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Abstract

The modeling of infectious diseases and their predictions on space
and time is very important as it helps in devising the policies for
preventive measures. These predictions should be generated from a
probabilistic model to provide the uncertainties and thus the confid-
ence. The phenomenon of spread of infectious diseases is so complex
that there are lots of uncertainties in the data and in the process itself.
Machine learning methods like neural networks are useful in model-
ing this complex problem, however, these approaches lack handling
of uncertainties. Similarly, it is seen in literature that a combined
approach of neural networks and Bayesian inferences have not been
explored much. Thus to fill these gaps this thesis aims to develop a
combined model containing neural network method and Bayesian in-
ference for modeling and predicting the number of cases of infectious
diseases in areal units such as municipalities or health-zones.

To introduce the impact of human movement on the spread of
infectious disease, the movement data has been used combined with
the daily infection data to form a spatial factor and used as a covariate
in this study. In addition to this, the spatial correlation due to spatial
neighborhood as well as the mobility is taken into account in the model
along with the temporal dependencies.

The model was evaluated on the COVID-19 dataset for 245 health-
zones of the autonomous community of Castilla-Leon, Spain. The
results show that the model is generally able to predict the number of
cases of infectious diseases with good accuracy. Similarly, the mobility
factor was also found to have an influence on the model. However,
the flexibility of the model still needs to be evaluated by applying the
model to different scenarios.

Keywords: Bayesian Inference, Human movement, Infectious dis-
eases, Neural networks
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Chapter 1

Introduction

1.1 Context and motivation
Infectious diseases are the main cause of health hazards in the world (WHO,
2019). Various outbreaks of these diseases have occurred throughout human
history. Dengue and Malaria caused by the bite of mosquitoes infect around
4 million and 228 million people per year respectively and is widely spread in
underdeveloped countries in African and Asian countries (Ak et al., 2018; Or-
ganization et al., 2019). The highly infectious and fatal Ebola outbreak occurred
during 2014-2016 in Western Africa, which infected 28500 and killed around 11000
people. Severe Acute Respiratory Syndrome (SARS) outbroke in China in 2003
affecting 26 countries and in 2012, Middle East Respiratory Syndrome affected
27 countries infecting overall 2494 people (WHO, 2019). From December 2019,
there has been an outbreak of the novel Coronavirus disease (COVID-19), from
China, Wuhan, and has infected more than 90 million people and has taken the
lives of more than 2 million people (Worldometer, n.d.; Wu et al., 2020) as of
January 2021. To contain the spread of this disease, governments around the
world are making various efforts which include social distancing, travel restric-
tions, and city-level or, even nation-wide lockdown measures. These precautions,
although effective in controlling the spread of the disease, have impacted the daily
lives of people, the social behaviors and have a considerable impact on the global
supply chain (Jones et al., 2008). Infectious diseases exhibit certain patterns and
can be predicted based on socio-economic, environmental, and ecological factors.
Prediction of these infections is important for the government and health workers
to plan for controlling the rate of infection (Remuzzi & Remuzzi, 2020). More
importantly, spatio-temporal analysis and prediction of the dynamics of the dis-
ease is very important for prioritizing the actions (Ak et al., 2018; Yang et al.,
2020). Similarly, for the infectious diseases that could turn into pandemics, the
control mechanism is very important along with a very good spatial and temporal
prediction (Zhou et al., 2020).

The introduction of any infectious disease into a new area is generally stimu-
lated by human movements. There are various examples where a region-specific
disease in the world has been imported to a new region due to international travels
(Nunes et al., 2014; Stoddard et al., 2009). Apart from this, the spread of the
diseases in an area locally is also very relevant to the human movement patterns
within the area (Stoddard et al., 2013). In the case of COVID-19, according to
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the study done by (Gross et al., 2020), the infection of COVID-19 were found to
be highly correlated with the propagation of the disease. With the development
of advanced technologies for the precise location and the concepts of sharing the
location information (anonymously), the introduction of the human mobility di-
mension into the epidemiological studies has been easier. Various works have
been done in the modeling of various kinds of infectious diseases considering the
human movement (M. U. G. Kraemer et al., 2020; Wesolowski et al., 2015) at
different spatial scales and also on the resource-poor regions with no available
mobility data set (M. Kraemer et al., 2019).

The spread of infectious diseases in space and their outbreak in time consti-
tute a complex spatio-temporal problem which is an effect of complex dynamics
of human behavior, environment, and their interactions. It is also reported that
during pandemics of infectious diseases, the behavior of human mobility changes
(Pan et al., 2020) compared to that of normal times which makes the problem
more complex and difficult to analyze. Deep learning methods have proved to
be suitable methods for the modeling of these complex problems. In the stud-
ies (Akhtar et al., 2019; Kapoor et al., 2020; Wieczorek et al., 2020), neural
network methods have been employed along with human mobility to model the
spread of infectious diseases. Although these methods have performed well, they
are unable to provide the uncertainties in the predictions which are important
to consider in this case. Predictions with uncertainties give confidence to the
users of the results from the models (Beale & Lennon, 2012), so it is import-
ant to have uncertainties in the predictions. To incorporate the uncertainties in
the neural network-based methods, Bayesian Neural Network has been developed
(Kononenko, 1989). These methods have been applied in various spatio-temporal
contexts as well (McDermott & Wikle, 2019). But limited research works have
been conducted in the field of modeling and understanding the dynamics of in-
fectious diseases using neural network with Bayesian inference. These methods
rely on the hidden stage of the neural networks to learn from the data and are
unable to explicitly account for the spatial and spatio-temporal randomness.

These limitations are the main motivation of the current thesis. A particular
focus of this work lies in the use of the combination of deep learning methods
together with Bayesian inference to model and predict the spread and outbreak of
infectious diseases with uncertainties. In the present, study the human mobility
data along with socio-demographic variables will be incorporated in the combined
model to predict the dynamics of COVID-19 pandemic. Likewise, the thesis
attempts to analyze the importance of human mobility in modeling the dynamics
of infectious diseases.

1.2 Related Works
The modeling of infectious diseases has generally focused on compartmental mod-
els, where the population is divided into various compartments. Susceptible In-
fected Removed (SIR) models developed by (Kermack & McKendrick, 1927) have
been widely used and have been modified to other forms (Brauer, 2008). These
forms of compartmental models are used in the modeling of different types of
diseases including SARS, Ebola, HIV, and COVID-19. Similarly, these models
are also applied to various vector-borne diseases like Malaria and Dengue. Table
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1.1 provides a summarized view of the use of compartmental models in modeling
different diseases.

Table 1.1: Summary of related works done in compartmental modeling

References Disease Model type
(Chowell et al., 2003) SARS Susceptible Exposed Infectious Diagnosed

Recovered
(Rivers et al., 2014) Ebola Susceptible Exposed Infectious Hospitalized

Funeral Recovered/Removed
(Chitnis et al., 2008) Malaria Susceptible Exposed Infectious Recovered
(Pandey et al., 2020) COVID-19 Susceptible Exposed Infectious Recovered
(Giordano et al., 2020) COVID-19 Susceptible Infected Diagnosed Ailing

Recognized Threatened Healed Extinct

As spatio-temporal predictions help in understanding the spread of the disease
better to identify the regions of high risks, various works can be found on the
spatio-temporal modeling of the diseases. Among them, generalized linear models
with the addition of spatial effect of nearby places and/or temporal effects from
past events are found to be used often and have proved to be useful in predicting
as well (Cabrera & Taylor, 2019; Giuliani et al., 2020; Guo et al., 2017). For
example, (Giuliani et al., 2020) have used the generalized linear models to predict
the COVID-19 infections in the regions of Italy and found the spatial interactions
of nearby places to have a high influence on the modeling, which shows the
importance of accounting for the spatial effects explicitly. Along with these,
the Bayesian modeling methods have also been applied in the case of infectious
disease modeling in various works (Aswi et al., 2019; Song et al., 2019) and they
have been useful in the prediction and more importantly able to predict with
associated uncertainties (Gelman et al., 2013).

Various machine learning methods have been applied in the forecast and mod-
eling of the diseases (Ak et al., 2018; Anno et al., 2019; Titus Muurlink et al.,
2018). In particular neural network and deep learning methods are explored as
they can model the diseases’ dynamics in space and time with good accuracy
(Kapoor et al., 2020; Wieczorek et al., 2020). Bayesian Neural Network (Konon-
enko, 1989) applied in the modeling field have been able to perform better than
the Neural networks (Dhamodharavadhani et al., 2020). Table 1.2 shows some
of the works that have been able to perform spatio-temporal modeling of the
diseases with the neural network methods. (Cabras, 2020) presented a method
of combining the neural network method with the Bayesian Inference to model
the COVID-19 infections on the autonomous regions of Spain. In this study, the
author has not considered other spatial variables and spatial dependencies.

On the other hand, human mobility has been proved to be an important
factor in the transmission of diseases. Thus, various studies have incorporated
the human movement factors into the modeling of the spread of the diseases
(M. Kraemer et al., 2019; Massaro et al., 2019; Mukhtar et al., 2020). The
increased human mobility in western Africa had a high impact in making the
Ebola virus catastrophic (Farrar & Piot, 2014). (Bogoch et al., 2015) studied the
air transport data of flights going out of the Ebola virus affected countries finding
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air transport as one of the reasons for the transmission. In the case of COVID-
19, it is also seen that the measures related to human movements like travel
restrictions and social distancing have been effective in containing the diseases
(M. U. G. Kraemer et al., 2020) (Fang et al., 2020). Availability of technologies
like cell phone tower positioning records or global navigation satellite systems
or Wifi positioning systems have made it easier to study the mobility (Gonzalez
et al., 2008) (Toch et al., 2019)).

Table 1.2: Some of related works done with the use of Deep Learning methods

References Disease Spatial Resolu-
tion

Method

(Akhtar et al., 2019) Zika Country wise Dynamic Neural Network
(Wieczorek et al.,
2020)

COVID-19 Country and re-
gion wise

Neural Networks

(Kapoor et al., 2020) COVID-19 County wise Graph Neural Network
(Dhamodharavadhani
et al., 2020)

COVID-19 Country wide Probabilistic Neural Net-
work

(Cabras, 2020) COVID-19 Region wise Neural Network and
Bayesian Inference

1.3 Aim and Objectives
The principal aim of this research is to analyze and model the spatio-temporal
dynamics of infectious diseases considering the influence of mobility. This study
seeks to propose an approach to infectious diseases modeling with the use of a
neural network method complemented by Bayesian inference.
The research questions that guide this study are:

1. How can the spread of infectious diseases in space, and their outbreaks in
time be modeled and predicted using neural network methods?

2. How can uncertainties be introduced in the prediction of infectious diseases?

3. How can mobility be introduced to quantify its influence in the modeling
of infectious disease?

1.4 Thesis Outline
The thesis is organised as follows: Chapter 2 provides a theoretical background of
the methodological concepts used in this thesis. In Chapter 3, the methodology
of the proposed model is described into detail. Chapter 4 presents the data,
experiment design and implementation of the model with COVID-19 data. In
Chapter 5, the results of the experiments are interpreted and discussed. Finally,
Chapter 6 ends with the conclusion of this thesis.
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Chapter 2

Theoretical Background

This chapter is meant to serve as the theoretical foundation of the concepts used
in the thesis. The first section presents a brief explanation about the recur-
rent neural networks, and the background concepts of Long Short Term Memory
(LSTM) method in detail. The second section starts with some discussions on
Bayesian inferences, hierarchical models, and Integrated Nested Laplace Approx-
imation (INLA) in detail.

2.1 Artificial Neural Networks
Artificial Neural Networks are types of machine learning techniques inspired by
the functioning of human brains and work on the principle of parallel processing.
They consist of interconnected processors called neurons which learn from the
input data and optimize the output. Deep learning refers to the deeper networks
with multiple layers of the neurons, thus providing better learning and prediction
capabilities (Pascanu et al., 2014). Recurrent neural networks are the special
kind of neural networks that have been designed to learn from sequential or time-
series data. The major division of the deep learning methods includes deep neural
networks, convolution neural network, and recurrent neural networks. These
methods have a wide range of application areas which includes computer vision,
natural language, time series prediction, etc (Medsker & Jain, 1999).

Since RNN is the algorithm chosen for this study, the following subsections
deal with the detailed architecture of RNN.

2.1.1 Recurrent Neural Networks

RNNs are a subset of supervised machine learning models made up of one or
more feedback loops of artificial neurons which are recurrent over time or se-
quence (Fausett, 1994; Haykin & Network, 2004). RNN has a stack of non-linear
units that can learn even long-term dependencies of time series data (Bengio
et al., 1994). In RNN, the configuration of hidden states acts as the network
memory and the hidden layer state at a time is dependent on its previous state
which enables it to learn from the past data and thus long term dependencies are
learnt(Mikolov et al., 2014). This makes RNN an excellent choice for learning
and predicting time-dependent data. In the next section, the basic architecture
of RNN is explained.
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Architecture of Recurrent Neural Network

A basic RNN consists of three layers: input layers, recurrent hidden layers, and
output layers. A simple architecture of Recurrent Neural Network is shown in
figure 2.1 reprinted from (Salehinejad et al., 2018) here input layer has N input
units.

Figure 2.1: Architecture of Recurrent Neural Network
(Salehinejad et al., 2018)

The input layer is a sequence of vectors through time {x1. . . .xt−1, xt, xt+1. . . .xT}
where every xt = (x1, x2, . . . . . . , xN). These input features are connected to hid-
den units of the hidden layers, these connections are dependent on a weight
WIH . The hidden layer in the example architecture contains M hidden units
ht = (h1, h2, . . . . . . ., hM) which are interconnected through time. For each time
of study t, a layer of M hidden units learns from the data and this layer is con-
nected to the hidden layer with M hidden units in the next time t+1 and so on.
The state of a hidden layer can be defined as:

ht = fH (Ot)
where,Ot = WIHXt + WHHht − 1 + bh

(2.1)

fh(.) is activation function for the hidden layer, and bh is bias vector of the
hidden units.

The output layer is connected to the hidden units and are determined by the
weights WHO. The output layer contains P units. Here each output unit is given
by:

yt = fo (WHOht + bo) (2.2)

where, fo is activation function and bo bias vector of output layer.
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Activation Functions

In the learning process of the neural networks, all operations are linear except
for the activation functions, thus it provides the non-linearity in the learning
of a neural network and helps in solving complex problems (Sutskever et al.,
2011). Different predefined activation functions are available and are selected
based on the requirements. Activation functions used for classification problems
are Sigmoid or SoftMax whereas Tanh (Hyperbolic Tan), ReLU (Rectified Linear
Unit) are useful in regression (Sharma et al., 2020). Sigmoid is used in the gating
of the LSTM since it outputs the values in the range of 0-1, whereas tanh is the
activation function used in the conditions when gradient is less likely to vanish
but also converges faster than the sigmoid. (Duch & Jankowski, 1999)

Loss Function

Loss functions are the functions that help in evaluating the performance of a
neural network. The comparison of the output from the network and the actual
value is performed using the selection of loss functions as needed. In recurrent
Neural Networks, if the output value for a timestamp t, yt and the actual value
is zt, the loss is the sum of loss for all the timestamps (Sutskever et al., 2011) as

L(y, z) =
T∑
t=1

Lt (yt, zt) (2.3)

Gradient Descent

The training of recurrent neural networks involves the minimization of the loss,
which is achieved by the optimization process. In the learning method of a
recurrent neural network, gradient descent is one of the most popular and simple
methods of optimization. These methods are based on the differential equation,
where the derivatives of the error function are computed with respect to the
weight. To minimize the loss in these methods, the weights assigned to each layer
are adjusted proportionally to the derivatives. (Bengio et al., 1994)

In RNN, gradient descent through all the timestamps are applied which is
called backpropagation through time, that unfolds the network in time and propag-
ates error signals backward through time (Werbos, 1990). But with this, the
problem of vanishing gradient may arise which is a problem when the gradient
magnitudes are exponentially shrinking, and the RNN cannot learn from the
long-range temporal dependencies (Bengio et al., 1994).

Long Short Term Memory

Learning with the recurrent neural networks over an extended period via back-
propagation usually falls into the problems like gradient vanishing while learning
the long-range dependencies in temporal data (Mikolov et al., 2014). To over-
come these problems, the method of LSTM has been proposed by (Hochreiter
& Schmidhuber, 1997). In this approach, the structure of the hidden units is
changed to memory cells, whose input and outputs are controlled by gates. The
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gates control the flow of the information to hidden units also preserving the ex-
tracted features from previous time (Hochreiter & Schmidhuber, 1997; Le et al.,
2015).

The gates are logistic units with their own learned weights on the connections
with the input units and memory cells from the previous timestamp. There are
three types of gates: the forget gate which learns weights that control the rate
at which the value stored in the memory cell decays, the input gate, and the
output gate. Figure 2.2 shows a simple LSTM unit, here the LSTM cells receive
the activation signals from the previous memory cells state c(t-1), the previous
activation h(t-1) and the input data x(t). Here the input gate is defined as

Figure 2.2: Architecture of an LSTM unit

it = σ (Wiixt +WHiht−1 +Wcict−1 + bi) (2.4)

where, Wii is the weight matrix from input layer to the input gate, WHi is the
matrix from hidden state to the input gate, WCi is the matrix from the cell
activation to the input gate and bi is the bias of the input gate. The forget gate
is defined as

ft = σ (Wifxt +WHfht−1 +Wcfct−1 + bf ) (2.5)

where, Wif is the weight matrix from input layer to the forget gate, WHi is the
matrix from hidden state to the forget gate, WCi is the matrix from the cell
activation to the input gate and bi is the bias of the forget gate. The cell gate is
defined as

ct = it tanh (Wicxt +WHcht−1 + bc) + ftct−1 (2.6)

where, Wic is the weight matrix from input layer to the cell gate, WHc is the
matrix from hidden state to the cell gate and bc is the bias of the cell gate.
Similarly, the output gate is computed as

ot = σ (Wioxt +WHoht−1 +Wcoct−1 + bo) (2.7)
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where, Wio is the weight matrix from ouput layer to the output gate, WHo is
the matrix from hidden state to the ouput gate, WCf is the matrix from the cell
activation to the output gate and bf is the bias of the output gate. The hidden
state is defined as

ht = Ot tanh (ct) (2.8)

With the addition of these gates the LSTM is able to survive the vanishing gradi-
ent problem along with being able to learn the long term dependencies (Salehine-
jad et al., 2018).

Optimization

To enhance the gradient descent, optimization are added to the neural networks
training. Several optimization algorithms are available that makes the training
process faster. Some of the notable ones are Adaptive Moment Estimation, Ad-
aptive Gradient, Nesterov Accelerated Gradient, Root Mean Square Propagation
and Stochastic Gradient Descent with momentum (Bengio et al., 2013). In this
case Adaptive Moment Estimation optimization is used thus, the next section
provides a brief description of the Adaptive Moment Estimation optimization.

Adaptive Moment Estimation

ADAM is an efficient stochastic optimization method that computes individual
adaptive learning rates for different parameters from the first and second mo-
ment gradient descent calculations. This method combines the positives from
two other methods Adaptive Gradient and RMSProp This method uses exponen-
tial moving averages of gradient and squared gradients and the hyperparameters
β1, β2 control the decay rate of these moving averages (Kingma & Lei Ba, 2017).
ADAM optimizers converge a neural network very quickly thus is very useful in
the multilayered neural networks.

Parameters and Hyperparameters

The weights and biases and other variables that are derived through the training
of a neural network are parameters, whereas the variables which remain are pre-
defined for the training are hyperparameters. The hyperparameters need tuning
a lot of experimentations based on the type of data and output. Some of the
hyperparameters are explained in next sections

No of Epochs

The total number of cycles of forward and back propagation the data goes through
in the neural network. In the case of the neural network training in each epoch
the weights and the bias are updated, thus increasing the accuracy of the model.
Running a model for many epoches may sometimes cause the model to overfit
thus needs the early stopping.

Batch Size

The data size that the neural network model takes into consideration at once step
is batch size. Batch size are set based on the size of the neural networks.
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Learning Rate

The learning rate refers to the no of steps a neural network takes to converge.Learning
rates are to be chosen carefully as higher learning rate could result in divergence
while lower learning rate could cause model to take much time to converge.

2.2 Bayesian Inference
Bayesian inference is the method of statistical inference that considers the Bayes
theorem to update the probability of a hypothesis. Thus they are used to de-
duce the probability distribution of data using the Bayes theorem. The bayesian
analysis allows the incorporation of the subjective information from outside the
available dataset and they can provide the conclusion regarding the parameters
in terms of probability statements. (Gelman et al., 2013)

In the first sub-section, the concepts of probability distributions and Bayesian
inference is explained in brief and in the second section, the spatial analysis using
Bayesian methods is presented.

2.2.1 Probability Distribution

Probability distribution is the mathematical function that gives the probabilities
of occurrence of different possible outcomes in an experiment.The distribution is
usually described in the form of probability mass function or probability density
function.

Poisson Distribution

Poisson distribution is a discrete probability distribution that expresses the prob-
ability of a given number of events occurring in a fixed interval of time or space.
The probability mass function for Poisson distribution is given by

f(k;λ) = P(X = k) =
λke−λ

k!
(2.9)

Here k is number of occurance and λ is a positive real number which is equal
to the expected value of X and the variance.

λ = E(X) = V ar(X) (2.10)

Negative Binomial Distribution

The negative binomial distribution is a discrete probability distribution that mod-
els the number of successes in a sequence of independent and identically distrib-
uted Bernoulli trials. The probability mass function for the negative binomial
distribution is given by

f(k; r, p) ≡ Pr(X = k) =

(
k + r − 1
r − 1

)
(1− p)kpr (2.11)
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here r is number of successes, k is the number of failures and p is probability
of success. The mean of negative binomial distribution is given by pr

1−p and the
variance µ(1 + µ

r
). Thus it tends to become poisson distribution when r → ∞.

Negative binomial distribution can be used as an alternative to the poisson
distribution as it allows different mean and variance, thus in modeling the disease
transmission, where the variance is high, negative binomial distribution is used
(Lloyd-Smith et al., 2005).

2.2.2 Bayes’ Theorem

Bayes´theorem is a tool that allows the use of prior knowledge or belief regarding
any event to compute the probability of that event. The Bayes theorem can be
stated as

P (Θ | data) =
P (data | Θ)× P (Θ)

P (data)
(2.12)

where Θ is the parameter of the distribution, P (Θ | data) is the posterior that
defines a probability distribution of parameters that fits the data, P (data | Θ) is
the likelihood which is the probability that the data could be generated by the
model with parameters Θ and P (Θ) is the prior information we have regarding
the parameters Θ.

P (data) is the overall probability of data also referred as the marginal like-
lihood which is sometimes difficult or even impossible to compute because of
the complexity. This complexity of the computations is usually addressed by
restricting the models to conjugate priors, or finding the numerical solutions or
generation of large number of combinations of representative parameters from the
posterior distribution, these methods are known as Markov Chain Monte Carlo
(MCMC). The development of these computing methods have boosted Bayesian
inferences towards practical use cases.

2.2.3 Priors and Conjugate prior families

Priors have very important role in the Bayesian analysis as they help in de-
fining the subjective information regarding the data before actually looking at
the data. Priors are provided as the probability distribution, which are usually
specified based on information accumulated from the past studies or from the
opinions of the subject-area experts. While choosing the prior distribution from
certain families the computation of the posterior distribution is easier for some
distributions than others. Generally for the ease of computation the selection of
the priors is done so that it is conjugate with the likelihood which would generate
the posterior distribution in the same distribution as the prior.

For example for a counting variable X the likelihood distribution is generally
considered Poisson i.e.

P(x|θ) =
θxe−θ

x!
, x ∈ {0, 1, 2, ...}, θ > 0 (2.13)

if the prior is considered as the Gaussian distribution with parameters α and
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β i.e.

P(θ) =
θα−1e−

θ
β

Γ(α)βα
, θ > 0, α > 0, β > 0 (2.14)

the posterior distribution is proportional to a gamma distribution with para-
meters α′ = x+ α and β′ = (1 + 1

β
)−1 as from Bayes theorem

P(θ|x) ∝ P(x|θ) P(θ)

∝ (e−θθx)(θα−1e−
θ
β )

= θx+α−1e−θ(1+
1
β
)

(2.15)

Apart from this conjugate combination of Poisson and gamma there are several
other conjugate combinations like Bernoulli- beta, normal-inverse gamma etc.
(Carlin & Louis, 2008)

2.2.4 Markov Chain Monte Carlo and Integrated Nested
Laplace Approximation

MCMC is a simulation based method for the approximation of the marginal
likelihood which combines the two methods Markov Chain and Monte Carlo,
allowing random sampling of high dimensional probability distribution. There
are various MCMC based algorithms used in Bayesian inference some of them
are Gibbs sampling algorithm and Metropolis-Hastings algorithm.

INLA is method specially designed for Latent Gaussian variables(Rue et al.,
2009).INLA is an anlytical approach using laplace approximations. An R-package
for performing Bayesian inference using INLA package is available with the name
R-INLA (Martino & Rue, 2010). The functions in this package provide a simple
and easy way of performing bayesian inferences for spatial dataset allowing addi-
tion of covariates as well as the spatial and temporal interactions. Spatial analysis
consists of the models that considers the concept the observations that are closer
are likely to show similar values (Tobler, 1970). This is often referred as Spatial
auto-correlation which is a systematic variance of a variable in a space (Haining,
2001). Spatial models account for the spatial autocorrelation to separate the
general trend from the covariates with the spatial variation. Spatial modeling
is divided into three major areas of study on the basis of the data and type of
problem namely areal data, geostatistics and point patterns (Cressie, 2015). In
the following section the concepts related for areal data are described.

Areal data

Areal data are the type of data which are observed or aggregated within a given
boundary, these data are also known as lattice data. These boundaries are often
the administrative boundaries or arbitrary grids. Some example of lattice data
are the number of Covid-19 cases in a given district or county, the total number
of trees within a defined grid.
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Adjacency Matrix and Spatial Neighborhood

While performing spatial analysis on areal data the adjacency matrices play a vital
role as they define the dependence of a region to the other nearby regions based
on the shared boundary. This is an important step because it ensures that the
residuals do not contain any spatial pattern (Bivand et al., 2008). The adjacency
matrices are represented by matrix with non-zero entries at the intersection of
rows and columns of neighboring areas (Gómez-Rubio, 2020).

2.2.5 Bayesian Disease Mapping

modeling the geographical distribution of infectious diseases have been very im-
portant task in the history of epidemiology (Wakefield, 2007). For a case of
incidence of disease in an area i if Ei be the expected number of people in risk
and yi is the number of cases in the region i, then the no of cases are generally
Poisson distributed with Ei mean. i.e.

yi|θi ∼ Poisson(Ei.θi) (2.16)

where θi represents the true area specific relative risk (Bernardinelli et al., 1995).
Various Bayesian hierarchical models for estimating these θi over space have been
proposed where the underlying random effects depend on the neighborhood struc-
tures (Bernadinelli et al., 1997).

A general model formulation by assuming the log risk ηi which is given as

ηi = log(θi) = µ+ zTi β + bi (2.17)

where µ denotes overall risk level, zTi are set of covariates with the corresponding
regression parameters β and bi the random effects. (Riebler et al., 2016)

Besag and Besag York Mollie models

Besag model uses the approach of modeling the spatial correlation as an intrinsic
Gaussian Markov Random Field (GMRF). The conditional distribution for bi is
given by

bi | b−i, τb ∼ N

(
1

nδi

∑
j∈δi

bj,
1

nδiτb

)
(2.18)

where τb is precision parameter and b−i = (b1, ....bi−1, bi+1, ...bn), δi are the neigh-
bours of region i and nδi the number of neighbours. (Besag et al., 1991)

The Besag model only assumes the spatially structured component through
the neighborhood, along with including the random error or pure overdispersion
in the area i as spatial correlation, which may lead to error in parameter estim-
ation (Breslow et al., 1998). Thus in the BYM model this issue is addressed by
decomposing the spatial effect b into the unstructured and structured compon-
ents. b = u + v, where v ∼ N (0, τ−1v I) accounts for the pure overdispersion and
u is the structured component from the besag model.
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2.2.6 Model Evaluation

The evaluation of the performance of a regression model is generally done with
the help of Root Mean Squared Error (RMSE) value and are standard statistical
metric to measure the performance of models in the field of geo-sciences (Chai &
Draxler, 2014). The Root Mean Squared Error value can be computed as:

RMSE =

√√√√ 1

n

n∑
i=1

e2i (2.19)

where, n is the number of the observations and ei are the error on each observa-
tions i = 1,2,..n

For comparison of the Bayesian models Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002), which is a Bayesian model comparison criterion, are
used. The DIC values are represented as

DIC = goodness of fit+ complexity = D(θ) + 2pD (2.20)

where D(θ) is the deviance evaluated at the posterior mean of the parameters
and pD denotes the effective number of parameters and it measures the complexity
of the model (Spiegelhalter et al., 2002). When the model is true, D(θ) should be
approximately equal to the effective degrees of freedom, n − pD. One drawback
of DIC is that it may underpenalize complex models with many random effects.

An alternative is the Watanabe Akaike information criterion (WAIC) which
follows a more strict Bayesian approach to construct a criterion (Watanabe &
Opper, 2010). Like DIC, WAIC estimates the effective number of parameters to
adjust over-fitting. pWAIC is similar to pD in the original DIC. (Gelman et al.,
2014) scales the WAIC of (Watanabe & Opper, 2010) by a factor of 2 so that it
is comparable to DIC.

Similarly, the conditional predictive ordinate (CPO) (Pettit, 1990), which
expresses the posterior probability of observing the value (or set of values) of yi
when the model is fitted to all data except yi.

CPOi = π
(
yobsi | y−i

)
(2.21)

Here, y−i denotes the observations y with the i-th component removed. This
facilitates computation of the cross-validated log-score (Gneiting & Raftery, 2007)
for model choice (− (mean (log(cpo)))).
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Chapter 3

A Bayesian LSTM Model

This chapter presents the proposed model and describes the methods used in this
study. These methods are based on the theories explained in Chapter 2. The
structure of this chapter is as follows, the first section gives a brief overview of
the model, the second section covers the input data to the model and the third
and fourth section describes the LSTM model and the Bayesian Inferences.

3.1 Overview
The LSTM Bayesian Model aims to model the number of infections of infectious
disease on an areal unit such as a municipality, province, health-zone, etc. based
on the spatial covariates, the temporal trends, and the mobility matrices com-
prising all the mobility from and within each areal units in the study area. With
this model, it is possible to predict the number of infections in the future in an
areal unit given the spatial covariates and the mobility data. The model assumes
that the temporal scale of data is uniform and the spatial extents are irregular
lattices.

Figure 3.1 shows the overview of the model used. The input to the LSTM
model are the cases of infectious diseases, which gives a prediction. The com-
bination of the mobility data and the spatial variables is done to create spatial
weights. These weights and the predictions from the LSTM model are the inputs
to the Bayesian model whereas to model the spatial correlation, the neighbor-
hood structures are defined based on the spatial characteristics and the mobility
matrices. This model can be summarized as:

If Yti ∈ 0, 1, 2, 3... be random variable representing the number of cases of
infectious disease in an area i = 1,2... m at a time t = 1,2....T, this work is
focused on the computation of

P (Yti = y|Fti, D) (3.1)

The value Fti is the evolution of the data until time t (Cabras, 2020) which
is computed by the LSTM and finally predicted no of infections are computed
with the help of Bayesian inference which is conditioned on the predictions of the
LSTM and other covariate information such as spatial weights, D.
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Figure 3.1: Overview of the Bayesian LSTM Model

3.2 Model Input
The inputs to the model are the daily number of infection cases in areal units, the
spatial variables including the socio-demographical data, daily mobility matrices,
and the neighborhood structure of the study area. The details of the input data
required by the model are defined in the next sub-sections.

3.2.1 Sequential to Supervised Conversion

In performing the time series based analysis, the time series must be converted
to a supervised problem i.e. the sequences should be converted to input output
pair. Shifting of the sequential data is done to achieve this step (Brownlee, 2017).
Thus, for every time step t of the time series, one day ahead shifting is done in
the data to create a shifted prediction at t+1.

3.2.2 Spatial Weights

Considering mobility from all other region j = 1, 2, ..m into a region i as the factor
for the importing the infections of a disease into the region i, spatial weights are
computed. This weight can be interpreted as the possibility of a moving person
to import the infection of the disease into the region i from all the other regions.
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This spatial weight for a region i for a day t, Wi,t, can be computed as

Wi,t =
n∑
j=1

∆t∑
t=t−1

(mj,i,t ∗
Ij,t
Pj

) (3.2)

where, mj,i,t is the mobility from all regions j to i on day t,
Ij,t is the no of cases of infection on region j at time t,
Pj is the total population of the region j.

A time lag ∆t is added to the computation of the spatial weights as the spread
of a disease on the region is dependent on the mobility and infections from past
days in all other regions of study area.

3.2.3 Neighborhood Structures

As discussed in section 2.2.5, in spatial analysis the neighborhood structures
are key to accounting for spatial correlation. In this model, these neighborhood
structures are spatial neighborhood as well as the neighborhood due to mobility.
As the neighboring regions tend to have similar number of cases of infections, it is
reasonable to consider the spatial neighborhood structure. Spatial neighborhood
is a matrix containing the binary information, i.e. 1 if the regions are sharing
common border and 0 if the regions dont share the border.

Along with this connectivity, the regions are also connected by the means
of movement, i.e. even though some regions may not share the borders, there
may be movement between them which could create a connection. Thus with
this connection, spatial correlation may exist and to account for this correlation
mobility based neighborhood structure is required. The mobility based matrix
considered in this model is a median mobility matrix depicting the information of
the median through out the study period. Median is chosen in this case to reduce
the effects of outliers but this matrix can be any representative matrix from the
study time period.

3.3 LSTM Model
The recurrent neural networks are effective models to model temporal events as
they are able to predict the temporal events based on long term dependencies.
In particular LSTM model is able to cope with the gradient vanishing problem.
These LSTM models require data to be in supervised format thus the input data
is expected in the format explained in the section 3.2.1.

The LSTM model in the LSTM Bayesian model accounts for the temporal
trend of the disease infections within a particular area. It is assumed that the
LSTM model learns the temporal patterns more than the spatial dependence and
correlation, although some spatial covariate information are also part of input of
this model. The aim of the LSTM model is to learn from the past events in an
area with the LSTM and also incorporate spatial dependencies from some spatial
covariate information. Thus, LSTM model is able to learn Fti in the equation 3.1
In the following section the model architecture is described.
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Figure 3.2: Architecture of LSTM model

Architecture

The LSTMmodel has 131,489 parameters consisting of three stacked LSTM layers
which are recurrently used for the time period T. The first, second and the third
LSTM layer has 128, 64 and 32 hidden units respectively. A dense layer connects
all the recurrent layers and connects them to the output layer. The dense layer
has the linear activation function. The architecture of the LSTM model is shown
in figure 3.2.

3.4 Bayesian Inference
The aim of performing Bayesian inference as a second stage is to model uncer-
tainty in the prediction of number of infections in terms of a probabilistic spatio-
temporal stochastic model. The count variable Yti i.e. the number of infections
on a area i at time t has a Poisson distribution expressed as

Y |θit ∼ Poisson(θit) (3.3)

The general log linear model is adopted (Wakefield, 2007)

ηit = log(θit) = µ+ zTi β + bit (3.4)

where µ is the intercept, the covariates and their coefficients come in the term
zTi β, and the bi are the random effects. These random effects are modelled as

bit = δt + ξi + ζi (3.5)

where the random effects are decomposed as a temporal trend δt, and ξi and ζi
that account for the spatial correlation due to the spatial neighborhood relations
and the mobility respectively. This model has been adopted and modified as used
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by (Jalilian & Mateu, 2020). The spatial neighborhood effect ξi on the model is
the same but the ζi is modified following a mobility based neighborhood structure.

The temporal trend δt has been modelled using a Random Walk structure,
which accounts for the short and long temporal trend (Fahrmeir & Kneib, 2008).
The spatial correlation due to the neighborhood structure is modelled through
a Besag York Mollie (BYM) model (Besag et al., 1991).The additional spatial
correlation due to the mobility is modelled by assuming the random effect ζi
following a Gaussian Markov Random Field (GMRF).

The predictions from the LSTM model are plugin into the Bayesian mechan-
ism as expected values to further fit the Bayesian approach. Usually in Bayesian
analysis, the values to be predicted are left empty and the model computes the
mean prediction (Zuur et al., 2017). In order to avoid overfitting by the model,
these LSTM predictions cannot be used as covariate information.
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Chapter 4

Experiment Design and
Implementation

This chapter presents the study area, data sources and the preprocessing applied
to the data and then explains the experiment design, model implementation and
evaluation.

4.1 Study area
The daily COVID-19 cases in the autonomous community of Castilla-Leon in
Spain were analyzed in this study. Castilla-Leon is the largest autonomous com-
munity in Spain by area located in the northwest part of Spain. The autonomous
community has a population of around 2.5 million and is ranked third among the
autonomous communities in offering social services to the citizens. Figure 4.1
is the location map of Castilla-Leon showing the location of the community in
Spain and the 245 health-zones in the community.

4.2 Data Sources
The daily covid -19 cases data were retrieved from the open data portal of Castilla-
Leon 1. The datasets are aggregated to the health-zones level, and although there
are 247 health-zones in Castilla-Leon, after the initial preprocessing 245 health-
zones data are used for the study 2. The data set from March 1, 2020, until
November 13, 2020, were used for the study.

The daily mobility data for the study area was acquired from Barcelona Su-
percomputing Center flowmap dashboard 3. Similarly, the socio-demographic
dataset and the health-zone boundary in the form of shapefile were downloaded
using the open data platform 4.

1https://datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.html
2In this study, the health-zones SORIA NORTE, SORIA SUR and SORIA RURAL are

aggregated to form a single unit
3https://flowmaps.life.bsc.es/flowboard/
4https://datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.html
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Figure 4.1: Study Area: Autonomous Community of Castilla-Leon, Spain

Table 4.1: Summary of data used and their sources.

Data Data Sources Description of data
COVID-19 Open Data portal of

Castilla-Leon Daily infected cases at health-zone level
Mobility Data Barcelona Supercomputing

Center Daily human mobility matrices
at municipality level

Socio Demographic Open Data portal of
Castilla-Leon Individual health-zone total

population, unemployment level
and number of urban offices

Geometry Open Data portal of
Castilla-Leon Boundary shapefiles of

247 health-zones

4.2.1 COVID-19 data

The health-zones level daily new infected cases of covid was acquired from the
open data portal of Castilla-Leon. The dataset from the March 1, 2020 till
November 13, 2020 were used for the study.
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4.2.2 Mobility Data

The mobility data acquired from the data portal of Barcelona Supercomputing
Center was prepared by the Ministry of Transport, Mobility, and Urban Agenda.
In preparation of the data, the main data source was anonymized records from
mobile phones. These recorded events contain both active events also known as
Call Detail Records (CDR) and passive events with the periodic update of device
position, change of coverage area, etc. The location information is at the level of
the coverage area of each antenna, which is merged to create origin-destination
matrices at municipality as shown in figure 4.2, districts and provinces level.
Along with these records from the cell phones, landuse data, and population
data, transport network data such as train lines, and location of airports have
been used to create the merged matrices (Ministry of Transport & Agenda, 2020).

Figure 4.2: Mobility data Sample

4.2.3 Socio-demographic data

The socio-demographic dataset for the health-zones was acquired from the open
data portal of Castilla-Leon. The following table 4.2 shows the socio demographic
variables used in the study
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Table 4.2: Summary of socio-demographic variables.

Variable Name Description
total_pop total population of the health-zone
demanding_total_employment Number of people demanding for

employment
number_of_urban_commercial_units Number of commercial offices

in the urban areas
number_of_urban_industrial_units Number of industrial units in the urban areas
number_of_urban_office_units Number of offices units in the urban areas
hzone_type Type of health-zone (urban/rural)

4.3 Data Preprocessing
As the data are from different sources, it requires merging and combining. Join
operations were carried out to join these data. This also involved the preparation
of unique keys for each health-zones (referred as hzcode). To ensure the consist-
ency of the data, redundant information was removed. The repeating date was
removed. Data with negative values and empty values in the number of cases
were set to 0.

The preparation of the data involved the conversion of various data into the
required format and the creation of new fields as shown in 4.3. In the compu-
tation of the travel restrictions, the dates considered reflecting the decisions by
the Spanish Government. So, the ranges of dates considered are pre-lockdown,
lockdown, post-lockdown, and restricted travels period. Each of these periods has
different significance on the movement of people and also other human behaviors
such as social distancing, awareness, etc.

Table 4.3: Summary of variable transformations.

Variable Name Description
Day of the week Computed from the date
Travel Restrictions Factor considering the travel restrictions

time period
Factor consists following values:
0 - 2020-03-01 - 2020-03-13
1 - 2020-03-13 - 2020-07-16
2 - 2020-07-16 - 2020-10-01
3 - 2020-10-01 - 2020-11-13

health-zone type Factor based on health-zones’ type
0- Rural
1- Urban

Average No of cases in
neighboring health-zones Average of no of cases in health-zones directly in contact
Shifted Cases The shifted cases of COVID by 7 days
Mobility Matrices Conversion from municipality to health-zone wise
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Mobility data conversion

The available daily mobility data was at the municipality level. These municip-
alities with population less than 1000 were combined to form aggregated zones.
These aggregations were converted to the health-zone level by applying spatial
overlay functions and dividing the movement data in proportion to the area of
the overlay regions.

4.4 Experiment Design

4.4.1 Training Validation Test data division

During the study period, two waves of covid infections have been reported in the
study area. With the start of covid infections worldwide, the first infection in
the study area was seen in early March. The number of daily cases was rising
very quickly. This stage of the infection is referred to as the first wave. During
this time in most of the health-zones of the study area, the daily infections had
reached the peak and the government had restricted the movement by applying
the lockdown. By mid June, the daily infection rate had gone down and on 16
July, the lockdown was lifted and movement and other activities were allowed
with some restrictions. Starting early August, the number of daily infections
increased rapidly which is referred to as the second wave of infections which has
continued until the end of the study period.

In this study, it is important to train the model with both of these waves of
infections as they depict two different scenarios, the first wave shows the condi-
tion of lockdown and a trend of reducing the daily number of infections, while
the second wave shows the condition of restriction in movements and other daily
activities without lockdown. Thus the study period selected for the training in-
cludes both the waves data. The following figure 4.3 shows the training, validation
and test period.

The training phase of the study is March 1, 2020, till October 22, 2020, were
used while validation was done for the data from October 22, 2020, till November
6, 2020. Finally, the model was tested by predicting the daily infections for the
last week of the study i.e. November 6, 2020, till November 13, 2020.
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Figure 4.3: Division of training, validation and test dataset

4.5 Implementation
The model explained in Chapter 3 is the combination of two parts: Recurrent
Neural Network with the LSTM and the Bayesian inference. The Bayesian infer-
ence is performed with the INLA (Rue et al., 2009). The model is referred to as
LSTM-INLA model. The following sections describe the implementation details
of these two sections along with the computation of the spatial weights of the
model.

4.5.1 Computation of Spatial Weights

As described in section 3.2.2, the spatial weights are computed to incorporate the
daily movement matrices into the model. Along with the mobility matrices, the
daily infection within a time lag ∆t has been introduced. In the case of COVID-
19, this lag period can be assumed equal to the incubation period as proposed in
clinical studies (Guan et al., 2020). Thus, we used a 4 days lag time period to
compute these spatial weights.

4.5.2 LSTM

Python programming language and the library Keras 5 is used for development
of the model. The selection of the model was done by tuning the parameters
and hyper parameters. The training and validation loss for the combination
were analysed along with the Root Mean Squared Error (RMSE) value for all
the regions. The following table 4.4 depicts the selection of the parameters and
hyperparameters.

5https://keras.io/
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Table 4.4: Summary of Parameters and Hyperparameters in LSTM model.

Parameter Value
Number of LSTM layers 3
Hidden Units in LSTM layers Layer 1: 128

Layer 2: 64
Layer 3: 32

Number of dense layers 1
Activation function of dense layer Linear
Number of epochs 100
Loss Function Mean Squared error
Optimizer ADAM

Learning Rate: 0.001
β1: 0.9
β2: 0.999

Batch Size 10

4.5.3 INLA

In performing the Bayesian inference, R package R-INLA 6 is used. The R-INLA
package provides all the required possibilities of covariates additions, prior dis-
tribution definition, and the definition for the spatial and temporal effects used
in the models. The functions in the packages are used to define the regres-
sion, and run the model and perform the predictions. The model provides mean
prediction values along with the posterior distributions of the parameters. The
evaluation of the INLA model is done with the Deviance Information criterion
(DIC), Watanabe-Akaike Information Criterion (WAIC) values, and Conditional
Predictive Ordinate (CPO).

The following table 4.5 shows the spatial and temporal random effect com-
ponents in the model and the corresponding functions from R-INLA used.

Table 4.5: Model Components and their implementation functions in R-INLA.

Component Description R-INLA Function
δt The temporal random effects rw
ξi Spatial Random effect due to bym

neighborhood structure
ζi Spatial Random effect due to generic1

mobility

4.6 Model Evaluation
The evaluation of the model was performed with two baseline models as shown
in the table 4.6. As discussed in the section 2.2.6, the evaluation metrics chosen
was RMSE. A mean value from all the RMSEs computed for all the health-zones

6www.r-inla.org
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of the study was computed to compare the models. Similarly, for the comparison
of the INLA models the WAIC, DIC and CPO values are compared.

Table 4.6: Baseline models for Evaluation.

Model Name Description
LSTM A Recurrent Neural Network with same

configuration that LSTM-INLA model has in the LSTM part
INLA Regression model with the same configuration

that LSTM-INLA model has in the INLA part
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Chapter 5

Results and Discussions

This chapter presents and discusses the results achieved from the experiment
designed as described in the Chapter 4. The first section shows in brief the
exploratory analysis performed on the available variables. The second section
presents the results from the selected LSTM-INLA model and the comparison
of the model with the baseline models i.e. LSTM and INLA. The third section
describes the impact of the spatial weights factor on the results of the model.
The fourth section presents the interpolation and predictions from the model.
Finally, the last section describes the limitation of the models and possible further
improvements are presented.

5.1 Data Exploration
For exploratory analysis on the data, the temporal variations and the spatial
distributions of the available covariate information and the number of cases were
analyzed. The spatial distribution of the number of COVID-19 infections per
10000 population in health-zones of the study area is shown in figure 5.1 and the
distribution of the number of cases per 10000 population in health-zones in figure
5.2. This shows the number of cases in all the health-zones vary. The highest
number of cases is 1770 per 10000 population and the lowest number of cases is
200 per 10000 population. There are many health-zones with very few cases and
very few health-zones with the high number of cases.

The temporal trend of the number of COVID cases per 10000 population

Figure 5.1: Spatial distribution of
COVID-19 cases in the study area

Figure 5.2: Distribution plot of the
cumulative cases
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Figure 5.3: Temporal plot of
COVID-19 cases

Figure 5.4: Temporal plot of the
total mobility

and the total mobility in the health-zones are shown in the figures 5.3 and 5.4
respectively. The orange lines represent the mean for each day. In the initial days
of the study period, it can be seen that there are some similarities between the
mobility and the number of cases. But in the later period of the study, there is
not a very clear pattern, although there is a slight reduction in mobility as the
cases were high. Apart from this, the weekly trends in both data can be seen, as
there are sudden drops each weekend.

5.2 Model Evaluation
As explained the section 4.6, the evaluation of the model was done with two
baseline models LSTM and INLA. These models were trained or fitted with the
same configuration and same covariates. The statistics for the comparison is the
RMSE values and for the INLA based model, the WAIC and DIC values are also
compared. Table 5.1 shows the RMSE for the predictions for the last week of the
study i.e. (from 2020-11-06 to 2020-11-13) from the model and the baselines. The
plots and the maps from the predictions are presented in the prediction section.

Table 5.1: Models comparision

Model RMSE WAIC DIC
LSTM-INLA 9.11 202324.70 202145.79
INLA 58.11 193364.41 193530.17
LSTM 12.95 - -

The RMSE value for the proposed model is 9.11 as compared to the value of
58.11 for the INLA model and 12.95 for the LSTM model. The RMSE value for
the model LSTM-INLA is lower than that of the INLA model while the WAIC
values and DIC values are higher. And, although the RMSE values in the LSTM
model are similar and there is only a slight increase in the LSTM-INLA model, the
ability to predict the number of cases with the credible interval gives advantages
to the LSTM-INLA model. Thus, it can be said the proposed LSTM-INLA model
is able to perform better than the baseline models as reported in figure 5.1.

The spatial covariates as well as the mobility are transferred into a spatial
weight factor as described in section 3.2.2. These spatial weight factors were
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introduced to the model in the form of covariate information. The impact of
these spatial weights on the model predictions are described in this section. The
model LSTM-INLA was fitted with and without the spatial Weights to find out
the influence of the spatial weight on the model. The models were evaluated
based on the RMSE, WAIC, and DIC values.

Table 5.2: Evaluation of Spatial Weights

Model RMSE WAIC DIC
LSTM-INLA with Spatial Weights 9.11 202324.70 202145.79
LSTM-INLA without Spatial Weights 13.35 207052.62 207278.62

The table 5.2 shows that the model WAIC values and the DIC values are
better in the case when the spatial weights are computed. Similarly, the RMSE
values have improved in the case of the proposed model with the inclusion of the
spatial weights.

The posterior mean of the significant fixed effect parameters of the model and
their respective 95% credible interval are shown in the table 5.3. It is observed
that the weekdays are equally significant but the weekends are less significant.
This is a reasonable finding because the number of tests and reporting on the
weekends are lower. Similarly, the spatial weights computed are also significant
with a mean value of 0.026.

Table 5.3: Posterior Mean and credible interval of the significant parameters

Parameters Mean Credible interval
Monday -9.072 -9.749, -8.396
Tuesday -9.076 -9.748, -8.403
Wednesday -9.051 -9.721, -8.382
Thursday -9.081 -9.757, -8.404
Friday -9.052 -9.739, -8.365
Saturday -9.86 -10.544, -9.176
Sunday -10.005 -10.685, -9.325
Spatial Weights 0.026 0.025, 0.027

In the figures 5.5 and 5.6, the maps showing the spatial random effects due to
the neighborhood structure and the mobility respectively are shown. The values
suggest both random effects have an influence on the model. The spatial random
effect due to the neighborhood structure ξi have clusters around the major cities
like Leon, Valladolid, and Burgos whereas the random effect due to the mobility
ζi are distributed evenly with some exceptional peaks. The figure 5.7 shows the
mean and the 95 % credible interval for the temporal trend δt. This temporal
trend suggests similar findings to that of section 5.1 that there exist two peaks or
waves of infections in the study period: one in early April 2020 and another one
starting after August 2020. Similarly, it is also seen that the first wave reduced
down quickly whereas the second wave does not have a quick downward trend
but has been consistent afterwards. In the plot of the temporal effect, the trend
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Figure 5.5: Spatial Random effect
due to neighborhood structure

Figure 5.6: Spatial Random effect
due to the mobility

Figure 5.7: Trend of temporal effect

on both sides of the zero line with fluctuating values supports the inclusion of the
temporal effect in the model design.

5.3 Interpolation and Predictions
The fitted model was used for health-zone wise one week ahead prediction. The
prediction was done for the last week of the study which is from 2020-11-06 till
2020-11-13. The LSTM model was used to initially predict for the same time
range, and these results were used in the prediction for the INLA part of the
model. In general, to predict the values in R-INLA package, the values we want
to predict are set as null values (Zuur et al., 2017). But in this case, since the
predictions from the LSTM model are considered the expected values, instead of
setting the values as null values the predictions from LSTM were used, to provide
the model with a reference of the values to predict.

Figure 5.8 shows the predicted values from the LSTM-INLA model and the
95% credible interval for a few selected health-zones of the study area for the
prediction period. The actual number of cases on that day are shown in red-
colored dotted lines whereas the number of cases predicted by the LSTM model
are also shown for comparison (green in color). Generally, the LSTM-INLA is
predicting results better than that of the LSTM model. It can be seen that the
LSTM-INLA model’s mean prediction and the 95% credible interval is close to
the observed values. Similarly, LSTM model has not been able to follow the
pattern of the observed cases and the predictions also lack the credible interval.
Furthermore, the predictions from the INLA model for the same health-zones
have very large credible intervals and are not able to follow the pattern of the
observed actual cases, which are shown in the figure B.1 and B.2. The results
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Figure 5.8: Prediction of daily COVID-19 cases for dates 2020-11-07 till
2020-11-13 from the LSTM-INLA model for selected health-zones

(a) San Agustin, (b) Portillo, (c) Tortolo and (d) Canterac

from the interpolation i.e. the fitting of the model for the whole time scale is
shown in the figure A.1 and A.2 for these 4 health-zones.

The prediction map for the day 2020-11-12 is shown in figure 5.9. In the figure
5.9, (a) shows the predictions for each health-zone and (b) shows the observed
values on that day. It can be seen that LSTM-INLA model is able to predict the
spatial distribution in a good way. The clusters are similar for the major cities of
the study area i.e. Burgos, Salamanca, Leon and Valladolid and the places with
lower daily number of cases. The prediction is visualized in shiny app 1.

Figure 5.9: Map showing the predictions and observed values for the day
2020-11-12

(a)Predictions from the LSTM-INLA model and (b) Observed Number of cases

1https://poshan-niraula.shinyapps.io/inla-results/
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5.4 Limitations and Future Directions
The limitations and possible future improvements in this work are presented in
this section.

The phenomenon of infectious disease spread has a lot of complexities and
is dependent on numerous factors. These factors include the organism causing
the disease, the mode of transmission, human behaviors, the environmental con-
ditions, and most importantly, the preventive measures applied. All of these
factors are not quantifiable but a maximum number of these factors are to be
considered while modeling the diseases. In this study, one of the major factors
considered is human mobility. Some socio-demographic variables were considered
but we believe more variables associated with the socio-demography and climatic
conditions can be introduced. Similarly, the variables related to human behavior
and preventive measures such as social distancing and personal hygiene should
be incorporated in future works. Generally, the prediction results are good with
low RMSE values but in some cases, the sudden rise in the number of cases on a
day and sudden fall on the next day were not predicted properly by the model.
Similarly, one assumption common to most disease modeling, in this case, is that
the number of reported cases is assumed to be equal or at least representative of
the actual number of infections.

The focus of this work is on the combination of neural networks and Bayesian
inference. The predictions from neural networks were used as expected values for
the Bayesian inferences which can be improved by transferring the predictions to a
prior distribution and use them as the prior information in the Bayesian inference.
Similarly, this task was performed by working on them separately which has the
associated complexities in the development of the model. A combined solution
such as spatio-temporal recurrent neural networks able to predict results with
uncertainties can be a possible alternative.

In this study, the daily mobility matrices were converted into covariates and
the median mobility as a neighborhood structure. Instead of using one median
mobility, an approach to generate the daily neighborhood matrices and use them
to account for the spatio-temporal correlation could be an enhancement of this
work. Similarly, more detailed mobility data should be used to have a better
evaluation of the impact. graph-based neural networks (Dhamodharavadhani et
al., 2020) .

Finally, the proposed method is applied only in one scenario of covid-19 in-
fection for a short period. Thus, data with a longer period and different spatial
scales should be used to test the versatility of the model.
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Chapter 6

Conclusions

For modeling the spread and outbreak of infectious diseases, a model comprising
the combination of neural network and Bayesian inference has been presented.
This model is able to model the number of cases of infectious diseases in areal
units such as municipalities or health-zones. The predictions from the model
have uncertainties associated with them. The model accounts for the spatial
correlation due to the spatial neighborhood relation and also due to a median
mobility matrix. In addition to this, the daily matrices of movements were used
in the computation of the spatial weight which is added in the model as one of
the covariate information.

The model was evaluated with the case study of COVID-19 data from the
autonomous community of Castilla-Leon in Spain consisting of 245 health-zones.
The dataset used were daily COVID-19 cases from March 1, 2020, till November
13. 2020. The model was able to predict the number of daily infections in
each health-zones, and these predictions and the credible interval were compared
with the observed data. The results from the evaluation showed that the model
performed well generally. The model outperformed the model with only neural
networks and only bayesian regression. The mobility transformed as a spatial
weight as well as the spatial correlation introduced as a result of the mobility
was found influential. However, the results also highlighted some challenges and
limitations in terms of the addition of covariate information, and the inability to
predict sudden peaks and lows.

In future works, the accuracy of prediction may be improved by the addition
of other variables relevant to the disease of study which may include the weather
conditions and preventive measures. Furthermore, detailed mobility information
may be introduced as a spatio-temporal effect with the use of graph concepts.

The model is believed to be useful for the governments in monitoring any
infectious diseases. The results from the model can be used in formulating health-
related policies such as the application of preventive measures or vaccination.
The contribution of this work is that it is able to take advantage of the neural
network methods in learning complex dependencies from the data, as well as
from the Bayesian inference to associate the uncertainties in the predictions also
considering the spatial dependencies due to the mobility. In conclusion, this thesis
is able to present a model that can provide accurate predictions of infectious
diseases and help in a way to mitigate the impacts.
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Appendix A

Interpolation Results from
LSTM-INLA model
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Figure A.1: Interpolation results from the LSTM-INLA model for health-zones
a) San Agustin and (b) Portillo
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Figure A.2: Interpolation results from the LSTM-INLA model for health-zones
(c) Tortolo and (d) Canterac
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Appendix B

Prediction Results from INLA
model
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Figure B.1: Predictions results from the INLA model for health-zones a) San
Agustin and (b) Portillo
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Figure B.2: Predictions results from the INLA model for health-zones (c) Tortolo
and (d) Canterac

48



Appendix C

Residual Plots
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(a) LSTM-INLA model

(b) INLA model

(c) LSTM model

Figure C.1: Residual Plots for prediction from different models
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