x x x x    x x x 0.2973 

MLR7 x      x x       0.05398 

MLR8 x      x x    x x x 0.2336 

MLR9 x        x x     0.06994 

MLR10 x        x x  x x x 0.2818 

MLR11 x      x x x x     0.149 

MLR12 x      x x x x  x x x 0.2856 

MLR13 x          x    0.2446 

MLR14 x          x x x x 0.3187 
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4. Code 

Spatial Analysis - Spatial Prediction  

library(raster) 

library(rgdal) 

library(sp) 

library(mapview) 

library(satellite) 

library(stringr) 

library(lubridate) 

library(sf) 

library(rgeos) 

library(magrittr) 

library(dplyr) 

options(stringsAsFactors = FALSE) 

library(timechange) 

library(XML) 

library(xml2) 

library(magrittr) 

library(tmap) 

library(methods) 

library(devtools) 

library(getSpatialData) 

library(readxl) 

library(espa.tools) 

library(readr) 

library(corrr) 

library(ggpubr) 

library(ggplot2) 

library(tidyr) 

library(car) 

library(randomForest) 

library(splines) 

library(stats) 

library(graphics) 
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library(caret) 

library(spdep) 

 

############################################################### 

################# SOIL MOISTURE PREDICTION ###################### 

############################################################### 

 

# Read the data frame 

df_final_all_climateStations <- read.csv("path_to_your_dataframe", head=T) 

 

# 75% of total data used for training 

df_75 <- floor(0.75*nrow(df_final_all_climateStations)) 

 

# Training data selected randomly 

random_75 <- sample(seq_len(nrow(df_final_all_climateStations)), size = df_75) 

 

training_df <- df_final_all_climateStations[random_75, ] 

test_df <- df_final_all_climateStations[-random_75, ] 

 

# Multiple Linear Regression Model 

MLR_model_ALL <- lm(Soil_Moisture ~ b1 + b2 + b3 + b4 + b5 + b6 + 

                      b7 + b10 + b11, data = training_df) 

summary(MLR_model_ALL) 

 

# Get the RMSE of the MLR used 

RMSE_predict <- sqrt(mean(MLR_model_ALL$residuals^2)) 

 

 

########################################### 

################ VALIDATION ################ 

########################################### 

 

# Validate the test data (25%) 

validation <- predict(MLR_model_ALL, newdata=test_df) 
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# Making data frame from the test data 

test_df_1 <- cbind(test_df, validation) 

 

 

########################################### 

############ PREDICTING IN RASTER ########### 

########################################### 

 

# Read band images 

b1 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band1_predict_AOI.tif') 

b2 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band2_predict_AOI.tif') 

b3 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band3_predict_AOI.tif') 

b4 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band4_predict_AOI.tif') 

b5 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band5_predict_AOI.tif') 

b6 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band6_predict_AOI.tif') 

b7 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band7_predict_AOI.tif') 

b10 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band10_predict_AOI.tif') 

b11 <- raster('D:/Thesis_WWU/Predictions_Raul/clip_band11_predict_AOI.tif') 

 

# Create a data frame of all bands 

b1_df <- as.data.frame(b1) 

b2_df <- as.data.frame(b2) 

b3_df <- as.data.frame(b3) 

b4_df <- as.data.frame(b4) 

b5_df <- as.data.frame(b5) 

b6_df <- as.data.frame(b6) 

b7_df <- as.data.frame(b7) 

b10_df <- as.data.frame(b10) 

b11_df <- as.data.frame(b11) 

 

# Merge all bands in a data frame 

df_raster <- cbind(b1_df, b2_df, b3_df, b4_df, b5_df, b6_df, b7_df, b10_df,b11_df) 
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# Add columns to match the model 

df_raster$Soil_Moisture <- NA 

 

df_raster$b1 <- df_raster$clip_band1_predict_AOI 

df_raster$b2 <- df_raster$clip_band2_predict_AOI 

df_raster$b3 <- df_raster$clip_band3_predict_AOI 

df_raster$b4 <- df_raster$clip_band4_predict_AOI 

df_raster$b5 <- df_raster$clip_band5_predict_AOI 

df_raster$b6 <- df_raster$clip_band6_predict_AOI 

df_raster$b7 <- df_raster$clip_band7_predict_AOI 

df_raster$b10 <- df_raster$clip_band10_predict_AOI 

df_raster$b11 <- df_raster$clip_band11_predict_AOI 

 

# Predict from the raster data frame 

prediction <- predict(MLR_model_ALL, newdata=df_raster) 

 

# Doing a data frame from all data + prediction 

test_df_1 <- cbind(df_raster, prediction) 

 

# Create the raster from prediction 

nc <- ncol(b10) 

nr <- nrow(b10) 

 

coords <- coordinates(b10) 

lon <- coords[,1] 

lat <- coords[,2] 

 

crs <- crs(b10) 

 

# Create a prediction raster data frame 

prediction_df <- data.frame('lng' = lon, 

                            'lat' = lat, 

                            'predictions' = prediction) 
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# Create the prediction raster 

prediction_raster <- rasterFromXYZ(prediction_df) 

 

# Plot the raster soil moisture prediction 

plot(prediction_raster) 

 

# Save the raster soil moisture prediction performed 

raster_prediction_tif <- writeRaster(prediction_raster,'your_path',options=c('TFW=YES'), 

overwrite=TRUE) 

 

 

 

 


