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A B S T R A C T   

For more than 50 years, there has been evidence for greater consumption of sweet- foods in overweight humans 
and animals, relative to those that have a normal weight. Furthermore, it has long been suggested that energy 
deficit resulting from dieting, while moving the individual from a higher weight set point, would result in 
heightened susceptibility to palatable tastants, namely to sweet tastants. This was the motivation behind the first 
studies comparing sweet taste perception between individuals with obesity and those of a normal weight. These 
studies, using direct measures of taste, have been characterized by significant methodological heterogeneity, 
contributing towards variability in results and conclusions. Nevertheless, some of these findings have been used 
to support the theory that patients with obesity have decreased taste perception, particularly for sweet tastants. A 
similar hypothesis has been proposed regarding evidence for reduced brain dopamine receptors in obesity and, in 
both cases, it is proposed that increased food consumption, and associated weight gain, result from the need to 
increase sensory and brain stimulation. However, the available literature is not conclusive on the association 
between obesity and reduced sweet taste perception, with both negative and contradictory findings in com
parisons between individuals with obesity and normal weight control subjects, as well as within-subject com
parisons before and after bariatric surgery. Nevertheless, following either Roux-en-Y gastric bypass or sleeve 
gastrectomy, there is evidence of changes in taste perception, particularly for reward-related measures of sweet 
tastants, that should be further tested and confirmed in large samples, using consensual methodology.   

1. Background 

Obesity is associated with significant morbidity and mortality, and 
currently represents a global health challenge[1]. While it is associated 
with complex pathophysiology, increased availability of highly palat
able foods and beverages, namely those rich in sugar or fat, is thought to 
be a major determinant of increasing rates of obesity worldwide[2]. 
Indeed, individuals with obesity have been shown to have altered 
sensitivity to food reward[3], which is thought to be related to changes 
in reward-related brain neurocircuitry, namely decreased striatal 
availability of dopamine D2 receptors (D2R)[3]. Sugar, through pleasant 
taste and postingestive value, triggers brain reward circuitries, stimu
lating consumption of foods that are rich in sugar[4–6]. Another 
important factor is that, while in non-obese subjects striatal D2R avail
ability is inversely associated with sweet preference, in subjects with 
obesity this association is lacking, through mechanisms that have not yet 
been clarified[7]. Beyond association between gustatory and 

reward-related circuits in humans[8], there is also pre-clinical evidence 
in rodents [9] and fruit flies [10] that dietary sugar content influences 
sweet taste perception. For example, in Drosophila melanogaster a high 
sugar diet led to decreased response of ‘sweet-taste sensing neurons’, 
resulting in diminished behavioral responses to sweet tastants[10]. 
Importantly, reduction of sweet taste responses through neural manip
ulation resulted in overfeeding and obesity, further suggesting that 
sweet taste perception is a driver of obesity[10]. 

Evidence for association between taste, reward and morbid obesity 
has also been collected in the context of weight loss. Bariatric surgery is 
broadly accepted as the most efficient treatment for obesity, leading to 
significant weight loss and maintenance of weight, as well as improve
ment of obesity related comorbidities[11–13]. Several mechanisms have 
been proposed as determinants of changes in ingestive behavior 
following bariatric surgery, namely a global reduction of appetite, 
development of conditioned aversions and changes in reward-related 
feeding behavior[14], including modulation of taste-related reward 
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[15]. Indeed, following Roux-en-Y gastric bypass (RYGB) and sleeve 
gastrectomy (SG), currently the most commonly performed bariatric 
procedures, there is substantial evidence of self-reported decrease in 
consumption, cravings and preference for palatable sugar-rich and/or 
fat-rich foods (for review see Nance K., et al. [14]). Accordingly, patients 
report changes in taste perception of sweet foods after surgery[14]. 

However, across the several studies exploring taste perception in 
obesity[7,16–23], and its changes following bariatric surgery[24–30], 
there is a notable heterogeneity in methods and results. This has led to 
considerable difficulties in interpreting the available literature 
regarding the contribution of taste perception towards obesity. In this 
review, following an overview of taste physiology and psychophysical 
assessment of taste in humans, we will focus on studies that used direct 
measures of taste, using simple tastants rather than mixtures, to compare 
between patients with obesity and control subjects, as well as studies 
assessing the impact of bariatric surgery on taste perception. 

2. Neurobiology of taste 

Taste allows for identification and consumption of appetitive sub
stances, like sucrose (sweet), and avoidance of potentially toxic and 
unpleasant compounds, such as quinine (bitter)[9]. In addition to 
informing feeding decisions, this system contributes to the physiological 
regulation of starch and fat digestion, initiated through salivary secre
tions[31], as well as to other elements of metabolic regulation through 
processes such as the cephalic phase of insulin secretion[9]. In common 
terms, taste is frequently used as an equivalent for flavor. However, 
flavor is better defined as the complex perception resulting from 
converging inputs from taste, texture and olfaction, induced by multi
sensory stimulation from foods during mastication and swallowing[32]. 
This review will focus primarily in taste, rather than flavor perception. 

Taste buds, located in the epithelium of the tongue, palate and 
epiglottis, are the peripheral organs of gustation[33]. They are cell 
groups shaped similarly to a garlic-bulb, embedded in fungiform, foliate 
and circumvallate papillae, located on the anterior, lateral, and poste
rior regions of the tongue, respectively[9]. The taste receptor cells 
(TRCs) in taste buds respond to chemical stimuli dissolved in saliva, 
allowing for the detection of five distinct taste qualities: salt, sweet, 
bitter, sour (acid) and umami (savory taste of amino acids)[8,9,34]. 
TRCs within taste buds are classified, at least in part, according to their 
sensory function. In brief, Type II (receptor) cells have, in their apical 
surface, G-protein coupled receptors (GPCR) that are sensitive to bitter, 
sweet or umami tastants[34]. Type III (pre-synaptic) cells have iono
tropic receptors to identify acidic stimuli (sour taste) and release GABA, 
serotonin and norepinephrine in synapses with neurons from cranial 
nerves[34]. Type I cells are glia-like [33,34] while type IV (basal) cells 
are undifferentiated cells located in the base of the taste bud[34]. 
Regarding salt taste, amiloride-sensitive epithelial sodium channels 
have been shown to be involved in rodents, although in humans, further 
research is needed[9]. Additional taste qualities have been proposed, 
such as that occurring via the fatty acid translocase cluster determinant 
36 (CD36), that is thought to contribute, with texture perception via the 
somatosensory system, for identification of fat[8]. 

Activation of TRCs leads to neurotransmitter and peptide release 
onto afferent fiber terminals of cranial nerves VII, IX and X (facial, 
glossopharyngeal and vagus, respectively) that, in turn convey infor
mation to the central nervous system [35] specifically to the nucleus 
tractus solitarius, in the brainstem, that then relays neural information 
to the thalamus and insula[8]. The area of the insula receiving taste 
sensory information is the primary gustatory cortex, while areas of the 
orbitofrontal cortex responding to taste stimulation, as well as to other 
flavor-related sensory information (e.g., texture, temperature, and 
odor), are sometimes defined as the secondary gustatory cortex[8]. 
Neurons in the gustatory system also respond to the postingestive effects 
of food, as well as the homeostatic state[36] (for a review on peripheral 
and central gustatory processing see Oliveira-Maia AJ et al. 2011 [8]). 

3. Psychophysical measures of taste 

For interpretation of the literature involving taste perception in 
obesity, it is fundamental to understand the methods used for orosensory 
assessment. One of the main challenges of such assessment is to capture 
interindividual variability in perceptions of intensity (e.g., the percep
tion of a soup being too salty or watered down [32]). There are two main 
complementary perspectives regarding intensity perception. One 
perspective treats intensity as a binary concept (i.e., the tastant is 
identified as absent or present) that is thus measured according to the 
threshold at which taste stimulation is identified. Both electrical 
(Fig. 1A) and chemical methods can be used to assess taste thresholds 
[32] (see Supplementary Table 1 for details). The other perspective as
sumes perceived intensity as a continuous construct[32]. In this case, 
chemical tests (e.g. Fig. 1B) can be used with suprathreshold scaling, 
including the general labeled magnitude scale (gLMS) [37] which is, 
currently, the gold standard for this purpose (Fig. 1C; see Supplementary 
Table 1 for details). The general labeled hedonic scale (gLHS) [38], 
rather than assessing sensory-discriminative domains, assesses the de
gree of pleasantness, or unpleasantness, of the stimulus [14] (Fig. 1D). A 
full summary of methods commonly used for oral sensory assessment in 
humans is provided in Supplementary Table 1, highlighting their 
complexity and the need to consider methodological specificities in 
interpretation of the available data. 

4. Studies of taste perception in individuals with obesity 

In studies comparing taste perception between individuals with 
obesity and control subjects, using direct measures of taste, one of the 
most explored outcomes was detection and/or recognition thresholds. 
Distinct methods have been used, and overall, the results do not 
consistently support that individuals with obesity have altered taste 
sensitivity or require different concentrations of a specific tastant (e.g., 
sucrose) to detect taste (Table 1). Detailed inspection of the available 
data shows that 3 studies, using the constant stimuli method (see Sup
plementary Table 1 for details on this and other methods), did not find 
differences between individuals with obesity and normal weight control 
subjects in detection thresholds for sweet taste [18,19,26]. Another 
study, using the 3-stimulus drop method, found no differences relating 
to the presence of obesity for both detection and recognition thresholds 
for sweet, salt, bitter and sour tastants[24]. Higher detection thresholds 
(i.e. lower taste sensitivity) in individuals with obesity relative to 
normal weight controls was reported for salt taste using a derivation of 
the method of limits among young adults[22], and for umami using the 
two-alternative forced-choice (2-AFC) staircase procedure in women 
[21]. These studies found no differences for several other tastants, 
including sucrose in both cases[21,22], and both quinine and citric acid 
in one of the studies[22]. Additionally, one of these studies revealed 
higher electrogustometry (EGM) thresholds in individuals with obesity, 
despite no correlations with chemical thresholds[22]. While these 
studies provide limited evidence for higher detection thresholds for salt 
and umami, but not sweet, bitter or sour tastants, two other studies 
investigating recognition thresholds with an up-down staircase pro
cedure found that these were lower, rather than higher, among in
dividuals with obesity for sweet and salt, but not for bitter and sour 
tastants[20,23]. 

A study assessing acuity scores for supra-threshold concentrations of 
salt, bitter and sour tastants, using multiple-alternative forced-choice 
tests, found lower acuity among individuals with obesity[28]. This is 
consistent with higher detection thresholds for salt[22], but inconsistent 
with evidence for unchanged or lower thresholds for salt, bitter and 
sour, that have also been reported[20,22–24], as described above. On 
the other hand, and in accordance with findings of lower taste recog
nition thresholds for sweet and salt taste[20,23], the same studies 
described higher intensity ratings for these taste qualities in individuals 
with obesity when compared with subjects without obesity. In one of 
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these studies this was shown using a 9-point scale in adolescents with 
early onset severe obesity[20], and in the other using a Visual Analogue 
Scale (VAS) in adults, where higher intensity ratings were also described 
for sour, but not bitter tastants[23]. However, another study also using a 
9-point scale[16], as well as 3 studies using magnitude estimation 
[17–19] and two studies using the gLMS[7,21], did not find any dif
ferences for perceived intensity of sweet taste between weight category 
groups. One of the gLMS studies also did not find differences for in
tensity of umami taste[21]. 

While, for intensity assessment, studies already differ between re
ports of higher intensity in obesity relative to no weight-dependent 
differences, variability in findings for hedonic scaling is even greater, 
possibly due to higher sensitivity of this measure to heterogeneity of the 
scales used. In one study using a 9-point pleasantness scale, individuals 
with excess weight were shown to increase their pleasantness ratings as 
a factor of increasing concentrations of glucose, in contrast with normal 
weight individuals that found elevated concentrations of glucose 
increasingly less pleasant[16]. In another study using VAS, individuals 
with obesity reported higher pleasantness ratings for a ‘relatively high’ 
sucrose concentration (i.e. three concentration steps above their indi
vidual threshold), when compared to normal weight controls[23]. 
However, it has also been shown that individuals with obesity rate 
higher sucrose concentrations as less, rather than more, pleasant in a − 4 
to 4 point scale[18], and several studies failed to find group differences 
using several distinct methods[7,17,19–21]. For other taste qualities, 
there are reports of lower pleasantness for salt[20], higher pleasantness 
for umami [21] and no weight-dependent differences for salt, sour or 
bitter[23]. 

5. Changes in taste perception following bariatric surgery 

In studies conducted to test differences in taste perception following 
bariatric surgery, threshold estimation was also a common outcome, as 
shown in Table 2. Here, some[24–26,29], but not all studies[27,28,30], 

revealed an improvement of taste sensitivity after bariatric surgery, but 
with inconsistent profiles across taste qualities. Specifically, following 
RYGB, there are reports of lower detection thresholds (i.e. increase in 
taste sensitivity) for sweet taste, using the constant stimuli method two 
months after surgery[26], and also for sweet taste, but not for bitter 
taste, up to 3 months after surgery, using an up-down/ staircase method 
[25]. The latter study also reported unaltered recognition thresholds for 
both sweet and bitter taste[25]. However, another study, using the 
3-stimulus drop method, reported reduced detection and recognition 
thresholds up to 3 months after RYGB for sour and bitter tastants, but not 
for sweet or salt taste[24]. Furthermore, in two studies using the 2-AFC 
staircase method, and re-assessing patients after surgery at the point 
when approximately 20% of weight was lost, changes in detection 
threshold was not found for sweet, salt or umami taste after RYGB or 
Laparoscopic Adjustable Gastric Banding (LAGB)[27], nor for sweet or 
salt taste after RYGB or SG[30]. Finally, somewhat consistently with 
findings of reduced detection thresholds, taste acuity scores for sour, 
salt, sweet and bitter tastes improved 3 months after SG in one study 
[29], but remained unaltered 6 months following SG, LAGB or RYGB in 
another study[28]. 

Very few studies assessed suprathreshold intensity or hedonic as
sessments after bariatric surgery. Pepino et al. 2014 [27] showed that, in 
patients treated with RYGB or LAGB, following ~20% of 
surgically-induced weight-loss, there were no significant changes in 
suprathreshold intensity ratings (gLMS) for sweet, salt or umami tast
ants, while changes in preferences for sweet, but not umami, tastants did 
occur, as measured by a two-series, forced choice tracking procedure 
[27]. The authors also found that following RYGB, but not LAGB, the 
hedonic value of sucrose tasting, as measured by the gLHS, changed 
from pleasant to unpleasant[27]. The same group repeated this experi
ment in another bariatric group, following either RYGB or SG, con
firming no postoperative change in suprathreshold intensity ratings 
(gLMS) for sweet, salt or umami taste, nor in preference for umami, but 
with reduction in preference and hedonic scores for sweet taste after 

Fig. 1. Examples of methods used for 
assessment of oral sensations in humans. 
A. Electrogustometer (Rion TR-06; Rion Co. 
Ltd., Tokyo, Japan). This equipment is 
commercially available for determination of 
electric taste thresholds. Stimulus can be 
applied at durations ranging from 0.5 to 2 s 
and current ranges from − 6 dB to 34 dB, in 
21 steps. The electric probe is connected to 
the left side of the equipment, while a 
neckband, that completes the circuit is con
nected to the other side. Reproduced from 
[41]with permission from Cambridge Uni
versity Press, through PLSclear. 
B. Taste strips test (Burghart Messtechnik 
GmbH, Wedel, Germany). This is a 
commercially available test comprising 16 
containers with 4 concentrations of sweet, 
sour, salt and bitter as well as blank strips 
(image on the left, provided by Burghart 
Messtechnik GmbH). The strips are applied 
on the anterior third of the extended tongue 
(image on the right, reproduced from [42] 
with permission from Springer Nature, 
through RightsLink. 
C. Examples of labeled scales used for in
tensity assessment. LMS – Labeled Magni
tude Scale; gLMS – general Labeled 
Magnitude Scale. Adapted from [32] with 
permission from John Wiley & Sons, Inc, 
through RightsLink. 

D. Examples of labeled hedonic scales. LHS – Labeled Hedonic Scale; gLMS- general Labeled Magnitude Scale. Adapted from [32] with permission from John Wiley & 
Sons, Inc, through RightsLink.   
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Table 1 
Studies that compared individuals with obesity with non-obese controls, using direct measures of taste.  

Reference Participants Methodology Results 

Outcome/Method Taste stimuli/Method of application 

Rodin et al., 1976  
[16] 

Obese, n=16 
Mildly overweight, 
n=16 
Normal weight, n=6 
All women 

Intensity (9-point scale) Glucose, 0.125-3 M 
Sip and taste without swallowing 

- No differences were found among weight category 
groups in intensity ratings. 

Pleasantness (9-point scale) Glucose, 0.125–3 M 
Sip and taste without swallowing 

- Individualswith obesity or who were mildly 
overweight rated higher concentrations of sweet 
more pleasantvs. normal weight participants. 

Thompson et al., 
1977 [17] 

Obese, n=14 
Normal weight, n=
18 
Age matched 

Intensity and pleasantness 
Magnitude estimation 

Sucrose, 0.075-1.5 M 
Sip and taste without swallowing 

- Individuals with obesity did not differ in responses 
to sucrose vs. normal weight participants. 

Grinker et al., 1978  
[18] 

Obese, n=39 
Normal weight, 
n=13 

Detection threshold 
Constant Stimuli 

Sucrose, 0.175% (w/v) vs. water 
Sip and taste without swallowing 

- Individuals with obesity did not differ in sucrose 
detection threshold vs. normal weight participants. 

Severely obese, 
n=39 
Mildly overweight, 
n=14 
Normal weight, 
n=13 

Intensity 
Magnitude estimation 

Sucrose, 1.95- 19.5% (w/v) 
Sip and taste without swallowing 

- Individuals with obesity did not differ in intensity 
estimates vs. normal weight participants. 

Pleasantness 
(-4 to 4-point scale) 

Sucrose, 1.95- 19.5% (w/v) 
Sip and taste without swallowing 

- Individuals with obesity rated higher concentrations 
of sucrose as less pleasant vs. normal weight. 

Frijters& Rasmussen- 
Conrad et al., 1982 
[19] 

Overweight, n=13 
Normal weight, n=
12 
All women 

Detection threshold 
Constant stimuli 

Sucrose, 0.0006-0.02 M vs. water 
Sip and taste without swallowing 

- No differences between overweight vs. normal 
weight participants were found in any parameter. 

Intensity 
Magnitude estimation 

Sucrose, 0.06-1.3 M 
Sip and taste without swallowing 

Liking (170 mm liking scale) Sucrose, 0.06–1.3 M 
Sip and taste without swallowing 

Scruggs et al., 1994  
[24] 

Obese, n=6 
Normalweight, 
n=10 
All women 

Detection and recognition 
thresholds 
-stimulus drop 

HCL, 0.5-500 mMvs. water 
Urea, 90-5.000 mMvs. water 
Sucrose, 6-5.8000 mMvs. water 
NaCl, 6-6.100 mM vs. water 
Calibrated drops placed on the tongue. 

- Individuals with obesity did not differ in detection 
or recognition thresholds vs. normal weight 
participants. 

Pasquet et al., 2007  
[20] 

Severe early onset 
obesity, n=39 
Non-obese, n=48 
Adolescents 

Recognition threshold 
Up-down/staircase 

Sucrose and fructose, 2.0-1000 mM 
Citric acid, 0.40-25mM 
NaCl, 1.77-1000 mM 
Quinine HCl, 0.4-400 mM 
PROP, 0.001-3.2 mM 
Sip and taste without swallowing 

- Adolescents with obesity had significantly lower 
recognition thresholds for sucrose and NaCl vs. non- 
obese participants. 

Intensity (9-point scale) Sucrose, 121- 970 mM 
NaCl, 32- 1000 mM 
Sip and taste without swallowing 

-  Adolescents with obesity rated sweet and salty 
tastants as more intense vs. non-obeseparticipants. 

Pleasantness (9-point scale) Sucrose, 121- 970 mM 
NaCl, 32- 1000 mM 
Sip and taste without swallowing. 

- Adolescents with obesity rated the lowest NaCl 
solution less pleasant, but not sucrose. 

Pepino et al., 2010  
[21] 

Obese, n=23 
Normal-weight, 
n=34 
All women 

Detection threshold, 
2-AFC staircase 

Sucrose and MSG, 1 - 5.6 × 10− 5 M vs. 
water 
Sip and taste without swallowing 

- Women with obesity had significantly higher 
detection thresholds for MSG,but not sucrose, when 
compared to normal-weight participants. 

Intensity (gLMS) Sucrose, 0-1.05 M 
MSG, 0-0.18 M 
Sip and taste without swallowing 

- Women with obesity did not differ in intensity 
ratings given to MSG or sucrose vs. normal weight 
participants. 

Preferred concentration 
Two series, forced choice 
tracking procedure 

Sucrose, 0.09-1.05 M 
MSG, 0.005-0.064 M 
Sip and taste without swallowing 

- Women with obesity preferred higher 
concentrations of MSG, but not sucrose, when 
compared to normal-weightparticipants. 

Bueter et al., 2011  
[26] 

Obese, n=9 
Normal weight, n=9 

Detection thresholds 
Constant Stimuli 

Sucrose, 2.1-300 mM vs. water 
Sip and taste without swallowing 

- Individuals with obesity did not differed in sucrose 
detection threshold vs. normal weight participants. 

Park et al., 2015  
[22] 

Obese, n=18 
Normalweight, 
n=23 
Young adults 

Detection thresholds 
Method of limits (derivation) 

Sucrose, 0.05-2.0 g/mL 
NaCl, 0.016-0.9 g/mL 
Quinine HCl, 10− 5-0.03 g/mL 
Citric acid, 0.05-0.6 g/mL 
Cotton swab (whole mouth test) 

- Individuals with obesity had significantly higher 
detection thresholds for NaCl vs.normal weight 
participants. 

Electrogustometry (EGM) 22 possible EGM thresholds(8 dB to 34 
dB)were measured on the anterior and 
posterior tongue, bilaterally. 

- Individuals with obesity had significantly higher 
EGM thresholds on both sides of the posterior tongue 
vs. normal weight participants. 

Holinski et al., 2015  
[28] 

Obese, n=44: 
Non-obese, n=23 

Taste acuity (multiple- 
alternative forced-choice 
paradigm) 
Taste strips 
Burghart Messtechnik GmbH, 
Wedel, Germany 

Sucrose, 0.05-0.4 g/mL 
Citric acid, 0.05-0.3 g/mL 
NaCl, 0.016-0.25 g/mL 
Quinine HCl, 0.0004-0.006 g/mL 
Strips were applied to the midline of the 
anterior third of the tongue. 

- Individualswith obesity had lower overall taste 
acuity scores vs. non-obese participants. 

Pepino et al., 2016  
[7] 

Obese, n=24 
Non-obese, n=20 

Intensity (gLMS) Sucrose, 0.00-1.05 M 
Sip and taste without swallowing 

- Individuals with obesity did not differ in any 
parameter vs. non-obese participants. 

Preferred concentration 
Two series, forced choice 
tracking procedure 

Sucrose, 0.09-1.05 M 
Sip and taste without swallowing 

Hardikar et al., 2017 
[23] 

Recognition thresholds 
Up-down/staircase 

Sucrose, 0.01-20 g/100 mL 
NaCl, 0.01-5 g/100 mL 

(continued on next page) 
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both surgery types[30]. However, in work from another group, assess
ments of the ‘just about right’ concentration for sucrose, with ratings 
given on a VAS, did not reveal changes after RYGB[26]. Globally, the 
available literature does not support changes in the 
sensory-discriminative component of taste perception induced by bar
iatric surgery, but provides limited evidence in support of changes of 
reward-related and hedonic assessments, namely of sweet taste. 

6. Discussion 

In this review we provide perspective on the data available to sup
port, or contradict, the general interpretation that individuals with 
obesity have reduced sweet taste perception, as is frequently proposed 
[9]. This interpretation has typically been framed jointly with the evi
dence for decreased availability of striatal D2R in individuals with 
obesity, with both gustatory and dopaminergic factors proposed to 
contribute towards compensatory food consumption and weight gain 
[9]. In fact, in flies there is pre-clinical evidence that a high sugar diet 
results in diminished sweet perception, via decreased response of 
‘sweet-taste sensing neurons’[10]. Furthermore, in healthy human vol
unteers, reduction of sugar consumption has been shown to result in 
increased perception of sweet taste intensity, while pleasantness ratings 
remained unaltered[39]. Finally, a single nucleotide polymorphism, 
identified in humans, has been associated with higher perceived in
tensity of several sweet compounds, as well as with consumption of 
sweet foods[40], which may contribute towards interindividual differ
ences in weight. As is shown here, however, the available studies 
directly assessing pure taste function of individuals with obesity, either 
comparing with normal weight control subjects, or assessing changes 
following bariatric surgery, do not clearly support the general inter
pretation regarding reduced sweet taste perception in obesity. 

Studies comparing sweet taste detection thresholds between partic
ipants with and without obesity have found no differences[18,19,21,24, 
26]. On the other hand, some[20,23], but not all studies[24], have 
described reduced recognition thresholds among individuals with 
obesity, that suggest enhanced, rather than reduced, sweet taste sensi
tivity. Inconsistently, after bariatric surgery there is limited evidence of 
reduced sweet taste detection thresholds[24–27,30], thus suggesting 
enhanced sweet taste sensitivity with weight loss, and no evidence of 
change in recognition thresholds[24,25]. Regarding suprathreshold 
sweet taste intensity assessments, while most studies find no 
obesity-dependent [7,16–19,21] or bariatric surgery-dependent [27,30] 

effects, reports of increased intensity ratings among individuals with 
obesity are available in two studies[20,23]. For other taste qualities, 
while there is less evidence that is mostly negative, some studies reveal 
increased detection thresholds[21,22], reduced recognition thresholds 
[20,23] or higher intensity ratings [20,23] in individuals with obesity, 
as well as reduced detection [24] or recognition [24] thresholds after 
bariatric surgery. 

Regarding the hedonic dimension of taste, comparisons between 
individuals with obesity and normal-weight controls were mostly 
inconclusive, with no evidence of differences in sweet taste among 
participants with obesity in 4 studies[7,19–21], nor in salt, bitter or sour 
tastes in other studies[20,23]. Other studies, however, revealed 
increased[16,23], or reduced[18], hedonic ratings for sweet taste, 
reduced hedonic ratings for salt tastants [20] and increased preference 
for umami taste[21], among individuals with obesity. While studies 
after bariatric surgery are scarce, two of these studies support adjust
ments of sweet taste perception leading to lower preferences and he
donic scores[27,30]. However, confidence in the results of available 
research is limited, given methodological variability between studies, 
small sample sizes, and lack of adequate controls in longitudinal studies. 
More studies, with larger patient samples, are needed to address limi
tations of previous research. 

In fact, we have very recently published results of a multicenter 
longitudinal cohort, recruiting more than 200 bariatric patients, and 
showing similar variation in suprathreshold intensity and pleasantness 
ratings of several tastants, including sweet, between those treated with 
bariatric surgery and a control group awaiting surgery. While our 
research is consistent with limited overall effects of bariatric surgery on 
taste, patients with higher sweet intensity ratings before surgery lost 
more weight, and reduction of sweet intensity ratings correlated with 
weight loss [43]. These findings, suggesting that associations between 
taste and bariatric surgery may be better interpreted at the individual, 
rather than the group level, are consistent with other recent work testing 
liking ratings for sucrose-sweetened mixtures containing fat, and 
showing that, in patients receiving RYGB, but not SG, higher preoper
ative preference for sucrose-sweetened mixtures, as well as activation of 
the ventral tegmental area by those mixtures, predicted greater weight 
loss[15]. Hypotheses considering interactions between sweet prefer
ences and dopamine-related brain neural activity may thus be relevant 
for weight-loss induced by bariatric surgery, and should be further 
assessed in future research . 

Table 1 (continued ) 

Reference Participants Methodology Results 

Outcome/Method Taste stimuli/Method of application 

Obese, n=23 
Normalweight, 
n=31 

Quinine HCL, 0.0001-0.025 g/100 mL 
Citric acid, 0.001-0.9 g/100 mL 
Spray dispenser (0.2 mL bolus of each 
tastant administered in the anterior part 
of the tongue). 

- Individuals with obesity had significantly lower 
recognition thresholds for sucrose and NaCl vs. 
normal weight participants. 

Intensity (VAS) Sucrose, 0.01–20 g/100 mL 
NaCl, 0.01–5 g/100 mL 
Quinine HCL, 0.0001–0.025 g/100 mL 
Citric acid, 0.001–0.9 g/100 mL 
Spray dispenser (0.2 mL bolus of each 
tastant administered in the anterior part 
of the tongue). 

- Individuals with obesity rated the lower 
concentrations of sucrose, NaCl and citric acid as 
more intense vs. normal weight participants. 

Pleasantness (VAS) Sucrose, 0.01–20 g/100 mL 
NaCl, 0.01–5 g/100 mL 
Quinine HCL, 0.0001–0.025 g/100 mL 
Citric acid, 0.001–0.9 g/100 mL 
Spray dispenser (0.2 mL bolus of each 
tastant administered in the anterior part 
of the tongue). 

- Individuals with obesity rated one of the higher 
concentrations of sucrose as more pleasantvs. normal 
weight participants. 

Notes: Sucrose, glucose and fructose are tastants for sweet taste;sodium chloride (NaCl) for salty, citric acid and hydrochloric acid (HCl) for sour, quinine hydrochloride 
(HCl) and 6-n-propylthiouracil (PROP) for bitter and monosodium glutamate (MSG) for umami. 
Abbreviations: 2-AFC staircase - Two-alternative forced-choice staircase procedure; gLMS - general labeled magnitude scale; VAS - Visual Analogue Scale. 
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Table 2 
Studies that followed individuals with obesity before and after bariatric surgeryusing direct measures of taste.  

Reference Participants Surgery/Follow-up Methodology Results 

Outcome/Method Taste stimuli/Method of 
application 

Scruggs et al., 
1994 [24] 

Obese, n=6 
All women 

RYGB 
Pre, 1, 2 and 3 months 
postoperatively. 

Detection/ 
Recognition 
thresholds 
3-stimulus drop 

HCL, 0.5-500 mMvs. water 
Urea, 90-5.000 mMvs. water 
Sucrose, 6-5.8000 mMvs. water 
NaCl, 6-6.100 mM vs. water 
Calibrated drops of the taste 
solutions/ water were placed on 
the tongue at identical 
locations. 

- Following surgery there was a decrease in 
detection/recognition thresholds for HCL 
and urea, but not for sucrose or NaCl. 

Burge et al., 
1995 [25] 

Obese, n=14 RYGB 
Pre, 1.5and 
3monthspostoperatively. 

Detection/ 
Recognition 
thresholds 
Up-down/staircase 

Sucrose, 0.01-0.1 mol/L 
Urea, 0.01-0.5 mol/L 
Sip and taste without 
swallowing 

- Following 1.5 months after surgery, 
detection thresholds for sucrose 
significantly decreased and remained so at 
3 months. 

Bueter et al., 
2011 [26] 

Obese, n=9 
Normal weight, 
n=9 

RYGB 
1-week pre and 2 months 
postoperatively. 
Controls were tested at similar 
time points. 

Detection thresholds 
Constant Stimuli 

Sucrose, 2.1-300 mM vs. water 
Sip and taste without 
swallowing 

- Following surgery, patients had decreased 
detection thresholds for the lowest sucrose 
concentrations vs. controls. 

Obese, n=10 
Normalweight, 
n=9 

‘Just about right’ 
concentration 
(200 mm VAS) 

Sucrose, 0-400 mM 
Sip and taste without 
swallowing 

- Following surgery there were no changes 
in the “just about right” concentration of 
sucrose vs. controls. 

Pepino et al., 
2014 [27] 

Obese, n=27: 
- RYGB, n=17 
- LAGB, n= 10 

RYGB 
LAGB 
Before surgery and after ~20% 
surgically-induced weight loss 

Detection thresholds 
2-AFC staircase 

Sucrose, MSG and NaCl 
All 1-10− 4 M vs. water 
Sip and taste without 
swallowing 

- Following surgery there were no changes 
in taste thresholdseither in RYGB or LAGB. 

Intensity (gLMS) Sucrose, 0-1.05 M 
Glucose, 0-1.0 M 
NaCl, 0-0.56 M 
MSG, 0-0.18 M 
Sip and taste without 
swallowing 

- Following surgery there were no changes 
in suprathreshold intensity ratings for any 
tastant. 

Preferred 
concentration 
Two series, forced 
choice tracking 
procedure 

Sucrose, 0.09-1.05 M 
MSG, 0.018-0.180 M 
Sip and taste without 
swallowing 

- Following surgery, both in RYGB and 
LAGB groups lower concentrations of 
sucrose were preferred. 

Sweet taste 
palatibility 
(gLHS and gLMS) 

Sucrose 24% w/v 
Sip and taste without 
swallowing 

- Following RYGB, but not LAGB, the 
hedonic value of sucrose (gLHS) changed 
from pleasant to unpleasant. 

Holinski 
et al., 2015 
[28] 

Obese, n=44: 
- Pre-SG, n=37 
- Pre-LAGB, n=4 
- Pre-RYGB, n=3 
Non-obese, 
n=23 

LAGB 
SG 
RYGB 
Pre, 0.5, 0.75 and 6 
monthspostoperatively. 

Taste acuity 
(multiple-alternative 
forced-choice 
paradigm) 
Taste strips 
Burghart Messtechnik 
GmbH, Wedel, 
Germany 

Sucrose, 0.05-0.4 g/ml 
Citric acid, 0.05-0.3 g/ml 
NaCl, 0.016-0.25 g/ml 
Quinine HCl, 0.0004-0.006 g/ 
ml 
Strips were applied to the 
midline of the anterior third of 
the tongue. 

- Six months after surgery, taste acuity was 
not significantly different from controls. 

Altun et al., 
2016 [29] 

Obese, n=52 SG 
Pre, 1 and 3 months 
postoperatively. 

Taste acuity 
(multiple-alternative 
forced-choice 
paradigm) 
Taste strips 
Burghart Messtechnik 
GmbH, Wedel, 
Germany 

Sucrose, 0.05-0.4 g/ml 
Citric acid, 0.05-0.3 g/ml 
NaCl, 0.016-0.25 g/ml 
Quinine HCl, 0.0004-0.006 g/ 
ml 
Strips were applied tothe 
anterior region of the tongue. 

- Three months after surgery there was a 
significant increase in taste acuity for all 
tastants across the follow-up. 

Nance et al., 
2017 [30] 

Obese, n=31: 
- Pre-RYGB, 
n=23 
-Pre-SG, n=8  

RYGB 
SG 
Before surgery and after ~20% 
surgically-induced weight loss 

Detection thresholds 
2-AFC staircase 

Sucrose, glucose and NaCl, 
1 × 10− 4-1M vs. water 
Sip and taste without 
swallowing 

- There wasno changein detection 
thresholds after RYGB or SG. 

Intensity (gLMS) Sucrose, 0.90-1050 mmol/L 
Glucose, 0.00-1000 mmol/L 
NaCl, 0.00-560 mmol/L 
MSG, 0.00-180 mmol/L 
Sip and taste without 
swallowing 

- There were no changesin perceived 
intensities after RYGB or SG. 

Preferred 
concentration 
Two series, forced 
choice tracking 
procedure 

Sucrose, 90-1005 mmol/L 
MSG, 18-180 mmol/L 
(warmed) 
Sip and taste without 
swallowing 

- Following surgery, both in RYGB and SG 
groups lower concentrations of sucrose 
were preferred. 

Sweet taste 
palatibility 
(gLHS and gLMS) 

Sucrose 24% w/v 
Sip and taste without 
swallowing 

- Following both RYGB and SG, the hedonic 
of sucrose changed from pleasant to 
unpleasant. 

Notes: Sucrose, and glucose are tastants for sweet taste; sodium chloride (NaCl) for salty, quinine hydrochloride and urea for bitter; citric acid and hydrochloric acid 
(HCl) for sour and monosodium glutamate (MSG) for umami. 
Abbreviations: 2-AFC staircase - Two-alternative forced-choice staircase procedure; gLHS - general labeled hedonic scale; gLMS - general labeled magnitude scale; 
LAGB- Laparoscopic Adjustable Gastric Banding; RYGB - Roux-en-Y Gastric Bypass; SG - Sleeve Gastrectomy; VAS - Visual Analogue Scale. 
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7. Conclusions 

Available research suggests that changes of sweet taste with obesity 
and weight-loss may be more complex than simply considering 
decreased sweet taste perception. However, there are several indications 
that sweet taste may be related to weight and, importantly, that it may 
be a useful marker in the context of bariatric surgery, suggesting the 
need for further research with refined methods and large sample sizes. 
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