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Abstract

Cloud computing is arguably the foremost delivery platform for data storage and data
processing. It turned computing into a utility based service that provides consumers
and enterprises with on-demand access to computing resources. Although advantageous,
there is an inherent lack of control over the hardware in the cloud computing model, this
may constitute an increased privacy and security risk.

Multiple encrypted database systems have emerged in recent years, they provide the
functionality of regular databases but without compromising data confidentiality. These
systems leverage novel encryption schemes such as homomorphic and searchable encryp-
tion. However, many of these proposals focus on extending existing centralized systems
that are very difficult to scale, and offer poor performance in geo-replicated scenarios.

We propose a scalable, highly available, and geo-replicated privacy-preserving key-
value store. A system that provides its users with secure data types meant to be replicated,
along with a rich query interface with configurable privacy that enables one to issue secure
and somewhat complex queries. We accompany our proposal with an implementation of a
privacy-preserving client library for AntidoteDB, a geo-replicated key-value store. We also
extend the AntidoteDB’s query language interface by adding support for secure SQL-like
queries with configurable privacy. Experimental evaluations show that our proposals
offer a feasible solution to practical applications that wish to improve their privacy and
confidentiality.

Keywords: Cloud Computing, Key-Value Stores, CRDT, Privacy, Homomorphic Encryp-
tion, Searchable Encryption.
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Resumo

A computação na nuvem é sem dúvida a principal plataforma de serviços de armaze-
namento e processamento de dados. Transformou a indústria da computação num serviço
básico que oferece aos seus utilizadores um acesso flexível a recursos computacionais.
Apesar das vantagens, existe uma inerente perda de acesso e controlo sobre o equipamento
físico que pode introduzir riscos acrescidos de segurança e privacidade.

Nos últimos anos têm surgido múltiplas propostas de sistemas de bases de dados segu-
ros, capazes de oferecer todas as funcionalidades esperadas, sem comprometer a segurança
e privacidade dos dados armazenados. Estes sistemas utilizam esquemas criptográficos
inovadores baseados em cifras homomórficas e cifras pesquisáveis. Contudo, a maioria
destas propostas são baseadas em sistemas de bases de dados principalmente centralizados.
Sistemas difíceis de escalar com um desempenho pobre em cenários geo-replicados.

A tese propõe um sistema de armazenamento chave-valor escalável, altamente dis-
ponível e geo-replicado. Um sistema que oferece aos seus utilizadores tipos de dados
replicados seguros com uma interface de consulta rica, e que permite à aplicação esco-
lher diferentes níveis de segurança e privacidade. A nossa proposta é acompanhada por
uma implementação de uma biblioteca cliente segura para o AntidoteDB, um sistema de
armazenamento chave-valor geo-replicado. O nosso trabalho inclui ainda a modificação
da interface de consulta rica do AntidoteDB, adicionando a possibilidade de executar
consultas com diferentes níveis de segurança e privacidade. Finalmente, apresentamos um
estudo experimental que mostra que as nossas propostas oferecem uma solução prática a
aplicações que pretendem melhorar a sua privacidade e confidencialidade.

Palavras-chave: Computação naNuvem, Sistemas deArmazenamentoChave-Valor, CRDT,
Privacidade, Cifras Homomórficas, Cifras Pesquisáveis.
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1
Introduction

The idea of a utility based computing industry is not new. In 1961, John McCarthy foresaw
computing services during his speech at MIT’s centennial celebration [14]:

“If computers of the kind I have advocated become the computers of the fu-
ture, then computing may someday be organized as a public utility just as
the telephone system is a public utility. We can envisage computing service
companies whose subscribers are connected to them by telephone lines. Each
subscriber needs to pay only for the capacity he actually uses, but he has
access to all programming languages characteristic of a very large system.
The system could develop commercially in fairly interesting ways. Certain
subscribers might offer service to other subscribers”.

— John McCarthy

The vision of utility based computing services has nowadays fully materialized un-
der what we call cloud computing. Users are presented with a convenient on-demand
access to data storage and computing resources without the need to heavily invest time in
maintaining the hardware infrastructure.

A strong motivator for the adoption of the cloud paradigm is the delivery model
employed by cloud service providers. Everything is available as a service, Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS). These models
allow an instant or near instant provision of an elastic computing infrastructure and
environment. Users can easily scale up and down computing resources according to
the current demand. Another benefit of cloud computing is the ability to deploy your
application in multiple geographic locations, allowing better reliability and availability
guarantees. End users will also experience lower latency and a better overall experience.

1



CHAPTER 1. INTRODUCTION

1.1 Motivation

Although widely adopted by the industry, the cloud computing paradigm still faces some
challenges. Management of the hardware is the responsibility of the cloud providers.
Users no longer have full control over their data storage and computing resources like in
the traditional computing model, resulting in increased security and privacy risks. The
multi-tenant architecture employed by cloud providers can be a problem if the existing
isolation mechanisms fail to keep data from one tenant inaccessible to the others. Not
only that, but cloud users may not trust the cloud provider’s employees to keep their data
confidential.

A simple solution is using end-to-end encryption schemes to encrypt data before
placing it in untrusted servers. To perform an operation, e.g., search, we need to download
all the data, decrypt it, and only then perform the search. Once completed, we encrypt
the data again and upload it to the server. This solution is not feasible, it incurs in a huge
communication cost for the server and a huge computational cost for the clients, defeating
the purpose of using the cloud in the first place. Giving the untrusted servers only the
encrypted form of the data is a good approach, the fundamental problem is enabling
the servers to perform computations while only having access to the ciphertext. Several
encryption primitives are able to address the problem of performing computations on
ciphertext. Homomorphic encryption [31], property-preserving encryption [2], searchable
encryption [17, 25], and garbled RAM [32] are examples of such primitives. In recent
years, a few database systems capable of addressing the problem have emerged, e.g.,
CryptDB [47], Cipherbase [9] and Arx [46]. They use various techniques in order to not
compromise data confidentiality, ranging from the encryption primitives mentioned above
to secure hardware.

Widespread access to the internet has led to a large increase in the number of users,
many online applications are faced with an ever-increasing demand. Applications must
be built with availability and scalability in mind in order to provide a high quality service
to their users. These systems are often replicated through multiple geographic locations
to achieve that goal.

The previously mentioned encrypted database systems are all centralized or some-
what centralized, adopt strong consistency models and can be very difficult to scale to
multiple locations without a significant loss in performance. We want to adopt a weak
consistency model where synchronization operations are performed by the server, this
rules out solutions that synchronize state with the help of the clients.

1.2 Solution

We wish to develop a scalable and highly available privacy-preserving key-value store.
A system capable of scaling seamlessly that does not compromise data confidentiality
when running in untrusted machines. To this end, we begin to explore secure conflict-free

2



1.3. CONTRIBUTIONS

replicated data types (SCRDT) and integrate them in the AntidoteDB key-value store.
AntidoteDB is a highly available geo-replicated key-value store that supports highly avail-
able transactions (HAT), providing strong consistency within a data center and good
performance in geo-replicated deployments.

To integrate SCRDTs in the AntidoteDB data store we design and implement an SCRDT
client library. This library performs encryption and decryption operations in a transparent
way to its user, keeping the CRDT state secure, and only accessible to the client. Despite
not having access to the plaintext version of the CRDT state, the server is still able to
perform the usual CRDT operations.

Later, we focus our work on AQL, an SQL interface for the AntidoteDB key-value
store. We design and implement an AQL version with configurable privacy at the column
level, enabling secure queries over the encrypted data and maintaining the necessary data
structures to query processing.

Our design allows the application developer to specify how each table column should
be encrypted, or even if it should be encrypted at all. This solution provides the users with
the choice to encrypt only sensitive data, and thus, not having to pay a high performance
penalty.

Finally, we evaluate the performance and scalability of our proposals through ex-
perimental evaluation, attaining a comprehensive understanding of the advantages and
disadvantages of such systems.

1.3 Contributions

A summary of the main contributions of this thesis is presented below.

• Design and implementation of a privacy-preserving client library that integrates
SCRDTs in the AntidoteDB key-value store. This includes the design and imple-
mentation of a solution that extends both client libraries and AntidoteDB itself. The
SCRDTs make use of homomorphic and property-preserving encryption allowing
the synchronization mechanism to work without modifications.

• Enable secure and rich queries with configurable privacy by extending AQL.

• An experimental evaluation comparing the secured and regular versions of Anti-
doteDB and AQL. We perform not only synthetic benchmarks, but also realistic
benchmarks using the FMKe benchmarking tool. FMKe is a standardized benchmark
for key-value stores that simulates a realistic workload based on a subsystem of the
Danish national health system.

1.4 Outline

The remainder of this document is organized into the following chapters:

3



CHAPTER 1. INTRODUCTION

• Chapter 2 introduces fundamental concepts and work related to the subject of
this thesis. The chapter starts with an overview of encryption schemes that allow
computations to be performed on ciphertexts. We then explore three proposals of
encrypted database systems meant to run on a cloud deemed untrustworthy. Lastly,
we present an overview of conflict-free replicated data types, the data objects used
by AntidoteDB.

• Chapter 3 introduces the concept of SCRDTs. Compared to regular CRDTs, SCRDTs
leverage encryption schemes described in Chapter 2 to keep their local state en-
crypted, while still being able to eventually converge to a common state.

• Chapter 4 describes our approach regarding the integration of SCRDTs into Anti-
doteDB.

• Chapter 5 describes and discusses an experimental evaluation of our SCRDTs propos-
als. We perform micro benchmarks measuring latency and throughput of operations
over regular and secure CRDTs. We also make use of the FMKe [62] benchmarking
tool to measure the performance and scalability of SCRDTs in a realistic setting.

• Chapter 6 is concerned with securing AQL, AntidoteDB’s Query Language. Using
multiple encryption schemes and our proposed SCRDTs, we build an AQL client that
allows AntidoteDB’s users to perform rich queries with varying levels of security.

• Chapter 7 describes and discusses an experimental evaluation of AQL, where we
compare the regular version to our proposed solution.

• The thesis concludes with Chapter 8, which summarizes the main findings, contri-
butions, and offers some suggestions for future research.

4



C
h

a
p
t
e
r

2
Related Work

This chapter introduces fundamental concepts and an overview of existing work relevant
to the subject of this thesis. We start with background material on forms of encryption
that allow computations on ciphertexts. We explore existing solutions for data stores that
do not compromise data confidentiality. Lastly, we provide an overview of conflict-free
replicated data types (CRDT).

2.1 Computations on ciphertexts

In this section we will explore solutions to trustworthy cloud computing, ways to en-
sure the integrity and confidentiality of computations performed in untrustworthy cloud
servers.

2.1.1 Homomorphic encryption

First proposed by Rivest et al. in 1978 [52], homomorphic encryption provides the ability
to execute computations on encrypted data. The result of such a computation remains
encrypted and can be later revealed by the owner of the secret key. There is no limitation
in whether a homomorphic encryption scheme is designed to be symmetric (same key used
to encrypt and decrypt) or asymmetric (different keys used to encrypt and decrypt) [53].

Acar et al. [1] define an encryption scheme as homomorphic over an operation ⋄ if it
verifies the following:

𝐸(𝑚1) ⋄ 𝐸(𝑚2) = 𝐸(𝑚1 ⋄ 𝑚2), ∀𝑚1, 𝑚2 ∈ 𝑀. (2.1)

Where 𝐸 is an encryption scheme and 𝑀 denotes the set of all possible messages.
Regarding the number of operations and times they may be applied to the ciphertext,
homomorphic encryption schemes can be categorized into three types [1].

5



CHAPTER 2. RELATED WORK

Partially Homomorphic Encryption

Encryption schemes that allow only one type of operation, e.g., addition or multiplica-
tion, to be performed an arbitrary number of times are known as Partially Homomorphic
Encryption (PHE) schemes.

PHE schemes were the first to be introduced, starting with RSA [51], which is ho-
momorphic over multiplication [52]. One of the most well-known PHE schemes was
introduced by Paillier [45]. The Paillier scheme is homomorphic over addition, however,
it offers some additional homomorphic properties over multiplication, more specifically, a
ciphertext raised to a constant will decrypt to the product of the plaintext and the constant.

Somewhat Homomorphic Encryption

Still a partial solution to the problem proposed by Rivest et al. in 1978, Somewhat Homo-
morphic Encryption (SWHE) allows some types of operations, e.g., addition and multi-
plication, to be performed a finite number of times. The downside is that the size of the
ciphertext grows with each operation, rendering SWHE schemes impractical in real-life
use. Each time a homomorphic operation is applied, noise is added to the ciphertext, once
the noise level reaches a certain threshold, decryption is no longer possible.

Examples of SWHE schemes are those proposed by Sander et al. [55] (allows an un-
bounded number of AND operations and one OR/NOT operation) and Boneh et al. [18]
(unbounded number of additions and one multiplication).

Fully Homomorphic Encryption

The first solution to a Fully Homomorphic Encryption (FHE) scheme was proposed by
Gentry [31] in 2009, more than 30 years after Rivest et al. proposed homomorphic encryp-
tion. FHE allows an arbitrary number of operations to be performed an arbitrary number
of times.

Gentry’s solution uses an SWHE scheme alongside a bootstrapping procedure. The
bootstrapping procedure consists in applying a decryption function homomorphically
to the ciphertext, reducing the noise introduced by the SWHE scheme. A FHE scheme is
obtained by recursively applying the bootstrapping procedure.

From a performance point of view, FHE is still prohibitively expensive, however, since
Gentry’s work, several attempts to further improve FHE have been made [20, 21, 59].

2.1.2 Property-preserving encryption

The ability to perform arbitrary operations on ciphertexts might not be enough, applica-
tions may require certain properties of the plaintexts that homomorphic encryption does
not provide. Encryption that preserves, or intentionally leaks, some desired property of
the plaintexts is known as property-preserving encryption. We will look at two variants,
deterministic encryption and order-preserving encryption.
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Deterministic encryption

Given a plaintext, a deterministic encryption scheme is one that will always produce the
same ciphertext, and thus, provides a way to perform equality checks on ciphertexts. The
deterministic property has security implications, it allows an attacker to perform statistical
analysis and associate meaning to ciphertexts. If the encryption scheme is asymmetric,
the fact that the encryption key is public opens the door to dictionary attacks. Security
and privacy definitions in the context of deterministic encryption are presented by Bellare
et al. [13].

Order-preserving encryption

Encryption schemes that leak order relations of plaintexts are known as order-preserving
encryption (OPE) schemes. Most of the interest in order-preserving encryption comes from
the database community [2] because it allows efficient range queries on encrypted data.
Similarly to deterministic encryption schemes, users of OPE schemes must be aware of the
security implications. Information leaked by OPE should not be overlooked, Boldyreva
et al. [16] showed how an OPE scheme leaked the most significant bits of plaintexts.

Motivated by the limited security offered by existing OPE schemes, there has been a
recent effort to construct property-preserving schemes with stronger security guarantees.
One outcome of such effort is order-revealing encryption (ORE) [19, 22, 40], a general-
ization of OPE with stronger security guarantees. The work presented by Lewi et al. [40]
is very promising. The authors propose a new ORE scheme that is not only more secure
than existing OPE schemes, but 65 times faster when encrypting 32-bit integers.

2.1.3 Searchable encryption

Searchable encryption, as its name would suggest, is a solution to the problem of searching
on encrypted data. In order to efficiently search over encrypted data, all searchable en-
cryption schemes depend to some degree on deterministic cryptography [30]. Searchable
encryption schemes can be designed using either a symmetric or asymmetric setting. In a
symmetric cryptography setting, a user encrypts the data before sending it to a remote
server, and only he can perform a search operation. Symmetric searchable encryption
(SSE) is useful when the user who generates the data is also the one who searches over
it. In an asymmetric cryptographic setting, multiple users can encrypt data with the
public key, but only the owner of the private key may perform searches over the encrypted
data. Useful, for example, in a scenario to provide secure email. Senders send the email
encrypted using asymmetric searchable encryption, and then, an email server wants to
separate emails that contain a certain keyword from the rest of the emails. The receiver,
however, does not wish to provide the email server with the ability to decrypt its emails.
Asymmetric searchable encryption enables the email server to perform a search for a
keyword without learning any more information about the email.
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Symmetric searchable encryption

The first SSE scheme was proposed by Dawn Xiaoding Song et al. [25]. The presented
cryptographic scheme is provably secure and guarantees the following properties:

• Provable secrecy: The untrusted server cannot learn any information about the
plaintext given only the ciphertext.

• Controlled searching: Only the user can perform a search operation, the untrusted
server cannot search over the ciphertext without the user’s authorization.

• Hidden queries: Searching for a given keyword does not reveal the keyword to the
untrusted server.

• Query isolation: The untrusted server cannot learn any information about the
plaintext other than the search result.

Given a document with length 𝑛, the proposed scheme provides 𝑂(𝑛) searching and
no extra space and communication overhead. To improve the performance of the linear
search operation, Dawn Xiaoding Song et al. propose the use of an encrypted index. This
idea is further explored by Goh in 2003 [33], achieving a search complexity of 𝑂(1) per
document through the use of bloom filters.

Asymmetric searchable encryption

Boneh et al. [17] proposed the first searchable encryption scheme based on asymmetric
or public-key cryptography, also known as Public-key Encryption with Keyword Search
(PEKS). The scheme is based on the concept of a trapdoor. The owner of the private key
generates a trapdoor and gives it to an untrusted server; thus enabling it to perform a
search operation without being able to learn anything about the plaintext. Compared to
symmetric searchable encryption, PEKS has relatively poor performance because of the
use of public-key cryptography. Recent work on asymmetric searchable encryption has
shown that it is possible to derive a scheme without limiting searches to a single user [27,
48].

2.1.4 Discussion

A cryptographic scheme that provides the ability to perform an arbitrary number of
operations on ciphertexts can, arguably, be referred to as the holy grail of encryption.
Homomorphic encryption offers this very desirable property, however, its lackluster per-
formance makes it difficult to be considered a viable solution in many scenarios.

It might be the case that the flexibility offered by homomorphic encryption is not nec-
essary. Property-preserving encryption is usable in many scenarios, databases being one
as we will see in the next section. Although they are faster than homomorphic encryption,

8



2.2. SECURE DATA STORES

property-preserving schemes are vulnerable to statistical analysis by nature. The security
implications must be carefully taken into account when considering one of these schemes.

Lastly, we saw encryption schemes that offer the ability to search for specific informa-
tion in ciphertexts. Searchable encryption schemes come in two flavors, symmetric and
asymmetric, both provide good security guarantees.

Regarding performance and security guarantees, Table 2.1 provides an overview of
the cryptographic solutions explored in this section.

Table 2.1: Overview of the explored cryptographic solutions. Schemes that make it impossible to
extract non-negligible information about the plaintext from the ciphertext are considered to have
Good security.

Homomorphic Deterministic OPE SSE PEKS

Performance Slow Fast Fast Fast Slow

Security Good Leaks
information

Leaks
information Good Good

2.2 Secure data stores

In the following section, we briefly present three database systems that address the prob-
lem of secure storage and computing in untrusted servers. All of these systems make use
of the encryption schemes we just saw to achieve their goal.

2.2.1 CryptDB

CryptDB [47] is a database system that provides confidentiality to applications backed
by SQL databases. The system works by placing a proxy server between the application
server and the DBMS server. This proxy is responsible for intercepting all SQL queries a
client issues and modifying them in a way that allows the DBMS to work on encrypted
data. The semantics of the query is preserved and the DBMS never sees plaintext data.

CryptDB addresses two kinds of threats: (𝑖) a passive attacker, like a curious database
administrator that wants to access confidential data; (𝑖𝑖) an attacker that gains control
over the infrastructure, like the application server, CryptDB proxy server or database
management system (DBMS) server.

Figure 2.1 shows CryptDB’s architecture. Rectangular boxes represent processes and
rounded boxes represent data. Components with a gray background are added byCryptDB.
The dashed arrows represent the attack surface of the threat models. Threat 1 assumes
a passive attacker with access to the DBMS server, snooping on private data. Threat 2
assumes an attacker that gains complete control over the infrastructure of the application
server, CryptDB proxy server and DBMS server.
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Figure 2.1: CryptDB’s architecture—adapted from Popa et al. [47].

An SQL query is processed by the entire infrastructure in four steps, described by Popa
et al. as follows:

1. The application issues a query, which the proxy intercepts and rewrites: it anonymizes
each table and column name, and, using a master key, encrypts each constant in the
query with an encryption scheme best suited for the desired operation.

2. The proxy checks if the DBMS server should be given keys to adjust encryption
layers before executing the query, and if so, issues an UPDATE query at the DBMS
server that invokes a CryptDB specific user-defined function (UDF) to adjust the
encryption layer of the appropriate columns.

3. The proxy forwards the encrypted query to the DBMS server, which executes it using
standard SQL (occasionally invoking UDFs for aggregation or keyword search).

4. The DBMS server returns the encrypted query result, which the proxy decrypts and
returns to the application.

Depending on the type of query issued by the client, the DBMS may need to perform
operations that require certain properties from the encryption scheme used to encrypt
data. If for example the application requests an equality check on a certain column, the
DBMS needs to know which encrypted values correspond to the same plaintext value.
This requirement may not be needed on other types of queries, and, in such cases, it is
desirable to use a stronger encryption scheme that does not leak which values repeat in
a column. CryptDB’s approach to handle this challenge is called adjustable query-based
encryption [47], in which data is encapsulated in multiple layers of encryption. Different
layers provide different properties and the system is now able to avoid leaking information
when it does not need to. This adjustable encryption mechanism is what allows CryptDB
to prevent attackers from accessing private information (threat 1 in Figure 2.1), while still
being able to efficiently execute queries. The encryption types used by CryptDB are now
briefly described.

Random (RND) RND provides the maximum level of security between those used by
CryptDB. It uses a probabilistic encryption scheme, so that when encrypting the same
plaintext multiple times, the resulting ciphertext is different.
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Deterministic (DET) and order-preserving encryption (OPE) These two types of en-
cryption are described in Section 2.1.2. They use property-preserving encryption schemes
that allow CryptDB to perform equality checks, range queries, sorting and aggregations.

Homomorphic encryption (HOM) As described in Section 2.1.1, homomorphic encryp-
tion allows one to perform computations on encrypted data. CryptDB uses homomorphic
encryption, particularly the scheme proposed by Paillier [45], whenever it needs to perform
an addition, e.g., SUM or incrementing values.

Join (JOIN and OPE-JOIN) The encryption types JOIN and OPE-JOIN are similar to
DET and OPE, respectively. In order to prevent an adversary from learning information
about values in different columns, CryptDB uses different keys for different columns when
encrypting with the DET and OPE schemes. JOIN and OPE-JOIN enable the server to
perform join operations between columns, with the downside of leaking more information
than DET and OPE.

Word search (SEARCH) SEARCH allows CryptDB to perform searches on encrypted
data, and as a result, perform queries with the LIKE operator. It uses the symmetric search-
able encryption scheme proposed by Dawn Xiaoding Song et al. [25] and briefly described
in Section 2.1.3. The SEARCH encryption type leaks the number of keywords searched.

Even though plaintext data is never exposed under the first threat model, the informa-
tion leaked by the different types of encryption schemes used by CryptDB should not be
overlooked. Akin et al. [3] show that frequency analysis attacks on CryptDB reveal useful
information even with a small number of samples.

The second threat model (see Figure 2.1) provides a larger attack surface to an attacker
compared to the first threat model. The challenge is to ensure the confidentiality of data
in the face of a compromised infrastructure. To mitigate these kinds of threats, CryptDB
chains encryption keys to user passwords.

CryptDB follows the application access control policy by requiring developers to anno-
tate their database schema with principals (e.g., users, groups or messages) and the data
that each principal has access to. This information is necessary because CryptDB encrypts
different data with different keys in order to enforce the access control policy.

Each time a user logs in, it provides its application-level password to the CryptDB
proxy server. The proxy server uses the user password to derive the keys of the different
encryption layers. The system is now able to process queries on data that the user has
access to. Once the user logs out, its key is deleted from the proxy server.

With the approach described above, CryptDB guarantees that an attacker cannot
access the data of users that are not logged in while the infrastructure is compromised.
Unfortunately, CryptDB cannot guarantee the confidentiality of active users’ data.
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Figure 2.2: Cipherbase’s architecture—adapted from Arasu et al. [9]. Rectangular boxes represent
processes and rounded boxes represent data. Components with a gray background are added by
Cipherbase. The dashed box represents the attack surface of the threat model.

2.2.2 Cipherbase

Cipherbase [9] is a full-fledged SQL database system that provides high performance
and data confidentiality through the use of both secure hardware and commodity servers.
To avoid performance degradation when there is no need, Cipherbase provides its users
with the ability to specify the type of encryption for their data. This feature is called
orthogonal security because it allows organizations to develop their applications and set
their data security goals relatively independently of any performance, scalability, or cost
considerations [9]. The supported levels (column granularity) of security options are no
encryption, property-preserving and homomorphic encryption, and strong encryption.

The Cipherbase system is implemented as an extension to the main components of
Microsoft’s SQL Server, components from both the client-side and server-side. The threat
model considers clients’ machines as trustworthy and server machines as untrustworthy,
with the exception of a secure coprocessor integrated in the server hardware. Figure 2.2
shows Cipherbase’s architecture.

Client-side, Cipherbase extends the database driver used to issue SQL queries and
updates in two ways. First, the driver keeps in its local state a secret key used to encrypt
query constants1 before sending them to the server, and to decrypt query results when they
arrive from the server. Secondly, the driver, and not the database server, performs query
optimization. The client is assumed to be trusted, having him perform query optimization
avoids leaking information about the underlying data.

Server-side, a secure coprocessor is integrated into the conventional hardware that runs
the database system. The coprocessor consists of one or multiple field-programmable gate
arrays (FPGA) that implement a stack machine to process encrypted data. The coprocessor
is the only trusted component of the server infrastructure. Whenever the server needs
to process a query in which the underlying data is strongly encrypted, the coprocessor is
used. The secure coprocessor is able to decrypt and process data and give the results in

1The encryption scheme used to encrypt query constants is the same as the security option of the corre-
sponding column.
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encrypted form to the server, all without leaking information about the plaintext to the
untrusted server. In order to encrypt and decrypt data, a copy of the client’s secret key
is required. The coprocessor has its own secret key burnt into hardware, which it uses
to encrypt and securely store client keys on the disks of the untrusted server. With the
help of the coprocessor, the system is able to simulate fully homomorphic encryption [9];
efficiently apply a function to a ciphertext as if it was using a FHE scheme.

Due to memory bandwidth constraints, using the secure coprocessor to process data
instead of commodity servers, degrades performance. Whenever possible, Cipherbase
makes use of property-preserving encryption and homomorphic encryption schemes in
order to perform as much computations as possible in untrusted servers. The data security
policy defined by the user is what allows Cipherbase to use weaker encryption schemes,
as opposed to stronger encryption schemes together with the coprocessor.

Cipherbase focuses primarily on threats to data confidentiality. Similarly to CryptDB,
the threat model considers a curious or eavesdropping cloud administrator, that has com-
plete control over the server software and hardware. The exception is the FPGA-based
coprocessor, which is considered as trustworthy and vulnerable only to physical attacks to
the silicon itself. These types of physical attacks are not considered in the threat model.

2.2.3 Arx

Arx [46] is a recent effort to provide a database system that does not leak information about
data, a problem present in older systems like CryptDB [47] and Cipherbase [9]. Proposed
by Poddar et al. [46], Arx encrypts data with semantically secure encryption. Defined
by Goldwasser et al., being semantically secure means that whatever an eavesdropper
can compute about the plaintext given the ciphertext, he can also compute without the
ciphertext.

The Arx system introduces two extra components to a database system: a client proxy
and a server proxy. These proxies are placed between the application and the database
server, both unchanged despite the introduction of the Arx system. The application com-
municates with the client proxy, which exports exactly the same API as the database server.
Meanwhile, the server proxy communicates with the database server by invoking its API,
working exactly the same as a regular client. The client proxy rewrites queries received
from the application and forwards them to the server proxy if they contain encrypted data,
directly to the database server otherwise. In order to encrypt query data and generate
cryptographic tokens for the server proxy, the client proxy keeps in its state a master key.
Figure 2.3 shows Arx’s architecture.

2.2.3.1 Threat model and security

The threat model considers an attacker with complete access to the server-side, consist-
ing of Arx’s server proxy and database server, but without access to the client-side. An
attacker can extract sensitive information from the system in two ways: (𝑖) looking at
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Figure 2.3: Arx’s architecture—adapted from Poddar et al. [46]. Boxes with a gray background
illustrate components introduced by Arx.

the encrypted data present in the database; (𝑖𝑖) observing access patterns during query
execution (memory state, which and how many rows are returned, etc.). Depending on the
way sensitive information is obtained, an attacker can be categorized into two types.

Offline attacker An attacker that obtains a complete copy of the encrypted database
and analyzes it offline. Many encrypted databases rely on property-preserving encryption
schemes to provide efficient equality and order operations, however, these schemes leak
information about the underlying data. Recent attacks [28, 36] have shown that it is
possible to extract significant information just from the equality and order relations. By
using semantically secure encryption, Arx is not vulnerable to offline attacks, it reveals
nothing about the data other than size and layout, e.g., number of rows and columns.

Online attacker Besides having access to the encrypted data, an online attacker is able
to observe how queries are executed, and although query parameters and constants are
encrypted, Arx does not hide metadata or access patterns during execution. In order
to mitigate online attacks, Arx limits the amount of information exposed during query
execution to only the data involved in the query. The more queries an attacker observes,
the more he will learn about the underlying data, for this reason, it is important to detect
these types of attacks as soon as possible. In the worst-case scenario, Arx is as bad as
an encrypted database that uses property-preserving encryption on the subject of online
attacks [35, 37, 38].

The building blocks for Arx’s security properties are three semantically secure encryp-
tion schemes, BASE, EQ and AGG, and two new database indices, ArxRange and ArxEq.

BASE is a standard probabilistic encryption scheme. EQ is a searchable encryption
scheme that enables equality checks. AGG uses the partially homomorphic encryption
proposed by Paillier [45] to perform additions. There is a special case of the EQ scheme
called EQunique, a standard deterministic scheme that is only used when the values of the
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underlying data are unique. Applying a deterministic scheme on unique values does not
leak information.

ArxRange enables range and order-by-limit queries by building a tree with a garbled
circuit at each node. The garbled circuit performs the comparison between the query and
the node’s value, revealing neither. If 𝑓(𝑥) represents the result of applying the boolean
circuit 𝑓 to input 𝑥, a garbled circuit can be used to garble 𝑓 into ̃𝑓 and 𝑥 into ̃𝑥, in such a
way that 𝑓(𝑥) is revealed but nothing else [32].

Instead of storing the actual value, each node contains the encrypted primary key of
the column that contains the value, this way the index does not reveal the order relations
of the values in the database. To avoid leaking the order in which the values were inserted,
the index is built using a history-independent treap [44, 56] instead of a regular search
tree.

ArxEq is built with searchable encryption and enables equality queries. In the case of
unique fields, ArxEq encrypts data with EQunique and works like a regular database index.
In the case of non-unique fields, ArxEq works with the help of the client proxy. The client
proxy stores a map with an entry for each distinct field value stored in the database. Each
entry stores a counter, indicating the number of times the value appears in the database.

Upon insertion of a new row, the system increments the field’s counter and encrypts
the field’s value appended with the counter.

When a client issues a query, the client proxy generates a search token with all the
possible encrypted values. If the counter for a value 𝑣 is given by 𝑚𝑎𝑝[𝑣], the client proxy
will generate a search token with the encrypted values for every counter from 1 to 𝑚𝑎𝑝[𝑣].
The system can then search through the index with the help of the search token.

Using a counter allows the ArxEq index to provide forward privacy, preventing old
search tokens from being used to search newly inserted values.

2.2.4 Privacy-preserving NoSQL databases

Research on privacy-preserving databases has been for the most part, centered around
SQL databases, the three systems that we just explored attest to that. There are, however,
some proposals for privacy-preserving systems around NoSQL databases.

One such work is that of Yuan et al., where the authors propose an encrypted, dis-
tributed, and searchable key-value store built on top of the Redis database [63].

Another interesting work is that of Macedo et al., where the authors propose a generic
framework that can be used on top of existing NoSQL engines to achieve a privacy-
preserving system. The framework exposes a generic NoSQL API with the following
operations: put, get, delete, scan, and filter. The main idea of the framework is to extend
NoSQL databases with security mechanisms called CryptoWorkers, which abstract the
cryptographic operations of the system. Their proposal offers a modular and flexible
design, allowing the underlying system to support multiple techniques with varying
performance and security guarantees [43].
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2.2.5 Discussion

In this section we saw three solutions to secure databases, systems that provide data
confidentiality in the face of security threats.

CryptDB achieves its goal by dynamically adjusting the encryption level of the data.
Before insertion, values are protected with multiple layers of encryption. Each layer offers
a certain desirable property that enables the system to perform certain types of queries. Of
the three systems, CryptDB offers the worst security guarantees. The use of deterministic
and OPE encryption schemes make the system vulnerable to statistical analysis attacks
that are able to reveal a significant amount of information.

Cipherbase takes an alternative approach, making use of secure hardware to process
queries when the underlying data is encrypted. Of the explored systems, Cipherbase is the
only one to offer the choice of multiple security options with column granularity. The use
of secure hardware allows Cipherbase to offer strong security guarantees, being the only
system that provides a solution to hiding access patterns. An unpleasant downside of using
exotic hardware solutions is the impossibility of running the system in the commodity
machines offered by cloud providers.

The section ends with an overview of the Arx system. A secure database that uses
semantically secure encryption to encrypt data. The system meets its goal by introducing
two new database indices that enable equality and range queries. Security wise, Arx
reveals metadata and access patterns during query execution.

Regarding performance, Arx’s authors state that their system is slightly slower than
CryptDB when processing equality and range queries. However, Arx is faster when pro-
cessing aggregations. In the end, both systems have a similar overhead when compared
to traditional databases, about 10% [46]. We cannot make a comparison to Cipherbase
since the authors do not provide a performance evaluation. However, they affirm that
Cipherbase offers almost the same performance as traditional database systems [9].

2.3 Conflict-free replicated data types

It is often the case that distributed systems rely on replication to achieve high availability,
low latency and high throughput. Large scale distributed systems that replicate data at
different geographic locations, such as distributed databases, usually make a trade-off
between read consistency and availability, latency and throughput.

A strong consistency model offering linearizability makes application code simpler
and easier to reason about. Strong consistency requires, however, that a quorum of replicas
is available, adding a price of higher latency and reduced availability during failures, to
the operations of the system. An alternative is to employ a weak consistency model [54],
offering higher availability and lower latency with the downside of making the application
behavior harder to grasp and code harder to write.
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Conflict-free replicated data types proposed by Shapiro et al. [58] provide a simple,
theoretically sound approach to eventual consistency, a weak consistency model. CRDTs
are abstract data types designed to be replicated. Replicas can be modified without syn-
chronization and are guaranteed to converge to a correct common state. They guarantee
conflict freedom by leveraging simple mathematical properties, such as monotonicity in a
semilattice and commutativity.

The guarantee that all replicas of CRDTs converge to a common state is true if and
only if all update operations reach all replicas. To ensure this property, replicas must syn-
chronize. There are two main approaches to this synchronization procedure, state-based
synchronization and operation-based synchronization.

2.3.1 State-based synchronization

Replicas of state-based CRDTs synchronize by occasionally sending their local state, which
can be modified by update operations, to some other replica. Upon receiving another
replica’s state, a merge function is responsible for merging the local state with the received
state.

To prove that state-based CRDTs converge it is sufficient that replicas communicate in
a fully connected graph and the CRDT is a monotonic semilattice [58]:

• The set of possible CRDT states form a semilattice.

• Merging the local state with a remote state computes the least upper bound of the
two states.

• An update operation produces a new state that is greater than or equal to the original
state.

Algorithm 1 shows a state-based implementation of a counter CRDT [57]. A counter
supports two update operations, increment and decrement, and a query operation, value.
The local state of the CRDT consists of two vectors of integers, each with an entry for each
replica. Vector P registers increment operations, vector N registers decrement operations.

Executing an increment, respectively decrement, operation in some replica, adds a given
value to the entry of vector P, respectively N, assigned to that replica. The value of the
CRDT corresponds to the difference of the sum of all entries between vector P and N.
Lastly, the merge function takes the maximum of each entry.

The correct behavior of this implementation depends on two assumptions: (𝑖) entries
of vectors do not overflow; (𝑖𝑖) the set of replicas is known.

CRDTs with state-based synchronization are easier to reason about, since all the neces-
sary information is captured by the state [57]. However, sending the entire state through
the network can be expensive when dealing with large payloads. This weakness can be
mitigated with delta-based synchronization [5, 6], later explained in Section 2.3.3.
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Algorithm 1 State-based Counter CRDT—adapted from Shapiro et al. [57].
1: payload integer[𝑛] 𝑃, integer[𝑛] 𝑁 ▷ One entry per replica, 𝑛 total replicas
2: initial [0,0, …,0], [0,0, …,0]
3:
4: query value(): integer
5:

∑𝑛−1
𝑖=0 𝑃[𝑖] −

∑𝑛−1
𝑖=0 𝑁[𝑖]

6:
7: update increment(𝑣):
8: let 𝑔 ∶= myID() ▷ 𝑚𝑦𝐼𝐷() generates the local replica id
9: 𝑃[𝑔] ∶= 𝑃[𝑔] + 𝑣

10:
11: update decrement(𝑣):
12: let 𝑔 ∶= myID()
13: 𝑁[𝑔] ∶= 𝑁[𝑔] + 𝑣
14:
15: merge(𝑋, 𝑌): payload 𝑍
16: forall 𝑖 ∈ [0..𝑛 − 1] do
17: 𝑍.𝑃[𝑖] ∶= max(𝑋.𝑃[𝑖], 𝑌 .𝑃[𝑖])
18: 𝑍.𝑁[𝑖] ∶= max(𝑋.𝑁[𝑖], 𝑌 .𝑁[𝑖])

2.3.2 Operation-based synchronization

In operation-based synchronization replicas propagate updates to all replicas. A reliable
broadcast channel guarantees that updates are delivered at all replicas in a causal order.
Updates delivered out of causal order are said to be concurrent. To ensure convergence,
concurrent updates must commute [57]. If updates may be delivered more than once, they
must be idempotent.

Operation-based CRDTs do not have a merge function; instead they must define two
functions for each update, prepare-update and effect-update. The prepare-update function is
side effect free and is executed only by the replica that receives the update operation. Its
purpose is to generate a representation that encodes the side effects of the update. The
effect-update function is executed by all replicas, takes the output of prepare-update and
applies it to the replica’s state.

Algorithm 2 specifies the operation-based version of the CRDT counter seen previously.
The local state consists of a single integer, which is the return value of the query operation
value. Both update operations, increment and decrement, receive an amount as an argument,
which is added or subtracted to the state in the effect-update function.

Specifying CRDTs with operation-based synchronization can be more complex than
with state-based synchronization, since it requires one to reason about history [57]. How-
ever, contrary to state-based CRDTs, payloads can be much simpler and concise. One
limitation of operation-based CRDTs is the requirement of a reliable dissemination layer
with causal delivery and exactly-once semantics [49].
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Algorithm 2 Operation-based Counter CRDT—adapted from Preguiça [49]
1: payload integer 𝑣𝑎𝑙
2: initial 0
3:
4: query value(): integer
5: 𝑣𝑎𝑙
6:
7: update increment
8: prepare-update(𝑣):
9: (increment, [𝑣])

10: effect-update(𝑣):
11: 𝑣𝑎𝑙 ∶= 𝑣𝑎𝑙 + 𝑣
12:
13: update decrement
14: prepare-update(𝑣):
15: (decrement, [𝑣])
16: effect-update(𝑣):
17: 𝑣𝑎𝑙 ∶= 𝑣𝑎𝑙 − 𝑣

2.3.3 Delta-based synchronization

Delta-based synchronization [5, 6] an attempt to combine the best of both state-based and
operation-based CRDTs. Propagating the entire state when only a small part of the CRDT
state is modified by an update operation is inefficient. Sometimes propagating the entire
state once is better than propagating multiple update operations that modify the same
state.

Delta state conflict-free replicated data types (𝛿-CRDT) define delta-mutators that
return a delta-state: a value in the same join-semilattice which represents the updates
induced by the mutator on the current state [6]. Propagating the delta-state over the
network has a lower cost than propagating the entire CRDT state. Also, the exactly-once
delivery requirement is no longer necessary, since a delta-state is just a state and not an
operation, like in operation-based CRDTs.

2.3.4 Concurrency semantics

Consider a set CRDT that is replicated across many replicas, with multiple add and remove
operations occurring, and being propagated asynchronously between replicas. There
is no clear outcome when concurrently adding and removing the same element, these
operations are not commutative. One must define reasonable concurrency semantics to
avoid ambiguity.

We start by considering the happens-before relation [39]. Let 𝑎 and 𝑏 be two events, 𝑎
happens-before 𝑏, denoted 𝑎 ≺ 𝑏, if one of the following three conditions is satisfied:

• If 𝑎 and 𝑏 are events in the same process, 𝑎 occurs before 𝑏.
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• If event 𝑎 is the sending of a message, 𝑏 is the receipt of the same message.

• There exists an event 𝑐 such that, 𝑎 ≺ 𝑐 and 𝑐 ≺ 𝑏.

Regarding CRDT operations, 𝑜𝑝1 ≺ 𝑜𝑝2, iff the effects of 𝑜𝑝1 had been applied in the
replica where 𝑜𝑝2 was executed initially [49].

For the set CRDT, in the presence of concurrent add and remove operations, we can
define concurrency semantics that gives priority to the add operation. This is called the
add-wins set. In short, an element 𝑒 belongs to the set if 𝑎𝑑𝑑(𝑒) occurred, and there is no
𝑟𝑒𝑚𝑜𝑣𝑒(𝑒) operation such that 𝑎𝑑𝑑(𝑒) ≺ 𝑟𝑒𝑚𝑜𝑣𝑒(𝑒). If we define that the remove operation
takes precedence over the add operation, we obtain the remove-wins set.

An alternative approach to add-wins and remove-wins is the last-writer-wins (LWW)
semantics, which gives priority to updates based on a total order defined among them.
LWW sets use some form of timestamp for each element.

2.4 Summary

The idea of performing computations on ciphertexts in not new in the cryptographic
community. This chapter described several encryption schemes that enable a system
working with encrypted data to do more than storage. Homomorphic encryption schemes
are the most flexible, they allow an arbitrary number of operations to be performed on
the ciphertext an arbitrary number of times. However, these schemes are prohibitively
expensive performance-wise.

Cryptographic schemes less flexible than homomorphic encryption schemes can still
be useful. We saw how some database systems, particularly CryptDB and Arx, leverage
property-preserving and searchable encryption schemes to provide data confidentiality
without compromising functionality. These systems can be incredibly useful, one can
benefit from the advantages of cloud computing services, while still keeping sensitive
information secure. Cipherbase takes an alternative approach, emulating homomorphic
encryption through the use of secure hardware to avoid the performance penalty. However,
the use of exotic hardware solutions introduces portability issues, it is no longer possible
to run the system in the commodity hardware made available by cloud service providers.

The chapter ends with an overview of CRDTs, data types meant to be replicated, where
replicas can be updated without synchronization and are guaranteed to converge to a
common state. We saw the two main approaches to CRDTs: state-based CRDTs, and
operation-based CRDTs. Implementations of state-based CRDTs are generally simpler,
however, sending the entire CRDT state at every synchronization step can be an expensive
operation. Operation-based CRDTs reduce the communication cost by sending only up-
date operations to the replicas. On the other hand, they require that updates be delivered
to all replicas with exactly-once semantics.
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3
Secure Conflict-free Replicated Data Types

Initially proposed by Tavares et al. [60, 61], secure conflict-free replicated data types
(SCRDT) are a solution to allow update and synchronization operations to occur, while
keeping the CRDT state encrypted.

There are two approaches to the implementation of SCRDTs, black-box construc-
tions and homomorphic constructions [12], which were used for the development of the
solutions developed in the context of this thesis and presented in Barbosa et al. [12].

3.1 Black-box constructions

Black-box constructions use unmodified standard CRDT implementations with an en-
cryption layer on top.

In some CRDTs, the encryption scheme used must meet certain requirements imposed
by the underlying CRDT implementation. Consider the set CRDT specified in algorithm 3.
Internal operations must be able to perform equality comparisons between stored values;
therefore, the encryption scheme must enable equality comparisons.

A set SCRDT is achieved with a security overlay that encrypts and decrypts data with
a deterministic encryption scheme. This security layer is presented in algorithm 4. The
set CRDT presented in algorithm 3 is used as is, treated as a black box, hence the name,
black-box construction.

The correct behavior of the set SCRDT is guaranteed if the underlying standard imple-
mentation is correct. Security and confidentiality of the stored values are guaranteed by
the encryption scheme. Note, however, that a deterministic encryption scheme can leak
information, as an eavesdropper may recognize known ciphertexts.

Simpler data types, like the register CRDT, do not impose any kind of requirements
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Algorithm 3 Operation-based add-wins set CRDT—adapted from Shapiro et al. [58]
1: payload set 𝑆
2: initial ∅
3:
4: query value(): set ▷ returns the entire set state
5: {𝑒 ∣ (𝑒, 𝑢) ∈ 𝑆}
6:
7: query lookup(e): boolean ▷ returns true if the set contains 𝑒, false otherwise
8: ∃ 𝑢 ∶ (𝑒, 𝑢) ∈ 𝑆
9:

10: update add ▷ adds 𝑒 to the set
11: prepare-update(𝑒):
12: (add, [𝑒, 𝑢𝑛𝑖𝑞𝑢𝑒()]) ▷ 𝑢𝑛𝑖𝑞𝑢𝑒() returns a unique identifier
13: effect-update(𝑒, 𝑢𝑖𝑑):
14: 𝑆 ∶= 𝑆 ∪ {(𝑒, 𝑢𝑖𝑑)}
15:
16: update remove ▷ removes 𝑒 from the set
17: prepare-update(𝑒):
18: pre 𝑙𝑜𝑜𝑘𝑢𝑝(𝑒) ▷ precondition: 𝑒 ∈ 𝑆
19: (remove, [𝑒, {𝑢 ∣ (𝑒, 𝑢) ∈ 𝑆}])
20: effect-update(𝑒, 𝑢𝑖𝑑𝑠):
21: 𝑆 ∶= 𝑆 ⧵ {(𝑒, 𝑢) ∣ 𝑢 ∈ 𝑢𝑖𝑑𝑠}

Algorithm 4 Security overlay of a set SCRDT using a deterministic encryption scheme Ω,
and a standard set CRDT Π𝑠𝑒𝑡—adapted from Barbosa et al. [12]
1: payload integer 𝑘𝑒𝑦 ▷ encryption and decryption key
2:
3: query value(): set
4: let 𝑆 ∶= Π𝑠𝑒𝑡.𝑣𝑎𝑙𝑢𝑒()
5: {Ω.𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦) ∣ 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∈ 𝑆}
6:
7: query lookup(e): boolean
8: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Ω.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑒, 𝑘𝑒𝑦)
9: Π𝑠𝑒𝑡.𝑙𝑜𝑜𝑘𝑢𝑝(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡)

10:
11: update add(e)
12: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Ω.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑒, 𝑘𝑒𝑦)
13: Π𝑠𝑒𝑡.𝑎𝑑𝑑(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡)
14:
15: update remove(e)
16: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Ω.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑒, 𝑘𝑒𝑦)
17: Π𝑠𝑒𝑡.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡)
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on the encryption scheme, this is because internal operations do not perform any compu-
tation over the stored value. These types of CRDTs can use stronger encryption, like a
probabilistic encryption scheme, where through the use of randomness, the encryption of
the same message yields different ciphertexts.

Table 3.1 provides a list of CRDTs that allow a black-box construction of a secure coun-
terpart. Note that the map CRDT listed in table 3.1 is a regular map of literals. A more
interesting construction is a map of CRDTs, where each key is associated with a CRDT.
Similar to the map of literals, a secure map of CRDTs uses a deterministic encryption
scheme to encrypt keys, however, since its values are CRDTs and not literals, there is no
need to encrypt them. One can use standard or secure CRDTs as values, and in the latter
case, encryption is handled by the embedded CRDT itself.

Table 3.1: Cryptographic schemes used by black-box SCRDTs.

Type Cryptographic Scheme

Set Deterministic

Map
Deterministic (key)

Probabilistic (value)

Register Probabilistic

Multi-value register Probabilistic

3.2 Homomorphic constructions

An homomorphic construction uses homomorphic encryption schemes to create secure
versions of regular CRDTs. Contrary to black box, this type of construction cannot use
unmodified CRDT implementations, due to the type of computations the CRDT performs
on stored data.

Consider the operation-based counter CRDT we saw in section 2.3.2, algorithm 2.
The update operation increment takes a value 𝑣 and adds it to the stored CRDT state in
the effect-update function. Now imagine that both the value 𝑣 and the CRDT state are
encrypted. Adding these two encrypted values together is meaningless, as we will not be
able to make sense of the resulting sum.

The idea is to use homomorphic or partially homomorphic encryption that allows the
same operations to be performed over encrypted data. In the case of the counter CRDT
we use the Paillier cryptosystem [45], which is homomorphic over addition. Given two
integers 𝑎 and 𝑏, with ciphertexts 𝑐𝑎 and 𝑐𝑏, respectively, the product of 𝑐𝑎 and 𝑐𝑏 will
decrypt to the sum of 𝑎 and 𝑏:

𝐷(𝑐𝑎 ⋅ 𝑐𝑏 mod 𝑛2) = 𝑎 + 𝑏 mod 𝑛2 (3.1)
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Where the function 𝐷 performs the decryption operation, and 𝑛2 is a parameter of the
public key calculated during the key generation.

Algorithm 5 specifies the secure counterpart of the regular counter CRDT. The effect-
update function of the increment operation was modified to perform the homomorphic
addition of ciphertexts.

Algorithm 5 Homomorphic construction of an operation-based counter CRDT using the
Paillier encryption scheme [45]
1: payload integer 𝑣𝑎𝑙, boolean 𝑠𝑝𝑜𝑖𝑙𝑒𝑑
2: initial 0, false ▷ 𝑠𝑝𝑜𝑖𝑙𝑒𝑑 indicates whether the counter has been incremented or not
3:
4: query value(): integer ▷ returns the counter state
5: pre 𝑠𝑝𝑜𝑖𝑙𝑒𝑑
6: 𝑣𝑎𝑙
7:
8: update increment ▷ increments the counter by 𝑣
9: prepare-update(𝑣, 𝑛2):

10: (increment, [𝑣, 𝑛2])
11: effect-update(𝑣, 𝑛2):
12: if 𝑠𝑝𝑜𝑖𝑙𝑒𝑑 then
13: 𝑣𝑎𝑙 ∶= 𝑣𝑎𝑙 ⋅ 𝑣 mod 𝑛2 ▷ homomorphic addition as specified by Paillier [45]
14: else
15: 𝑠𝑝𝑜𝑖𝑙𝑒𝑑 ∶= true
16: 𝑣𝑎𝑙 ∶= 𝑣
17: end if

Two caveats of the counter SCRDT that do not apply to the regular version:

• While the regular counter is usually initialized to 0, the secure counter does not
know how to represent the encrypted form of the 0 value. To circumvent this issue,
we use the first increment operation to initialize the CRDT state. When the variable
spoiled is false, the effect-update function simply sets the CRDT state to the value of 𝑣
(line 16 in algorithm 5). The downside is that the CRDT state can only be read after
the first increment operation.

• The Paillier cryptosystem does not allow us to have an explicit decrement operation.
In practice, this limitation is easily overcome by representing signed integers in
two’s complement and using a negative value as the increment delta.

Our counter SCRDT is completed with the addition of the security overlay specified
by algorithm 6. As was the case in the set SCRDT, the sole responsibility of this security
layer is to encrypt and decrypt values.

Another CRDT that can be made secure through homomorphic construction is the
bounded counter. Similarly to the counter SCRDT, the increment operation of the bounded
counter SCRDT is modified to perform the homomorphic addition of ciphertexts, however,
the counter bounds must hold.
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Algorithm 6 Security overlay of a counter SCRDT using the Paillier encryption scheme Θ,
and the counter CRDT Π𝑐𝑜𝑢𝑛𝑡𝑒𝑟 specified in algorithm 5

1: payload integer 𝑝𝑢𝑏𝑙𝑖𝑐, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒, 𝑛2 ▷ encryption and decryption keys
2:
3: query value(): integer
4: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Π𝑐𝑜𝑢𝑛𝑡𝑒𝑟.𝑣𝑎𝑙𝑢𝑒()
5: Θ.𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒)
6:
7: update increment(𝑑𝑒𝑙𝑡𝑎)
8: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Θ.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝑒𝑙𝑡𝑎, 𝑝𝑢𝑏𝑙𝑖𝑐)
9: Π𝑐𝑜𝑢𝑛𝑡𝑒𝑟.𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑛2)

The regular bounded counter models the difference between its value and its bound
as a set of rights to execute increment or decrement operations. As long as the CRDT
has enough rights available to perform operations, the invariant will hold. This is no
longer possible in the secure version, the SCRDT value is encrypted, and the Paillier
scheme does not allow us to perform the necessary computations to calculate the set of
rights. However, the counter invariant can still be enforced with the help of the client by
leveraging transactions. We will expand more on this topic in the next chapter.

3.3 Summary

This chapter introduced the concept of secure CRDTs, providing the necessary tools to
answer the core question of this thesis, how to implement a scalable, highly available, and
geo-replicated privacy-preserving key-value store.

Leveraging standard CRDT implementations, black-box construction builds SCRDTs
by implementing a security overlay that simply deals with the encryption and decryp-
tion of data. Homomorphic constructions require not only the security overlay, but also
modifications to the underlying CRDT implementation.

We can expect that SCRDTs achieved through homomorphic construction will suffer,
performance-wise, when compared to their regular counterpart. This performance differ-
ence should not be visible, or at least not as apparent, in black-box SCRDTs, since they
make use of faster and less expensive encryption schemes.
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4
Integration of SCRDTs into AntidoteDB

Having introduced the concept of SCRDTs in the previous chapter, we will now see how
we can use them to implement a privacy-preserving key-value store based on AntidoteDB.
We start with a brief overview of AntidoteDB’s architecture and finish with a detailed
explanation of how we integrated SCRDTs into the data store.

4.1 AntidoteDB

AntidoteDB [4, 7] is a highly available, geo-replicated key-value store. AntidoteDB is built
using the Erlang programming language, a functional language in which the runtime
system offers built-in support for concurrency, distribution and fault tolerance.

AntidoteDB runs on multiple data centers at the same time. In each data center, data
is sharded among physical servers with the help of consistent hashing and a distributed
hash table with a ring structure. Transactions issued by clients are processed only by the
nodes that hold the data [8]. Later and asynchronously, the system propagates updates to
the remaining data centers. This design allows AntidoteDB to serve requests and remain
highly available even when some servers in a data center fail or network partitions occur.

The system employs Cure [4], a protocol that allows AntidoteDB to offer Highly Avail-
able Transactions (HATs) [10] and causal+ consistency, placing itself in a sweet spot in the
consistency and availability trade-off.

Despite offering weaker properties than serializable transactions used by traditional
ACID databases, HATs still offer much desired guarantees [10] in a context between
transactions:

• Monotonic reads: After reading an object, subsequent reads on that object will
always return the same or a more recent value.
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• Monotonic writes: Write operations by a process are visible in the same order they
were submitted.

• Writes-follow-reads: Ensures that if a process observes the effects of a transaction
𝑇1 and later commits transaction 𝑇2, then 𝑇2 will be visible after 𝑇1.

The causal+ consistency model simply combines causal consistency with eventual
consistency, ensuring that: (𝑖) all clients observe from the system a state that respects the
causal relationships between operations; (𝑖𝑖) if no new updates occur, replicas eventually
converge to the same state.

Regarding data types, AntidoteDB supports operation-based CRDTs [23], available in
multiple data types and conflict resolution strategies: last-writer-wins register, multi-value
register, counter (including bounded counter [11]), enable-wins and disable-wins flag, and
grow-only, add-wins, and remove-wins maps and sets.

AntidoteDB’s general architecture is depicted in figure 4.1.

Client

DC1 DC2

Client

Client

Client

Client Client

DC3

Node	N

Node	1

Node	2

Node	3

Node	4

Figure 4.1: Overview of AntidoteDB’s general architecture—adapted from AntidoteDB’s docu-
mentation [8]. The system is organized into multiple clusters or data centers to where clients can
connect. Within each cluster, data is sharded among different nodes organized in a ring structure.

Figure 4.2 shows how each node within a data center is organized into the following
four components [8]:

• Transactionmanager: The transactionmanager implements the Cure [4] transaction
protocol and is responsible for receiving client requests, executing and coordinating
transactions, and replying to clients. Interacts with the materializer component to
fetch snapshots of the stored data.
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• Materializer: The materializer is responsible for caching the most recent operations,
and snapshots of the objects requested by clients. Upon reception of an operation,
the materializer caches it. Whenever a read request is received, the materializer
first checks whether pending operations exist in its cache. If so, a new snapshot is
created by applying the pending operations to the most recent snapshot. If there
are no pending operations in its cache, the materializer simply returns its most
recent snapshot of the object. To avoid an infinitely growing number of snapshots, a
garbage collection mechanism exists.

• Log: The log component maintains the history of object updates. This history is
persisted to disk to ensure durability. Used by the materializer on restarts to load
the state of objects, or when it is necessary to read an older version of an object than
what is available in memory. The log component is also used to resend lost updates
to other data centers.

• InterDC replication: The InterDC component is responsible for propagating up-
dates from the log to other data centers.

Node	N-1 Node	N+1

Node	N

Transaction	Manager

Materializer

Log
InterDC

Replication

Figure 4.2: AntidoteDB node components—adapted from AntidoteDB’s documentation [8].

4.2 Design and implementation

Adding support for SCRDTs to AntidoteDB requires modifications to the AntidoteDB core
and to the client libraries. AntidoteDB supports multiple client libraries, implemented
in various programming languages. For our prototype we decided to modify both the
Erlang [29] and Python [50] client libraries, chosen solely because these would later facili-
tate our experimental evaluation. In the end, we have a working prototype of AntidoteDB
with support for the following SCRDTs:

• Register;

• Multi-value register;
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• Set;

• Map of CRDTs;

• Counter;

• Bounded counter.

The register, multi-value register, set, and map SCRDTs are implemented through
black-box construction. The counter and bounded counter SCRDTs are implemented
through homomorphic construction.

The threat model contemplates two types of attackers: (𝑖) a curious database adminis-
trator, with access to all the data stored in memory and disk; (𝑖𝑖) external attackers capable
of eavesdropping communication channels. The database administrator is mitigated
through the use of SCRDTs; external attackers are mitigated by securing the communica-
tion channels with the Transport Layer Security (TLS) protocol.

4.2.1 Client libraries

As we saw in chapter 3, there are two approaches to implementing SCRDTs, black-box con-
struction, and homomorphic construction. In either approach, an encryption/decryption
layer is always necessary. This layer lives in the client library.

A regular AntidoteDB’s client library provides a simple interface to work with the
different types of CRDTs offered by the data store, e.g., add an element to a set, increment
a counter, etc. To accommodate SCRDTs, we modified the client libraries to encrypt data
before sending it to the server, and decrypt data when any arrives from the server. Data
is encrypted and decrypted using different encryption schemes, each offering different
properties (see table 3.1 in the previous chapter), depending on the type of CRDT used.
For the probabilistic scheme, we used AES-OFB with random IVs and 128-bit keys. For
the deterministic scheme, we used AES-OFB with fixed IVs1 and 128-bit keys. And the
Paillier cryptosystem with 2048-bit keys for the homomorphic encryption scheme.

Our implementation uses a different encryption key for each data object, this is so that
for the same plaintext, different objects will see a different ciphertext, even when using a
deterministic encryption scheme. The way our client library generates encryption keys is
as follows: (1) a master key is generated; (2) each data object derives its own encryption
key using the master key and the key that identifies him in the key-value store.

For the set and counter SCRDTs, the code responsible for encrypting and decrypting
data is an implementation of the algorithms 4 and 6, seen in the previous chapter. The
remaining SCRDTs implement a similar algorithm. For completeness, algorithms 7, 8, 9,
and 10, specify the algorithm implemented by the security code of the register, multi-value
register, map, and bounded counter SCRDTs, respectively.

1The IV is deterministically derived from the plaintext, e.g., using a cryptographic hash function.

30



4.2. DESIGN AND IMPLEMENTATION

Algorithm 7 Security overlay of a register SCRDT using a probabilistic encryption scheme
Φ, and a standard register CRDT Π𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟

1: payload integer 𝑘𝑒𝑦 ▷ encryption and decryption key
2:
3: query value(): 𝑇
4: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Π𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟.𝑣𝑎𝑙𝑢𝑒()
5: Φ.𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦)
6:
7: update assign(𝑇 𝑣)
8: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Φ.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑣, 𝑘𝑒𝑦)
9: Π𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟.𝑎𝑠𝑠𝑖𝑔𝑛(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡)

Algorithm 8 Security overlay of a multi-value register SCRDT using a probabilistic en-
cryption scheme Φ, and a standard multi-value register CRDT Π𝑚𝑣−𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟

1: payload integer 𝑘𝑒𝑦 ▷ encryption and decryption key
2:
3: query value(): [𝑇 ]
4: let 𝑆 ∶= Π𝑚𝑣−𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟.𝑣𝑎𝑙𝑢𝑒()
5: [Φ.𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦) ∣ 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∈ 𝑆]
6:
7: update assign(𝑇 𝑣)
8: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Φ.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑣, 𝑘𝑒𝑦)
9: Π𝑚𝑣−𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟.𝑎𝑠𝑠𝑖𝑔𝑛(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡)

Algorithm 9 Security overlay of a map SCRDT using a deterministic encryption scheme
Ω, and a standard map CRDT Π𝑚𝑎𝑝

1: payload integer 𝑘𝑒𝑦 ▷ encryption and decryption key
2:
3: query value(): 𝑇 ↦ CRDT
4: let 𝑆 ∶= Π𝑚𝑎𝑝.𝑣𝑎𝑙𝑢𝑒()
5: {(Ω.𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦), Π) ∣ (𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, Π) ∈ 𝑆}
6:
7: update put(𝑇 𝑘, update)
8: let 𝑘𝑒𝑦_𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Ω.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑘, 𝑘𝑒𝑦)
9: Π𝑚𝑎𝑝.𝑝𝑢𝑡(𝑘𝑒𝑦_𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, update)

10:
11: update remove(𝑇 𝑘)
12: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Ω.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑘, 𝑘𝑒𝑦)
13: Π𝑚𝑎𝑝.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡)
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Algorithm 10 Security overlay of a bounded counter SCRDT using the Paillier encryption
scheme Θ, and an additively homomorphic bounded counter CRDT Π𝑏−𝑐𝑜𝑢𝑛𝑡𝑒𝑟

1: payload integer 𝑝𝑢𝑏𝑙𝑖𝑐, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒, 𝑛2 ▷ encryption and decryption keys
2:
3: query value(): integer
4: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Π𝑐𝑜𝑢𝑛𝑡𝑒𝑟.𝑣𝑎𝑙𝑢𝑒()
5: Θ.𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒)
6:
7: update increment(𝑑𝑒𝑙𝑡𝑎)
8: let 𝑡𝑥 ∶= 𝑠𝑡𝑎𝑟𝑡_𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛()
9: let 𝑣 ∶= 𝑣𝑎𝑙𝑢𝑒()

10: if 𝑣 + 𝑑𝑒𝑙𝑡𝑎 > 0 then
11: let 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ∶= Θ.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝑒𝑙𝑡𝑎, 𝑝𝑢𝑏𝑙𝑖𝑐)
12: Π𝑏−𝑐𝑜𝑢𝑛𝑡𝑒𝑟.𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑛2)
13: 𝑡𝑥.𝑐𝑜𝑚𝑚𝑖𝑡()
14: else
15: 𝑡𝑥.𝑎𝑏𝑜𝑟𝑡()
16: end if

Similarly to the counter algorithm presented in 6, the secure bounded counter does
not provide an explicit decrement operation, to do so, we simply need to pass a negative
delta when incrementing.

The bounded counter security overlay leverages AntidoteDB’s transactions to make
sure that the limit invariant is kept. Using the Paillier cryptosystem means that the server
is no longer able to check whether the increment operation will violate the invariant; thus,
this check must now be made by the client. By using the transactional mode offered by
AntidoteDB we guarantee that two different transactions cannot concurrently modify the
same bounded counter in the local datacenter. If the client checks, inside a transaction,
that there are enough rights available to perform an operation, we can guarantee that the
bounded counter invariant will hold in the local datacenter.

Note that we never mentioned anything about the conflict resolution policy of the
register, multi-value register, set, and map SCRDTs. This was done on purpose, because
any conflict resolution policy is valid. From the client’s point of view, it is only necessary
to encrypt data before sending it to the server, and decrypt it after receiving it from the
server. The conflict resolution policy is provided by the underlying CRDT, and the security
overlay that exists in the client library is agnostic to that.

4.2.2 Modifications to AntidoteDB

The implementation of the counter and bounded counter SCRDTs is more involved than
the remaining SCRDTs. As we saw in the previous chapter, homomorphic construction
requires that we implement new CRDTs that make use of a homomorphic encryption
scheme.
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We extended the AntidoteDB core with an implementation of an operation-based
counter and bounded counter CRDTs that use the Paillier cryptosystem, as specified in al-
gorithm 5. These CRDTs were implemented in the Erlang programming language and live
in the antidote_crdt module [23], following the API used by AntidoteDB’s CRDTs [24].

Messages exchanged between the clients and the server are serialized and deserialized
using Protocol Buffers2. With the addition of new CRDTs, we were required to add new
Protocol Buffers’ message types to the serialization layer of AntidoteDB.

4.2.2.1 Type alias

Every read and update operation that an AntidoteDB server receives from a client must
specify a name and CRDT type. This pair, name and CRDT type, is what tells AntidoteDB
the object and CRDT implementation that should be used to perform the operation. Note
that the data types and operations are type checked by AntidoteDB, so it is not possible to
apply, for example, an increment operation to an add-wins set CRDT.

The behavior described above raises a challenge with regards to black-box SCRDTs,
because they make use of an existing implementation. Client side, we want CRDTs and
SCRDTs to be different types, as an add-wins set SCRDT is different from a regular add-
wins set CRDT. Server side, the type parameter should always be that of an add-wins set
CRDT, even when the client is using the secure version.

The above challenge was overcome by extending AntidoteDB with a type alias mecha-
nism. Client libraries provide types for all the different CRDTs and SCRDTs, and send
these types to the server. The server, prior to any operation that performs type checking
or uses the data type in any way, maps the SCRDT type to the regular CRDT counterpart.
The idea is that server side, SCRDT types are simply alias to regular CRDT types.

This typing challenge does not apply to the homomorphic constructed counter and
bounded counter. Server side, these two CRDTs have an actual implementation instead of
leveraging an existing one.

4.3 Summary

This chapter started by describing AntidoteDB’s overall architecture, designed in a way
to be scalable and highly available. Later we describe the work that went into adding
SCRDTs to AntidoteDB. This work allows us to achieve one of the goals of this thesis, a
working prototype of a scalable and highly available privacy-preserving key-value store.

The AntidoteDB modifications described throughout this chapter were submitted and
accepted upstream, and are currently open-sourced on GitHub in the various repositories
of the AntidoteDB organization3.

2
https://developers.google.com/protocol-buffers

3
https://github.com/AntidoteDB
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SCRDTs experimental evaluation

This chapter presents an experimental evaluation of SCRDTs in AntidoteDB. We perform
multiple performance benchmarks to better understand the impact of providing data
confidentiality in the AntidoteDB key-value store. To this end, in all experiments, we
compare the execution when using regular CRDTs and SCRDTs.

The chapter is split in two parts: (𝑖) a set of synthetic benchmarks assessing the la-
tency, throughput, and scalability of the different SCRDT constructions; (𝑖𝑖) a realistic
benchmark using the FMKe [62] framework.

Our experiments were performed in a cluster of seven nodes, where two were used as
servers, and the remaining five were used to run multiple clients in parallel. The server
nodes are equipped with an AMD EPYC 7281 CPU, and 128 GiB of RAM each. Both
servers are connected to the same network switch, S1, with two 10 Gbit/s connections.
Three of the five client nodes are equipped with the same hardware as the server nodes.
The remaining two client nodes are equipped with two Intel Xeon E5-2620 v2 CPUs each,
and 64 GiB of RAM each. These last two nodes are both connected to the same switch, S2,
with two 1 Gbit/s connections. Switch S2 is connected to switch S1 with two 10 Gbit/s
connections. The network topology is depicted in figure 5.1.

Saturating the two servers proved to be a difficult task with the number of client
machines we had available. For this reason, the AntidoteDB instances running in the
server machines were limited to 8 vCPUs, everything else remained unchanged.
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Figure 5.1: Cluster network topology—adapted from DI-CLUSTER [26].

5.1 Synthetic benchmarks

Our synthetic benchmarks consist in running many clients in parallel, each executing op-
erations in a single data type. Each operation is executed in a single data object, randomly
chosen among a group of 25 objects. The number of clients is increased until we are able
to saturate the servers. The benchmarks are performed by a Python program that uses our
modified version of AntidoteDB’s Python client library.

We benchmarked the regular and secure variants of the register, set, counter, and
bounded counter CRDTs. These four data types cover all the different encryption schemes
used: probabilistic, deterministic, and homomorphic.

5.1.1 Register

The register benchmark uses a combination of 50% reads and 50% writes of 2500 random
bytes. Table 5.1 shows the mean and 90th percentile latency of each operation, as well as,
the overall throughput for the plaintext and secure registers, respectively.

Figure 5.2 shows a throughput–latency plot of the same results. It is clear that the
server is saturated in both the plaintext (at around 2500 operations/s) and secure (at
around 2200 operations/s) CRDTs.
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Figure 5.2: Throughput–latency plot of the register CRDT and SCRDT.
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Table 5.1: Operation latency in milliseconds (mean and 90th percentile) and overall throughput
of the register CRDT and SCRDT.

Clients
Read Write

Ops/s
Mean P90 Mean P90

8
Regular 6.48 44.40 8.00 44.96 1102

Secure 7.81 45.15 9.75 46.04 904

16
Regular 6.77 44.47 8.84 44.80 2044

Secure 7.42 44.92 11.17 45.73 1699

32
Regular 8.64 44.32 16.70 45.35 2507

Secure 8.70 45.08 19.14 46.67 2209

64
Regular 11.43 45.07 34.02 50.63 2767

Secure 14.68 46.46 37.44 51.77 2228

96
Regular 13.78 45.29 47.91 87.93 2930

Secure 19.42 48.73 57.95 54.17 2586

128
Regular 15.52 46.03 58.86 62.87 2804

Secure 23.00 50.80 73.69 93.63 2454

The secure register exhibits slightly higher latency and lower throughput. The higher
latency values are to be expected, as clients require extra time to encrypt and decrypt data.
The lower throughput can be explained by the cryptographic expansion of the data, thus
increasing the payload size that the server has to process.

5.1.2 Set

The set benchmark consists of 50% reads, 35% adds and 15% removes. The read oper-
ation is over the entire set, meaning that a list containing all the set elements is returned.
Table 5.2 and figure 5.3 show the results of the set benchmark. Add operations insert into
the set a random 500 byte value.

Once again, results are similar. The secure CRDT exhibits an overall higher oper-
ational latency and slightly lower throughput. The server gets saturated at around 1000
operations/s for the plaintext version and 900 operations/s for the secure version.

With a high number of clients, the read operation latency of the secure set becomes
increasingly larger than the plaintext counterpart. This can be explained by the ever-
increasing size of the set, since 35% of the operations are adds versus only 15% removes.
When the benchmark runs with a high number of clients, the read operation takes extra
time because clients need to decrypt a large amount of data.
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Table 5.2: Operation latency in milliseconds (mean and 90th percentile) and overall throughput
of the set CRDT and SCRDT.

Clients
Read Add Remove

Ops/s
Mean P90 Mean P90 Mean P90

8
Regular 10.36 46.28 11.95 46.19 13.66 46.58 694

Secure 9.57 45.73 12.13 46.22 13.80 46.38 513

16
Regular 12.73 46.43 30.21 48.05 28.71 47.65 751

Secure 18.71 49.07 38.29 49.12 45.85 49.85 713

32
Regular 19.35 47.58 85.52 53.11 80.98 59.51 813

Secure 25.08 56.47 40.97 54.00 42.19 54.55 817

64
Regular 20.53 50.28 96.00 59.28 103.82 63.10 1038

Secure 94.11 139.02 44.12 61.52 43.92 61.92 959

96
Regular 33.63 52.79 93.31 60.27 95.33 59.74 1258

Secure 226.12 344.80 62.69 83.19 62.47 82.53 1057

128
Regular 166.77 227.58 96.42 124.36 99.91 137.79 1029

Secure 227.02 222.87 75.22 100.92 75.82 101.28 921
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Figure 5.3: Throughput–latency plot of the set CRDT and SCRDT.

5.1.3 Counter

The workload for the counter benchmark consists of 33% reads, 33% increments, and 33%
decrements. The results are shown in table 5.3 and figure 5.4.

As expected, the use of homomorphic encryption translates into amassive performance
penalty. The Paillier cryptosystem explodes the size of the simple integers used in the
plaintext counter into 4096 bit integers in the secure counter, and contrary to the register
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Table 5.3: Operation latency in milliseconds (mean and 90th percentile) and overall throughput
of the counter CRDT and SCRDT.

Clients
Read Increment Decrement

Ops/s
Mean P90 Mean P90 Mean P90

8
Regular 6.25 14.34 6.79 44.97 6.88 44.97 1202

Secure 37.20 72.53 67.98 88.07 66.79 89.38 128

16
Regular 6.61 11.85 7.79 44.96 8.28 45.02 2091

Secure 62.27 99.60 93.28 121.68 93.45 121.91 193

32
Regular 8.74 44.29 13.17 45.32 14.04 45.50 2643

Secure 109.17 155.08 152.00 191.36 150.06 189.30 222

64
Regular 12.03 44.92 26.48 47.48 27.61 47.48 2861

Secure 224.62 301.99 303.13 381.62 301.64 377.47 248

96
Regular 14.68 45.17 38.75 51.47 39.32 50.99 3015

Secure 407.61 533.01 522.04 638.32 514.78 687.90 207

128
Regular 13.73 45.26 44.46 53.50 43.04 52.20 2875

Secure 588.28 857.61 728.02 1029.35 704.99 1068.91 204
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Figure 5.4: Throughput–latency plot of the counter CRDT and SCRDT.

and set SCRDTs, the server now has to perform arithmetic operations with the encrypted
data.

Using the secure counter quickly saturates the server. We were only able to obtain a
maximum throughput of 248 operations/s, a number more than ten times smaller than
the 3015 operations/s of the plaintext counter. Latency values are also significantly higher
for the secure counter.
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5.1.4 Bounded counter

The benchmark workload of the bounded counter is equal to that of the counter, 33% for
each operation. Results are presented in table 5.4 and figure 5.5.

Table 5.4: Operation latency in milliseconds (mean and 90th percentile) and overall throughput
of the bounded counter CRDT and SCRDT.

Clients
Read Increment Decrement

Ops/s
Mean P90 Mean P90 Mean P90

8
Regular 5.82 3.18 6.98 5.43 9.43 46.02 980

Secure 42.42 78.56 63.86 87.36 61.98 103.66 101

16
Regular 7.50 44.55 14.33 45.41 21.81 46.68 1284

Secure 69.71 108.99 90.88 122.20 93.80 151.59 177

32
Regular 9.05 44.85 19.35 46.49 27.15 50.92 1545

Secure 123.46 174.90 149.05 199.96 160.43 242.97 219

64
Regular 13.53 45.47 47.53 103.86 59.42 152.68 1702

Secure 247.56 360.90 297.46 414.28 320.99 482.06 221

96
Regular 13.96 45.29 66.33 171.72 86.86 251.77 1668

Secure 359.21 564.96 420.02 630.68 486.59 796.29 219

128
Regular 25.05 48.95 87.41 219.54 108.65 325.05 1637

Secure 500.20 789.74 567.73 890.62 658.73 1092.26 200
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Figure 5.5: Throughput–latency plot of the bounded counter CRDT and SCRDT.

The exhibited behavior is equivalent to the behavior of the counter, as the use of homo-
morphic encryption leads to a huge performance penalty. The plaintext bounded counter
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saturates at around 1600 operations/s, while the secure bounded counter saturates at
around 200 operations/s.

When comparing the counter and bounded counter plaintext results, it is clearly visible
the cost of having to keep the upper/lower limit invariant of the bounded counter, as
the latency increases and the throughput decreases. This behavior is hardly noticeable
when comparing the secure counter and secure bounded counter results, explained by the
overwhelmingly superior amount of time that the homomorphic operations take relative
to keeping the bounded counter invariant.

5.1.5 Discussion

Our results show that the cost of supporting secure CRDT constructions is correlated with
the cost of the underlying cryptographic schemes.

SCRDTs like the set and register, which make use of standard symmetric cryptography,
result in a relatively low overhead to the system. The price is paid mainly by the client
that has to encrypt and decrypt data, whereas the server only has to deal with slightly
larger payloads due to ciphertext expansion.

SCRDTs that leveragemore novel cryptographic schemes, like the Paillier based counter
and bounded counter, result in a very significant overhead to both the client and server.
The encryption and decryption operations are orders of magnitude more expensive than in
standard cryptographic schemes; moreover, the server is required to perform expensive1

computations on stored data. The ciphertext expansion is also quite significant, as the
simple 32-bit or even 64-bit integers used in the regular CRDTs see their size expanded to
4096-bit. This means larger messages travelling through the network and larger messages
for the server to process.

An important aspect of real-world systems is the performance and security trade-off.
While security is important, a system designer should be mindful of its cost. We believe
that the register and set SCRDTs, and by extension the multi-value register and map
SCRDTs, are a feasible solution to systems that want to improve their privacy guarantees.
The counter and bounded counter SCRDTs are ok in systems that use them sparingly, as
their performance penalty is significant.

5.2 Realistic benchmark

To provide a more realistic performance and scalability evaluation of our prototype, we
ran the FMKe benchmark.

FMKe is a benchmark for distributed key-value stores that emulates a real work appli-
cation. The workload is based on real-life statistics obtained from the Fælles Medicinkort
(FMK) system [62], a subsystem of the Danish national health system. We believe FMKe

1When compared to the plaintext CRDT.
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provides a good use case for a privacy-preserving key-value store, since medical records
are, above all, sensitive information.

Table 5.5: Number of FMKe entities stored in the database prior to running the benchmark.

Entity Number

Hospitals 50

Pharmacies 300

Patients 1000000

Medical Staff 10000

Prescriptions 5000

The benchmark framework is written in the Erlang programming language, and sup-
port for AntidoteDB already exists. Adapting the framework to work with our prototype
required creating a new AntidoteDB driver using our Erlang client library. To store the
different entities and model the relations between them, FMKe uses only three types of
CRDTs: register, set, and map. Prior to the benchmark the database is populated with data,
namely, hospitals, pharmacies, patients, medical staff, and prescriptions. The number of
each entity is presented in table 5.5.

The benchmark focuses on prescription management—table 5.6 shows the list of op-
erations and their relative frequency. We ran the benchmark for ten minutes, multiple
times, each time with a different number of clients. The hardware setup is the same as the
one described at the beginning of this chapter.

Table 5.6: FMKe operations and their relative frequency.

Operations Frequency

Get pharmacy prescriptions 27%

Get prescription medication 27%

Get staff prescriptions 14%

Create prescription 8%

Get processed prescriptions 7%

Get patient 5%

Update prescription 4%

Update prescription medication 4%

Get prescription 4%

5.2.1 Results

The overall throughput and latency results are shown in figure 5.6.
Both versions reach maximum throughput at 32 clients, from that point onwards,

the server is saturated and we observe a decrease in throughput and a huge increase
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Figure 5.6: Performance comparison of the regular and secure versions of AntidoteDB.

in latency. The top right graph shows that the throughput difference between the two
versions remains relatively stable across the board, meaning that SCRDTs do not hinder
the scalability of the database. Seeing that the benchmark is only using SCRDTs with
standard encryption schemes, the overhead of the secure version is relatively small, and
the same behavior was observed in the synthetic benchmarks section.

Figure 5.7 gives us insight into the stability of the system. The data shown is relative
to the run with 32 clients, where we periodically measured, once each 10 seconds, the
mean throughput and latency. The two graphs show that both the throughput and overall
latency of the system remain stable throughout the benchmark.
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Figure 5.7: Throughput and latency of AntidoteDB throughout the FMKe benchmark with 32
clients.
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5.3 Summary

Our experiments show that our design has a variable throughput penalty. SCRDT designs,
that make use of standard cryptographic schemes, are a feasible solution to improve
data privacy and confidentiality. Homomorphic based SCRDTs, however, incur in a huge
performance penalty and are not a feasible solution to systems that make heavy use of
them.

For a benchmark that models a real world application, that includes no data types
requiring homomorphic based SCRDTs, the overhead is low, which makes SCRDTs a
practical solution for providing privacy-preserving features in such application.
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6
Antidote Query Language

Apart from a privacy-preserving data store, we also wish to enable secure and rich queries
by extending Antidote Query Language (AQL), an SQL interface for the AntidoteDB
key-value store. This chapter starts by presenting AQL’s architecture and inner workings,
and finishes with a description of the AQL’s modifications we performed in order to add
support for secure queries.

6.1 AQL’s architecture

Being built as a layer on top of AntidoteDB means that AQL’s architecture follows Anti-
doteDB’s architecture. The system runs on multiple data centers at the same time, each
with multiple nodes organized in a ring structure [42]. An AQL module is added to each
server node that runs an AntidoteDB instance. Clients issue queries directly to the AQL
module, which then communicates with AntidoteDB to process those queries. Figure 6.1
shows an overview of AQL’s architecture.

AQL offers application developers an SQL interface with varying degrees of consis-
tency. The main idea is to relax SQL consistency when possible, while keeping stricter
consistency when necessary [41]. Note that unlike NoSQL databases, AQL, even under
relaxed consistency, still enforces primary key, foreign key, and check constraints.

The adopted approach is to let the developer specify in the database schema how and
when SQL consistency can be relaxed. This is achieved by extending the regular SQL data
definition language with options to configure concurrency semantics, e.g. what should be
the outcome of concurrent transactions that perform an update and delete operation over
the same table row. By omitting the concurrency semantics specification, AQL assumes
a no concurrency approach, where strict SQL consistency is enforced through the use of
locks at the AntidoteDB level, and requiring coordination among replicas [41].
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Figure 6.1: Overview of AQL’s architecture—adapted from Lopes [42]. Data centers run multiple
server nodes in a ring structure. Each node runs the AQL module and an AntidoteDB instance.

6.2 Design and implementation of a secure AQL

Adding support for secure queries to AQL requires modifying the AQL module and the
way client libraries work. A regular AQL client simply sends SQL commands to a server
and receives the response, showing it to the user. Our implementation consists in the
addition of an additional layer to the client library, a query rewriter. The client library is
extended to keep encryption keys, and the task of encrypting and decrypting sensitive
data is performed by the query rewriter. The flow of a secure SQL command is as follows:

1. The application writes a regular SQL command and uses the interface of the client
library to send it to the server.

2. Prior to sending the SQL command to the server, the client library uses the query
rewriter module to rewrite the command in a way that all sensitive data is encrypted.

3. The rewritten command is sent to the server and processed.

4. When the reply is received by the client library, the result is decrypted.

5. The decrypted result is returned to the user.

The encryption and decryption of operations is transparent, and final applications
should only see plaintext values. Figure 6.2 shows the new AQL architecture, with the
addition of the query rewriter module.

46



6.2. DESIGN AND IMPLEMENTATION OF A SECURE AQL
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Figure 6.2: AQL’s architecture with the query rewriter module.

The fundamental problem is executing queries over encrypted data. AQL’s WHERE

predicate supports multiple comparison operators, =, <>, <, <=, >, and >=. Furthermore,
multiple predicates can be combined with the AND and OR keywords. When the query
rewriter encrypts data, it must do so in a way that the server is still capable of performing
those operations and reach the correct result.

We handle the above problem by letting the user specify the encryption scheme of
table columns at the same time the database schema is specified. For this purpose, we
extend AQL’s DDL syntax with encryption annotations. The new CREATE statement syntax
is shown in figure 6.3.

create → CREATE [conflict_resolution] TABLE identifier (

identifier column_type [encryption_type] [constraint],

...

);

conflict_resolution → UPDATE-WINS | DELETE-WINS

column_type → INTEGER | BOOLEAN | COUNTER_INT | VARCHAR

encryption_type → ENC | DTENC | OPENC | HMENC

identifier → STRING

Figure 6.3: Extended AQL CREATE syntax, with the addition of four new table column annotations:
ENC, DTENC, OPENC, and HMENC.

The following encryption annotations were added:

• ENC: Uses a strong and probabilistic encryption scheme to encrypt the column’s data.
Good when privacy is the only concern as it only allows to store and retrieve data,
the server cannot perform any kind of operation on this data.

• DTENC: Stands for deterministic encryption, allowing the server to process equality
operations on encrypted data, e.g. WHERE clause with the = and <> operators.
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• OPENC: Uses an order-preserving encryption scheme which allows processing com-
parison operations with the =, <>, <, <=, >, and >= operators.

• HMENC: Stands for homomorphic encryption and is usable with columns of the type
COUNTER or BCOUNTER. Uses the Paillier encryption scheme to process increment oper-
ations.

This design enables the system to support configurable privacy at the column level,
since the application developer is able to choose the best encryption technique for each
column. The ommission of the encryption annotation means that the column’s data will
not be encrypted. It may be the case that encryption is not necessary and there is no need
to pay the performance price.

A limitation of this design is that the user must be aware of the types of queries and
operations that will be performed on the data. By using a probabilistic encryption scheme
on a column, it will be impossible to process queries with a WHERE clause that filter on
that same column. If the requirements change, all columns need to be encrypted again
somehow.

6.2.1 Query rewriter

The query rewriter is responsible for encrypting any data that will be stored, or used in an
operation with a column that was marked as encrypted during the schema definition. To
encrypt data, the query rewriter must know the correct encryption scheme of each column,
which is achieved by requesting metadata to the server. The metadata table stores multiple
attributes that describes tables and columns, among this information is the encryption
scheme of each column. The metadata table is populated by the AQL server module upon
the table creation.

SQL commands must be rewritten in the following cases:

• In CREATE statements with a DEFAULT clause, the default values must be encrypted if
their associated column is encrypted.

• All values in INSERT statements must be encrypted accordingly.

• New values in UPDATE statements must be encrypted accordingly. Also any value
that goes in the optional WHERE clause and is used in a comparison with an encrypted
column.

• In SELECT statements with a WHERE clause, values that will be used in a comparison
with an encrypted column must be encrypted accordingly. The response from the
server will also have to be decrypted when it arrives.
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6.2.2 Indexing system

A database index allows, generally, to process queries faster, and is a common tool used
by application developers to improve the performance of their system. AQL supports
both primary and secondary indexes, implemented as native AntidoteDB operation-based
CRDTs. Each table has a corresponding primary index, and secondary indexes are only
created if the corresponding create index statement is executed.

Seeing that the indexing system plays a major role in query performance, it is impor-
tant to make sure that this mechanism is still available to application developers even
when the indexed table data is encrypted.

Both the primary and secondary index CRDTs are designed around two data structures,
a sorted set and an index tree. Both need to support lookup and range operations, which
means that primary key columns and any other column that is going to be indexed, must
be encrypted with OPENC, or not be encrypted at all. The index consistency is only ensured
if the underlying data allows equality and range comparisons to be performed.

6.2.3 Modifications to the AQL module

Most of the work required to support secure queries is done by the client library, our
design requires only one modification to the server side AQL module.

AQL saves each column value in a single AntidoteDB object, a CRDT, whose data
type is related to the AQL column type. The fact that some column values may now be
encrypted, requires changing the mapping of AQL column type to CRDT data type.

AQL supports four data types: VARCHAR, INTEGER, BOOLEAN, and COUNTER_INT; table 6.1
shows how each AQL data type is mapped to CRDTs, when the column data is not en-
crypted, and SCRDTs when the column data is encrypted.

In all but one case, it is simply a matter of using the secure version of the CRDT, e.g.,
if the column type is VARCHAR, we use a register CRDT when data is not encrypted, and
a register SCRDT when data is encrypted. The only exception is the BOOLEAN data type,
where the plaintext version uses the flag CRDT, and the encrypted version uses a register
CRDT since there is no secure counterpart of the flag CRDT.

Table 6.1: Mapping of AQL data types to CRDTs and SCRDTs. The data type COUNTER_INT is
mapped to the bounded counter CRDT/SCRDT only when the column is declared with check
constraints in the database schema.

AQL Data Type CRDT SCRDT

VARCHAR Register Register

INTEGER Register Register

BOOLEAN Flag Register

COUNTER_INT
Counter Counter

Bounded counter Bounded counter
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Note that the COUNTER_INT data type can be mapped to two different CRDTs, counter or
bounded counter. By default, the counter CRDT is used, the only instance the COUNTER_INT
data type is mapped to the bounded counter CRDT is when the column is declared with
check constraints. E.g., AQL will map the views column to a bounded counter SCRDT
when using the CREATE statement listed in figure 6.4.

CREATE UPDATE-WINS TABLE foo (

id INTEGER PRIMARY KEY,

views COUNTER_INT HMENC CHECK (views > 0)

);

Figure 6.4: Example case where the COUNTER_INT data type ismapped to a bounded counter SCRDT.

6.3 Summary

This chapter started with a light description of AQL’s architecture. Implemented as a
module on top of AntidoteDB, AQL enables applications to interface with the AntidoteDB
key-value store using SQL-like statements.

We end the chapter by describing the design and implementation of a solution that
enables securing AQL with configurable privacy at the column level.

The implementation of the work described in this chapter is available on GitHub.1,2

1AQL secure client library: https://github.com/mrshankly/aqlc
2AQL server module: https://github.com/mrshankly/secure-aql
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7
AQL experimental evaluation

This chapter presents an experimental evaluation of the secure AQL prototype described in
the previous chapter. The presented analysis tries to assess the performance and scalability
cost of supporting configurable privacy in AQL.

7.1 Setup

The experiments were run on the Microsoft Azure cloud computing service using two
types of machines. Two E8-2s v3 machines were used as servers, and four F32s v2 ma-
chines were used to ran multiple clients in parallel. The specifications of each machine
are presented in table 7.1.

Table 7.1: Specifications of the Microsoft Azure machines.

Machine vCPUs RAM Temporary Storage

E8-2s v3 (servers) 2 64 GiB 128 GiB

F32s v2 (clients) 32 64 GiB 256 GiB

The E8-4s v3 machines belong to the memory optimized family of virtual machines
(VM), while the F32s v2 machines belong to the compute optimized family of VMs.

7.2 Benchmark

We perform benchmarks in three different configurations: (NO-ENC) a system where data
is not encrypted; (SOME-ENC) a system where some data is encrypted (data belonging to
indexed columns is not encrypted); (ALL-ENC) a system where all columns are encrypted,
including indexed columns. In the first configuration, where data is not encrypted, the
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client library simply relays the query to the server and waits for a response, the query
rewriter module is never used. In the case of the second and third configurations, where
some or even all data is encrypted, the client library uses the query rewriter module. The
database model is shown in figure 7.1.

CREATE UPDATE-WINS TABLE one (

id INTEGER OPENC PRIMARY KEY,

name VARCHAR ENC,

age INTEGER ENC,

address VARCHAR DTENC,

email VARCHAR DTENC

);

CREATE UPDATE-WINS TABLE two (

id INTEGER OPENC PRIMARY KEY,

title VARCHAR ENC,

views COUNTER_INT HMENC

);

Figure 7.1: Database schema used for AQL benchmarks. The columns name, age, address, email,
title, and views are encrypted in the configurations SOME-ENC and ALL-ENC. The primary key
columns are encrypted only in the ALL-ENC configuration.

All configurations are evaluated in two different workloads, one without operations
that involve COUNTER_INT columns (we will call this workload NO-COUNTERS), the other
with operations that involve COUNTER_INT columns (wewill call this workload COUNTERS).
In total, there are seven possible operations:

• Select1: The select1 operation fetches data from table one. Basically a SELECT query
with a simple WHERE clause. This operation uses the encryption types ENC and DTENC,
and OPENC when indexed columns are encrypted.

• Select2: The select2 operation fetches data from table two. This operation uses
the encryption types ENC, DTENC and HMENC, and OPENC when indexed columns are
encrypted.

• Update1: Updates an existing record in table one. This operation uses the same
encryption types as the select1 operation.

• Update2: Updates an existing record in table two. This operation uses the same
encryption types as the select2 operation.

• Insert1: Performs an INSERT statement, adding a new row to table one. Uses the
same encryption types as the select1 operation.

• Insert2: Performs an INSERT statement, adding a new row to table two. Uses the
same encryption types as the select2 operation.
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• Delete: Performs a DELETE statement with a WHERE clause consisting in an equality
on the primary key column, deleting only a single record from a table. This delete
operation only uses the OPENC encryption type, and only when indexed columns are
encrypted.

The relative frequency of each operation is shown in table 7.2.

Table 7.2: Workloads used in the AQL benchmarks, showing the relative frequency of each oper-
ation.

Workload Select1 Select2 Update1 Update2 Insert1 Insert2 Delete

NO-COUNTERS 60% 0% 20% 0% 15% 0% 5%

COUNTERS 55% 5% 15% 5% 13% 2% 5%

Finally, we employ the same strategy as in the SCRDTs experiments, increase the
number of clients until we are able to saturate the servers. Each benchmark ran for 2
minutes, and prior to each run, all database tables are populated with 10000 records.

7.3 Results

The results of the benchmark using workload NO-COUNTERS are shown in figure 7.2, in
the form of a throughput-latency plot.
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Figure 7.2: Performance comparison of the different AQL versions using workload NO-
COUNTERS.

The SOME-ENC configuration is able to follow very closely the NO-ENC configura-
tion. This is expected, as SOME-ENC only uses standard probabilistic and deterministic
encryption schemes with relatively low performance overhead. In both configurations the
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server is saturated between the 1400 and 1500 operations per second. This shows that the
addition of the query rewriter module by itself does not result in a noticeable performance
overhead, as the cost can be mapped to the cost of the underlying encryption scheme.

The ALL-ENC configuration uses an order-preserving encryption scheme to encrypt
indexed columns, leading to a higher operational latency. The performance price is paid
mostly by the client, because even though it takes more clients to saturate the server, the
server is saturated at around 1250 operations per second, relatively close to the saturation
point of the NO-ENC and SOME-ENC configurations. The slightly lower throughput
value of the ALL-ENC configuration can be explained by the ciphertext expansion of data,
resulting in larger messages sent to the server and larger messages for the server to process.
The order-preserving encryption scheme we use is an implementation of the algorithm
proposed by Boldyreva et al. [15], which has an expansion ratio of 2, since ciphertexts are
always twice the size of plaintexts.

The results of the benchmark using workload COUNTERS are shown in figure 7.3.
As expected, the introduction of COUNTER_INT columns, encrypted with an homomorphic
encryption scheme, results in a higher performance overhead, and the SOME-ENC con-
figuration is unable to match the results of the NO-ENC configuration. In the NO-ENC
configuration the server is saturated at around 2000 operations per second, while in the
SOME-ENC configuration the server saturates at around 1600 operations per second.
The introduction of a small percentage of operations that make use of homomorphic
encryption results in a 20% reduction of the mean throughput. This result agrees with
the conclusion we reached in chapter 5, that homomorphic encryption is feasible when its
use is occasional, and beyond that, the performance penalty is prohibitive.
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Figure 7.3: Performance comparison of the different AQL versions using workload COUNTERS.

Regarding the ALL-ENC configuration, we can see that the results are similar to those
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observed in workload NO-COUNTERS. The overall system experiences an increase in op-
eration latency, with more clients being necessary to saturate the server. The performance
penalty is mostly paid by the client since the saturation point of the server is relatively
close to the saturation point observer when using the SOME-ENC configuration.

7.3.1 FMKe

Similarly to what we did in the experimental evaluation of SCRDTs, we intended to provide
a more realistic performance and scalability analysis of our AQL prototype by running the
FMKe benchmark. However, the obtained results do not allow us to provide such analysis.

The FMKe benchmark creates a few tables with a composite primary key, something
that AQL does not currently support. This by itself is not a problem, we can create such
tables by using a surrogate key, e.g., an integer column with an artificial value that has no
meaning attached to it. The problem is that by doing that we lose the index, and we cannot
create a secondary index on the appropriate columns, because AQL does not currently
support indexes with composite keys.

These tables are used to save relations between medical prescriptions and multiple
other entities, such as patients, pharmacies, and medical staff. Since the benchmark
revolves around medical prescriptions, these tables are constantly being queried, and
without the appropriate index, queries can take more than half a second to be processed.
The throughput of the overall system quickly deteriorates after running the benchmark
for only a few seconds, eventually reaching values of less than 10 operations per sec-
ond. Figure 7.4 shows the throughput evolution of the system throughout a 10 minute
benchmark.
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Figure 7.4: Throughput of AQL throughout the FMKe benchmark.

With the server being completely saturated in just a few seconds, we were not able to
perform any kind of comparison between a regular and secure version of AQL.

7.4 Summary

This chapter presented an experimental evaluation of our AQLprototypewith configurable
privacy. We focused on three different configurations: the first one, used as a base line, a
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database where data is not encrypted; a second setup, where all but the indexed columns
are encrypted; and finally the third one, a database where all data is encrypted. Each
configuration ran two types of workloads, one without COUNTER_INT columns, and one
with COUNTER_INT columns. With these two workloads we tried to assess the performance
penalty of using an homomorphic encryption scheme.

With these experiments, our intent is to show that an application developer can choose
between multiple degrees of privacy-preserving settings, with different advantages and
disadvantages. From the obtained results we observed that a system can provide some
level of privacy with a very small performance penalty if it only makes use of standard
encryption schemes. Regarding the use of homomorphic encryption schemes, although
expensive, they should not be ruled out, as they might still be an appropriate solution
for systems that wish to increase their privacy and confidentiality at the cost of some
performance.

Securing indexed columns results in a slight increase of operational latency to the
clients. However, the server only experiences a small performance decrease, as our experi-
ments show that the saturation point remained relatively close to one in a system where
indexed columns are left unprotected.
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8
Conclusion

This thesis proposes to implement a scalable, highly available, and geo-replicated privacy-
preserving key-value store. To this end, we show that by leveraging cryptographic schemes
and existing CRDT designs, it is possible to achieve secure, privacy-preserving, and se-
mantically correct CRDTs. Our work also demonstrates how these secure CRDTs can be
used to improve the security and privacy of an SQL interface for a NoSQL database, where
the underlying data objects are represented by CRDTs.

We offer a detailed discussion of our implementation of SCRDTs in the distributed
key-value store, AntidoteDB. We detail the modifications required to client libraries and
the server itself, as well as the differences and potential caveats compared to the regular,
unmodified version. Additionally, we demonstrate how we modified AQL to support rich
queries with customizable security and privacy levels.

Our experiments show that SCRDTs that use standard cryptographic schemes result in
a small, to moderate performance overhead, but with the upside of significantly improving
the privacy and confidentiality of the system. However, constructions that make use of
more novel cryptographic schemes significantly deteriorate the system performance.

Despite the fact that not all SCRDT constructions are optimal performance-wise, we
show that our prototype is a viable solution in some real-world scenarios. We run our
prototype with the FMKe benchmark, simulating the access patterns of a production
system used in the health care industry. Results show that our solution is relatively close
to the insecure counterpart in terms of performance, and that the scalability of the system
is not affected.

Regarding AQL, our experiments show that our solution is capable of accommodat-
ing varying levels of privacy with a performance overhead proportional to that of the
underlying cryptographic schemes. Even in the case of a database where all the data is
encrypted, the server saturation point remains relatively close to that of systems where a
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more relaxed privacy setting is used.

8.1 Future work

For future work we suggest looking into AQL’s indexing mechanism. As we described in
the experimental evaluation chapter, we were unable to run the FMKe benchmark because
of the lack of composite key indexes. These types of indexes are an important mechanism
that real world applications regularly use to improve their performance.

We believe index performance can be further improved by looking into better encryp-
tion schemes, instead of using order-preserving encryption (OPE), future work should
consider order-revealing encryption (ORE). Compared to OPE, ORE is more secure, does
not expand the ciphertext size by a significant amount, and is generally more efficient.

Another venue to pursue is the use of searchable encryption, which should allow the
database to support operators such as LIKE in a secure manner.

8.2 Publications

Part of the results originated from this thesis have been accepted for publication:

• Secure Conflict-free Replicated Data Types. Manuel Barbosa, Bernardo Ferreira,
João Marques, Bernardo Portela and Nuno Preguiça. In proceedings of the 22nd
International Conference on Distributed Computing and Networking. ICDCN 2021.
January 2021.
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