
Bruno Manuel Paias Firmino

Bachelor of Science in Computer Science and Informatics Engineering

Smart Monetization - Telecom Revenue
Management beyond the traditional invoice

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: José Rodrigues Carvalho,
Revenue Management, Celfocus

Co-adviser: Matthias Knorr, Prof. Auxiliar,
Universidade Nova de Lisboa

Examination Committee

Chairperson: Dr. Pedro Medeiros, Prof. Associado, Universidade Nova de Lisboa
Raporteur: Dr. Paulo Lopes, Prof. Auxiliar, Universidade Nova de Lisboa

September, 2019

Smart Monetization - Telecom Revenue Management beyond the traditional
invoice

Copyright © Bruno Manuel Paias Firmino, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Do. Or do not. There is no try.

Acknowledgements

I would like to start by thanking my advisors José Carvalho and Matthias Knorr for all the

help and support provided during the writing of this thesis. I would also like to thank

FCT-NOVA as a whole and more specifically the Department of Informatics, along with

all the professors and colleagues who helped me grow academically, professionally and

as a person. My thanks are extended to my colleagues at Celfocus for welcoming me

and helping me get integrated in an environment that was new to me, as well as for all

the entertaining coffee breaks, work meetings, general advice and valuable teachings. A

special mention goes to Vasco Pereira for his guidance. On a more personal note I would

like to thank my close friends and family for all the love and support over all these years,

my academic family, and my mentor Tiago Santos in particular. A special thank you goes

to my mom and dad for always loving me, supporting me and allowing me to pursue my

studies, as well as my grandparents, some of whom are not with us anymore but I’m sure

would be very proud.

vii

Abstract

Nowadays, there is a fast and unpredictable technological evolution, with new systems

constantly emerging on the market, with the capability of being monetized. However,

these systems are not always fully and flexibly explored. Many hardware distributors are

selling products without a clear view on sustainable business models for them, leaving

these as an afterthought. Communications Service Providers are suddenly under pres-

sure to modernize and expande their business models as to regain the ground claimed by

Over-the-top service providers, who make use of existing infrastructures to provide their

own services, which naturally may lead to substantial revenue loss from the actual infras-

tructure owners. The Smart Monetization project aims to explore this paradigm, with

the design and implementation of a reusable asset, making use of Big Data and Analytics

tools that can ingest and process usage and billing data from customers, detecting event

patterns and correlations that can be monetized, leading to improved and new service

experiences and ensuring, as well, greater transparency on the process of billing and

charging of these services.

Keywords: Smart Monetization; Telecommunications; Revenue Management; Billing;

Charging; Data processing; Big Data; Fast Data; Analytics

ix

Resumo

No mundo atual existe uma acelerada e imprevisível evolução tecnológica, em que todos

os dias são desenvolvidos novos sistemas com a capacidade de serem monetizados. No

entanto, estes nem sempre são explorados ao máximo ou de uma forma flexível. Imen-

sos distribuidores de hardware efetuam a comercialização de produtos sem dispor de

uma visão concreta de modelos de negócio sustentáveis para os mesmos, deixando-os

para segundo plano. Os Communications Service Providers estão sob uma súbita pressão

para modernizar e expandir os seus modelos de negócio de modo a recuperar terreno rei-

vindicado por provedores de serviços Over-the-top, que usufruem das infraestruturas já

existentes para fornecer os seus próprios serviços, o que leva naturalmente a perdas subs-

tanciais de receita da parte dos atuais proprietários das infraestruturas. O projeto Smart
Monetization visa explorar estes paradigmas, partindo do desenho e eventual implementa-

ção de um asset reutilizável, com recurso a ferramentas de Big Data e Analytics, que possa

ingerir e processar dados de utilização e faturação dos consumidores, analisando padrões

e correlação de eventos que possam ser monetizados, levando assim a melhores e novas

experiências de utilização de serviços, garantindo também uma maior transparência no

processo de faturação e cobrança dos mesmos.

Palavras-chave: Smart Monetization; Telecomunicações; Revenue Management; Faturação;

Cobrança; Processamento de dados; Big Data; Fast Data; Analytics

xi

Contents

List of Figures xv

List of Tables xvii

Listings xix

1 Introduction 1

1.1 Overview . 1

1.1.1 Communications Service Provider 2

1.1.2 Over The Top Services . 3

1.1.3 Internet of Things . 3

1.1.4 Big Data Analytics . 4

1.2 Problem Description . 5

1.3 Challenges and Requirements . 6

1.4 Expected Contribution . 7

1.5 Document Structure . 8

2 Smart Monetization 9

2.1 Related Work . 9

2.2 High Level Architecture . 9

2.3 Tools Considered . 10

2.3.1 Data Ingestion . 11

2.3.2 Data Storage . 14

2.3.3 Data Analytics . 18

3 Proof of Concept 23

3.1 Environment . 23

3.2 Tool Installation . 24

3.3 Smart Meeting Room . 25

3.3.1 Cassandra Setup . 29

3.3.2 Data Analytics Use Case . 30

3.4 Tool Workflow . 30

3.5 Testing and Results . 41

xiii

CONTENTS

4 Conclusions 45

4.1 Final Thoughts . 45

4.2 Contributions . 46

4.3 Future Work . 46

Bibliography 49

xiv

List of Figures

1.1 Traditional business model of a CSP . 2

1.2 CSP business model with the introduction of Smart Monetization 7

2.1 Smart Monetization - High level architecture 10

2.2 Big Data tools used in 2018 . 11

2.3 Data ingestion tools considered . 11

2.4 CAP theorem1 . 15

2.5 Data storage tools considered . 16

2.6 Data analytics tools considered . 18

2.7 Big Data Analytics tools evolution2 . 20

3.1 Snippet of interface for the chosen use case 26

3.2 Snippet of randomly generated data to be analyzed 27

3.3 Cassandra query over the SQL shell . 31

3.4 Cassandra query over the SQL shell . 32

3.5 Flink results summary . 43

3.6 Flink Monetizable Data Records . 43

xv

List of Tables

2.1 Overview of the ingestion tools considered. 12

2.2 Overview of the databases considered. 17

2.3 Overview of the analytics tools considered. 19

3.1 List of fictitious employees . 42

xvii

Listings

3.1 Pseudocode for Random Data Generator 28

3.2 TopicToCassandra.java code . 32

3.3 CsVToTopic.java code . 34

3.4 CassandraToFlink.java code . 36

3.5 FlinkAnalytics.java code . 37

3.6 Batch code to delete logs . 41

xix

C
h
a
p
t
e
r

1
Introduction

1.1 Overview

Celfocus1 was created in 2000 as a joint venture between Novabase and Vodafone Portu-

gal and provides solutions for the telecommunications market, working within domains

such as Customer Relationship Management, Enterprise Application Integration, Busi-

ness Intelligence and Intelligent Network Applications and Services.

The motivations for this project arise from the great potential that comes from Big

Data and Analytics tools and mindsets that hasn’t been fully explored yet. There is a large

number of devices connected to the internet that produce vast quantities of all kinds of

data, which ultimately may be gathered and stored but aren’t availed, which is also not

helped by the lack of adequate tools to harness and make use of this kind of data. This

was revealed by an internal study Celfocus did on the subject, concluding a need to de-

velop an in-house tool capable of answering these requirements.

Here is where Smart Monetization enters the picture. An asset capable of ingesting large

quantities of data and analyse them in order to gather knowledge and have the potential

to monetize it.

Over the course of this thesis, State of the Art tools were studied, architectural design

decisions were made and a Proof of Concept was developed to show the viability and

potential of this tool.

In order to provide a clearer understanding of the problem, it is useful to first succinctly

introduce a few prevalent topics related to the subject, such as the concepts of Com-

munications Service Provider, Over The Top services, Internet of Things and Big Data

Analytics.

1https://www.celfocus.com/

1

https://www.celfocus.com/

CHAPTER 1. INTRODUCTION

1.1.1 Communications Service Provider

The use cases presented and experimented with, over the course of this work, were mostly

focused with a Communications Service Provider (or CSP for short) perspective in mind,

given its enormous potential given their reach and available infrastructure. A CSP is a

service provider that transports information electronically - a telecommunications service

provider, for instance.

CSP have traditionally offered a selection of bundled services such as triple-play which

packages landline, television and broadband services altogether [Mar15]. After these

types of bundles came quad-play, which aggregated mobile services to the aforemen-

tioned package, resulting in an ever increasing larger selection and bundling of different

types of available services.

These bundles are more attractive to the consumer due to the added ease of subscription

and cleaner billing process. More recently, due to the constant evolution and development

of existing and brand new technologies, CSP find themselves encouraged to offer new

bundles that include new services such as Internet of Things services and other innovative

and disruptive services.

Figure 1.1: Traditional business model of a CSP

The traditional CSP business model is comprised of multiple fields but there are three

layers most closely coupled and important when we talk about Big Data and Analytics

and its monetization potential (Figure 1.1).

Firstly, there is the network layer and all its supporting structure such as antennas, net-

work cables and data storage.

2

1.1. OVERVIEW

Secondly there is the mediation layer where customer data records are treated. These

data records exist traditionally in the form of Call Data Records (CDR). These records

are comprised of phone service use details and are then associated with predetermined

monetary values for billing purposes. This is called the rating process. Eventually tech-

nology and the industry kept innovating and more general data records had to be created,

leading to the creation of Extended Data Records or Event Data Records (EDR), which

store more dynamic types of event information, not just phone records.

Lastly there is the billing (prepaid) and charging (postpaid) layer, destined to pass on this

information back to the consumer and bill or charge them adequately.

1.1.2 Over The Top Services

Traditionally, the main revenue streams for telecommunications operators have been

voice and messaging services, with data coming in at a far third.

While these operators had been quick to react to previous game-changing developments

such as the internet explosion and the emergence of cellular mobile communications, they

seem to have been lacking in the face of newer challenges such as Over The Top (OTT for

short) service providers.

These service providers deliver audio, video and other media over the internet and by-

pass the traditional operator’s network. Though they make use of the telecommunications

operators’ network and infrastructure, they do not contribute directly and are, in fact,

beginning to pose a credible and measurable threat to their revenue. Enabled by technol-

ogy advances such as smartphones, fast IP networks, open source platforms and a wide

variety of innovative applications and services offered, OTT service providers are seeing

an ever-increasing adoption rate. [Suj+15]

1.1.3 Internet of Things

The term Internet of Things (IoT for short) has been around for several years. When it

was introduced it stood for the vision of a world where all physical objects are tagged with

an RFID (Radio-frequency identification) transponder with a globally unique ID. RFID

easily allows tracking the objects, and the EPC (Electronic Product Code) serves as a link

to data which can be queried over the Internet about each individual object.

Since then its meaning has expanded. Using sensors or sensor networks, additional in-

formation about the objects or the environment that they are in can be recorded as well.

Software embedded in the objects enables data processing directly on the item, and in

combination with actuators, local control loops can be implemented. The Internet of

Things is a key part of the internet of the future and many new opportunities can be

foreseen for citizens, businesses and society as a whole. [Hal+08]

It is also pertinent to mention the existence of the concept of Internet of Everything

3

CHAPTER 1. INTRODUCTION

(IoE for short). While IoT is mostly focused on the physical objects and actuators com-

municating with each other, which allows these to work and perform tasks automatically

with no human input, simply reacting to the environment surrounding them, IoE is what

brings in network intelligence to bind all these concepts into a cohesive system. [Van16]

1.1.4 Big Data Analytics

Big Data is a loosely defined term used to describe large and complex data sets that are

very difficult to work with using traditional statistical software [Sni+12].

Analytics, on the other hand, involves relatively conventional methods of exploring links

and statistical relationships between data and respective output of results and informa-

tion [Ass16].

Big Data and Analytics are tightly related concepts and are often coupled together. They

both seek to glean knowledge from data and translate that into smart business decisions.

However, there are a few important differences. Big Data implies the existence of three

key characteristics, usually called the Three Vs of Big Data [MB12]:

• Volume: the vast quantity of data to process;

• Velocity: the fast rate at which new data is created, stored and processed;

• Variety: the broad heterogeneity of data and its sources.

More recently there have been a few added Vs to more accurately describe the concept

of Big Data, two of them being [Rec18]:

• Veracity: the accuracy and integrity of data;

• Value: the significance and impact the data has on business goals.

These make up the so-called Five Vs of Big Data but there are other ones as well, such

as Viscosity, Variability, Volatility, Viability and Validity [Kha+18].

In essence, Big Data Analytics focuses therefore on the collection of useful informa-

tion from vast and diverse quantities of data from different data sources to make informed

decisions, in order to obtain business advantage and discovery of new commercial oppor-

tunities to monetize services of interest to the consumer.

This area reveals a particular interest and potential in the previously mentioned IoT

paradigm. In the words of Kevin Ashton, "If we had computers that knew everything

there was to know about things—using data they gathered without any help from us—we

would be able to track and count everything, and greatly reduce waste, loss and cost. We

would know when things needed replacing, repairing or recalling, and whether they were

fresh or past their best."[Ash09]. This potential, which will be further explored in later

sections, comes from the fact that these devices and systems generate large amounts of

4

1.2. PROBLEM DESCRIPTION

precious data.

It is also pertinent in the context of this work to mention the concept of Fast Data, which

gives priority to the low latency necessary for Big Data to be useful in a business context,

due to the need of real or near real-time data processing and information extraction.

1.2 Problem Description

Due to the increasing availability of Over The Top (OTT) services, as well as the explosive

growth of the number of Internet of Things (IoT) devices connected to the global net-

work being utilized for the most diverse use cases, traditional Communications Service

Providers (CSP) find themselves struggling to regain lost ground, innovate and adapt

their services.

Reports suggest that CSP have lost around $386 billion in revenue in the last six years

due to the increasing consumer preference toward OTT message and voice (VoIP) services.

It is predicted that spending on traditional telecommunication services will reduce by

around 36% in the coming decade. [Ven18]

Currently, the processing of customer and service usage data is an increasingly important

factor to business success. The analysis of this kind of data allowed the discovery of

usage patterns and preferences that can be utilized to provide a better, more personalized

service to every different user.

OTT service providers such as Netflix2 or Uber3 use analytics tools to better serve their

consumers with the content they are most likely to want, which leads to customer satis-

faction and retention. [Put18] [Dan18]

CSPs, more than any other service providers, have the ownership of the existing infras-

tructure with the capability of supporting this kind of consumer behaviour, whereby it is

crucial to take advantage of such lead in order to provide the best possible service.

The emergence of Smart Devices, on the other hand, makes it possible to identify prede-

termined events without consumer intervention, such as an irrigation system that, with

the use of sensors and actuators, detects the need to water plants automatically, acting

accordingly without the need for user intervention.

However, these kinds of systems are not being fully availed, its settings requiring manual

configuration by the user or, even if it is controlled externally, for instance by a CSP, there

are limitations in regard to monetization of events, e.g., they are limited to a traditional

static subscription model (e.g. charging 20€monthly to water the grass, once a day, at a

fixed hour), which does not allow for the level of flexibility and efficiency.

According to IBM, nearly 90% of the data collected by IoT devices will remain unused

2https://www.netflix.com/
3https://www.uber.com/

5

https://www.netflix.com/
https://www.uber.com/

CHAPTER 1. INTRODUCTION

[Was16]. This reveals the existence of a tremendous waste of a vast source of information

that could be useful to measure consumer behaviour and ultimately lead to a refinement

of offered services, with greater individual personalization, by also allowing the moneti-

zation of increasingly sought-after non-traditional innovative and disruptive services.

1.3 Challenges and Requirements

The Smart Monetization project emerges from a study conducted by Celfocus, more specif-

ically the department of Revenue Management, which detected a lack of platforms with

out-of-the-box capabilities that allow for the monetization of events created by current

and future Internet of Things (IoT) services, in a distinct and innovative manner, giving

an answer to the defined requirements. The existing platforms are relatively prepared to

fulfill the challenges of Over The Top (OTT) services, but not those of a Communications

Service Provider (CSP). The functionalities available are restricted to subscription billing

and rudimentary predetermined event monetization.

Smart Monetization has the primary goal of taking advantage of Big/Fast Data and Ana-

lytics tools and techniques, allowing real or near real-time processing of data, in order to

quickly provide information to the final user. This solution, which will be integrated with

legacy Business Support Systems, specifically Revenue Management domains and pro-

cesses such as mediation, rating, billing and invoicing, must not only be able to monetize

events and/or event correlations, but also generate ways to transparently communicate,

to the final consumer and adjacent accounting processes, exactly which components and

subsequent values or costs are correlated to such events.

In terms of requirements this solution must take in consideration the following crite-

ria:

• Performance - overall performance and throughput of the system;

• Efficiency - adequate and balanced results to system complexity ratio;

• Scalability - capacity to expand system resources to evenly process an increasing

amount of work;

• Security and compliance - cyber attacks, GDPR, ISO, among others.

Some use cases this solution must support are, for instance:

• Dynamically rank and charge Internet of Things (IoT) events by the observation of

patterns and event correlation;

• Distinctly charge users that move to a certain space such as concert venues;

6

1.4. EXPECTED CONTRIBUTION

• Define campaigns based on data usage during a period of time and a set place;

• Rationally charge the demands around Smart Cities (e.g. surveillance cameras video

streaming, garbage collection sensors, automatic irrigation sensors, etc.);

• Direct costs to private entities when events are held in their venues.

1.4 Expected Contribution

Figure 1.2: CSP business model with the introduction of Smart Monetization

The goal of this dissertation is the exploration of the previously described problem

starting with the technical and architectural design of a reusable asset, using Big Data

and Analytics tools and techniques, as well as the development of a Proof of Concept

(PoC). The final solution aims to be homogeneously integrated in the existing system, as

shown in Figure 1.2.

Adequate tools were studied and evaluated, followed by the implementation of a PoC in

order to measure the feasibility of this solution, asserting as well the potential of Big Data

Analytics from a business point of view. An investigation was also conducted to assess

future work to add to this solution in order to expand its capabilities.

While the potential for this asset is large, the initial expected objectives for the PoC, in

order to prove its viability, were to ingest data from a source, store such data in a database

and then analyze it, producing adequate results that may be forwarded to other depart-

ments in order to be monetized.

In the course of this dissertation multiple contributions were made, both on an theoretic

7

CHAPTER 1. INTRODUCTION

level and a practical level. In short, a technical and architectural design was conducted,

followed by the development of a Proof of Concept, using non productive usage data,

representative of reality on a business context.

On a theoretical level, existing solutions were explored, and a study of the state of the

art of the tools most adequate for each layer of this type of project was conducted. After

the conclusion of the project, a study was also conducted to measure the effectiveness of

this particular solution, which proves useful to substantiate the potential of the Big Data

Analytics area on a business level.

On a practical level, a Proof of Concept resulted from this dissertation, whose purpose

was the ingestion, analysis and storage of select data, which brings tangible benefits both

to the service provider by allowing a larger scope of new monetization capabilities, and

to the client who ultimately may receive a more attractive and innovative service usage

experience and more new, innovative and disruptive services.

1.5 Document Structure

This document is structured in four major sections:

• Chapter 1 starts with an initial overview of this dissertation (Section 1.1) by intro-

ducing a brief approach to a few key concepts. Section 1.2 describes the problem

that this work aimed to address followed by Section 1.3 that presents a few impor-

tant challenges and requirements that were taken in consideration. This chapter

ends with Section 1.4 which is dedicated to setting the expected contributions to be

made over the course of this work;

• Chapter 2 describes the groundwork for the project. Related work is explored

(Section 2.1), the high level architecture design is laid out (Section 2.2) and the tools

most adequate to be used are compared and evaluated (Section 2.3);

• Chapter 3 is dedicated to the actual Proof of Concept development. There is a

description of the development environment and installation of tools (Section 3.1

and Section 3.2, respectively), a description of Smart Meeting Room, the chosen use

case to be used as an example for this Proof of Concept (Section 3.3), a section about

what a typical pipeline looks like to get up and running (Section 3.4) and finally the

testing and analysis of results from this implementation (Section 3.5);

• Lastly, overall conclusions about this project and dissertation are discussed, as well

as an outline of potential future work (Chapter 4).

8

C
h
a
p
t
e
r

2
Smart Monetization

2.1 Related Work

This project came to light from a 2018 study conducted by Celfocus where an investiga-

tion and evaluation of flexible state of the art charging and billing solutions was carried

out, where it was then concluded that the existing platforms available on the market do

not match the necessary proposed requirements.

The several existing tools that were analyzed in this study, among them Oracle Moneti-

zation Cloud - OMC, goTransverse TRACT and Zuora Billing, revealed either a lack of

complexity, volume or agility. As such, it was concluded the necessity of the develop-

ment of an in-house platform capable of answering these requirements with resort to low

latency ingestion and analysis of vast quantities of heterogeneous data (Big/Fast Data).

2.2 High Level Architecture

This project’s high level architecture is divided in three layers (Figure 2.1):

• Data Ingestion;

• Data Storage;

• Data Analysis.

Each of these layers uses one (or more) tool(s) that ultimately communicate with one

another to form a Big Data Analytics pipeline.

The data ingestion layer is responsible for aggregating data from any source in order to

reroute it to the appropriate storage and analytics layers. Eventually this layer can also

be used to do light preprocessing work in order to filter or normalize some of the data, if

9

CHAPTER 2. SMART MONETIZATION

Figure 2.1: Smart Monetization - High level architecture

justified.

The data storage layer, effectively a Data Lake, stores all ingested and processed data in

the system. A Data Lake, as opposed to a Data Warehouse, is a flexible data repository

used to store vast quantities of raw structured, unstructured or semi-structured data

[Mak18].

Lastly, the analytics layer processes the ingested data and, with resort to pattern observa-

tion and event correlation, will generate Monetizable Data Records that will eventually

be able to be transparently visualized and perceived by the final consumer.

2.3 Tools Considered

The development of this project involves the use of multiple Big Data and Analytics tools.

This area has several available tools, as can be seen in Figure 2.2 and as such, a state of

the art analysis was necessary to evaluate the most adequate tools needed for each layer

of this project in particular.

A few of these tools were first chosen in a preliminary evaluation to be further analyzed.

Each evaluation had specific requirements and technical features kept in mind. There

was also a certain preference, in the case of a tie, toward the more established tool, with

the larger presence in the market and community, and with which Celfocus possesses

more experience working with.

10

2.3. TOOLS CONSIDERED

Figure 2.2: Big Data tools used in 20181

2.3.1 Data Ingestion

For the first layer, the data ingestion layer, responsible for capturing data from sources,

there are several open source tools available with multiple implementation protocols.

2.3.1.1 Ingestion Tools

Figure 2.3: Data ingestion tools considered

An initial shortlist (Figure 2.3) was picked after a superficial analysis, which is made

1Source: http://mattturck.com/matt_turck_firstmark_big_data_landscape_2018_final/

11

http://mattturck.com/matt_turck_firstmark_big_data_landscape_2018_final/

CHAPTER 2. SMART MONETIZATION

up of the following tools: Apache Kafka2, Apache Flume3, Apache Pulsar4, Apache Ac-

tiveMQ5 and Pivotal Software’s RabbitMQ6 (Table 2.1).

Several characteristics were taken into consideration during the evaluation and com-

parison of these tools, such as:

• Scalability - capacity to serve an increasing load of data;

• Data consistency - guarantee of transit and storage of data without anomalies or

inconsistencies;

• Fault tolerance and recovery - capacity to prevent and recover from system faults

(hardware or network related);

• Security and compliance - cyberattacks, GDPR, ISO, among others;

• Synchronization method/protocol - data transfer model type;

• Data processing capability - capacity to process data on top of ingesting it;

• Throughput - data transfer rate on a set time frame;

• Maturity and available documentation - amount of documentation, community

and professional support availability and proven industry use;

• Licensing - licensing type for the use and commercialization of the respective tool.

Table 2.1: Overview of the ingestion tools considered.

Kafka Flume ActiveMQ RabbitMQ Pulsar

Protocol Pub/Sub Passive/Active Queue Queue Hybrid
Data processing Yes No No No Yes
Initial release 2011 2012 2004 2007 2016
Licensing Apache Apache Apache Mozilla Apache

Each of these tools offer different levels of scalability, data consistency, fault tolerance,

security and compliance.

Kafka is a high-capacity, highly scalable distributed message broker originally devel-

oped by LinkedIn. It works on a Publisher/Subscriber (or Producer/Consumer) model in

which producers send messages to Kafka brokers. These messages are associated to Kafka

2https://kafka.apache.org/
3https://flume.apache.org/
4https://pulsar.apache.org/
5http://activemq.apache.org/
6https://www.rabbitmq.com/

12

https://kafka.apache.org/
https://flume.apache.org/
https://pulsar.apache.org/
http://activemq.apache.org/
https://www.rabbitmq.com/

2.3. TOOLS CONSIDERED

topics and will be received by consumers subscribed to the latter. A group of brokers

is called a cluster and these are maintained by Apache Zookeeper (as of August 2019

this dependency is being addressed, where a discussion is being held looking to replace

Zookeeper with a self-managed metadata quorom [McC19]).

One of Kafka’s strengths is message persistence, where every message can be stored in

disk for a configurable period of time [Nan15]. While performance may depend on several

design choices and other system factors, this tool offers a very reasonable throughput of

possibly more than 100000 messages per second [Hum17] with the capability of reaching

much higher values, without the need for state of the art hardware [Kre14]. Furthermore,

Kafka also offers a data processing library, Kafka Streams, which may be useful for an

optional preprocessing or filtering of data before being transferred to the storage layer.

Flume is a distributed system that allows the collection, aggregation and transfer of

data to a repository such as Hadoop. This tool features decent performance, with Kafka

being slightly ahead on real-time data streaming [Cas+16]. While Kafka is a general

purpose tool, Flume is specific purpose, great for log aggregation for instance. Unlike

Kafka, it does not support message replication to other nodes, which may lead to easier

data loss [Sic17].

Both ActiveMQ and RabbitMQ are traditional message brokers that work based on

message queueing, supporting protocols such as Advanced Message Queuing Protocol

(AMQP), Simple (or Streaming) Text Oriented Message Protocol (STOMP) and Message

Queuing Telemetry Transport (MQTT). Being older tools, there is a greater feature and

performance limitation when compared to more recent options [Tru14]. Being traditional

message brokers, these tools do not offer data processing or analytics features like Kafka,

for instance, with its Kafka Streams library, previously mentioned.

Lastly, Pulsar is the most recent out of the tools considered. This tool unifies high

performance streaming (which Kafka pursues) and flexible traditional queueing (which

RabbitMQ pursues) [Hal18b]. This tool shows better performance compared to Kafka

[Str18] but, due to its relative recency, there is a greater lack of documentation compared

to more mature tools.

After comparing these five tools, Kafka has been chosen as the most adequate tool for

the project due to its flexibility and performance as well as the abundance of documen-

tation and its maturity, being used in production in several industries [RK16]. Celfocus

also already possesses experience with the use of this tool in other projects. Even though

Pulsar offers performance gains, this trade-off was deemed not justifiable for what we

want to achieve and demonstrate, but it could however be a potential tool to use in the

future.

13

CHAPTER 2. SMART MONETIZATION

2.3.2 Data Storage

For the data storage layer, where we store all the data ingested for logging and analysis

purposes, we effectively need a database which will serve as a Data Lake. Before going

into the tool selection process, it is important to first approach a few relevant concepts

and aspects that were taken in consideration for a project of this scope, handling vast

quantities of possibly unstructured data.

2.3.2.1 SQL vs. NoSQL

This project revolves around Big/Fast Data and, as mentioned in the introductory sec-

tion of this document, this is a factor that needs certain requirements to be taken into

consideration due to the need to store and process, with low latency, vast quantities of

heterogeneous data.

Relational databases, or traditional databases that use SQL (Structured Query Language),

have been commonly rejected in projects of this kind in favor of alternative non-relational

databases. These are also called NoSQL databases, which is debatably defined as either

"No SQL"and/or "Not Only SQL"[Fow12].

The relational model is a favorable choice to work with well-defined, structured and sen-

sitive data sets. It is also pertinent to highlight that databases of this kind are usually

ACID compliant, required for transactions:

• Atomicity - all changes to data are performed as one, meaning they either are all

successfully executed or none are;

• Consistency - data is in a consistent state both at the start and at the end of each

transaction;

• Isolation - the intermediate state of a transaction is not visible to other transactions;

• Durability - after a successful transaction, data changes are persistent even in the

case of system failure.

This type of integrity and anomaly-free guarantee is significantly important in finan-

cial systems, for instance, where data errors can not be tolerated.

However, this model is not particularly flexible, especially at a large scale, where the non-

relational data model excels. This model was designed from the ground up to be scalable,

flexible and have decent performance at the same time. NoSQL databases provide storage

and access capacity to large quantities of possibly non-structured data sets, without the

need to previously define the data types to be used [Ver18].

Commonly used relational databases (Oracle Exadata being a notable exception) were

designed to run on a single machine, which hinders scalability, because instead of horizon-

tally scaling, that is, adding more machines (i.e., nodes to a cluster), one must increase the

processing capacity of a single node (vertical scaling), which may be more expensive (e.g.,

14

2.3. TOOLS CONSIDERED

the node reaches its expansion limit and a larger one must be bought) and requires extra

steps to provide fault tolerance, which is by default designed into modern, non-relational

distributed databases (as a result from data being replicated across several machines)

[SD12]. This kind of databases are called distributed databases, prevalent notion in non-

relational databases.

With this in mind, for the scope of the Proof of Concept to be designed in this project,

non-relational databases were considered to be the most adequate option.

2.3.2.2 CAP Theorem

Figure 2.4: CAP theorem7

In the previous section (Section 2.3.2.1) an important relational database property

was mentioned: ACID compliance. With non-relational databases the paradigm is some-

what different being that this was not originally a prioritized property due to the nature

of its foundation.

This is due to a dilemma that goes by the name of CAP theorem or Brewer’s theorem (Fig-

ure 2.4), that implies the following: of the three desirable distributed database properties,

these being network partition tolerance, data consistency and system availability, we can

only obtain two simultaneously [Sim12].

More precisely, this implies that in the presence of network partition tolerance, that is,

the capacity of the system to keep processing data and serving requests even if any of

its subsystems fails, something that is core to distributed data models, there must exist a

trade-off between data consistency and system availability.

If a larger level of data consistency is required, the system may not always be available,

15

CHAPTER 2. SMART MONETIZATION

due to having to verify that every node in the system contains consistent data before

performing a new operation. If a larger level of system availability is required, the nodes

may not always contain the most recent data due to communication issues, which may

lead to data inconsistency. This is not a binary decision to be made but a trade-off, only

in the presence of network issues.

The relatively looser BASE property is therefore more predominant in non-relational

databases in favor of ACID:

• Basic Availability - the database appears to work most of the time;

• Soft-state - stores do not have to be write-consistent nor do replicas have to be

mutually consistent at all times;

• Eventual consistency - consistency is guaranteed at a later point, such as lazily at

read time. [Sas18]

2.3.2.3 Storage Tools

Figure 2.5: Data storage tools considered

For the data storage layer, again, there are several tools to choose from. For this project,

three of the most used non-relational databases in this kind of project were taken in con-

sideration (Figure 2.5): Apache HBase8, Apache Cassandra9 and MongoDB10 (Table 2.2).

For evaluating and comparing these tools, the following properties were taken in

consideration:

• High Availability - system capability of continuously serving requests without

returning errors;

• Data Consistency - viable data storage, without anomalies or read/write incoher-

ences;

• Fault tolerance - system capability of preventing and recovering from system faults

(hardware or network related);

7Source: http://ngvtech.in/droidhub/cassandra_datamodel/
8https://hbase.apache.org/
9http://cassandra.apache.org/

10https://www.mongodb.com/

16

http://ngvtech.in/droidhub/cassandra_datamodel/
https://hbase.apache.org/
http://cassandra.apache.org/
https://www.mongodb.com/

2.3. TOOLS CONSIDERED

• Prioritized CAP theorem property - priority and flexibility that the tool offers by

default regarding data consistency and availability;

• Data storage model - database type (Key-value, Wide column, Document, Graph,

among others);

• Licensing - licensing type for the use and commercialization of the respective tool.

Table 2.2: Overview of the databases considered.

HBase Cassandra MongoDB

Architecture Master/Slave P2P homogeneous nodes Master/Slave
Fault Tolerance Backup master Masterless Master failover
CAP priority Consistency Availability Consistency
Data model Wide column Wide column Document
Licensing Apache Apache SSPL

These three tools all implement the necessary requirements and in fact serve the same

purpose but merely do so in different ways and with different priorities in consideration.

HBase is a NoSQL database modeled after Google’s BigTable. It follows a wide-column

storage model which is a slight variation from the key-value format. Wide-column

databases use rows and columns but, unlike in traditional relational databases, the names

and formats of columns can be changed. Following a master/slave node architecture that

runs on top of Hadoop Distributed File System (HDFS), Single Point of Failure (SPOF) is

a possibility in case the master or primary node fails, even though a backup master can

be set up. HBase prioritizes consistency when it comes to the CAP theorem, meaning it

values and gives more importance to great data consistency in the system, due to data

replication in partitions, an integral factor of HDFS. Beyond depending on Hadoop, this

tool also depends on Apache Zookeeper for server management and a tool like Apache

Hive for querying [Bek18c].

Cassandra, similarly to HBase, is a wide-column NoSQL database based on Amazon’s

DynamoDB. Unlike HBase, it follows a masterless node architecture, in which every

system node is similar and serves the same function, which means there exists no SPOF

[Bek18c]. Also unlike HBase, Cassandra prioritizes availability when it comes to the CAP

theorem, meaning it values high availability in the system, even though this is adjustable

according to the user’s requirements [Tiw15]. Cassandra provides a query language

named Cassandra Query Language (CQL), slightly similar to the traditional SQL, not

depending on external tools like HBase does. While HBase shows great performance on

database reads and is perfect to store bulky files, Cassandra is better for intensive writes

and storage of multiple small files, which is more adequate to the project at hand [Bek18a]

[Bek18c].

17

CHAPTER 2. SMART MONETIZATION

MongoDB is a document-oriented (using Binary JSON or just BSON) NoSQL database.

Similarly to HBase it follows a master/slave node architecture, or primary/secondary

node architecture. MongoDB processes that maintain the same data set are called replica

sets. In case the master node fails, another one will be chosen to replace it, but this pro-

cess may take several seconds. A decent data replication system is achievable but harder

to set up compared to, say, Cassandra. Besides, using MongoDB implies the need to learn

and use a query language different than the traditional SQL type language, one that is

based on the JSON format.

While these three databases that were considered are one way or another adequate for

the project, Cassandra was the chosen tool. It offers the best performance compared to the

other two [Cop15]; compared with MongoDB and HBase under mixed operational and

analytical workload, Cassandra, even with its drawbacks, is by far the best performing

out of the three [Bek18b]. It also offers flexible consistency configurations, it is highly

scalable, it has excellent write performance and there is no SPOF. It also provides a query

language, CQL, which is easier to assimilate for whoever is already familiar with the SQL

language. due to their syntax similarities. One final point in favor of Cassandra is that

Celfocus already has experience using this language.

2.3.3 Data Analytics

The last layer, the analytics layer, is responsible for the data processing and analytics.

2.3.3.1 Analytics Tools

Figure 2.6: Data analytics tools considered

For this last layer, yet again, several different tools were considered after an initial

short list selection (Figure 2.6), with these tools being Kafka Streams11, Spark Stream-

ing12, Storm13, Flink14 and Samza15, all provided by Apache Software Foundation (Table

2.3).

11https://kafka.apache.org/documentation/streams/
12https://spark.apache.org/streaming/
13http://storm.apache.org/
14https://flink.apache.org/
15http://samza.apache.org/

18

https://kafka.apache.org/documentation/streams/
https://spark.apache.org/streaming/
http://storm.apache.org/
https://flink.apache.org/
http://samza.apache.org/

2.3. TOOLS CONSIDERED

For the evaluation and comparison of these tools, the following properties were taken

in consideration:

• In-memory processing capability - capacity to process data in-memory rather than

on-disk;

• High Availability - continuous data processing without interruption;

• Architecture - data processing model (Streaming, Batch);

• Complex Event Processing - CEP support;

• Native Artificial Intelligence - native capacity to use artificial intelligence or ma-

chine learning tools for data analytics;

• Maturity and available documentation - amount of documentation, community

and professional support availability and proven industry use;

• Licensing - licensing type for the use and commercialization of the respective tool.

Table 2.3: Overview of the analytics tools considered.

Kafka Spark Storm Flink Samza

CEP No Yes No Yes Yes
Native AI No Yes No Yes No
Initial release date 2016 2012 2011 2014 2013
Licensing Apache Apache Apache Apache Apache

Kafka Streams, unlike the other stream processing tools considered, is a lightweight

library, so it does not need an additional cluster to operate, reducing the overall complex-

ity of the system, and is specially fit for Kafka -> Kafka data flows. However, as expected,

its performance and processing power is not comparable to other heavy lifting tools like

Spark Streaming or Flink and has not been put to test at a large scale in the industry, due

to its relative recency [Pra18]. All of this makes Kafka Streams not a very good fit for the

analytics layer of Smart Monetization. It could, however, eventually be used with Kafka

in the ingestion layer for preprocessing or data normalization purposes.

Spark Streaming came up as a Hadoop successor in terms of Batch Processing and

was the first framework to support the Lambda architecture (where Batch and Streaming

layers coexist, for data correction and speed, respectively). It is one of the most used tools

in this area, being that, for instance, Netflix uses it for real-time recommendations for

their consumers in its platform [SC18]. Traditionally, this tool implements near real-time

processing, resorting to data micro-batching, which is the decomposition of a data stream

in batches to be consumed periodically. However, with the launch of version 2.3, a new

19

CHAPTER 2. SMART MONETIZATION

optional mode is available, Continuous Processing, allowing data processing with latency

in the order of milliseconds [Tor+18], even though this option is recent and is still in

experimental mode.

Storm is the Hadoop of the streaming world. It is the oldest, most mature and trustwor-

thy open source stream processing tool and it is most suitable for use cases that require

the processing of simple data events [Pra18]. While it is in fact considered a stable tool,

there are better and more recent tools available out there, so it did not end up being

considered much as a final choice.

Flink is Storm’s successor like Spark is Hadoop’s successor. It is one of the most recent

and best performing tools, but its lateness to get into the market is a likely unfavourable

point [Pra18]. Like Spark, which provides a machine learning library named MLlib, Flink

provides FlinkML. Overall, like shown in Figure 2.7, if Spark is considered to be the 3G

of Big Data, Flink is respectively the 4G [Bak16] of Big Data.

Figure 2.7: Big Data Analytics tools evolution16

Samza is a framework described as a dimensioned version of Kafka Streams, both of

them being fairly coupled with Kafka and being a good fit for Kafka -> Kafka data flows

[Pra18]. Like Storm, it is considered to be a stable tool but over time it has been replaced

by other more popular alternatives.

After comparing these five tools, Flink was determined to be the best fit for this layer.

20

2.3. TOOLS CONSIDERED

Spark Streaming is more mature and proven in the industry, having vast documentation

community and support available besides having good interoperability with the rest of

the chosen tools [Hal18a] [Sar18] [Bag16], but Flink has been obfuscating that difference

each passing day, with the increasing adoption rate from companies like Amazon, Uber

or Alibaba [Fli19].

Flink offers also better performance which provides bigger potential and future proofness.

It takes advantage of the Kappa architecture that, opposed to the Lambda architecture,

allows a batch and stream data flow in a single pipeline, rather than separating them.

The analytics layer is arguably the most important layer of the three, which supports the

decision to go with a more recent tool with higher potential and future proofness such as

Flink.

16Source: https://www.slideshare.net/sbaltagi/why%2Dapache%2Dflink%2Dis%2Dthe%2D4g%2Dof%

2Dbig%2Ddata%2Danalytics%2Dframeworks

21

https://www.slideshare.net/sbaltagi/why%2Dapache%2Dflink%2Dis%2Dthe%2D4g%2Dof%2Dbig%2Ddata%2Danalytics%2Dframeworks
https://www.slideshare.net/sbaltagi/why%2Dapache%2Dflink%2Dis%2Dthe%2D4g%2Dof%2Dbig%2Ddata%2Danalytics%2Dframeworks

C
h
a
p
t
e
r

3
Proof of Concept

A Proof of Concept is by definition the technical realization of a certain concept or idea in

order to provide evidence of its feasibility and tangible, practical potential. The purpose

of this particular Proof of Concept, for the scope of this project, is therefore to demon-

strate how a minimal working pipeline of the architecture, that was designed over the

initial planning period, looks like in practice. By analyzing its use and obtained results

we may then be able to prove it to be a valuable and desirable asset from a business

standpoint.

This section aims to report the details of the configuration and implementation of the

work environment and the previously picked tools to be used, as well as describing the

mock-up use case selected to be explored during this phase of the project, detailing for

instance its data schema, expected kinds of results and general motivations for its choice

of use.

This Proof of Concept’s workflow consists of data ingestion from Kafka—data that was

previously obtained from a random data generator and placed in a CSV (Comma Sepa-

rated Values) file which is then sent over to Cassandra for data lake purposes and finally

accessed and analyzed by Flink to output the desired results.

3.1 Environment

Initially the Operating System of choice to develop and run the project on was a minimal

CentOS Virtual Machine which would ideally offer better performance and efficiency

but, due to some difficulties encountered getting some tools and addons up and running,

ultimately a Windows machine was used as it was more intuitive and less time consum-

ing to troubleshoot, at least for the development process. This local machine (provided

workspace laptop), for disclosure and further metrics purposes down the line, has the

23

CHAPTER 3. PROOF OF CONCEPT

following specifications:

• Brand and Model - HP ProBook 640 G1;

• Operating System - Windows 10 Enterprise x64;

• CPU - Intel Core i7-4600M (2 cores, 4 logical processors) @ 2.9 GHz;

• RAM - 8GB;

• GPU - Intel HD Graphics 4600;

• Storage - 275GB Crucial MX300 SSD.

For development, testing and Proof of Concept purposes, these specifications are

sufficient to handle low amounts of data processing (in the range of tens of thousands of

records) at a satisfactory speed.

3.2 Tool Installation

This section will serve to describe the steps we took in order to install each of the tools

that were used and their respective versions and dependencies.

Firstly we checked if there was a version of Java already present on the Operating System,

which is needed to run and use the other tools. As it turned out Java was already installed,

having both JRE 1.8.0_211 and JDK 1.8.0_77.

On the programming side, which is needed to customize the tool to develop, we opted

by using Eclipse as the Integrated Development Environment (IDE) of choice as we are

already familiar with it and have vast experience with it and, as such, proceeded to install

version 4.12.0 (2019-06).

We then effectively started by downloading Kafka version 2.11-2.3.0 from Apache’s web-

site, necessary for the data ingestion layer of Smart Monetization.

We got it set up and then verified that it is working properly by running the provided de-

fault producer and consumer executables, kafka-console-producer.bat and kafka-console-

consumer.bat. Before these can be run, the Kafka service itself needs to be running, which

itself in turn first needs Zookeeper to be running for cluster management, coordination

and configuration (as previously mentioned in the study of the state of the art, this de-

pendency is being debated). Therefore, we proceeded to download Zookeeper version

3.5.5 from Apache’s website.

If there is a need to configure Kafka’s settings such as log file location and retention time,

timeout values, etc., the go-to file is named server.properties, located on the Kafka instal-

lation folder, on the config subfolder.

24

3.3. SMART MEETING ROOM

Moving forward, seeing as Cassandra was the chosen tool for storing data, we down-

loaded version 3.11.4 from Apache’s website. It needs Python as well, so we downloaded

version 2.7.16. We then proceeded to practice using CQL (which is quite similar to tradi-

tional SQL) by creating, removing and looking up some tables and records. Cassandra’s

settings can be fine-tuned by editing the cassandra.yaml file on the conf subfolder of

Cassandra’s installation folder.

Lastly, we got Flink version 1.8.0 from Apache’s website as well. We got a default Flink

Job/Worker running in order to test it, then proceeded to start coding a custom java pro-

gram to use it with the remainder of the tools.

Several dependencies (jar files) were required to be imported from within Eclipse to be

able to code using these tools’ libraries. These files, which for the most part are included

with each tool’s download files, are the following:

• cassandra-driver-core-3.5.0.jar;

• flink-dist_2.11-1.8.0.jar;

• guava-23.0.jar;

• kafka-clients-2.3.0.jar;

• log4j-1.2.17.jar;

• metrics-core-3.0.2.jar;

• netty-all-4.1.36-Final-sources.jar;

• netty-all-4.1.36.Final.jar;

• slf4j-api-1.7.26.jar;

• slf4j-log4j12-1.7.26.jar.

3.3 Smart Meeting Room

For the scope of this Proof of Concept, random use cases and data to be analyzed could

promptly be generated, but it was thought that it would be more valuable to find and use

something closer to reality, in order to derive final results that make more sense given the

context.

After having a meeting and a dialogue with colleagues from the Internet of Things depart-

ment, we concluded that it could be mutually interesting to use, as basis for the first use

25

CHAPTER 3. PROOF OF CONCEPT

Figure 3.1: Snippet of interface for the chosen use case

case for this Proof of Concept, the data from one of their projects, Smart Meeting Room.

This project revolves, in short, around having Internet of Things (IoT) devices with

cameras connected to the network, placed in selected meeting rooms in the workplace

(Figure 3.1). These devices continuously capture data such as the number of occupants

detected in the respective room and the system ultimately compares it with the data from

Outlook, tool used to book these rooms for a period of time, providing interesting near

real-time information and statistics.

As such, we can detect for instance if a room was booked but is currently empty, or if it is

occupied but was previously unbooked and thus withdraw conclusions from such data

events that may be used for workplace optimization and monetization opportunities.

Using this in conjunction with Smart Monetization we can pick up this data, analyze cor-

related events and, for example, take due actions like penalizing people who frequently

book rooms but do not use them after that, which generates unintended and avoidable

inefficiency in the workplace.

This data is captured from device sensors every 3 minutes, is stored in CSV files and has

the following schema:

• Timestamp - a timestamp for the time of the captured event, e.g. 2019-07-04

11:58:00;

• Name - name of the person who booked the room (’N/A’ if it has not been booked);

• Department - department name of the person who booked the room (’N/A’ if it has

not been booked);

• ID - Employee ID number of the person who booked the room (’N/A’ if it has not

been booked);

26

3.3. SMART MEETING ROOM

• Number of persons - the number of persons detected in the room at the given time,

e.g. 3;

• Booking status - whether the room is currently booked according to Outlook data,

i.e. true or false;

• Verdict - one of three numbers: 0, 50 or 100, being that 50 means the room is

unbooked but currently occupied, 100 means the room is booked but currently

empty and 0 meaning a normal state, which would be unbooked and empty or

booked and occupied;

• String of the timestamp - a shorter string representation of the current time, e.g.

11:58h.

Figure 3.2: Snippet of randomly generated data to be analyzed

The original schema for this data does not include names of persons, department

names and employee IDs. These were however added for this example use case see-

ing that it may bring final output results that are closer to the schema of a traditional

CDR/EDR, allowing for more and more interesting conclusions to derive, allowing to

further and more easily demonstrate the capabilities of Smart Monetization.

The data stored by this system is currently only in the tens of thousands of records.

As such, I took the liberty of coding a small program which generates random but valid

records based on the system previously described, allowing however many records we

want to analyze, be it hundreds of thousands or even millions, if needed (useful for bench-

marking purposes).

The pseudocode for this program is listed below in Listing 3.1. A few randomly generated

rows from an example CSV file are shown in Figure 3.2.

27

CHAPTER 3. PROOF OF CONCEPT

Listing 3.1: Pseudocode for Random Data Generator

1 for(NUMBER OF DESIRED RECORDS)

2 {

3

4 do

5 {

6 event time = event time + DELAY;

7 } while(event time not in office hours);

8

9 numberOfPersons = random int;

10 roomIsBooked = Math.random() < 0.5;

11

12 if((roomIsBooked && numberOfPersons >0)

13 || (!roomIsBooked && numberOfPersons==0))

14 {

15 verdict = 0;

16 }

17 else if(!roomIsBooked && numberOfPersons >0)

18 {

19 verdict = 50;

20 }

21 else

22 {

23 verdict = 100;

24 }

25

26 if(roomIsBooked)

27 {

28 create random employee from list of names, departments and IDs;

29 }

30 else

31 {

32 name and department and ID = "N/A";

33 }

34

35 write line to CSV file;

36

37 }

We can generate however many records we wish to analyze with the for loop. The do

while loop serves the purpose of only allowing valid timestamps (9 to 6 shift). We then

use a few random number generators to get a booked or non-booked room and number of

people in it. The verdict is calculated with this information accordingly. Each line while

be output to the CSV file which will be used later.

28

3.3. SMART MEETING ROOM

3.3.1 Cassandra Setup

In order to store the data from this project in Cassandra to be further analyzed by Flink,

Cassandra needs to be set up appropriately.

First we created a new keyspace, which is the highest abstraction in a distributed data

store and is basically a schema work space that will contain column families. This is

accomplished with the command

CREATE KEYSPACE smr WITH REPLICATION = ’class’ : ’SimpleStrategy’, ’replica-

tion_factor’ : 1 ;

on the CQL shell (sqlsh).

From here on we will use this keyspace in Cassandra for anything related to this Proof of

Concept, and we can access it by typing

use smr;

on cqlsh.

Next we defined the table for the data with the command

CREATE TABLE smr.datatest1

(

Timestamp timestamp,

PersonName text,

PersonDepartment text,

EmployeeID text,

NumPersons int,

IsBooked Boolean,

Verdict int,

TimestampString text,

Primary key (Timestamp)

);

on cqlsh.

After this we can interact and access the data we want with queries similar to traditional

SQL such as select count(*) from smr.datatest1;.

29

CHAPTER 3. PROOF OF CONCEPT

3.3.2 Data Analytics Use Case

The core substance of this project is to take data and analyze it in order to extract useful

information that can be ultimately monetized. As such, and embracing the Smart Meeting

Room project idea, a specific example use case was generated.

Kafka will obtain randomly generated data based on the Smart Meeting Room project

from a CSV file source and transfer it to Cassandra. For this, a few lines of custom code

were implemented for getting a Kafka producer client to get the data from the CSV file

into a topic and then a Kafka consumer client to redirect it over to Cassandra.

Following this, the data will be accessed and analyzed from Cassandra by Flink and

Monetizable Data Record outputs will be produced. More specifically in this case, Flink

will analyze who booked rooms and how often, associating each booked room with an

arbitrary cost of 1€. Flink will detect events in which a room was booked but ended

up remaining unused and, on each occasion that this happens three times in a row, the

person and/or the department who booked the room will be fined an arbitrary value of

5€.

After analyzing a certain time frame, Flink will thus generate Monetizable Data Records

that may then be redirected to adjacent billing and invoicing systems to charge the re-

spective parties adequately.

3.4 Tool Workflow

In order to display how the system works we start by creating a random dataset by run-

ning DataGenerator.java which will generate an adjustable number of records and save

them as a CSV file.

We can then initialize Cassandra by going into Cassandra’s folder and typing cassan-

dra in the command line. We can interact with Cassandra from its own shell, which can

be accessed by typing cqlsh on the command line.

After this we may start Zookeeper (zkserver on the command line) and proceed to run

Kafka with

<kafka folder> .\bin\windows\kafka-server-start.bat .\config\server.properties

on the command line.

30

3.4. TOOL WORKFLOW

We then need to create a topic for which messages and their respective producers and

consumers will be associated, which can be done by typing

kafka-topics.bat –create –bootstrap-server <ip:port> –replication-factor X –partitions

Y –topic <name>

on the command line.

In this specific case, for development purposes, localhost:9092 was used and we have

a replication factor of one, a single partition and a topic named datatest1.

After this, we need to individually initialize both the Kafka producer and the Kafka

consumer, by typing

kafka-console-producer.bat –broker-list localhost:9092 –topic datatest1

and

kafka-console-consumer.bat –bootstrap-server localhost:9092 –topic datatest1

on the console, respectively.

Figure 3.3: Cassandra query over the SQL shell

With these services running we can finally push data by running the custom Java

code for the data ingestion layer and for the data analytics layer. First we initialize the

consumer by running TopicToCassandra.java, listed in Listing 3.2. What this does is

31

CHAPTER 3. PROOF OF CONCEPT

Figure 3.4: Cassandra query over the SQL shell

continuously listen to the associated Kafka topic for incoming messages and then send

them over to Cassandra. Then, by running CsvToTopic.java, listed in Listing 3.3, we get

the actual data from the specified CSV file and send it to that same topic the consumer is

subscribed to. The data is then sent to and is persistently stored by Cassandra for eventual

further actions. We can confirm the data was fully sent to Cassandra by querying it over

the CQL shell, as shown in Figures 3.3 and 3.4.

Listing 3.2: TopicToCassandra.java code

1 import java.time.Duration;

2 import java.util.Arrays;

3 import java.util.Properties;

4 import org.apache.kafka.clients.consumer.ConsumerRecord;

5 import org.apache.kafka.clients.consumer.ConsumerRecords;

6 import org.apache.kafka.clients.consumer.KafkaConsumer;

7 import com.datastax.driver.core.Cluster;

8 import com.datastax.driver.core.Session;

9

10 public class TopicToCassandra {

11

12 KafkaConsumer<String, String> consumer = null;

13 private final String topic = "datatest1";

14 String serverIp = "localhost";

15 String keyspace = "smr";

16 Cluster cluster = Cluster.builder().addContactPoint(serverIp).build();

17 Session session = cluster.connect(keyspace);

18

32

3.4. TOOL WORKFLOW

19 public void initialize() {

20

21 Properties props = new Properties();

22 props.put("log.retention.ms", "60000");

23 props.put("bootstrap.servers", "localhost:9092");

24 props.put("group.id", "console-consumer -7456");

25 props.put("zookeeper.sync.time.ms", "300");

26 props.put("auto.commit.interval.ms", "1000");

27 props.put("key.deserializer",

28 "org.apache.kafka.common.serialization.StringDeserializer");

29 props.put("value.deserializer",

30 "org.apache.kafka.common.serialization.StringDeserializer");

31 consumer = new KafkaConsumer <>(props);

32

33 }

34

35 public void consume() {

36

37 System.out.println("Now�listening...");
38

39 Duration duration = Duration.ofMillis(100);

40 consumer.subscribe(Arrays.asList(topic));

41

42 while (true) {

43

44 ConsumerRecords<String, String> records = consumer.poll(duration);

45

46 for (ConsumerRecord<String, String> record : records) {

47

48 String lineToSplit = record.value();

49 String timestamp = new String(lineToSplit.split(",")[0]);

50 String personName = new String(lineToSplit.split(",")[1]);

51 String personDepartment = new String(lineToSplit.split(",")[2]);

52 String employeeID = new String(lineToSplit.split(",")[3]);

53 int numPersons = Integer.parseInt(new

54 String(lineToSplit.split(",")[4]));

55 Boolean isBooked = Boolean.parseBoolean(new

56 String(lineToSplit.split("\"")[1]));

57 int verdict = Integer.parseInt(new String(lineToSplit.split(",")[6]));

58 String timestampString = new String(lineToSplit.split(",")[7]);

59 String data = String.format("insert�into�smr.datatest1(Timestamp,
60 ��������PersonName,�PersonDepartment ,�EmployeeID,�NumPersons,
61 ��������IsBooked,�Verdict,�TimestampString)�values
62 ��������(’%s’,’%s’,’%s’,’%s’,%d,%b,%d,’%s’)", timestamp,

63 personName, personDepartment , employeeID, numPersons,

64 isBooked, verdict, timestampString);

65 session.execute(data);

66

67 }

68

33

CHAPTER 3. PROOF OF CONCEPT

69 }

70

71 }

72

73 public static void main(String[] args) throws InterruptedException {

74

75 TopicToCassandra kafkaConsumer = new TopicToCassandra();

76 kafkaConsumer.initialize();

77 kafkaConsumer.consume();

78

79 }

80 }

What this TopicToCassandra.java program does is keep on waiting for new messages

to be sent to the respective Kafka topic and then format the data to be sent to Cassandra,

according to its schema.

Listing 3.3: CsVToTopic.java code

1 import java.io.BufferedReader;

2 import java.io.File;

3 import java.io.InputStreamReader;

4 import java.util.Properties;

5 import java.io.FileInputStream;

6 import org.apache.kafka.clients.producer.KafkaProducer;

7 import org.apache.kafka.clients.producer.Producer;

8 import org.apache.kafka.clients.producer.ProducerRecord;

9

10 public class CsvToTopic {

11

12 private static Producer<String, String> producer;

13 private static final String topic= "datatest1";

14 private String inputFile =

15 "D:/NB25167/Documents/Documentos�do�Estágio/Shared�VM�Folder/
16 ��NewGeneratedBigData1.csv";
17

18 public void initialize() {

19

20 Properties props = new Properties();

21 props.put("bootstrap.servers", "localhost:9092");

22 props.put("serializer.class", "kafka.serializer.StringEncoder");

23 props.put("request.required.acks", "1");

24 props.put("key.serializer",

25 "org.apache.kafka.common.serialization.StringSerializer");

26 props.put("value.serializer",

27 "org.apache.kafka.common.serialization.StringSerializer");

28 producer = new KafkaProducer <>(props);

29

30 }

31

32 public void publishMessage(Object[] args) throws Exception {

34

3.4. TOOL WORKFLOW

33

34 File file = new File(inputFile);

35 FileInputStream fstream = new FileInputStream(file);

36 BufferedReader br = new BufferedReader(new InputStreamReader(fstream));

37

38 String msg = null;

39

40 /*

41 * Read input file line by line

42 */

43 while ((msg = br.readLine()) != null) {

44

45 ProducerRecord<String, String> record =

46 new ProducerRecord<String, String>(topic, msg);

47 producer.send(record); //This publishes the line to the given topic

48

49 }

50

51 br.close();

52

53 }

54

55 public static void main(String[] args) throws Exception {

56

57 long startTime = System.nanoTime();

58 CsvToTopic kafkaProducer = new CsvToTopic();

59 kafkaProducer.initialize();

60 kafkaProducer.publishMessage(args);

61 producer.close();

62 long endTime = System.nanoTime();

63 long totalTime = endTime - startTime;

64 double totalTimeInSeconds =

65 (double) totalTime / 1000000000; //1 second = 1.000.000.000 nanoseconds

66 System.out.println("It�took�" + totalTimeInSeconds +

67 "�seconds�to�process�this�file.");
68

69 }

70

71 }

On the other hand, what this CsVToTopic.java program does is pick up a set CSV file

where the data dump is located and forward it to the respective Kafka topic, which will

then be treated by the previous program.

35

CHAPTER 3. PROOF OF CONCEPT

All that is left to do is run the custom Flink code to process the data stored in Cas-

sandra. This is accomplished by running FlinkAnalytics.java, listed in Listing 3.5. By

doing this, the data will be processed and suitable results will be produced, including

Monetizable Data Records, which will be output to a file named MDR.csv and a more

visual description of total costs and fines applied, which will be output to a file named

FlinkResults.txt.

Listing 3.4: CassandraToFlink.java code

1 import com.datastax.driver.core.Cluster;

2 import com.datastax.driver.core.ResultSet;

3 import com.datastax.driver.core.Session;

4

5 public class CassandraToFlink {

6

7 String serverIp, keyspace;

8 Cluster cluster;

9 Session session;;

10

11 public CassandraToFlink() {

12

13 this.serverIp = "localhost";

14 this.keyspace = "smr";

15 this.cluster = Cluster.builder().addContactPoint(serverIp).build();

16 this.session = cluster.connect(keyspace);

17

18 }

19

20 public ResultSet getData(){

21

22 return session.execute("SELECT�*�FROM�datatest1");
23

24 }

25

26 }

This small auxiliary class, to be used by the FlinkAnalytics.java program, retrieves all

the data from Cassandra to be analyzed.

36

3.4. TOOL WORKFLOW

Listing 3.5: FlinkAnalytics.java code

1 import java.io.BufferedWriter;

2 import java.io.FileWriter;

3 import java.util.ArrayList;

4 import java.util.HashMap;

5 import java.util.List;

6 import org.apache.flink.api.common.functions.FilterFunction;

7 import org.apache.flink.api.common.functions.MapFunction;

8 import org.apache.flink.api.java.DataSet;

9 import org.apache.flink.api.java.ExecutionEnvironment;

10 import org.apache.flink.api.java.tuple.Tuple8;

11

12 import com.datastax.driver.core.ResultSet;

13 import com.datastax.driver.core.Row;

14

15 public class FlinkAnalytics {

16

17 public static void main(String[] args) throws Exception {

18

19 final int roomBookCost = 1; //1 euro

20 final int roomUnusedPenalty = 5; //5 euro

21 final int nrUntilPenalty = 3;

22

23 final String outputFile = "D:/NB25167/Documents/Documentos�do�Estágio/
24 ����Shared�VM�Folder/FlinkOutput.txt";
25 final String resultsFile = "D:/NB25167/Documents/Documentos�do�Estágio/
26 ����Shared�VM�Folder/FlinkResults.txt";
27 final String mdrFile = "D:/NB25167/Documents/Documentos�do�Estágio/
28 ����Shared�VM�Folder/MDR.csv";
29

30 long startTime = System.nanoTime();

31

32 ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

33 CassandraToFlink getDataFromCassandra = new CassandraToFlink();

34 ResultSet rs = getDataFromCassandra.getData();

35

36 List<Row> rows = rs.all();

37

38 List<Tuple8<String, String, String, String, Integer, Boolean, Integer,

39 String>> tupleList = new ArrayList<Tuple8<String, String,

40 String, String, Integer, Boolean,

41 Integer, String>>();

42

43 for(int x=0;x<rows.size();x++) {

44 String lineToSplit = rows.get(x).toString(); // Row[<TIMESTAMP>, <ID>,

45 <ISBOOKED>, <NRPERSONS>, <DEPARTMENT>, <PERSON>, <TIMESTAMPSTRING>,

46 <VERDICT>]

47 String timestamp = new

48 String(lineToSplit.split(",")[0].split("\\[")[1].trim());

49 String personName = new String(lineToSplit.split(",")[5].trim());

37

CHAPTER 3. PROOF OF CONCEPT

50 String personDepartment = new String(lineToSplit.split(",")[4].trim());

51 String employeeID = new String(lineToSplit.split(",")[1].trim());

52 int numPersons = Integer.parseInt(new

53 String(lineToSplit.split(",")[3].trim()));

54 Boolean isBooked = Boolean.parseBoolean(new

55 String(lineToSplit.split(",")[2].trim()));

56 int verdict = Integer.parseInt(new

57 String(lineToSplit.split(",")[7].split("\\]")[0].trim()));

58 String timestampString = new String(lineToSplit.split(",")[6].trim());

59

60 tupleList.add(x, new Tuple8<String, String, String, String, Integer,

61 Boolean, Integer, String>(timestamp, personName, personDepartment ,

62 employeeID, numPersons, isBooked, verdict, timestampString));

63 }

64

65 DataSet<Tuple8<String, String, String, String, Integer, Boolean,

66 Integer, String>> ds = env.fromCollection(tupleList);

67

68 DataSet<SMR> smrs = ds.map(new MapFunction<Tuple8<String, String, String,

69 String, Integer, Boolean, Integer, String>, SMR>() {

70

71 private static final long serialVersionUID = 6202380453385032823L;

72

73 @Override

74 public SMR map(Tuple8<String, String, String, String, Integer, Boolean,

75 Integer, String> csvLine) throws Exception {

76 String timestamp = csvLine.f0;

77 String personName = csvLine.f1;

78 String personDepartment = csvLine.f2;

79 String employeeID = csvLine.f3;

80 int numPersons = csvLine.f4;

81 boolean isBooked = csvLine.f5;

82 int verdict = csvLine.f6;

83 String timestampString = csvLine.f7;

84 return new SMR(timestamp, personName, personDepartment, employeeID,

85 numPersons, isBooked, verdict, timestampString);

86 }

87 });

88

89 /*

90 * return dataset with every "booked�but�empty" room and print

91 every 3rd time this happens for a fine to be applied

92 */

93 DataSet<SMR> filteredSMR = smrs.filter(new FilterFunction<SMR>() {

94

95 HashMap<String, int[]> peopleCosts = new HashMap<String, int[]>();

96 // person name | nr of booked rooms, nr of verdict 100 received

97 HashMap<String, int[]> departmentCosts = new HashMap<String, int[]>();

98 // department name | nr of booked rooms, nr of verdict 100 received

99

38

3.4. TOOL WORKFLOW

100 String mdrOutput = ""; //text for MDR output file

101

102 private static final long serialVersionUID = -8790897659555390061L;

103

104 @Override

105 public boolean filter(SMR smr) throws Exception {

106

107 if(smr.getIsBooked()) {

108

109 String persName = smr.getPersonName();

110 String depName = smr.getPersonDepartment();

111

112 if(!peopleCosts.containsKey(persName)) {

113 peopleCosts.put(persName, new int[]{0,1});

114 }

115 if(!departmentCosts.containsKey(depName)) {

116 departmentCosts.put(depName, new int[]{0,1});

117 }

118

119 if(smr.getVerdict()==100) { // if booked but unused

120

121 if(peopleCosts.get(persName)[1]%nrUntilPenalty==0) {

122 mdrOutput += smr.getEmployeeID() + "," + smr.getPersonName() +

123 "," + smr.getPersonDepartment() + "," + smr.getTimestamp() +

124 "," + (roomBookCost + roomUnusedPenalty) + "\n";

125 System.out.println(persName + "�has�been�fined�" +

126 roomUnusedPenalty + "�euros!\n");
127 }

128 if(departmentCosts.get(depName)[1]%3==0) {

129 System.out.println(depName + "�have�been�fined�" +

130 roomUnusedPenalty + "euros!\n");

131 }

132 peopleCosts.put(persName, new int[]{peopleCosts.get(persName)

133 [0]+1, peopleCosts.get(persName)[1]+1});

134 departmentCosts.put(depName, new int[]{departmentCosts

135 .get(depName)[0]+1, departmentCosts.get(depName)[1]+1});

136 }

137 else { // if booked but used

138 mdrOutput += smr.getEmployeeID() + "," + smr.getPersonName() +

139 "," + smr.getPersonDepartment() + "," + smr.getTimestamp() + ","

140 + roomBookCost + "\n";

141 peopleCosts.put(persName, new int[]{peopleCosts.get(persName)

142 [0]+1, peopleCosts.get(persName)[1]});

143 departmentCosts.put(depName, new int[]{departmentCosts

144 .get(depName)[0]+1, departmentCosts.get(depName)[1]});

145 }

146

147 }

148

149 String results = ""; //text for results output file

39

CHAPTER 3. PROOF OF CONCEPT

150

151 for (HashMap.Entry<String, int[]> entry : peopleCosts.entrySet()) {

152 int totalBookings = entry.getValue()[0];

153 int totalUnusedRooms = entry.getValue()[1];

154 results += entry.getKey() + "�has�booked�" + totalBookings +

155 "�rooms,�spending�" + totalBookings*roomBookCost +

156 "euros,�and�was�fined�" + (totalUnusedRooms-1)/nrUntilPenalty +

157 "�times�with�a�cost�of�" + ((totalUnusedRooms-1)/nrUntilPenalty)*

158 roomUnusedPenalty + "euros!\n";

159 }

160

161 for (HashMap.Entry<String, int[]> entry : departmentCosts

162 .entrySet()) {

163 int totalBookings = entry.getValue()[0];

164 int totalUnusedRooms = entry.getValue()[1];

165 results += entry.getKey() + "�have�booked�" + totalBookings +

166 "�rooms,�spending�" + totalBookings*roomBookCost +

167 "euros,�and�were�fined�" + (totalUnusedRooms-1)/nrUntilPenalty +

168 "�times�with�a�cost�of�" + ((totalUnusedRooms-1)/nrUntilPenalty)

169 *roomUnusedPenalty + "euros!\n";

170 }

171

172 BufferedWriter writer = new BufferedWriter(new

173 FileWriter(resultsFile));

174 writer.write(results);

175 writer.close();

176 BufferedWriter writer2 = new BufferedWriter(new FileWriter(mdrFile));

177 writer2.write(mdrOutput);

178 writer2.close();

179

180 return smr.getVerdict() == 100;

181 }

182 });

183

184 filteredSMR.writeAsText(outputFile);

185

186 long endTime = System.nanoTime();

187 long totalTime = endTime - startTime;

188 double totalTimeInSeconds = (double) totalTime / 1000000000;

189 //1 second = 1.000.000.000 nanoseconds

190

191 System.out.printf("Data�successfuly�processed�in�%f�seconds.\n�\n",
192 totalTimeInSeconds);

193

194 env.execute("Executing...");

195

196 }

197

198 }

40

3.5. TESTING AND RESULTS

This FlinkAnalytics.java program analyzes each record and will output both a sum-

mary of its findings and a file with Monetizable Data Records.

Each time we repeatedly run the system there may be issues due to repeated data and

leftover metadata stored in the system. Due to this it is recommended that, on top of

clearing the Cassandra table the data is stored on (TRUNCATE command), tool logs are

better off cleared too.

I made a short and simple batch file in order to do this, listed in Listing 3.6.

Listing 3.6: Batch code to delete logs

1 echo Batch to delete logs

2 D:

3 del "D:\NB25167\Downloads\kafka_2.11-2.3.0\.kafka-logs*.*" /s /f /q

4 del "D:\NB25167\Downloads\kafka_2.11-2.3.0\logs*.*" /s /f /q

5 rmdir /s /q "D:\NB25167\Downloads\logs\kafka"

6 mkdir D:\NB25167\Downloads\logs\kafka

7 C:

8 del "C:\Users\NB25167\.data*.*" /s /f /q

9 echo Done!

3.5 Testing and Results

For purposes of testing the use case selected for this Proof of Concept, and for purposes

of random data generation, details for twenty-four fictitious persons from four different

fictitious departments were created in order to be used when we want to generate random

data to be analyzed, keeping in mind we want to be able to generate Monetizable Data

Records from it so we need certain information such as Employee ID’s. The random

data generator takes these fictitious employees and creates random bookings and uses of

rooms within a defined time frame, depending on how many records (lines) we want to

generate and the delay between each event, in minutes, keeping in mind the standard

daily and weekly work hours and shifts.

For this particular test, one thousand records were generated with a ten minute delay

between each.

The list of fictitious employees used for this use case is shown in Table 3.1.

After generating random data using this information, stored in a CSV file, we are

able to run Smart Monetization, which in essence ingests said data from the CSV file and

sends it over to Cassandra who stores it in the appropriate defined schema. Then, Flink

analyzes the data and produces the type of desired results we are expecting. These results

are separated in two files: the first file allows a rather human-readable summary of the

data analyzed and results obtained, detailing how many rooms each employee booked

and how many times they were fined, along with the total costs sustained. At the end, a

41

CHAPTER 3. PROOF OF CONCEPT

ID Name Department
10000 Bruno Revenue Management
10001 Vasco Revenue Management
10002 Jose Revenue Management
10003 David Revenue Management
10004 Sofia Revenue Management
10005 Ines Revenue Management
10006 Raquel Analytics
10007 Miguel Analytics
10008 Carlos Analytics
10009 Rita Analytics
10010 Andre Analytics
10011 Marta Analytics
10012 Joao Managed Services
10013 Rui Managed Services
10014 Carla Managed Services
10015 Fernando Managed Services
10016 Ana Managed Services
10017 Francisco Managed Services
10018 Soraia Quality Assurance
10019 Tiago Quality Assurance
10020 Nuno Quality Assurance
10021 Afonso Quality Assurance
10022 Beatriz Quality Assurance
10023 Susana Quality Assurance

Table 3.1: List of fictitious employees

summary for each department is also shown in order to provide a different point of view.

The content of this file is shown in Figure 3.5; The other file contains the data that consti-

tutes the Monetizable Data Records in an adequate schema, made up of the employee ID,

employee name, name of the department, timestamp for the event and value to charge,

depending on the type of situation pertained to the associated event. A glimpse of the

content of this file is shown in Figure 3.6.

42

3.5. TESTING AND RESULTS

Figure 3.5: Flink results summary

Figure 3.6: Flink Monetizable Data Records

43

C
h
a
p
t
e
r

4
Conclusions

4.1 Final Thoughts

The aim of this thesis was to select an interesting and promising topic within the vast

computer science field to analyze, study and explore in order to apply and test all the

knowledge acquired through these five years of studies consolidated in one larger final

academic work. The opportunity to be able to achieve this goal in a professional context

was an additional added value taken in consideration that allowed for a broader learning

experience opportunity.

This internship and subsequent thesis did correspond to the expectations perceived dur-

ing its proposal and the predefined goals were met upon its completion.

This work consisted of exploring new methods of monetization of dynamic events by

the use of Big Data tools. A state of the art study first took part in the earlier stages of

this project, followed by a technical design and following implementation of a Proof of

Concept in order to demonstrate its viability.

During the course of this project several interesting decisions had to be taken into con-

sideration which allowed for a deeper understanding of the work ethics in a professional

telecommunications company as well as the limitations and strong suits of both software

tools and hardware solutions each more adequately regarded for specific solutions.

The scope of this project was slightly restructured during the planning period given the

valuable feedback obtained from both colleagues and professors upon the thesis prepa-

ration presentation in April. Following this presentation, beyond general document and

writing-related feedback, advice and opinions on the project itself were also given, such

as the ambitiousness of its scope, which was adequately reduced from a broad idea to a

45

CHAPTER 4. CONCLUSIONS

more plausible implementation given the time given and scope of this thesis.

The opportunity of interning at Celfocus to explore this project and develop this thesis

was also very enriching and contributed to the learning of great deals of different subjects

and domains not only in the world of telecommunications and consulting, but also allow-

ing a deeper understanding of different technologies and concepts and how they may be

used to solve problems and create value.

4.2 Contributions

Fullfiling the objectives that have been defined in the thesis preparation period, this

project is materialized in the form of both a report that analyses a set of tools and their

features, and in the design, implementation and demonstration of a prototype applica-

tion.

An initial design of the high level architecture of Smart Monetization took place, followed

by a study of the state of the art of several big data and analytics tools and solutions, com-

paring and picking the most adequate ones for each layer of the project. This planning

period was followed by an implementation period, where we would bring together these

tools and develop a Proof of Concept able of demonstrating the capabilities of Smart

Monetization.

In the end, after testing and verifying the results obtained, we were able to in fact as-

certain the usefulness and potential of this tool. The tool is able to gather data, store it

and then analyze it as expected, producing desirable outputs such as Monetizable Data

Records that may be forwarded to adjacent departments for billing and charging purposes.

Due to hardware and time limitations we were not yet able to evaluate its performance on

a large scale environment (multiple and diverse sources, extraordinarily large amounts of

data), but given the choice of tools, which were chosen precisely with scalability in mind,

this should not pose a problem.

4.3 Future Work

Given the time and scope limitations of this project, it has not yet been fully explored to

its full capacity and, as such, it can be extended and improved in multiple ways in the

foreseeable future.

In the future it would be interesting to evaluate the system’s throughput using several,

more powerful, computing nodes - if necessary, cloud-based to allow us to thoroughly

test the prototype scalability. That could produce some very interesting results and truly

allow the tool to shine, by analizing large amounts of data with very high throughput.

In terms of features there is a lot of potential to explore given the groundwork that

46

4.3. FUTURE WORK

has been laid in these past few months. Different kinds of data sources and data sinks

may be tested, the flexibility of the system may be improved, more use cases may be

produced and analyzed, further integration with other systems may be achieved and even

though it is not the core purpose of the tool, better visualization methods and tools may

be used in conjunction with Smart Monetization in order to better portray the results and

information obtained from it.

47

Bibliography

[Ash09] K. Ashton. “That ’Internet of Things’ Thing.” In: RFID Journal (2009).

[Ass16] G. Association. IoT Big Data Framework Architecture. Tech. rep. GSM Associa-

tion, 2016.

[Bag16] A. Baghel. Traffic Data Monitoring Using IoT, Kafka and Spark Streaming. 2016.

url: https://www.infoq.com/articles/traffic-data-monitoring-iot-

kafka-and-spark-streaming (visited on 02/27/2019).

[Bak16] S. Bakliwal. 4G of Big Data - Apache Flink. A Comprehensive Guide covering all
the aspects. 2016. url: https://www.linkedin.com/pulse/4g-big-data-

apache-flink-comprehensive-guide-all-aspects-bakliwal (visited on

03/01/2019).

[Bek18a] A. Bekker. Apache Cassandra vs. Hadoop Distributed File System: When Each is
Better. 2018. url: https://www.scnsoft.com/blog/cassandra-vs-hadoop

(visited on 02/28/2019).

[Bek18b] A. Bekker. Cassandra Performance: The Most Comprehensive Overview You’ll
Ever See. 2018. url: www.scnsoft.com/blog/cassandra- performance

(visited on 07/29/2019).

[Bek18c] A. Bekker. Cassandra vs. HBase: twins or just strangers with similar looks? 2018.

url: https://www.scnsoft.com/blog/cassandra-vs-hbase (visited on

02/28/2019).

[Cas+16] M. O. de Castro, C. Bertolini, and E. Preuss. “Avaliação experimental dos

Brokers Kafka e Apache Flume no Contexto de Big Data.” Master’s thesis.

Universidade Federal de Santa Maria - UFSM, 2016.

[Cop15] E. P. Coporation. Benchmarking Top NoSQL Databases. Tech. rep. End Point

Corporation, 2015.

[Dan18] E. Dans. How Analytics Has Given Netflix The Edge Over Hollywood. 2018.

url: https://www.forbes.com/sites/enriquedans/2018/05/27/how-

analytics-has-given-netflix-the-edge-over-hollywood/ (visited on

03/11/2019).

[Fli19] Flink. Powered by Flink. 2019. url: https://flink.apache.org/poweredby.

html (visited on 03/01/2019).

49

https://www.infoq.com/articles/traffic-data-monitoring-iot-kafka-and-spark-streaming
https://www.infoq.com/articles/traffic-data-monitoring-iot-kafka-and-spark-streaming
https://www.linkedin.com/pulse/4g-big-data-apache-flink-comprehensive-guide-all-aspects-bakliwal
https://www.linkedin.com/pulse/4g-big-data-apache-flink-comprehensive-guide-all-aspects-bakliwal
https://www.scnsoft.com/blog/cassandra-vs-hadoop
www.scnsoft.com/blog/cassandra-performance
https://www.scnsoft.com/blog/cassandra-vs-hbase
https://www.forbes.com/sites/enriquedans/2018/05/27/how-analytics-has-given-netflix-the-edge-over-hollywood/
https://www.forbes.com/sites/enriquedans/2018/05/27/how-analytics-has-given-netflix-the-edge-over-hollywood/
https://flink.apache.org/poweredby.html
https://flink.apache.org/poweredby.html

BIBLIOGRAPHY

[Fow12] M. Fowler. NosqlDefinition. 2012. url: https://martinfowler.com/bliki/

NosqlDefinition.html (visited on 06/24/2019).

[Hal18a] A. Hall. Processing streams of data with Apache Kafka and Spark: ingestion,
processing, reaction, examples. 2018. url: lenadroid.github.io/posts/

distributed-data-streaming-action.html (visited on 02/27/2019).

[Hal18b] S. Hall. Kafka Alternative Pulsar Unifies Streaming and Queuing. 2018. url:

https://www.thenewstack.io/kafka- alternative- pulsar- unifies-

streaming-and-queuing/ (visited on 02/27/2019).

[Hal+08] S. Haller, S. Karnouskos, and C. Schroth. “The Internet of Things in an Enter-

prise Context.” In: Future Internet Symposium (2008).

[Hum17] P. Humphrey. Understanding When to use RabbitMQ or Apache Kafka. 2017.

url: https://content.pivotal.io/blog/understanding-when-to-use-

rabbitmq-or-apache-kafka (visited on 02/27/2019).

[Kha+18] N. Khan, M. Alsaqer, H. Shah, G. Badsha, A. Abbasi, and S. Salehian. “The 10

Vs, Issues and Challenges of Big Data.” In: 2018.

[Kre14] J. Kreps. Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three
Cheap Machines). 2014. url: https://engineering.linkedin.com/kafka/

benchmarking-apache-kafka-2-million-writes-second-three-cheap-

machines (visited on 02/27/2019).

[Mak18] I. Makaranka. Alternative approaches to implementing your data lake. 2018.

url: https://www.scnsoft.com/blog/data- lake- implementation-

approaches (visited on 02/27/2019).

[Mar15] S. Martins. O futuro dos serviços convergentes - será triple-play ou quad-play
que sai por cima? 2015. url: https://pt.linkedin.com/pulse/o-futuro-

dos-servi%C3%A7os-convergentes-ser%C3%A1-triple-play-sidcley-

martins (visited on 03/01/2019).

[MB12] A. McAfee and E. Brynjolfsson. “Big Data: The Management Revolution.” In:

Harvard Business Review (2012).

[McC19] C. McCabe. KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum.

2019. url: https://cwiki.apache.org/confluence/display/KAFKA/KIP-

500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum

(visited on 08/06/2019).

[Nan15] N. Nannoni. “Message-oriented Middleware for Scalable Data Analytics Ar-

chitectures.” Master’s thesis. KTH Royal Institute of Technology, 2015.

50

https://martinfowler.com/bliki/NosqlDefinition.html
https://martinfowler.com/bliki/NosqlDefinition.html
lenadroid.github.io/posts/distributed-data-streaming-action.html
lenadroid.github.io/posts/distributed-data-streaming-action.html
https://www.thenewstack.io/kafka-alternative-pulsar-unifies-streaming-and-queuing/
https://www.thenewstack.io/kafka-alternative-pulsar-unifies-streaming-and-queuing/
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://www.scnsoft.com/blog/data-lake-implementation-approaches
https://www.scnsoft.com/blog/data-lake-implementation-approaches
https://pt.linkedin.com/pulse/o-futuro-dos-servi%C3%A7os-convergentes-ser%C3%A1-triple-play-sidcley-martins
https://pt.linkedin.com/pulse/o-futuro-dos-servi%C3%A7os-convergentes-ser%C3%A1-triple-play-sidcley-martins
https://pt.linkedin.com/pulse/o-futuro-dos-servi%C3%A7os-convergentes-ser%C3%A1-triple-play-sidcley-martins
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum

BIBLIOGRAPHY

[Pra18] C. Prakash. Spark Streaming vs Flink vs Storm vs Kafka Streams vs Samza :
Choose Your Stream Processing Framework. 2018. url: https://medium.com/

@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-

streams- vs- samza- choose- your- stream- processing- 91ea3f04675b

(visited on 02/27/2019).

[Put18] S. Putri. How Uber Depends on Big Data Analysis to Improve Their Service. 2018.

url: https://blog.sonarplatform.com/index.php/2018/01/04/how-

uber- depends- on- big- data- analysis- to- improve- their- service/

(visited on 03/11/2019).

[RK16] J. Rao and J. Kreps. Powered by. 2016. url: https://cwiki.apache.org/

confluence/display/KAFKA/Powered+By (visited on 02/27/2019).

[Rec18] M. Reca. The 3+ Vs of Big Data: Volume, Velocity, Variety, and a whole lot more.

2018. url: https://www.flydata.com/blog/3-vs-of-big-data/ (visited

on 02/19/2019).

[Sar18] R. Saraf. How we build a robust analytics platform using Spark, Kafka and Cas-
sandra. 2018. url: https://medium.com/walmartlabs/how-we-build-

a-robust-analytics-platform-using-spark-kafka-and-cassandra-

lambda-architecture-70c2d1bc8981 (visited on 02/27/2019).

[Sas18] B. M. Sasaki. Graph Databases for Beginners: ACID vs. BASE Explained. 2018.

url: https://neo4j.com/blog/acid-vs-base-consistency-models-

explained/ (visited on 06/24/2019).

[SC18] N. Sharma and E. Chow. Near Real-Time Netflix Recommendations Using Apache
Spark Streaming. 2018. url: https://databricks.com/session/near-

real-time-netflix-recommendations-using-apache-spark-streaming

(visited on 02/27/2019).

[SD12] V. Sharma and M. Dave. “SQL and NoSQL Databases.” In: International
Journal of Advanced Research in Computer Science and Software Engineering
(2012).

[Sic17] T. Siciliani. Big Data Ingestion: Flume, Kafka, and NiFi. 2017. url: https:

//dzone.com/articles/big-data-ingestion-flume-kafka-and-nifi

(visited on 02/27/2019).

[Sim12] S. Simon. Brewer’s CAP Theorem. Tech. rep. University of Basel, 2012.

[Sni+12] C. Snijders, U. Matzat, and U.-D. Reips. ““Big Data”: Big Gaps of Knowledge

in the Field of Internet Science.” In: International Journal of Internet Science
(2012).

51

https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams-vs-samza-choose-your-stream-processing-91ea3f04675b
https://blog.sonarplatform.com/index.php/2018/01/04/how-uber-depends-on-big-data-analysis-to-improve-their-service/
https://blog.sonarplatform.com/index.php/2018/01/04/how-uber-depends-on-big-data-analysis-to-improve-their-service/
https://cwiki.apache.org/confluence/display/KAFKA/Powered+By
https://cwiki.apache.org/confluence/display/KAFKA/Powered+By
https://www.flydata.com/blog/3-vs-of-big-data/
https://medium.com/walmartlabs/how-we-build-a-robust-analytics-platform-using-spark-kafka-and-cassandra-lambda-architecture-70c2d1bc8981
https://medium.com/walmartlabs/how-we-build-a-robust-analytics-platform-using-spark-kafka-and-cassandra-lambda-architecture-70c2d1bc8981
https://medium.com/walmartlabs/how-we-build-a-robust-analytics-platform-using-spark-kafka-and-cassandra-lambda-architecture-70c2d1bc8981
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/
https://databricks.com/session/near-real-time-netflix-recommendations-using-apache-spark-streaming
https://databricks.com/session/near-real-time-netflix-recommendations-using-apache-spark-streaming
https://dzone.com/articles/big-data-ingestion-flume-kafka-and-nifi
https://dzone.com/articles/big-data-ingestion-flume-kafka-and-nifi

BIBLIOGRAPHY

[Str18] Streamlio. Apache Pulsar Outperforms Apache Kafka by 2.5x on OpenMessag-
ing Benchmark. 2018. url: https://streaml.io/about/newsreleases/

apache-pulsar-outperforms-apache-kafka-on-openmessaging-benchmark

(visited on 02/27/2019).

[Suj+15] J. Sujata, S. Sohag, D. Tanu, D. Chintan, P. Shubham, and G. Sumit1. “Impact

of Over the Top (OTT) Services on Telecom Service Providers.” In: Indian
Journal of Science and Technology (2015).

[Tiw15] A. Tiwari. Why Cassandra is an Excellent Choice for Real Time Analytics Work-
load. 2015. url: http : / / blogs . shephertz . com / 2015 / 04 / 22 / why -

cassandra-excellent-choice-for-realtime-analytics-workload/ (vis-

ited on 02/28/2019).

[Tor+18] J. Torres, M. Armbrust, T. Das, and S. Zhu. Introducing Low-latency Continu-
ous Processing Mode in Structured Streaming in Apache Spark 2.3. 2018. url:

https://databricks.com/blog/2018/03/20/low-latency-continuous-

processing-mode-in-structured-streaming-in-apache-spark-2-3-

0.html (visited on 02/27/2019).

[Tru14] Y. Trudeau. Exploring Message Brokers: RabbitMQ, Kafka, ActiveMQ, and
Kestrel. 2014. url: https://dzone.com/articles/exploring-message-

brokers (visited on 02/27/2019).

[Van16] Vandana. Internet of Everything Explained
. 2016. url: https : / / internetofthingswiki . com / internet % 2Dof %

2Deverything%2Dexplained/690/ (visited on 06/17/2019).

[Ven18] S. Venkat. Telcos need an Over-The-Top (OTT) strategy to regain lost ground.

2018. url: https://www.cerillion.com/Blog/September-2018/Telcos-

need-an-Over-The-Top-(OTT)-strategy (visited on 02/19/2019).

[Ver18] A. Verma. NoSQL vs. SQL – How NoSQL is Better for Big Data Applications?
2018. url: https://www.whizlabs.com/blog/nosql-vs-sql/ (visited on

02/22/2019).

[Was16] S. Wasserman. IBM Watson IoT Platform to Help Engineers with Product De-
velopment. 2016. url: https://www.engineering.com/IOT/ArticleID/

11759/IBM-Watson-IoT-Platform-to-Help-Engineers-with-Product-

Development.aspx (visited on 02/18/2019).

52

https://streaml.io/about/newsreleases/apache-pulsar-outperforms-apache-kafka-on-openmessaging-benchmark
https://streaml.io/about/newsreleases/apache-pulsar-outperforms-apache-kafka-on-openmessaging-benchmark
http://blogs.shephertz.com/2015/04/22/why-cassandra-excellent-choice-for-realtime-analytics-workload/
http://blogs.shephertz.com/2015/04/22/why-cassandra-excellent-choice-for-realtime-analytics-workload/
https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html
https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html
https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html
https://dzone.com/articles/exploring-message-brokers
https://dzone.com/articles/exploring-message-brokers
https://internetofthingswiki.com/internet%2Dof%2Deverything%2Dexplained/690/
https://internetofthingswiki.com/internet%2Dof%2Deverything%2Dexplained/690/
https://www.cerillion.com/Blog/September-2018/Telcos-need-an-Over-The-Top-(OTT)-strategy
https://www.cerillion.com/Blog/September-2018/Telcos-need-an-Over-The-Top-(OTT)-strategy
https://www.whizlabs.com/blog/nosql-vs-sql/
https://www.engineering.com/IOT/ArticleID/11759/IBM-Watson-IoT-Platform-to-Help-Engineers-with-Product-Development.aspx
https://www.engineering.com/IOT/ArticleID/11759/IBM-Watson-IoT-Platform-to-Help-Engineers-with-Product-Development.aspx
https://www.engineering.com/IOT/ArticleID/11759/IBM-Watson-IoT-Platform-to-Help-Engineers-with-Product-Development.aspx

	List of Figures
	List of Tables
	Listings
	Introduction
	Overview
	Communications Service Provider
	Over The Top Services
	Internet of Things
	Big Data Analytics

	Problem Description
	Challenges and Requirements
	Expected Contribution
	Document Structure

	Smart Monetization
	Related Work
	High Level Architecture
	Tools Considered
	Data Ingestion
	Data Storage
	Data Analytics

	Proof of Concept
	Environment
	Tool Installation
	Smart Meeting Room
	Cassandra Setup
	Data Analytics Use Case

	Tool Workflow
	Testing and Results

	Conclusions
	Final Thoughts
	Contributions
	Future Work

	Bibliography

