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Abstract 

Land Surface Temperature (LST) is an essential parameter for analyzing many 

environmental questions. Lack of high spatio-temporal resolution of LST data in 

Antarctica limits the understanding of climatological, ecological processes. The 

MODIS LST product is a promising source that provides daily LST data at 1 km spatial 

resolution, but MODIS LST data have gaps due to cloud cover. This research 

developed a method to fill those gaps with user-defined options to balance 

processing time and accuracy of MODIS LST data. The presented method combined 

temporal and spatial interpolation, using the nearest MODIS Aqua/Terra scene for 

temporal interpolation, Generalized Additive Model (GAM) using 3-dimensional 

spatial trend surface, elevation, and aspect as covariates. The moving window size 

controls the number of filled pixels and the prediction accuracy in the temporal 

interpolation. A large moving window filled more pixels with less accuracy but 

improved the overall accuracy of the method. The developed method's performance 

validated and compared to Local Weighted Regression (LWR) using 14 images and 

Thin Plate Spline (TPS) interpolation by filling different sizes of artificial gaps 3%, 

10%, and 25% of valid pixels. The developed method performed better with a low 

percentage of cloud cover by RMSE ranged between 0.72 to 1.70 but tended to have 

a higher RMSE with a high percentage of cloud cover. 
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1 Introduction  

Climate change and ecology research required critical information about land 

surface temperature (LST), making LST an essential input variable for different 

related research areas of climate change, ecology, and hydrology [1]. LST is used 

to drive related bioclimate variables for different ecological models [2]. Therefore, 

the availability of high spatio-temporal resolution of the temperature dataset is 

critical in preserving different processes of climatological, hydrological, and 

ecological [3].  Land surface temperature dataset provided from metrological 

stations by applied geostatistics interpolation [4,5], but this traditional method is 

not working correctly when metrological stations are distributed poorly or have 

limited stations [1,6]. Moreover, it is tough to proceed with geostatistics 

interpolation methods using metrological stations record in a complex terrain 

area [7].  

Satellite-derived information was an important method to build an accurate and 

complete land surface temperature (LST) dataset [8,9], Which help to minimize 

and overcome the obstacles of using metrological stations [1]. Satellite data 

provide a high spatio-temporal dataset used for different purposes of monitoring 

and solving environmental problems at local, regional, and global scales [10]. One 

of the well-known LST sources was produced by Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors onboard on Aqua and Terra spacecraft from 

NASA. The combination of two sensors provides a high temporal resolution of LST 

data by cover the earth four times every 24 hours, two observations by Aqua and 

two by Terra, with 1 km spatial resolution across the earth.  

However, there is still missing information in MODIS LST data over the world due 

to cloud contamination. Cloud contamination is one of the serious problems of all 

remotely sensed data [1,11]. The clouds generate different sizes of gaps in the 

MODIS LST dataset [12]. Analysis of MODIS LST data showed that a high 

percentage of missing pixels occurred during the winter [1,2] because of clouds' 

frequent presence. Most of the outlier present in the negative range because of 

the cold surface of undetected thin clouds [2], making it very difficult to detect 

the outliers in the study area when the temperature remains negative [1]. 

Reconstruct the LST dataset is essential to have a complete LST dataset to use in 

the different research areas (climate change, ecology, agriculture, etc.). Different 

approaches have been used to reconstruct LST images, ranging from temporal 

interpolation, spatial interpolation, spatio-temporal interpolation, and machine 

learning techniques. Use auxiliary data improved the results of the reconstruction 

method, most of the studies have used elevation as a predictor for temperature 

[1,7], adding the emissivity bands as a covariate would improve the results by 
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increasing the contrast between land cover types, especially over the urban area 

and large water body [1].  

The previous reconstruction methods of MODIS LST data have computational 

difficulties like many geostatistics parameters or long-time series of images in 

temporal interpolation, making them very difficult to apply in a daily research 

routine. This research focuses on developing a methodology of filling gaps in 

MODIS LST data to use in the daily routine of research without spending too much 

time balancing computing work and prediction accuracy. By filling the gaps using 

the nearest scene in time, fill the remaining gaps in space using Generalized 

Additive Models (GAM) with 2D/3D spatial trend surface to consider the spatial 

autocorrelation. 

 

1.2  Aim and research questions 
 

This study aims to develop a methodology to fill gaps in MODIS LST data in 

Antarctica to support climatological, hydrological, or ecological processes. Based 

on GAM with 3D spatial trend coupled with reconstruction in time. To achieve the 

aim, the following research questions structured for each part:  

 

Temporal Interpolation  

• How could the moving window provide satisfying results in terms of 
continuity and accuracy? 
 

• What is the best scale of moving window that could use for the study 
area? 

Spatial Interpolation 

• What are the most important variables to predict Land Surface 
Temperature (LST) for the study area? 

 

• What is the best smoothing spatial trend surface that could use? 
 

Spatio-temporal Interpolation  

• How accurately could the gaps in LST data be filled? 
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2 literature review 
 

There are several interpolation methods have been used to fill the gaps in 

satellite data. These interpolation methods were categorized into three main 

groups:  temporal gap filling using a time series of images, gap-filling in space 

based on spatial information, and spatio-temporal gap-filling methods. The 

following subsections will give a background about the filling gaps approach 

categories and the state-of-art of using machine learning techniques to fill the 

gap. 

2.1 Temporal gap-filling methods 
 

Temporal interpolation used to fill the gaps in satellite images by using a time 

series of satellite data; making it relies on the fact that the time series arranged 

depending on their occurrence in time [13], which is rare to find missing values 

for the same pixel for a long sequence of images in the time series [14]. Linear 

interpolation is the most straightforward approach used to fill the gaps in time 

using the closest dates to the target scene [15]. This approach could be more 

complicated when included more details like the number of nearest neighbors, 

pixel's weight, and any side of the gap could be included in the filling process 

[15,1]. The nearest five valid neighbors were used to fill the gaps using Local 

Weighted Regression [1], while the weighted average of the previous and 

following seven values of the same pixel were used to fill the gap by giving more 

considerable influence to the closer distance-time [2]. 

Another temporal method used to fill the gaps by estimating the missing values 

from another source for the same type of data, gaps of MODIS LST data 

reconstructed by taking advantage of the temporal proximity between Aqua and 

Terra (approximately 3h) [16,17], but this method needs knowledge about 

fluctuations of temperature in each day [1]. Linear interpolation between 

Aqua/Terra observations on the same day was used to analyze the relationship 

between them over different land covers and seasons and then use it to fill the 

missing pixels [16]. Another method was adding the difference between the 

seasonal mean LST values of Aqua and Terra to the valid pixels of Terra to remove 

the fluctuation in LST values, then used Terra to reconstruct Aqua LST data [17]. In 

another context of filling missing pixels using different sources, SAR images 

acquired by sentinel-1 were used to fill the gap in optical images obtained from 

sentinel-2 [18], but this is not an option for thermal information.  

A more complex approach was used to fill the gaps in MODIS LST data like 

harmonic analysis [19] or Temporal Fourier analysis [15] by capturing the 
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seasonality in the time series data.  Also, a novel method relies on the assumption 

that each missing pixel has similar pixels changed their values in the same way 

over time, those pixels were selected by similarity function, then use transfer 

function for each missing pixel to fill the gaps [20]. 

The main disadvantages of temporal interpolation methods are the 

impossibility/difficulty of applying them in a cloudy area or during the winter 

season due to cloud occurrence frequency [15]. That means a high possibility of 

missing values of the same pixels for a long time, and these methods fill the gaps 

partially and do not provide a complete gap-free dataset [1,2]. 

 

2.2 Gap-filling in space methods 
 

These methods use the information around the missing pixels to interpolate 

them. Traditional spatial interpolation methods rely on the assumption that 

neighboring pixels are spatially correlated [20]. However, this assumption could 

be incorrect in the case of temperature interpolation over a rough/complex 

terrain area due to the high correlation between elevation and LST values [21], 

and the traditional spatial interpolation methods (e.g., kriging interpolation, TPS) 

are unsuitable for interpolating over a significant gap in the image [22] and 

provide poor results when the data points distributed poorly in the study area [2]. 

Therefore, using auxiliary data is very important to improve spatial interpolation 

methods; elevation is the most critical variable used to predict LST [1,2,7].  

Non-spatial models (e.g., linear regression and GAM) have been used to fill the 

gaps in space. Linear regression between valid LST values and associated 

elevation in a split window centered above the missing pixel used to fill the LST 

data gap in case of 10% of pixels in that window is valid [22]. However, that would 

violate the assumption of independence between the observations when using 

the regression models, and the resulting residuals will also show spatial 

dependence [23]. Adding the spatial component to the model overcomes this 

problem by smoothing the interaction between spatial location of observations 

based on the cell center's coordinates using spline smoothing [24]. Alternatively, 

spatial regression models (spatial lag and spatial error models) [25] were used to 

recognize the spatial component in the non-spatial models. 

 

In a different context, a hybrid approach between the regression model and the 

geostatistical approach was used to fill MODIS EVI data [10]. Generalized Additive 

Models used to fit the data, then simple kriging applied on the resulted residuals 

of GAM, and then the kriging residuals added to the predicted values of GAM. 
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2.3 Spatio-temporal gap-filling methods  

 

Using one of the previous methods individually has disadvantages and limitations, 

as mentioned above, therefore integrated both methods would improve the 

results. This approach is useful when the percentage of valid pixels is insufficient 

to apply spatial interpolation, and the temporal interpolation is not enough to fill 

all the gaps [1,2]. 

Spatio-temporal models used a multi-step modeling approach, which means fill 

the gaps using a sequence of spatial/temporal steps [a]. Metz et al. [2] proposed a 

novel spatio-temporal approach, used weighted temporal averaging to fill the 

gaps partially, then use statistical modeling (multiple regression) and spatial 

interpolation (spline interpolation) to fill the remaining gaps in the MODIS LST 

data. In 2017, Metz et al. [1] upgraded and improved the method by replacing the 

weighted temporal averaging by Local Weighted Regression (LWR) because of its 

ability to capture the short-term fluctuations of LST. Thin Plate Spline (TPS) 

interpolation with covariates (elevation and emissivity band) to fill the remaining 

gaps in the image instead of B-spline interpolation because TPS is an exact 

interpolation preserve on the original LST values of valid pixels after smoothing.  

Another approach was using the spatiotemporal gradient method TO reconstruct 

8-day MODIS LST data by calculating the difference between the average of all 

valid pixels and each valid pixel in LST data over time, then fill any missing pixel in 

the MODIS LST image by adding the average of the gradient for that pixel to the 

average value of all valid pixels in the same image [14]. 

 

2.4 Machine learning techniques 
 

Lately, taking advantage of the deep learning technique's rapid growth as a non-

linear expression, it has been used to capture the relationship between cloudy 

and cloud-free pixels over a time series and use it to fill the gaps [26]. 

Convolutional Neural Networks (CNNs) used to solve three problems of missing 

information (deadlines in Aqua MODIS, thick cloud cover, and Landsat ETM+ scan 

line corrector-off problems) in satellite imagery by using temporal, spatial, and 

spectral information as input to the Convolutional Neural Networks [27]. 

 

Also, Convolutional Neural Network (CNN) was used to fill the gaps of optical 
image (Sentinal-2) using multi-source data obtained from Sentinal-1 (SAR data) 
and Sentinal-2 (optimal images) by applying the autoencoder technique [18]. 
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CNN's performance was poor when filling Landsat TM images' gaps due to thick 
cloud occurrence, resulting in blurry and distorted spectral values [27]. 
 

One of the disadvantages of using deep learning techniques to fill the gap is the 

slow gradient descent-based learning algorithms and the massive amount of data 

need to fill, which makes this technique highly computing and very slow [26]. 

Therefore, a novel approach was presented to increase the learning speed and 

improve the general performance of filling the gap by capturing the continuity of 

the time space-spectrum of a series of remote sensing images called the Extreme 

learning machine (ELM) technique [26]. In general, ML techniques to fill the gaps 

still under development and have many limitations that need to investigate and 

improve, like the learning speed and overfitting. Therefore, they are still not used 

to fill the gaps in satellite data in the research daily routine. 
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3 Methodology 

This study suggests a combination method between temporal and spatial 

interpolation to fill the MODIS LST data gaps due to clouds. The overall 

methodology is divided into two sections; the first one focuses on filling the gap 

temporally by using the nearest Terra/Aqua scene on the same day, while the 

second one focuses on filling the remaining gap in space using the GAM model 

with the spatial trend surface. The following subsections will describe the study 

area, processing the data, temporal, and space-filling. Figure 1 illustrates the 

workflow of the reconstruction method.  

 

Figure 1. The workflow of the reconstruction method. 
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3.1 Study area 
 

The research area is the southernmost continent of the earth, located at the 

south pole called Antarctica. Antarctica is divided into three main regions (Figure 

2), namely East Antarctic Ice Sheet (EAIS), Western Antarctic Ice Sheet (WAIS), 

and Antarctica Peninsula by the total area of approximately 14,200,000 km2. Each 

region influences differently by climate change [28]. Antarctica is the coldest, 

driest, and highest continent on the earth by an average elevation of about 2500 

m. 

Antarctica has more attention to climate change due to the increasing sea level 

because of ice melting, especially in the west Antarctic [28-30]. LST is an essential 

variable in monitoring climate warming in Antarctica by capturing the land surface 

temperature patterns across the continent [31]. Many research stations in 

Antarctica are doing scientific research in a different area (e.g., climate, 

hydrology, and ecology). Therefore, the high spatial-temporal resolution of the 

LST dataset is required for those research areas.   

 

 

Figure 2.  Landsat image mosaic of Antarctica shows the main regions of Antarctica [28,32]. 

 

 

 

 

http://lima.usgs.gov/
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3.2 Data and preprocessing 
 

3.2.1 MODIS data  

This study used MODIS LST products MOD11A1/MYD11A1 collection 6, 

downloaded randomly by MODIS package in R software from LPDAAC/ LAADS 

servers [33,34]. Day and night Terra /Aqua scenes were downloaded from 

different seasons in 2016 (15 Jan., 30 Mar, 15 Sep, and 31 Oct), in a total of 8 

scenes for each sensor onboard on Aqua and Terra to use in this research. 

Emissivity 1-Day band delivered alongside daily LST data has the same percentage 

of missing pixels, which prevents it from being used as a covariate to fill the gaps 

in daily MODIS LST data. However, the emissivity value does not change in a short 

time (8 days) because the land cover remains the same. Therefore, the Emissivity 

8-Day band delivered with LST products MOD11A2/MYD11A2 has been used as a 

covariate variable instead of the 1-Day emissivity band 8-Day band is almost free 

of gaps, and each pixel value represents the average of all pixels within those 

eight days. R software used to fill the small remaining percentage of missing pixels 

in the 8-day emissivity band using linear temporal interpolation with other 8-day 

products in the same month. MODIS data has been projected to Antarctica polar 

stereographic projected coordinate system, followed by cropping the study area, 

then convert the unit of LST from Kelvin to Celsius based on MODIS LST product 

users' guide [35]. 

3.2.2 Auxiliary Data 

Digital Elevation Model (DEM) version 2 created by Radarsat Antarctic Mapping 

Project (RAMP) has been used [36]. DEM matched the origin and the spatial 

extent of LST scenes using R software's bilinear resampling method. Antarctica's 

terrain characteristics extracted from DEM using R software, described by the 

following variables slope, roughness, aspect, Terrain Ruggedness Index (TRI), and 

Topographic Position Index (TPI). Solar incidence angle is the angle between the 

sun's rays and the normal on a surface [37], equation 1 developed by Kreith et al. 

[38] has been implemented into R function to calculate solar incidence angle for 

different MODIS scenes :  

 

cos(𝜃) =  sin(𝐿) sin(𝛿) cos(𝛽) − cos(𝐿) sin(𝛿) sin(𝛽) cos(𝑍)

+ cos(𝐿) cos(𝛿) cos(ℎ) cos(𝛽)

+ sin(𝐿) cos(𝛿) cos(ℎ) sin(𝛽) cos(𝑍)

+ cos(𝛿) sin(ℎ) sin(𝛽) sin(𝑍) 

 

1

)

 ) 
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Which 𝜃 is the solar incidence angle, L is the latitude location of the surface, 𝛽 is 

the surface tilt angle from the horizontal, Z is the surface azimuth angle, h is the 

Hour angle, and 𝛿 is the declination angle. Hour angle (h) is the sun's angular 

displacement to east or west of the local meridian due to the earth's rotation on 

its axis, and it is negative in the morning while it is positive in the afternoon [38]. 

Declination angle (𝛿) is the angle between the earth-sun line and the earth's 

equatorial plane [39], each day of the year has its declination angle. 

 

3.3 Methods   
  

3.3.1 Exploratory data analysis 

The first step was exploring the data using the descriptive analysis to explore the 

data and find out the relationship between predictors using correlation matrix, 

then reduce the dimensionality of the data set by deleting the highly correlated 

variables. Then, check the percentage of missing pixels for the 16 scenes of 

MODIS LST to find out later if there is any relation between the percentage of 

missing pixels and the method's performance. 

3.3.2 Reconstruction in time 

Aqua day overpass observed on 31 October 2016 filled partially using the nearest 

Terra overpass on the same day (Figure 3). Filling in time includes three main 

steps: filter unreliable LST values, choose the moving window's size, and fill gaps 

using adjustment value. 

 

Figure 3. Daytime Aqua and Terra LST scenes (31 October 2016). 

https://www.sciencedirect.com/topics/engineering/azimuth-angle
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3.3.2.1  Filter unreliable values of LST 

Aqua and Terra overpasses are very close by approximately 3 hours between each 

other. However, the undetected thin cloud by the MODIS cloud mask 

algorithm [40] causes extreme low/high LST values in Aqua/Terra overpasses, 

leading to significant LST values change. Therefore, big differences between the 

Aqua/Terra scenes indicate an outlier in one of the two scenes. Therefore, a 

quantile outlier detector based on the LST difference between Aqua and Terra 

was used to detect outliers by setting a threshold of LST differences by applied 

equations 2-3. The detected pixels of significant change were excluded from the 

adjustment value calculation without deleting them because it is unknown which 

pixel has very high/very low value (Terra or Aqua).  

 

 
Low threshold = 1st quartile - (3rd quartile - 2nd quartile) * 1.5                         (2) 

 
High threshold = 3rd quartile + (3rd quartile - 2nd quartile) * 1.5                        (3) 

 

 

3.3.2.2  Choose the optimal size of moving window 

The first step of reconstruction in time is choosing the moving window's size, 

which is crucial to control the accuracy and percentage of filled pixels. Start by 

calculating the autocorrelation of LST for a series of increasing distances for the 

16 downloaded Aqua/Terra scenes using the incremental spatial autocorrelation 

tool in ArcGIS pro software to ensure that all pixels inside the moving window are 

highly correlated. The associated distance with the peak spatial autocorrelation 

for each scene has been calculated, then calculating distances' mean value. Any 

moving window scale within the mean value is appropriate to use but with 

various percentages of filled pixels and accuracy. Therefore, to choose the 

optimal size within this scale, a block of valid pixels removed, then predict those 

removed pixels using different sizes of moving window to check the performance 

of moving window, then chose a size that balance between the percentage of 

filling pixels, accuracy, and computing work. 

3.3.2.2  Fill the gaps using  adjustment value 

There are fluctuations of LST values during the day. Therefore, the observations in 

the morning tend to be cooler than afternoon [16]. Considering these differences 

in LST values between the overpasses by adding an adjustment value before filling 

the gaps [17]. The adjustment value has been estimated for each missing pixel 

separately by calculating the mean value of LST differences between Aqua and 

Terra overpasses inside a moving window centered above the missing pixel.  
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Figure 4 presents the step of filling the gap in time. The processes started with 

scanning the same pixel in Terra/Aqua with an odd-sized moving window, and if 

the central pixel is missing in one of the two scenes, it was filled by the same 

pixel's value from the other scene in addition to the adjustment value. When all 

the pixels around the central pixel are missing, then the pixel will not be filled 

even if the other LST scene's central pixel is valid because it will not be possible to 

calculate the adjustment value. 

 

 

 

Figure 4. Reconstruct MODIS LST (Aqua and Terra ) in time. 

 

Here is an example of filling missing pixels in Aqua. Using a moving window of  3 * 

3 size with simple numbers to simplify the processes. Let assumes the following 

matrices present the moving window from Aqua and Terra : 

 

𝑎𝑞𝑢𝑎 = (
15 16 12
13 𝑥 12
13 14 𝑁𝐴

)                  𝑡𝑒𝑟𝑟𝑎 = (
18 17 35
14 15 12
15 15 11

) 

 

The first step was calculating the differences between the valid pixels inside the 

moving window: 

𝑎𝑞𝑢𝑎 − 𝑡𝑒𝑟𝑟𝑎 = (
−3 −1 −23
−1 𝑥 0
−2 −1 −

) 
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It could be seen from the differences that there is a big difference between two 

pixels reach to 23 oC; this difference indicates that one of the two pixels is an 

outlier, so it will be excluded from calculating the adjustment value, then 

calculate the mean value of differences to be the adjustment value by following: 

 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 =  
(−3) + (−1) + (−1) + (−2) + (−1) + 0

6
=  −1.3 

 

The missing pixel in Aqua (𝑥) will be equal to 13.7 by adding the adjustment value 

to the same pixel's value in Terra. Here, the adjustment value was negative 

because the Terra LST was warmer than Aqua LST.  

 

3.3.3 Reconstruction in space  

3.3.3.1 Selection of best variables  

Select the required variables to predict LST using the best subset method for 

downloading 16 Aqua/Terra scenes. The best subset method is applicable in this 

case because the number of independent variables is small, so the possible 

subsets are small, and the computational effort is not high [41]. The best subset 

method applies separated Ordinary Least Squares (OLS) regression for each 

possible combination of covariate variables to find the best subset selection of 

variables. Fit model for each predictor separately and finding the best one, then 

fit model for every two predictors and so forth, ends up to 2 ^ P models that P is 

the number of predictors [42]. Two different statistical tests were used to 

compare the best available models, Cp -statistic of Mallows and adjusted R2, to 

see the effect of adding variables to the model and know when the model fit 

starts to be stable [42]. 

3.3.3.2 Generalized Additive Models (GAM) 

GAM is a nonparametric model deals with the non-linearity relationship between 

predictors and response variables [43]. GAM fitting the non-linearity of variables 

by smoothing terms, those terms retain as an additive structure of the linear 

model, which makes it easy to fit GAM using different smoothing functions like 

Thin Plate Spline or cubic spline smoothing [42], to get the model as the following 

equation: 
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𝑌𝑖 = 𝑎0 + 𝑓1(𝑋𝑖1) + ⋯ + 𝑓𝑛(𝑋𝑖𝑛) + 𝜀𝑖             (4) 

 

Where (f) is a smoothing function for the prediction/covariate variables 

(𝑋𝑖1, … , 𝑋𝑖𝑛), 𝑎0 is the intercept parameter, and 𝜀𝑖  is the residual component. 

Equation 4 was used to develop the GAM model for the 16 downloaded 

Aqua/Terra scenes by smoothing the most important covariate variables obtained 

from the previous step to determine how the percentage of missing pixels could 

affect the performance of GAM. Then, choose two scenes with almost the same 

percentage of missing pixels but the different distribution of spatial gaps to check 

the effect of the spatial distribution of gaps on the performance of GAM. Then, 

the interaction between the spatial location was used to build the spatial trend 

surface, and this interaction fitted using two-dimensional smoothing, then the 

model  written as the following equation: 

𝑌𝑖 = 𝑎0 + 𝑓1(𝐿𝑎𝑡𝑖, 𝐿𝑜𝑛𝑔𝑖) + 𝑓2(𝑋𝑖1) + ⋯ + 𝑓𝑛(𝑋𝑖𝑛) + 𝜀𝑖              (5) 

 

𝑓1 is the two-dimensional smoothing function for the spatial locations of LST 

pixels; adding this term helps the model consider the spatial structure of the data 

and improve the performance of the GAM model. The elevation added to the 2D 

spatial surface for building a more complex surface represents the geospatial data 

into the GAM model. That would improve the model and present the spatial trend 

precisely. Adding elevation required 3-dimensional smoothing, and elevation has 

a different scale than coordinates of spatial location, which required tensor 

product to model the 3-d smooth interaction [44]. The tensor product allows a 

choice of different smoothing parameters for each variable in the 

multidimensional interaction term [10] and separates the interaction of elevation 

with spatial locations from the individual effect of using the elevation. The model 

would be written as the following equation: 

𝑌𝑖 = 𝑎0 + 𝑓1(𝐿𝑎𝑡𝑖, 𝐿𝑜𝑛𝑔𝑖 , 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖 ) + 𝑓2(𝑋𝑖1) + ⋯ + 𝑓𝑛(𝑋𝑖𝑛) + 𝜀𝑖              (6) 

 

𝑓1 is the three-dimensional smoothing function, and cubic regression spline 

represents the basis of the covariate variables (e.g., elevation, aspect, slope), thin 

plate regression splines to represent the spatial location of pixels. Those 

smoothing functions have a penalty term to find the optimal degree of freedom 

for the smoothing and avoid overfitting, so no need to apply cross-validation to 

find the variable's best smoothness [45,46]. 
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3.3.4 Validation 

Aqua daytime LST overpasses on 31 Oct 2016 used for the evaluation, the Aqua 

scene has 27% of missing pixels already, the validation was by making artificial 

gaps of different sizes in the scene, then predict them using the developed 

method and make a comparison between the predicted values and original values 

in the validated blocks. The process started by simulated 3% of gaps in different 

places to have 30% of missing pixels in total. The second validation was by adding 

10% of an artificial gap to have 37% of missing pixels in total, then making 25% of 

an artificial gap to have 52% of missing pixels in total. Figure 5 shows the extent of 

the artificial gap by a different proportion of missing pixels.  

 

Figure 5. Artificial gaps of different sizes for Daytime  LST scene (31 Oct 2016), (a) 3% of the artificial 
gap, (b) 10% of the artificial gap, (c) 25% of the artificial gap 

 

3.3.5 Method comparison 

A comparison between the developed method and a novel approach developed by 

Metz et al. [1] has been to see the developed method's performance compared with 

another exciting method used to fill gaps in the MODIS LST dataset. Metz et al. [1] 

used Local Weighted Regression (LWR) to fill gaps in time using a time series of 14 

images, then fill the remaining gaps in space using Thin Plate Spline (TPS) 

interpolation with covariates (DEM and emissivity). The previously validated blocks 

have been predicted again using  Metz et al. approach, then comparing the new 

results (Metz et al.) and the old results (The developed method). 
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4 Results  

This section presents data processing results and the applied methods to fill 

the gaps. Included the results of filling in time, filling in space, validation 

processes, and comparing another approach of filling the gaps. 

 

4.1 Exploratory data analysis 

A correlation matrix between the variables (Figure 18 in the Appendix) was 

checked to avoid collinearity between variables. It showed that terrain 

Ruggedness Index, roughness, and slope are highly positively correlated (0.99). 

Therefore, one variable is enough to use; the slope has been selected to use in 

the next steps. Table 1 shows the final six predictors of LST used in this study. 

Table 2 shows the percentage of missing pixels among the different 16 scenes 

used in this study. 

 

Table 1. The six predictors for LST in Antarctica 

Predictor Predictor 

Elevation TPI 

Slope Emissivity 

Aspect Solar incidence angle 

 

 

Table 2. Percentage of missing pixels for different Aqua/Tera scenes in 2016. 

Date Missing pixels - Aqua Missing pixels - Terra  

Daytime Nighttime Daytime Nighttime 

   15 Jan 
 

30% 16% 19% 16% 

30 March 
 

13% 24% 9% 26% 

   15 Sep 
 

18% 29% 8% 36% 

   31 Oct 27% 21% 8% 12% 
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4.2 Reconstruction in time 
 

4.2.1 Filter unreliable values of LST 

First, the Terra scene was subtracted from the Aqua scene to check the LST 

differences (Figure 6). It could be seen that there are pixels with very high 

differences, which is more than 40 oC within just 3 hours. A quantile outlier 

detector was then used to detect those pixels to exclude them from calculating 

the adjustment value. Figure 7 shows the LST differences after excluding the 

pixels that have an extreme change of LST values. 

 

 

Figure 6. LST differences between daytime Aqua and Terra LST (31 Oct 2016). 
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Figure 7. LST differences between daytime Aqua and Terra after deleting extreme differences (31 Oct 
2016). 

 

 

4.2.2 Choose the optimal size of the moving window  

Figure 8 explains spatial autocorrelation measurement for a series of distances for 

the Daytime Aqua scene (15 Sep 2016). These results show us how the LST values 

were clustered within different distances, and the z-score reflects the intensity of 

spatial clustering associated with distances. The autocorrelation (clustering) 

increased with increasing the distance to reach the peak at a certain distance then 

started to go down again, which means all the pixels within the peak distance are 

highly correlated. Therefore, any moving window scale within the peak distance 

would be an appropriate scale for the moving window.  
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                 Figure 8. Spatial Autocorrelation by Distance, for Aqua's 1:30 pm overpass (15 Sep 2016). 

 

Table 3 shows the maximum distance associated with the peak spatial 

autocorrelation for each downloaded Aqua/Terra scene. It was noticed that the 

associated distances with the peak spatial autocorrelation were almost stable in all 

scenes, ranging between 950 and 1200 km. The mean value of maximum distances 

was 1100 km among different scenes, then any scale of moving window within this 

distance could be used to fill the gaps. 

 

Table 3. Distance threshold for the maximum spatial autocorrelation for different MODIS LST                  
scenes observed by Aqua in 2016, associated with the percentage of missing pixels in each scene. 

Date  Distance Threshold 
Aqua  

Distance Threshold 
Terra  

Daytime Nighttime Daytime Nighttime 

15 Jan 
 

950 1250 1175 1250 

30 March 
 

1150 1150 1150 1150 

15 Sep 
 

1175 875 1250 1050 

31 Oct 1137 1250 1140 1250 

 

 



20 
 

4.2.2 Fill the gaps using  adjustment value 

Table 4 and Table 5 indicates that there are fluctuations of LST values during the 

daytime/nighttime. In general, the night overpasses are colder than day 

overpasses. The coldest LST was in winter (September) by average -48.14 oC 

during the day and -51.73 oC during the night, while the hottest LST was in 

summer (January) by average -21.93 oC during the day and -27.30 oC during the 

night. A comparison between Terra and Aqua's LST values shows that LST values 

for Terra are warmer than Aqua's observation by an average of 0.5 oC. These facts 

prove the importance of adding adjustment value to the LST values before filling 

the target scene. 

 

Table 4. Mean values of LST observations from Terra and Aqua during the day for different scenes 
in 2016. 

 

 

 

  

 

Table 5. Mean values of LST observations from Terra and Aqua during the night for different scenes 
in 2016. 

 

 

 

 

 

 

LST differences between Aqua and Terra were different among the study area. In 

some places, the difference is small while it is significant in other areas,  therefore 

using a global adjustment value for all pixels does not make sense. The 

adjustment value changed among the study area using the moving window to 

include just the correlated pixels inside the window for calculating the adjustment 

value. 

 

Date Mean LST (10:30 
AM, Aqua) 
(Celsius) 

Mean LST (1:30 PM, 
Terra ) 
(Celsius) 

15 Jan -19.53 -24.33 
30 March -43.15 -43.67 

15 Sep -47.48 -48.80 
31 October -33.92 -38.46 

Date Mean LST (22:30 PM, 
Aqua) 
(Celsius) 

Mean LST (13:30 AM, 
Terra ) 
(Celsius) 

15 Jan -26.61 -27.98 
30 March -45.89 -46.73 

15 Sep -51.35 -52.11 
31 October -39.41 -41.76 
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As mentioned in the previous step, any size of moving window within the scale of 

1100 km would be right to fill the gaps. Different moving windows were used to 

predict a deleted block of valid pixels (50,000 pixels) to find the optimal size. The 

small moving window (3*3) filled 1% of the deleted block, then 25 * 25 filled 27%, 

the larger window (49 * 49) filled more pixels by 52% of the deleted block. 

Increasing the moving window size increased the number of filled pixels, but that 

affects the accuracy of predictions and computing work. Figure 9 presents a 

comparison between original and predicted LST values using the different moving 

window, increasing the moving window's size increased the number of outliers , 

and increased the range of predicted values.  

 

Figure 9. Comparison between predicted values using different sizes of moving window.  

 

In this study, a moving window of size 47 by 47 (the area approximating 2,210 

km2) has been selected to trade between the number of filled pixels, the accuracy 

of filled pixels, and the computational work. 48% of Aqua's missing pixels were 

filled using a 47 * 47 moving window size (Figure 10). 
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                                            (a)                                                                                      (b) 

          Figure 10.  Aqua day's overpass (31 Oct 2016), (a) before filling and (b) after filling. 

 

 4.3 Reconstruction in space 

4.3.1 Best subset regression  

The best subset method was used to find the most important variables to predict 

LST in Antarctica and tested for the 16 downloaded scenes. It found that there 

were six best models, it could be seen that the best one variable model contains 

only the elevation, and the best 2-variables model contains just the elevation and 

the aspect, and so forth (Table 6). 

 

Table 6. Best models to predict LST values. 

Best Models Variables 

1-variable model elevation 

2-variables model + Aspect 

3-variables model + Slope 

4-variables model + Emissivity 

5-variables model + TPI 

6-variables model + Solar Incidence angle 
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Two statistical metrics were used to compare the models' performance to choose 

the best model among the six models. Figure 11 shows Mallows' Cp statistic test 

for the Aqua scene's six models on 31 Oct 2016. It could be seen that the most 

significant improvement was by adding the aspect to the model, then adding 

more variables improved the model a little bit. Because Mallows' Cp value started 

to decrease slightly after adding more than two variables, it could not be possible 

to say that the six variables model is better than the two variables model.  

 

 

Figure 11. Mallows' Cp for a model by adding variable each time for daytime Aqua LST scene  (31 Oct 
2016). 

 

The second statistical test was adjusted R2 (Table 7), the Adj. R2 for the one-

variable model was 0.51, then improved to be 0.52 after adding aspect to the 

model, then it can be noticed that the model was stable when adding more 

variables to the model. Mallows' Cp and Adjusted R2 were used to test models for 

all downloaded Aqua/Terra scenes from the four different dates. There was a 

significant improvement when adding the aspect to the model and sometimes a 

small improvement. In general, the models behave in the same way, and they 

were improved when adding the aspect then stay stable.   

Mainly, terrain-related variables represented by the elevation and the aspect 

were the most important variables to predict LST in Antarctica. Previous works 

suggested using an emissivity band to improve the results taking advantage of the 
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contrast between land covers, but according to land cover classification for 

Antarctica based on a 1:100000 scale, there are three land cover classes: ice-free 

rocks, blue ice, and snow [47]. The three classes have almost the same emissivity 

values, which would explain why the emissivity band was not essential to fill 

MODIS LST gaps in Antarctica. 

 

Table 7.  Adjusted R2 for the best six models for daytime Aqua LST scene (31 Oct 2016). 

# of variables for the model Adj. R2 

1 (Elevation) 0.51 
2 (+ Aspect) 0.52 

3 (+ Slope) 0.52 

4 (+ TPI) 0.52 

5 (+ Emissivity) 0.52 

6 (+ Solar incidence angle)  0.52 

 

 

4.3.2 Generalized Additive Model (GAM) 

Terrain-related variables (elevation and aspect) were used to build a GAM using 

the available valid pixels in each Aqua/Terra scene.  Cubic spline smoothing was 

used to smooth the variables with an internal penalty to find the best smoothing 

and avoid overfitting. Table 8 and Table 9 show the Adj. R2 for the different GAM 

models to find out if there is any relation between the percentage of missing 

pixels and the performance of GAM,  the results show that the models with a high 

percentage of missing pixels vary between high and low Adj. R2,  and that is the 

same for the models with a low percentage of missing pixels. 

 

Table 8.  Adjusted R2 for GAM models for different day/night Aqua scenes. 

 

 

 

 

 

 

 

 

Date Missing 
pixels 

Adj. 
R2 

15 Jan -  Day 30% 0.88 
15 Jan -  Night 16% 0.76 
30 Mar - Day 13% 0.52 
30 Mar - Night 24% 0.61 
15 Sep -  Day 18% 0.69 
15 Sep -  Night 29% 0.67 

31 Oct -  Day 27% 0.64 

31 Oct -  Night 21% 0.63 
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Table 9.  Adjusted R2 for GAM models for different day/night Terra scenes. 

 

 

 

 

 

 

Two Aqua scenes (Figure 12) were used to study the effect of the spatial 

configuration of gaps on GAM performance,  the two different scenes have 

almost the same percentage of missing pixels, but the clouds cover was taking 

different sizes and distribution. The gaps in the first scene (15 Jan 2016) centered 

in the middle of the scene with continuous gaps, while the gaps in the second 

scene (31 Oct 2016) were distributed around the border of the scene and in small 

sizes, that would affect the smoothing function mainly at the border. Figure 13 

shows how the smoothing function looks different for the two scenes even they 

have almost the same percentage of missing pixels, and the smoothing function 

was wigglier for the Aqua scene (31 Oct 2016), that explains why the fitted GAM 

of the Aqua scene (15 Jan 2016) with 0.88 of Adj. R2 was better than GAM of 

Aqua scene( 31 Oct 2016) with 0.64 pf Adj. R2. 

 

 

          Figure 12.  Aqua day scenes observed in 2016, percentage of missing pixels on 15 Jan is 30%, and 
on 31 Oct scene is 27%. 

Date Missing 
pixels 

Adj. 
R2 

15 Jan -  Day 19% 0.82 
15 Jan -  Night 16% 0.81 
30 Mar - Day 09% 0.55 
30 Mar - Night 26% 0.60 
15 Sep -  Day 08% 0.65 
15 Sep -  Night 36% 0.67 

31 Oct -  Day 08% 0.54 

31 Oct -  Night 12% 0.58 
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          (a)  

 

  (b) 

          Figure 13.  Smoothing function, (a) Aqua scene (15 Jan 2016), (b) Aqua scene (31 Oct 2016). 
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4.3.2.1 GAM with a 2D spatial trend 

In this section, the GAM model was extended by adding spatial surface using 

smoothing interaction between the spatial locations of valid pixels; to represent 

the spatial structure in the model and improve the goodness of fit GAM model. 

Table 10 and Table 11 show the adjusted R2 for GAM models fitted on the 

available valid pixels in the 16 downloaded Aqua/Terra scenes. 

 

Table 10. Adjusted R2 and AIC for GAM models with 2D spatial trend surface for different Aqua 
day/night scenes. 

Date Aqua Day Aqua Night 

Adj. R2 AIC Adj. R2 AIC 

15 Jan 
 

0.93 38303763 0.86 55459246 

30 March 
 

0.84 63261149 0.88 52612317 

15 Sep 
 

0.88 56625321 0.86 48047266 

31 Oct 0.86 48684822 0.82 55659608 

 

 

Table 11. Adjusted R2 and AIC for GAM models with 2D spatial trend surface for different Aqua 
day/night scenes. 

Date Terra Day Terra Night 

Adj. R2 AIC Adj. R2 AIC 

15 Jan 
 

0.85 51969809 0.88 54044856 

30 March 
 

0.84 68017916 0.87 51618657 

15 Sep 
 

0.84 66160541 0.88 41868328 

31 Oct 0.76 68966194 0.75 64956140 

 

4.3.2.2 GAM with a 3D spatial trend 

Table 12 and Table 13 shows the influence of adding elevation to the spatial trend 

using tensor smoothing. The model fit improved in all cases of adding 3-

dimensional spatial surface, adjusted R2 increased while AIC decreased,  which 

indicates that the model fit improved.  
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Table 12. Adjusted R2 and AIC for GAM models with 3D spatial trend surface for different Aqua 
day/night scenes (2016). 

Date Aqua Day Aqua Night 
Adj. R2 AIC Adj. R2 AIC 

15 Jan 
 

0.94 36045215 0.91 50778017 

30 March 
 

0.90 57969597 0.93 46782604 

15 Sep 
 

0.91 54441963 0.88 46888808 

31 Oct 0.91 45338474 0.87 52420050 

 

Table 13. Adjusted R2 and AIC for GAM models with 3D spatial trend surface for different Terra 
day/night scenes (2016). 

Date Terra Day Terra Night 
Adj. R2 AIC Adj. R2 AIC 

15 Jan 
 

0.90 47642558 0.93 49252035 

30 March 
 

0.89 63196099 0.93 46012063 

15 Sep 
 

0.88 62806345 0.90 40464175 

31 Oct 0.81 66495490 0.82 61653801 

 

In the following, GAM with a 3D spatial surface was used to fill the remaining gaps 

in the Aqua scene (31 Oct 2016). Fig. 14 presents the GAM smoothers of the 

included covariate variables (elevation and aspect). The plots confirm that the 

relationship between LST and the elevation was non-linear, but the relation with 

the aspect was linear, so no need to smooth it anymore, and that would help 

reduce the computational work of GAM. 

 

Figure 14.  GAM smoothers of elevation and aspect when adding 3D spatial surface to GAM.  

 



29 
 

Figure 15 presents the diagnostic plots of the GAM model, the residuals centered 
to zero, and there is a strong relationship between fitted value and response. The 
histogram of residuals shows a normal distribution of residuals. The relation 
between predictions and residuals shows some output with extreme residuals, 
which is an indicator of outliers' presence, and include them in the analysis would 
affect GAM fit and the results. Figure 16 shows the final scene after filling the 
remaining gap using GAM with a 3-dimensional spatial surface. 

 

                                                    (a)                                                                                 (b)  

 

                                       (c)                                                                                   (d) 

Figure 15. Diagnostic plots of GAM, (a) Normal Q-Q, (b) Residuals vs linear predictions, (c) Histogram 
of residuals, (d) Response vs Fitted Values. 
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Figure 16. Daytime  LST (31 Oct 2016), after fill the remaining gap using GAM with the 3-dimensional 
spatial surface. 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

4.4 Validation  

As mentioned in the previous section, the percentage of missing pixels and the 

spatial distribution of gaps affect the performance of GAM. Therefore, the 

reconstruction method was validated by creating artificial gaps of different sizes 

and places in the original MODIS LST data, then refill those gaps. Table 14 shows 

the values of RMSE and R2 for the different percentages of artificial gaps, while 

Figure 17 shows the distribution of original LST values in the validated blocks.  

For 3% of artificial gaps, the predicted LST values deviated by 0.72°C from the 

original LST values with R2 equal to 0.98, and the mean value of original LST was -

44.60°C with a standard deviation of 3.42 °C. The RMSE increased to 1.70 with 

0.96 of R2 while increasing the artificial gaps to 10%. The highest RMSE was 2.91 

with 0.87 of R2 when simulated 25% of artificial gaps, while the mean value of 

original LST was -38.39°C with a standard deviation of 6.51 °C.  The resulting 

RMSE values were low for the different artificial gaps concerning the mean and 

the standard deviation of original LST values in the validated blocks. 

 

Table 14. Evaluation of the artificial gap's reconstruction using RMSE and R2. 

Artificial 
gaps 

Total 
gaps 

RMSE R2 Mean Standard 
deviation 

3% 30% 0.72 0.98 -44.60 3.42 

10% 37% 1.70 0.96 -38.70 6.65 

25% 52% 2.91 0.87 -38.39 6.51 
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(a) 

 

(b) 

 

(C) 

Figure 17. Distribution of original LST values in the simulated gap, (a) 3% of the artificial gap, (b) 10% 
of the artificial gap, (c) 25%  of the artificial gap. 
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4.5 Method comparison  

The validated blocks in the previous step have been predicted using the method 

employed by Metz et al. [1], then compare the new results with the results of the 

developed method.  Table 15 shows the values of RMSE and R2 for the two 

methods. The predictions of the developed method were better for 3% and 10% 

of artificial gaps. However, when increasing the artificial gaps to 25%, the method 

adopted by Metz et al. was better at taking advantage of using 14 images in time, 

which help fill more pixels in time and improve the second part of spatial 

interpolation. In this case, increasing the size of the moving window to 125 * 125 

in the temporal part of the developed method helped to fill more pixels, then 

decreasing the gaps in space and improve the spatial trend surface to improve the 

overall accuracy and decrease the RMSE value to 2.27 with 0.92 of R2. 

 

Table 15. Comparison between reconstruction methods for different artificial gaps. 

Artificial 
gaps 

The Developed 
method 

Method of 
Metz et al. 2017 

 

RMSE R2 RMSE R2 

3% 
 

0.72 0.98 1.89 0.75 

10% 
 

1.70 0.96 1.80 0.93 

25% 2.91 0.87 2.32 0.89 
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5 Discussion 

5.1 Findings 

This research presented a flexible method to fill the gaps in MODIS LST data. The 

method relies on low processing time by using just one scene in time, use the 

most efficient predictors, and let the user balance between prediction accuracy 

and run-time based on his research needs instead of using high mathematically 

computing work.  

The temporal approach of gap-filling of MODIS LST data mainly relies on the 

percentage of valid pixels in the reference scene and the moving window's size. A 

large moving window fills more gaps in MODIS LST data but less accuracy and high 

computing work, while a smaller moving window fills fewer gaps with less 

computing work and high accuracy. Any moving window scale within 1100 km 

distance is right to use for Antarctica, but the standard size is 47 * 47 to balance 

the number of filling pixels, the accuracy of predictions, and computing work. 

Terrain-related variables (elevation and aspect) are the best variables to predict 

LST in Antarctica. The results showed that the emissivity band does not 

substantially impact the prediction of LST in Antarctica because Antarctica's land 

cover classes at the scale of 1 Km have almost the same emissivity values. GAM is 

an excellent approach to present the spatial part of this method because of its 

ability to deal with non-linear relationships between variables. Also, it is easy to 

apply a smoothing function on the interaction between variables, which allows 

adding 2-dimensional spatial trend using the spatial location, which leads to 

improving the performance of GAM by presenting the spatial autocorrelation 

among the data.  

The 2D spatial surface extended to the 3D surface by adding elevation to the 

interaction between spatial locations. 3-dimensional spatial surface improved the 

fit of GAM and gave better results but increased the computational work to build 

the model. The results showed that the performance of GAM was affected by the 

percentage of missing pixels and the spatial distribution of gaps somehow by 

affecting the behavior of the smoothing function. 

The developed method performed better for small gaps and made more accurate 

predictions of LST. The results showed that the newly developed method 

outperformed LWR + TPS method used by Metz et al.[1] when the scene has a low 

percentage of missing pixels. However, both methods gave results slightly closed 

to each other when the percentage of missing pixels is very high.  
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This approach fills the gaps in time and then fills the remaining gaps in space, 

which is better than filling in space and filling in time. That is because there are 

scenes with a low percentage of valid pixels to apply spatial interpolation. Starting 

by filling the gaps in time reduces the gaps and increases the percentage of valid 

pixels, which improves the spatial interpolation part. On the other hand, that 

would increase the dataset's noise because of increasing the dataset size. In the 

developed method, starting by filling in time provides more valid pixels, improving 

the spatial interpolation part by capturing more details in the empty areas and 

improving the overall accuracy. 

 

5.2 Limitations and Future work 

The smoothing function in the GAM model is affected by the noise in the dataset, 

and increasing the valid pixels in the temporal part and using all the valid pixels 

increases the dataset's noise. Future work to reduce the noise in the dataset, like 

bootstrap sampling combined with the ensemble learning approach with GAM as 

the base model, would help reduce the noise and make the processing time of 

building the model faster and more efficient using smaller dataset. 

This research focused on filling the pixels with no LST values due to clouds. 

However, there are pixels with high LST error, and the algorithm of cloud 

detection in MODIS data failed to detect thin clouds [7,8], which means that there 

are pixels that have unreliable LST values (outliers) included in the method of 

filling the gaps, that would lead to an unusual pattern in some areas of the final 

product of MODIS LST scene. Future work to detect unreliable pixels, predict 

them, and assign them with new reasonable and reliable LST values. 

The performance of GAM affected by the percentage of missing pixels, but this 

study used 16 scenes downloaded from four different dates, and that was not 

enough to find the relation between the percentage of missing pixels and the 

performance of GAM. Another factor needs more investigation to find out how 

could affect the performance of GAM is the spatial distribution of gaps, and this 

would help to use different smoothing function for different scenes based on the 

spatial distribution of gaps. 

One scene used in the validation process to check the developed method's 

performance, future work to check the method's performance on multiple scenes 

would help check the stability of predictions and uncertainty. 
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 6 Conclusion   

This research presents a newly developed method of filling gaps in MODIS LST 

data using temporal and spatial information. The new method provides highly 

accurate results with low processing time using just one reference image instead 

of long time-series of images with an adaptive moving window defined and use 

parallel computing to build GAM and 3D spatial trend surface. 

The method starts by filling the gaps partially in time using the nearest scene on 

the same day by a moving window; increasing the moving window size controls 

the percentage of filling pixels and accuracy of predictions by filling more pixels 

but with less accuracy. In Antarctica, a moving window of 47 * 47 size is a good 

one to use, but it is more efficient to use a bigger moving window when the scene 

has a very high percentage of gap ( > 50%). The remaining gaps filled in space by 

building a two-variables GAM model contains only the elevation and the aspect, 

which is the best model to predict LST in Antarctica, then add 3D spatial trend 

surface (spatial location and elevation) to GAM to improve the results.  

The developed approach has a more excellent predictive capability (with a 

percentage of gaps < 40%) than other spatio-temporal approaches, while it has 

less predictive capability under a higher percentage of cloud cover. Future work 

still needed to reduce the noise in the dataset, detect unreliable LST values, and 

check the method's performance under different spatial distribution conditions of 

gaps and percentage of missing pixels to find out the best smoothing function for 

different conditions. 

The developed method implemented into R package 

(https://masawdah.github.io/modislst) with user-defined options for the size of 

moving window, covariate variables, smoothing function, spatial surface. 

Therefore, it could be used for any other study area. 
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Appendix 
 

 

                            Figure 18. Correlation matrix between LST and predictors. 

 

 

 

 

 

 

 

 

 

 

 


