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Abstract

White lupin, Lupinus albus L., is a legume used for human and animal feed. It usually

grows and is cultivated in the Mediterranean and the Middle East. It is rich in proteins,

fibers, and carbohydrates and can replace soy consumption while decreasing soy imports

in Europe. White lupin has a high content of alkaloids, which gives it a bitter taste while

making it toxic to humans and animals. Lupin requires a pre-treatment that consists of

cooking the lupin, followed by successive washes with water.

The present work studied an alternative green method of extracting lupin alkaloids,

intending to reduce water consumption. Extraction with subcritical water was the method

chosen, in a batch reactor, with pressurized water to remain in a liquid state. The four

parameters studied were temperature (between 100 and 140 ºC), solvent-to-solid ratio

(20:1 and 40:1), simple extraction, or two successive extractions, and particle size. The

white lupin seeds were crushed (particle sizes between 0.5 and 1 mm) and chemically

characterized, presenting 31.5% protein, 37% carbohydrates, and 9% lipids. In the extrac-

tion studies with the lupin powder, the temperature was the parameter with the greatest

impact on the remaining alkaloids content, followed by the solvent-to-solid ratio.

The best result was obtained at 100 ºC with a solvent-to-solid ratio of 20:1, leading

to the extraction of 71% lupanine from the lupin. Other components were co-extracted,

namely carbohydrates (7 g/100 g of lupin) and protein (5 g/100 g of lupin). At these

conditions, 23.7 g/100 g lupin of protein out of 31.5 g/100 g lupin remained in the lupin

residue. These extraction conditions also allowed 27.8 g/100 g lupin of carbohydrates

out of 37.0 g/100 g lupin to remain in the matrix. Successive extractions at 100 ºC and

a 20:1 solvent-to-solid ratio with both lupin powder and whole lupin seeds showed that

the second extraction barely enhanced the extraction yield of lupanine.

Keywords: White lupin, Lupinus albus L., Debittering, Alkaloids, Lupanine, Subcritical

Water.
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Resumo

O tremoço-branco, Lupinus albus L., é uma leguminosa usada para alimentação humana

e animal. Geralmente, cresce e é cultivado no Mediterrâneo e no Médio Oriente. Rico

em proteínas, fibras e hidratos de carbono, pode substituir o consumo de soja enquanto

diminui as importações desta na Europa. O tremoço-branco tem alto teor de alcaloides, o

que lhe confere um sabor amargo, ao mesmo tempo que o torna tóxico para o consumo

humano e animal. O tremoço requer um pré-tratamento que consiste em cozer o tremoço,

seguido de lavagens sucessivas com água.

O presente trabalho estudou um método alternativo verde de extração de alcaloides

do tremoço, com o objetivo de reduzir o consumo de água. A extração com água sub-

crítica foi o método escolhido, em reator descontínuo, com a água pressurizada para a

fazer permanecer no estado líquido. Os quatro parâmetros estudados foram temperatura

(entre 100 e 140 ºC), razão sólido-solvente (1:20 e 1:40), extração simples ou duas extra-

ções sucessivas e tamanho de partícula. As sementes de tremoço-branco foram trituradas

(granulometria entre 0.5 e 1 mm) e caracterizadas quimicamente, apresentando 31.5% de

proteína, 37% de hidratos de carbono e 9% de lípidos. Nos estudos de extração com a fari-

nha de tremoço, a temperatura foi o parâmetro com maior impacto no teor de alcaloides

remanescentes, seguido pela razão sólido-solvente.

O melhor resultado foi obtido a 100 ºC com razão sólido-solvente de 1:20, levando

à extração de 71% da lupanina do tremoço. Outros componentes foram extraídos em

simultâneo, nomeadamente hidratos de carbono (7 g/100 g de tremoço) e proteínas (5

g/100 g de tremoço). Nestas condições, 23.7 g/100 g de tremoço de proteína do total

de 31.5 g/100 g de tremoço permaneceram no resíduo de tremoço. Essas condições de

extração também permitiram que 27.8 g/100 g de hidratos de carbono do total de 37.0

g/100 g de tremoço permanecessem na matriz. Extrações sucessivas a 100 ºC e uma razão

sólido-solvente de 1:20 com a farinha de tremoço e o tremoço inteiro mostraram que a

segunda extração pouco melhorou o rendimento de extração do tremoço.

Palavras-chave: Tremoço-branco, Lupinus albus L., Processo de Lavagem, Alcaloides, Lu-

panina, Água Subcrítica.
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1
Introduction

Lupin is a legume that has been used as human and animal nutrition for many years. It

is known in different cultures but mainly in the Mediterranean area and the Middle East.

It has many health advantages, great nutritional value, and it also is excellent for soils.

White lupin has been used for consumption and medical purposes for many years.

It is considered an excellent substitute for soybean in Europe, as it is a protein source

homegrown crop and can decrease carbon footprint due to soy importation. Also, due to

the world supply-demand by the increasing world population, soybean agriculture has

been responsible for many deforestations and natural habitat displacement, mainly in

South America.[1], [2]

Lupin seeds are considered toxic due to alkaloids’ presence, and it is imperative to

remove them before consumption. This process is known for its extensive water and time

consumption. After debittering lupin seeds are regarded as an important food source due

to their protein, fiber, carbohydrates, and oil contents.

The introduction chapter refers to concepts and previous works related to the theme

of this thesis.

The first subchapter gives insight into the types of lupins, the particular importance

of Lupinus albus L., its lignocellulosic composition, nutritional values, food applications,

and health benefits. It is mentioned the importance of the use of lupin as a soy substitute.

The second subchapter introduces alkaloids, with a major reference to quinolizidine

alkaloids (QAs) and their toxicity. It also includes various ways to debitter lupin, making

it safer for consumption while showing their advantages/disadvantages.

The last section discusses subcritical water extraction as an alternative green method

and the possibility of the debittering of L. albus L. using subcritical water. This will be the

subject of study in this work as a possible solution to the massive waste of water, making

this method advantageous because of its low environmental impact.
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CHAPTER 1. INTRODUCTION

1.1 White lupin (Lupinus albus L.)

Lupin, a common name for the genus Lupinus plants, is a non-starch legume, and a source

of protein and dietary fiber.[3] L. albus L. belongs to the Leguminosae family, and due to its

high nutritional value, namely high protein and oil content, it is comparable to soybean.

It is used as human and animal feed, as well as green manure. As a crop, it can fight soil

erosion and improve soil quality by accumulating nitrogen and phosphorous (P).[4]–[7]

The seeds of white lupin contain 33 to 47% protein, and the oil content varies from

6 to 13%, mostly including a high concentration of polyunsaturated fatty acids.[8] The

seed casing, being 18% of seed weight, is an important source of polysaccharides. These

are located in the cell walls, and their main components are sugar units of galactose and

arabinose, as well as uronic acid. The storage sugars, mainly fibers, have a great water

holding capacity and nutritional values. These fibers can be used in the food industry.[6],

[8], [9]

Lupin seed contains substantial quantities of health-promoting agents such as pheno-

lic compounds, tocopherols, phytosterols, and squalene.[3] Phenolic compounds, such as

flavones, isoflavones, and phenolic acids, are bioactive compounds present in lupin seeds

responsible for their antioxidant activity. Also, antibacterial and antimutagenic activities

of these phenolic compounds have been confirmed. However, phenolic compounds of

lupin seeds have not yet been studied comprehensively.[3]

The lupin production is lower than that of many other protein plant ingredients being

2 million tons produced per year.[4], [10] The lupin market has great potential in the

Western European countries, both on-farm and industrial use.[8]

Since the beginning of the century, lupin seeds from L. albus. L. have been introduced

in the European markets since they wildly grow there. The seeds, high in quinolizidine

alkaloids content, have traditionally been consumed as a snack food in Southern Europe

and the Middle East, after debittering, to remove the alkaloids.[3], [4]

Worldwide, there are ca. 450 species of lupin, all containing QAs. About 12 of

these species occur in Asia, Africa, the American continent, and Europe, where only a

few species are considered edible, such as Lupinus albus L. (white lupin) and Lupinus
angustifolius L. (narrow-leaved lupin).[4], [6], [11]

Just four of these species are domesticated and relevant for agriculture. L. albus L. is

one of these. It has been known since the Late Neolithic period, probably cultivated dur-

ing the Bronze Age in Greece, Cyprus, and Egypt.[6] In addition to Lupinus albus L., used

in Europe, edible and domesticated lupin species include narrow-leaved lupin, Lupinus
angustifolius L., from Australia, the pearl lupin, Lupinus mutabilis Sweet L., consumed in

South America, and yellow lupin, Lupinus luteus L.

Until now, the majority of the food products have been based on L. albus L. An

increase in L. angustifolius use is being seen because of the resistance of this species to

anthracnose.[12] All of these are enlisted in the EU Novel Food Catalogue as of 2008.[4]

Lupin seeds from white lupin are used as feed for pigs, beef cattle, dairy cows, chicken,

2



1.1. WHITE LUPIN (LUPINUS ALBUS L.)

Figure 1.1: The four edible types of lupin, their plants, and seeds morphology.[13]

and sheep.[4] The four above mentioned edible species of lupin have also been used in

aquaculture.[14] Plant-derived proteins have been used in aquafeeds for decades due to

their nutritional values suitable for fish, being readily available on the global market,

and their competitive prices compared to fish meal. The most used plant is soybean

meal and its derivatives.[15] Many companies in Europe have shown interest in white

lupin for its protein and fiber content. Besides the high protein content of lupin, there

lies the significant nutritional value in fatty acid content, tocopherols, and low content of

antinutritional factors, which are species that can inhibit the absorption of many essential

nutrients.[12] Many food products have been produced and commercialized, such as

pasta, bread, biscuits, muffins, crackers, etc., and also meat substitutes. An alternative

to soybean food products is using lupin to substitute soybean sausages, ground beef, soy

milk, and Asian fermented foods like tempe and miso.[4], [5], [11], [16] White lupin can

substitute animal and plant proteins or even cereal flours.[5], [11]

In the last decades, genotypes of Lupinus albus and Lupinus angustifolius low on al-

kaloids have been selected and commercialized. Their genotypes present less than 1500

mg alkaloids/kg lupin (semi-bitter), semi-sweet varieties containing less than 500 mg

alkaloids/kg lupin, or even sweet accounting for less than 200 mg alkaloids/kg lupin.[12]

Bitter varieties of lupin have a total content of equal or more than 10,000 mg alkaloids/kg

lupin.[4]

In the semi-bitter and sweet cultivars, lupanine is the most abundant alkaloid. How-

ever, it is complemented by generous amounts of albine, angustifoline, 13α-hydroxylupa-

nine, and 13α-angeloyloxy-lupanine having, in some cases, trace amounts ofα-isolupanine

3



CHAPTER 1. INTRODUCTION

and 13α-tigloyloxylupanine. In these seeds, the biosynthetic cut of the lupanine pathway

prefers the production of minor alkaloids. In the bitter seeds, as in white lupin seeds, the

percentage of lupanine is so high that it may reach almost 100%.[12]

Due to the presence of QAs, Lupinus acquire a bitter taste that must be removed before

consumption.[5] Getting it ready for human consumption implies further treatment to

remove the excess of QAs. This way, wild lupin seeds require pretreatment to ensure food

safety while ensuring its antioxidant activity intake.[3]

1.1.1 Lignocellulosic matter in agro-food

Agro-food comprises lignocellulose, which is a compact, partially crystalline matrix. It

consists of cellulose, hemicellulose, and lignin.[17] Lignocellulosic feedstocks are also a

source of protein and lipids, which together with a high content in dietary fiber led to

their integration into animal feed.[18]

Cellulose is the principal component of plant cell walls. It is a linear homopolymer

of glucose units. It is mostly crystalline, for it shows excellent resistance to enzymatic

hydrolysis. As for hemicellulose, it has a heterogeneous and easily hydrolyzable structure.

This heteropolymer is made of sugar units of xylose, mannose, glucose, and galactose.

Its composition differs from plant to plant, and it is what connects lignin and cellulose

fibers. Lignin is an aromatic heteropolymer containing three building blocks. It has

developed resistance to chemical and enzymatic degradation, compared to hemicellulose

and cellulose.[17], [19]

Biomass can be fractionated into different useful streams to fully utilize its carbon

content instead of being completely degraded as seen in composting or use in animal feed.

There are many applications of the constituents of biomass [18]:

• Prebiotics originated from the hemicellulose oligomers,

• Upscale materials based on cellulose fibers and lignin,

• Edible oils,

• Meat protein alternatives, particularly in our study.

The most used techniques to depolymerize/hydrolyze lignocellulosic structures are

acid, alkaline, or enzymatic treatment. Still, all of them show setbacks in sugar degrada-

tion, corrosion problems, long processing times, and cost increase.[18]

1.1.2 Nutritional importance

According to Carmali [5], Lupinus usually contains 36-52% protein, 5-20% oil, and 30-

40% fiber. QAs quantity varies from 1.9% to 2.7%, depending on the plant sample. The

oil composition is similar to most edible oils, but L. albus L. presents oils derived from

erucic acid.

4



1.1. WHITE LUPIN (LUPINUS ALBUS L.)

Figure 1.2: Chemical composition of different species of protein plants. All values g/kg
DM (dry matter).[20]

According to Figure 1.2, the white lupin kernel meal is characterized by having ca.

8% humidity, 45% protein, 14% lipids, and carbohydrates account for around 40%. The

amount of lipids in protein plants differs according to the source. Full-fat soybean meal

has a more significant lipid content than the other protein plant meals. Most lupin kernels

have lower content in lipids (<100 g/kg) than other plants, like rapeseed.

1.1.3 Soybean substitute

Interest in plant foods has increased due to their environmental sustainability and great

health welfares. Other than soybeans, which still are the most used and cheapest legumes

available, others have gained importance in preparing dairy-free, gluten-free, and meat-

free products.[12]

One of the largest plant protein meals and feed ingredient resources in the world are

soybean meals. In 2011, around 177 million tons per year of soybean were available.[20]
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In the 2019-2020 period, world production accounted for about 337 million tons.[21]

With the increase in the exploitation of human and animal feed of soybean derivatives,

the global market price has increased from 2000 to 2018. On the other hand, the global

soybean production increase has made deforestation an issue and has displaced other

food production systems in tropical and sub-tropic nations.[15]

Worldwide, soybean is the most produced and used plant protein source in aqua-

culture diet formulations for various species. Nevertheless, other plant protein sources

like lupins, field peas, and rapeseed meals have shown potential in aquaculture feed

ingredients.[20]

Even in colder temperate climates like northern Europe, lupin crops have grown in

importance in regional agriculture. With this lupin meal potential, the dependence on

imported soybean meal in aquaculture decreases. White lupin can substitute 25% of soy

protein concentrate in carp diets. This substitution still allows for growth performance,

body composition, feed utilization, and physiological status. This way, the use of lupin

in aquafeeds meals can help prevent the global soybean demand in aquacultures and,

therefore, decrease the environmental impact due to its production like deforestation.

Consequently, the greenhouse gas emission drops, and the environmental impact such as

deforestation diminishes as well.[15]

Even though lupin can be seen as an alternative to soybean in many ways – high

protein content, digestible protein, soluble and non-soluble non-starch polysaccharides,

which prevent digestion [15], and energy values – lupin contains toxic and bitter QAs and

this is one of the reasons why soy production is still so much higher. But by removing

such QAs by boiling and soaking in water, its use has been increasing.[12]

In Tunisia, and Europe in general, there is a significant dependence on imported

soybean, and it is imperative to find an alternative in local sources. The Lupinus species

can be a great alternative.[6], [22]

1.1.4 Cultivars

There are no significant differences between wild and cultivated lupin seeds, while there

are some differences between the wild genotypes. The phenolic compound content of

both wild and cultivated L. albus L. seed extracts was shown to be similar, as well as

protein content.[3]

To accomplish some cellular processes like energy metabolism and signal transduc-

tion, phosphorous is an essential element. Even though it is abundant in the farm fields,

it is often unavailable for crops as a result of its low solubility, making this a significant

constraint in the production of the crop. Some plants have developed mechanisms of

adaption by altering their roots architecture or biochemical processes. L. albus L. is one of

the plant species that is P-deficient tolerant, and it is adaptive to a P stress environment.

While there is P deficiency, the roots of white lupin are developed laterally with hairs,

making them increase in surface area and dissolve the phosphorous better.[23]–[25]
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1.2. ALKALOIDS

When white lupin is intercropped with wheat, it has been seen improvements in

wheat shoot growth and shoot phosphorous uptake without affecting its development

and nutrition. This can be explained by the aptitude of the lupins to form cluster roots

due to phosphorous starvation.[6] These cultivars seen their fertilizer utilization reduced

due to the lupin’s ability to undertake nitrogen from the air because of the symbiosis

between nitrogen-fixing bacteria on the roots and lupins.[4]

The nutritional value of lupin depends greatly on the origin, species, regions, and

processing steps.[14]

1.1.5 Health benefits

A wide range of effects is seen in one or more components of the living tissues of bioactive

compounds. The latter is naturally sourced like plants, algae, foods, by-products, or even

synthetic products. Bioactive compounds, such as phenolics, have shown a major positive

impact on human health and wellbeing.[26], [27]

In vivo and in vitro studies revealed that adding lupin seeds powder or lupin-based

processed foods to diets reduces the threat of diabetes, obesity, bowel dysfunction, and

hypertension. Significant differences can be observed among wild and cultivated edible

plant varieties. With this, phenolic compound quantities and antioxidant potency vary

with species and cultivar of lupin.[3]

Lupin has been investigated because of its chemical composition and potential in

preventing lipid disorders. It is one of the highest protein content plants and a good

source of fibers, making it suitable for consumption.[28]

Fontanari [28] studied the whole lupin and protein isolate potential in reducing total

cholesterol and plasma non-HDL cholesterol. The protein content of the lupin has a sig-

nificant impact on this reduction. They also showed a hepatoprotective effect, inhibiting

the accumulation of fats in the organism.

Experiments on animals, or clinical trials, have demonstrated that lupin has great

health potential:

• Anti-atherogenic,

• Hypotensive,

• Hypoglycaemic activity,

• Hypocholesteroaemic.

1.2 Alkaloids

Murphy [29] defined alkaloids as: "Any of the complex nitrogen-containing heterocyclic

organic compounds, mainly of plant origin, with potent pharmacological properties in
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humans". Due to environmental and genetic diversities, the alkaloid composition of

Lupinus varies.[5]

For some plants to defend themselves against predator attacks, they develop some

biologically active substances.[30] These substances are a chemical defense mechanism

for plants. They can be found in different plant species. They are diverse and vary in

concentration from plant to plant.[20], [31] There are several bioactive substances with

likely toxic effects on humans, mainly naming the quinolizidine alkaloids present in lupin

seeds.[4]

Alkaloids are a kind of antinutritional factor. They can be bicyclic, tricyclic, or tetra-

cyclic derivatives of the quinolizidine. The alkaloids are more frequently found in peas

and beans, but high levels are found in some lupins. In terms of commercial values, the

number of alkaloids present must never exceed 200 mg/kg.[20]

There are many groups of alkaloids, for instance, pyridine, quinolone, isoquinoline,

indole, quinazoline, and many more. They can be divided into groups: true-alkaloids,

proto-alkaloids, pseudo-alkaloids, peptides, cyclopeptide alkaloids, and more.

Even though most alkaloids are poisonous in large quantities or are pharmacologically

active, they are often consumed daily in foods. When consuming cocoa beans, coffee, and

tea leaves, there is ingestion of alkaloids like theophylline, caffeine, and theobromine.[31]

Alkaloids have been explored for their pharmacological properties. Around 10% of

plant species produce alkaloids as a secondary metabolite wherein the primary func-

tion is to defend against pathogens and herbivores. And although other organisms can

make alkaloids, these species are often isolated from plants and are useful as pure com-

pounds.[29], [30]

Different approaches are made to make sweet Lupinus. There is a bacterial removal

process in the literature to remove the alkaloids but it has not been implemented in

the industry.[32] Another way is the cultivation of low-alkaloid content species, which

makes the debittering process obsolete. However, this approach is more likely to happen

in places where Lupinus is not endemic, such as Australia and Eastern Europe. As the

sweetness of the Lupinus is a recessive genetic characteristic, this approach is not viable

for areas where it is spontaneous.[5]

1.2.1 Quinolizidine alkaloids

Lupanine is a quinolizidine alkaloid with a symmetric structure, making it a good starting

material for other alkaloids’ semisynthesis. It is also presented as a high blood pressure

reducer and hyperglycemia agent. This way, the recovery of lupanine from the leaching

waters is an excellent area of interest.

L. albus L. leaching waters are full of QAs, mostly lupanine, an alkaloid containing a

quinolizidine nucleus. Biosynthesis of this QA is still not fully implemented due to the

number of steps that have to be done for the nucleus formation, and the overall yield is

too low.[5]
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Figure 1.3: Enantiomeric forms of Lupanine.[5]

Alkaloid biosynthesis has gained a lot of interest since plants naturally produce great

complex mixtures of alkaloids. The desirable types are in low concentrations making

the production of the desirable alkaloids expensive. Alkaloids have been extracted and

isolated from crude extracts from plants for many millennia as the folk medications’ pri-

mary goal. However, pure and isolated alkaloids have been produced since the twentieth

century as fine chemicals. Such alkaloids represent high complexity molecules, making

them very hard to create by applying chemical synthesis, making crude plant extraction

the most economical strategy.

With the improvement of plants’ genetic manipulation, studies have been done fo-

cusing on the alkaloid engineering biosynthesis. This is made by generating transgenic

plants or cell lines that can overproduce specific alkaloids or even inhibit undesirable

ones’ production.[29]

1.2.2 Quinolizidine alkaloids toxicity and debittering

The toxicity of lupin affects humans, especially children. The LD50 values for the QAs in-

gestion in rats go from 1,700 to 2,300 mg/kg of body weight, while in humans, according

to toxicity observed, it is estimated that this number is two orders of magnitude lower.

Toxicity studies in animals have shown decreased body weight and reduction of food

intake.

The ingestion of lupin with alkaloids caused American calves deficiency during preg-

nancy if ingested by the mother and in Australia’s lambs. Lupin used as food can cause

allergies, mycotoxins, and high manganese content, which is not linked to alkaloids.[4]

Consuming white lupin with alkaloids can lead to respiratory problems and liver

damage.[33]

It is imperative to remove the QAs before safely consuming the lupin. This is possible

by cooking the seeds, following soaking that includes daily renewal and water disposal. It

has been introduced varieties of sweet lupin in Europe since the ’90s for consumption, but

there are issues dealing with these kinds of low QAs lupin.[4] Most of the lupin alkaloids

are water-soluble. Traditionally, they are soaked in running water, brined, or scalded

to decrease alkaloids’ content from 0.5 - 4% to 0.04%. When this legume is no longer
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considered toxic, it is a great waste of potable water.[33] Usually, the QAs content of the

wild bitter genotypes is above the consumption limit, being up to 2.7 mg/100 mg of dry

matter.[3]

There are different methods to debitter lupin seeds, such as cooking/soaking with

aqueous, acid, and alkaline thermal processes. Cooking and soaking in water have been

the most used and effective process. For this purpose, lupin seeds were boiled in water

with a 3:1 (water:seed) ratio for 75 minutes. After boiling the seeds, three possible treat-

ments can proceed (Table 1.1) which shows the tremendous effort and amount of water

that is put into the traditional debittering process.[11], [34]

Table 1.1: Traditional debittering processes of lupin.

Traditional debittering processes

Procedure Temperature (°C) Time (h) Renewal (h)

Standard aqueous 25 ºC 144 12
Thermal aqueous 55-60 ºC 144 12

0.5% sodium bicarbonate solution 25 ºC 144 12

Even though sweet lupin has been made to prevent the content of alkaloids in the

plant, it is proven that they infer an important resistance to pathogens, which makes the

plant more susceptible to diseases, and to make it successful cultivation it is imperative

the use of pesticides. To not cause environmental problems, pesticides are frowned upon

since they pollute the waters and soils.[3], [35]

1.2.3 Alkaloids extraction and quantification methods

In the laboratory, the method of extraction of alkaloids was first studied by Muzquiz [36]

in 1993 and reapplied by Muzquiz [35] in 1994. The lupin seed was finely milled, ho-

mogenized with trichloroacetic acid. After centrifugation, sodium hydroxide was added.

The alkaloids were extracted with dichloromethane, dried off, dissolved in methanol, and

added codeine solution.

In 2007, the extraction was replicated with some changes in the solvents used. First,

the material was homogenized in hydrochloric acid. After centrifugation, the pH was

adjusted with ammonium hydroxide. A solid extraction was carried out using an Isolute

column. The alkaloids were then eluted with dichloromethane, and the solvent evapo-

rated in a vacuum. The analysis of the quantification of the alkaloids was done with a

GC-MS (capillary gas chromatography-mass spectrometry) apparatus.[37] These meth-

ods use non-environmental friendly organic solvents, take a long time to extract, and

there can be found organic solvent residues in the desired products.[38]

There are analytical methods to quantify alkaloids, such as TLC (Thin Layer Chro-

matography), gas chromatography equipped with flame ionization detector (GC-FID) or a
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mass spectrometer (GC-MS), HPLC (High-Performance Liquid Chromatography) or with

NACE (Non-aqueous Capillary Electrophoresis) comprising UV or MS detection.[11]

FID is the most used gas chromatography detection method and can analyze a wide

range of components from hydrocarbons to fatty acids, responding to pretty much all

organic compounds. It is more sensitive, reliable, and reproducible than an MS detector.

FID is also cheaper and easier to operate. While the MS detector has a lower LOD (limit

of detection), GC-FID shows less deviation in reproducibility.[39]–[41]

1.3 Subcritical water

Subcritical fluid extraction technology is one of those methods of green extraction tech-

niques.[26]

Subcritical water extraction (SBW) allows the recovery of health-promoting com-

pounds present in many plants and other natural matrices. This technique and supercrit-

ical carbon dioxide extraction are considered economical and efficient ways to recover

compounds without compromising the extracted products, or residue, quality, through

control of experimental parameters. Both of these methods have a low environmental

impact.[26], [42]–[44]

In the literature, water at elevated temperatures and pressures find different termi-

nologies. In supercritical water, the definition well establishes that water is above its

critical point (374 ºC e 22.1 MPa).[45] As for subcritical water, the concept is less defined.

The most used term can be HCW or SBW, which shows water above 100 ºC, or 150 ºC,

depending on the source, and different pressures to remain in the liquid state at these

conditions.[3], [17], [46], [47]

Technically, subcritical water is not a defined physical state, as we can see in Figure 1.4.

It is water below the critical point and above the triple point.[46]

In SBW extraction, there are main process parameters, among which temperature,

solvent to solid ratio, particle size, extraction time, but also mixing, pressure, and flow

rate in the case of semi-continuous processes.[26]

Temperature is a very important parameter because as temperature increases, SBW

becomes more than an extraction solvent, being able to promote catalysis. This happens

because the ionic product of water (Kw) increases, namely by three orders of magnitude

as the temperature increases from 25 ºC to 300 ºC. Higher concentrations ofH+ andOH−

ions make the water become a reagent, as well as a solvent. Therefore, ionic reactions are

triggered.[46], [48], [49]

On the other hand, the dielectric constant of water decreases with temperature be-

cause of the breaking of hydrogen bonds.[27], [50] As a consequence, nonpolar com-

pounds, as in fats and lipids, have their solubility in SBW increase with the increase in

temperature and the decrease of the dielectric constant.[46], [49], [51]

The properties of water change according to the different regions of temperature, as

seen in Figure 1.5.[46]
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Figure 1.4: Phase diagram of water.[46]

Figure 1.5: Chemical and physical properties of water at different temperatures.[46]
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Temperature affects reaction kinetics and equilibrium and is therefore a key variable.

On the other hand, most of the SBW physical properties are not dependent on pressure.

SBW has a lower viscosity and lower surface tension than water at ambient conditions,

improving mass transfer to and from solid matrices.

An optimal solvent to solid ratio can maintain the concentration gradient between the

bulk solvent and the sample matrix during extraction.[26]

The extraction time varies according to the extraction temperature, nature of the mate-

rial, mode of extraction, and target compounds. Yields of extraction can first increase with

time and then decrease because of the decomposition of previously extracted compounds.

Collecting samples at fixed intervals could assist in understanding the composition of the

extract with time.

The particle size of the sample is an essential factor for the smaller it is, the higher the

contact surface area between solvent and solute, leading to a higher yield of extraction.

The right particle size should increase the product yield and avoid particle agglomeration.

The mixing system is vital to reduce temperature gradients within the reactor. By

increasing the mixing speed, the mass transfer improves because of the convective transfer

rates of solutes between the solid matrix and the solvent. On the other hand, if the mixing

speed is too high, some unwanted accumulation of particles on the reactor wall decreases

the yield of extraction.[26]

Hydrolysis using SBW is a green alternative process that does not involve the use and

later the need to recover additional chemicals. It also does not cause corrosion issues, is

relatively fast and can be done using somewhat simple equipment.[17]

It was studied the influence of the temperature and water flow rate on the extrac-

tion/hydrolysis efficacy of SBW up to 210 ºC.[17] Previous studies show that hemicel-

lulose dissolves between 120 to 190 ºC, while cellulose hydrolysis requires the use of

temperatures above 230 ºC.[52] Another study evidenced the dissolution of hemicellu-

lose at temperatures over 130 ºC. Submitting the material to this temperature for some

time appeared to depolymerize the structure. The growth in temperature from 130 ºC

to 190 ºC and the change in water properties mentioned before, specifically higher ionic

products, favored the hemicellulose’s dissolution with the increase in the number of car-

bohydrates recovered.[52] As for cellulose, after 2 minutes at 180 ºC, merely 5% was

converted to glucose, a value that increased to 80% at 260 ºC.[46]

When processing disaccharides and polysaccharides with subcritical water, the de-

composition step is considered the rate-limiting step of the reaction, and it increases with

temperature, favoring the production of the oligomers and monomers as temperature in-

creases.[46] The SBW mechanism includes solute transfers from active sites in the matrix

to the extraction medium.

Relevant products obtained from glucose and fructose in SBW include acetic acid,

formic acid, lactic acid, levulinic acid, and, most commonly, 5-hydroxymethylfurfural

(5-HMF). There is a promising future for 5-HMF for very noticeable products of SBW
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biomass treatments. The most critical point being in the automotive industry as a precur-

sor for "green fuels".[46], [53]

Water is the most used solvent for subcritical extraction even though other fluids are

used, such as butane, dimethyl ether, and propane. For instance, subcritical propane

extracts antioxidant compounds and essential oils from mango leaves and sapucaia nuts.

These techniques intend to promote the eco-friendly use of solvents in extractions while

being safe and showing high standard extracts.[26]

1.4 The objective of this thesis and outline

The major challenge in consuming lupin seeds has been the massive amounts of water

and time it takes to remove the alkaloids to make lupin seeds safe for consumption. This

work aims to find an alternative green method to remove the alkaloids while keeping

the major nutritional components of lupin mostly intact. In particular, it aims to reduce

significantly the duration of the debittering process and the amount of water consumed,

whereas maintaining the costs at a minimum and still ensuring food safety for animals

and humans.

Previous work [54] has revealed a decrease in the amount of alkaloids in the extracts

as temperature increased from 100 to 140 °C. To clarify the effect of temperature on

the extraction of alkaloids, namely to verify if that trend was due to the degradation of

extracted alkaloids at the highest temperature, a mass balance for alkaloids is required.

This can be accomplished by measuring the amount of alkaloids remaining in the lupin

residue after SBW extraction, not done previously. Such measurement requires eight

consecutive extractions.

Also in previous work [54] the total amount of alkaloids was assumed to be the weight

of the solid material recovered from the dichloromethane used as elution solvent of the

Isolute column. In the present work, however, the solid material recovered by evaporating

dichloromethane was submitted to GC analysis targeting lupanine.

The following tasks were thus pre-established to make this thesis possible:

1. Characterize the white lupin matrix so that a comparison with debittered lupin can

be made and the overall impact of the SBW treatment can be established.

2. Use SBW to debitter the lupin using a batch reactor, varying the operation parame-

ters: temperature, solvent-to-solid ratio, the effect of successive extractions, and the

impact of particle size.

3. Assess the impact of extraction conditions on the composition of the lupin extracts

obtained, on the remaining lupin residue, and in the latter case include alkaloids in

the mass balance.

4. Reduce the alkaloid content of the resulting lupin seeds below toxicity levels of

bitter white lupin, while preserving the nutritional value of lupin seeds.
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1.4. THE OBJECTIVE OF THIS THESIS AND OUTLINE

The organization of the rest of the document is as follows:

• Chapter 2 includes the materials and methods used in this process.

• Chapter 3 shows the results and discussion of the data obtained throughout this

work.

• Chapter 4 presents a general conclusion of the work.

• Chapter 5 proposes future work.
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Materials and methods

2.1 Materials

2.1.1 Lupinus albus L.

Simbeja company provided the raw material used in this study. The seeds were cleaned

to remove leaves and other impurities, and some of them were grounded in a household

mill.

Figure 2.1: White lupin seeds (A), provided by Simbeja, and powder (B).

After that, the particles were sieved in an ASTME-11 laboratory test sieve. The particle

size distribution after grinding is shown in Table 2.1. In this work, the particle size used
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was between 0.5 and 1 mm (Figure 2.1-(B)) and stored in a freezer.

Table 2.1: Particle size distribution of lupin seeds after grinding.

Particle size (mm) Mean value (%)

>1 35.3
0.5-1 31.4
0.355-0.5 10.9
<0.355 21.2

2.1.2 Reagents

Phenol (99%) and D-Glucose were from Sigma-Aldrich. Acetic acid glacial, ethanol, and

n-hexane were from Carlo Erba, and dichloromethane was from Labchem. Ammonium

Hydroxide and sulfuric acid were from Honeywell, and Isolute HM-N was from Biotage.

2.2 Chemical Characterization

2.2.1 Humidity content determination

The humidity content of L. albus L. powder was measured by placing 1 g of lupin in a

Kern Dab 200-2 hygrometer at 105 ºC. The result obtained was in the mass percentage of

humidity.

Figure 2.2: Humidity measurement in the hygrometer.
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2.2.2 Protein content determination

The protein content of lupin seeds powder was determined by an elementary analysis that

yielded the nitrogen content of the material. This analysis was performed at Laboratório

de Análises, REQUIMTE-LAQV. A 6.25 conversion factor of nitrogen-to-protein was used.

Both the lupin residue that remained in the high-pressure reactor and the extract obtained

from lyophilizing the liquor in the reactor were submitted to an identical analysis to

determine protein content.[55]

2.2.3 Ash content determination

To determine the lupin seeds’ ash content, 0.8 g of powder was placed in a previously

weighed porcelain crucible. The crucible was then placed in a muffle at 550 ºC for 5 hours.

Upon cooling down the crucible, it was weighed, and the ash content was determined by

mass difference.[56]

2.2.4 Lipid content determination

Figure 2.3: Soxhlet extraction apparatus.[57]

The defat of the lupin powder was performed in a Soxhlet extraction. This procedure

was carried out for 3 hours, using 2 g of lupin powder and 70 mL of n-hexane. The solvent

in the solution was evaporated with nitrogen, and the oil was weighted. The solid residue

was dried overnight at 40 ºC to remove the solvent and was weighed.

This experiment was replicated twice.[17], [57]
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2.2.5 Carbohydrates content determination

The determination of carbohydrates is done with previously defatted lupin seeds. This

process takes 2 steps to remove the non-structural and structural sugars. The first step

consists of a hydro-alcoholic extraction, and the second of an acid hydrolysis extraction,

respectively.

To quantify the total sugars after the extractions, the colorimetric phenol-sulfuric

method was performed.

First, to isolate the soluble (non-structural) sugars, 0.8 g of defatted lupin powder

were extracted, in duplicate, with 40 mL of an (80:20, v/v) ethanol:water solution in an

ultrasonic bath, at room temperature, for 15 minutes, before a 10,000 rpm centrifugation

(BeckmanCoulter, J-26 XPI), for 10 minutes at 4 ºC. This process was done 3 times, the 3

supernatants were combined after filtration and evaporated in a rotary evaporator at 50

ºC, under vacuum, to remove the ethanol. The remaining solution was diluted to 100 mL

and used for carbohydrate quantification.[58]

The acid hydrolysis was performed using the solid residue, defatted lupin powder,

after extraction of the soluble carbohydrates that was dried overnight at 40 ºC. To hy-

drolyze these structural carbohydrates, 0.3 g of this solid was added 3 mL of 72% (w/w)

H2SO4. This solution was incubated in a water bath for 30 ºC, with agitation, for 1 hour.

After that, the mixture was diluted to 4% (w/w) by adding 84 mL of water and incubated

in a silicone bath, for 1 hour, under stirring, for 121 ºC. The mixture was vacuum filtered,

and the supernatant was analyzed to quantify carbohydrates.[17], [58], [59]

Figure 2.4: Preparing to build the D-Glucose calibration curve for the colorimetric
method.

The carbohydrate analysis was carried out by quantifying the sugar-rich liquids’ re-

ducing sugar content of a standard solution or a solution sample. A calibration curve was
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built with D-glucose monohydrate using a 1 g/L stock solution to prepare the solutions

with concentrations of 0.005, 0.01, 0.025, 0.05, 0.075, and 0.1 g/L in deionized water. The

blank was deionized water as well.

Before preparing the solution to quantify the sugars, a dilution of 50:1 was applied

to the samples. To 500 µL of the sample were added 1.5 mL of 96% (w/w) H2SO4 and

a 300 µL of a 5% (w/v) aqueous solution of phenol. These mixtures were well stirred

and incubated for 5 minutes at 90 ºC in an Accu BlockTM Digital dry bath from Labret

International, Inc. The absorbance was measured at 490 nm using a Thermo Scientific

Genesys 50 UV-visible spectrophotometer. The results obtained are expressed in g/L

glucose equivalent.[17], [60]

2.2.6 Lignin content determination

Lignin content was calculated by mass difference after drying the acid hydrolysis residue

overnight at 105 ºC.[58], [59]

2.2.7 Alkaloids content determination

To quantify the alkaloids in the original lupin seeds and in the residue that remained in

the high-pressure reactor after extraction with SBW, 3 g of solid material were stirred

for 30 minutes in 30 mL of 1M acetic acid. This mixture was centrifuged for 20 minutes

at 12,000 rpm to separate the liquid and solid phases. The supernatant’s volume was

measured to know the adequate quantity of isolute and dichloromethane to use.

After that, the pH was adjusted with ammonium hydroxide, and a solid extraction

was carried out using a solid-phase extraction Isolute column (Isolute HM-N, Biotage).

The alkaloids were then eluted with dichloromethane, and the solvent evaporated

under vacuum in a rotary evaporator at 40 ºC. This process was done 8 times. In the case

of the extracts obtained by lyophilizing the liquors produced in the reactor, the process

was simplified because it was only extracted once.

The alkaloid extraction residue was dried with nitrogen and sent to Laboratório de

Análises, REQUIMTE-LAQV, to quantify the major alkaloid present in the mixture, lupa-

nine, using an Agilent Technologies, model 6890 GC-FID (Gas Chromatography using

Flame-Ionization Detection) equipped with a GC Autosampler, HTA sampling for Sci-

ence, model HT3100A. The analysis was performed with caffeine as an internal standard

and purified lupanine for the calibration curve.[5], [61]
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Figure 2.5: Alkaloids extraction apparatus.

2.2.8 Subcritical water extraction

The apparatus for the subcritical water extraction was a batch pressure reactor from Parr,

model 4547, and it is represented in Figure 2.6 and Figure 2.7.

The reactor is a stainless steel tube with a 1.2 L volume. It includes a stirrer with 2

flat blade turbines and a heater for achieving the desired temperatures. There is also a

distilled water container connected to a cooling coil inside. To raise the pressure inside

the reactor, nitrogen from a bottle is used, and it is connected to the reactor with a valve.

Temperature, solvent-to-solid ratio, consecutive extractions, and different raw mate-

rial particle sizes were studied. All the assays had a residence time of 1 hour, and all first

assays were done using 500 mL of water. The temperatures studied were 100, 120, and

140 ºC, with a 20:1 solvent-to-solid ratio. A ratio of 40:1 was applied at 100 ºC as well.

Lupin was extracted twice, as powder and as received (whole), at 100 ºC and 20:1 ratio.

The pressure of 50 bar maintained the liquid state in all assays.

At the beginning of the assay, lupin and distilled water were added to the reactor. The

first thing to do after closing the reactor is to pressurize it. Then, the stirrer and heater

were turned on, and the assay started after the desired temperature was reached. After 1

hour, the temperature was decreased by setting the thermocouple to 25 ºC. The reactor

has to cool down, and only then can it be depressurized and opened to collect the lupin

residue and liquor from the extraction.

Samples from the lupin residue were centrifuged 3 times to accurately separate the

solid from the liquid, while only the first supernatant was used for liquor analysis. Both

liquor and residue were frozen using liquid nitrogen and lyophilized under vacuum for 3
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2.2. CHEMICAL CHARACTERIZATION

Figure 2.6: Batch reactor apparatus drawn using Microsoft Visio software based on Essien
[26].

Figure 2.7: Laboratory-scale batch reactor apparatus.
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days in a CHRIST ALPHA 1-4, Braun Biotec International lyophilizer. The dried residue

and the lyophilized liquor were used to determine lipids, protein, carbohydrates, and

alkaloids content.
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3
Results and discussion

3.1 Chemical Characterization

The first task was to determine the chemical composition of white lupin seeds to assess

the content of its main components before debittering and compare after the batch assays

with subcritical water. The main species of interest are total carbohydrates, protein,

lipids, ash, and lignin. Values for these components given in the literature vary within

an interval. This interval derives from the fact that many factors play a role in biomass

composition, such as species or cultivar.[3]

The total amount of carbohydrates of this work was 37%, of which 29% make up the

structural sugars, while only 8% make up the free sugars content, which is lower than

Carmalia et al. measured [5] but higher than other authors [33]. As mentioned before,

this was a two-step procedure, where the soluble sugars were separated from insoluble

sugars that make up the hemicellulose and cellulose structures.[33], [62]

As seen in Table 3.1, the most significant components by mass are carbohydrates,

protein, and lipids.

Table 3.1: White lupin powder chemical characterization (data are reported on a dry
matter basis; mean value ± standard deviation, n=3)

Components g/100 g lupin

Carbohydrates 37.0 ± 1.6
Protein 31.5 ± 1.3
Lipids 8.6 ± 0.2
Ash 2.8 ± 0.1
Lignin 0.4 ± 0.1

The protein content is 31.5%, which is a little lower than literature but still higher
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than other legumes like rapeseed and field pea.[20], [62]

The lipid content is usually between 6 to 13%.[8] The results showed this lupin has

around 9% of fat content, which brings us to middle of the interval reported. Ash and

lignin were quantified as well and are considered minor components of white lupin.

The humidity content of this lupin was around 10%.

As mentioned before, this work’s main objective was to extract the alkaloids from the

white lupin, making it safe for consumption while preventing all the major components

from degrading. This procedure was referred to in Subsection 2.2.7, and to quantify all

alkaloids present by that laboratory procedure, an eight-time consecutive extraction of

the same solid was done. Table 3.2 shows the total amount of lupanine present in the

debittered lupin as well as the lupanine mass extracted each time.

Table 3.2: Total lupanine content in white lupin seeds. Data are reported on a dry matter
basis.

Extraction Lupanine (g/100 g lupin)

1 0.66
2 0.55
3 0.12
4 0.02
5 1.0e−4

6 1.3e−3

7 4.0e−4

8 6.0e−4

Total 1.35

The total alkaloid content of the white lupin provided by Simbeja was 1.35 g/100 g

lupin, which shows that this species is a bitter type because it is over the 1.0 g alkaloids/kg

lupin mark.[3], [4], [36] Since this value exceeds the value indicated by the regulatory

bodies of 0.02 g/100 g of lupin [12], these seeds are not safe for consumption and, hence,

must be treated.

In this work, 1.35 g/100 g lupin will be used as a reference for the total alkaloid

content.

3.2 Extraction study

White lupin seeds were submitted to SBW extraction in a batch reactor to remove alka-

loids, one of the objectives of this thesis.

A SBW experiment yields a liquor and a residue. One way to find out if the extraction

was successful was first to measure the amount of water-soluble compounds in the reactor,

after lyophilization of the liquor and production of an extract. The extract was then

analyzed for lupanine.
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The yield of extraction of lupanine is given by Equation 3.1.[45]

Y =
mass of lupanine in the extract

mass of lupanine in the lupin seeds placed in the extraction vessel
× 100 (3.1)

The protein and total carbohydrates content of the extract were also determined to as-

sess the effect of the extraction on the nutritional value of the lupin during the debittering

process.

To close mass balances, the contents of lupanine, protein, and carbohydrates in the

lupanine residue left in the reactor were also measured, as well as its content in lipids. The

latter component was not expected to be present in high amounts in the extract and thus

was only monitored in the solid lupin residue, for comparison with the corresponding

amount in the original lupin material.

All experiments were performed with lupin seeds powder, obtained by grinding the

seeds in a household mill, as indicated in Chapter 2. The exception was the last experi-

ments performed, where whole lupin seeds were used.

3.2.1 Subcritical Water Extraction

The extraction yield of compounds from a lignocellulosic matrix is dependent on several

parameters [63], [64]:

• Nature of the solvent,

• Composition of the sample,

• Temperature,

• Solid-to-solvent ratio,

• Stirring system,

• Successive extractions,

• Particle size.

As previously mentioned in Section 1.3, temperature is one of the most critical vari-

ables in extraction studies. The first round of assays was performed by varying tempera-

ture from 100 to 140 ºC while keeping a constant 20:1 solvent-to-solid ratio (Table 3.3).

All assays were done with a residence time of 60 minutes, to compare with previous

work.[54]

The pressure used was always 50 bar for all assays as well, and it was not changed

throughout the study since its variation shows a low impact on the extraction, as men-

tioned in Section 1.3.

The impact of extraction conditions on the lupin matrix was studied by measuring

the amount of water-soluble compounds in the liquors produced by generating lupin
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Table 3.3: Assay conditions for lupin powder.

Extraction conditions

Temperature (°C) Time (min) Ratio Pressure (bar)

100 60 20:1 50
120 60 20:1 50
140 60 20:1 50

extracts after lyophilization (Figure 3.1). In all the assays there was material that could

not be accounted for at the end of the experiments. This was confirmed by calculating

the difference between the amount of lupin placed in the reactor and the amount of lupin

residue left in the reactor plus the mass of water-soluble compounds.

There is about 12-21 g/100 g lupin of solids lost during extraction. This value is

considered normal as it falls within the ranges mentioned in the literature (12-27 g/100

g lupin).[65]

These losses are partly explained by the fact that there is ca. 10% of water in the

lupin put into the reactor, and this amount is not accounted for during the mass balance.

Correction for this would lower material losses by about 2-10%. Also, there can be some

material losses when collecting the residue from the reactor, as well as in the 3-step

washing/centrifugation process followed by filtration.

Figure 3.1: The influence of temperature on the yield of water-soluble compounds in the
lupin powder extract (solvent-to-solid ratio: 20:1, time: 60 minutes). Error bars are given.

The amount of water-soluble compounds increase with temperature. This can be
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partly explained by the increases in solubility of the compounds being extracted. On the

other hand, with the increase in temperature, water becomes more reactive due to the

increase in its ionic product, thereby becoming a catalyst for biomass hydrolysis.

Analysis of the lupin extracts produced to allow a more detailed assessment of the

extraction assays, as seen in Table 3.4.

Table 3.4: The influence of temperature on the extraction yield of lupanine in the lupin
powder extract. The values in parenthesis are the percentage of lupanine extracted, taking
1.35 g lupanine/100 g lupin as 100%.

Extraction conditions Yield of lupanine

Ratio Time (min) Temperature (°C) g/100 g lupin

20:1 60 100 0.95 (71%)
20:1 60 120 1.02 (76%)
20:1 60 140 0.02 (2%)

The results show that a temperature of 120 ºC leads to a slightly higher yield of

extraction of alkaloids than 100 ºC: 76% extraction vs. 71% extraction, respectively,

which still falls over the 200 mg of alkaloids per kg of lupin permitted by law. At 140 ºC,

however, there is an abrupt decrease in the amount of alkaloids detected in the extract.

Alkaloids are highly temperature-sensitive, so some degradation might occur. These

results differ somewhat from those of previous work [54]. The latter work did not reveal

such an abrupt decrease in the total amount of alkaloids as temperature varied from 100

to 140 ºC. However, as explained earlier, the method of analysis of alkaloids was not the

same. In the present case, lupanine was singled out as target compound, and its content

was quantified by GC.

One of this work’s objectives was to maintain the nutritional value of the white lupin

as intact as possible while still managing to remove alkaloids below the toxicity level.

Therefore, as described in Chapter 2, carbohydrates and protein were determined in the

extract, it being known that the water extraction also removes these components.

As shown in Table 3.5, only non-structural sugars (total of 8 g/100 g lupin, as ob-

tained in the characterization of lupin seeds) and little protein are extracted at 100 ºC.

With the increase in temperature, the amounts of carbohydrates, and protein extracted

increased. At higher temperatures, water not only accommodates higher amounts of dis-

solved species, but it also becomes capable of degrading the structure of hemicellulose,

thereby releasing additional sugar units. Entrapped protein should also become more

accessible.

Overall, the results in Table 3.5 are similar to those of previous work [54]. From

the standpoint of the integrity of the lupin matrix, the best temperature of extraction is

100 ºC, given that the yield of extraction of alkaloids is 71%, a value that increases only

slightly as temperature increases to 120 ºC. At 100 ºC, operations costs are also lower.

The influence of solvent-to-solid ratio from 20:1 to 40:1 was studied at 100 ºC. Figure
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Table 3.5: The influence of temperature on the yields of carbohydrates and protein in the
lupin powder extract (data are reported on a dry matter basis; mean value ± standard
deviation, n=3).

Extraction conditions Yields (g/100 g lupin)

Ratio Time (min) Temperature (°C) Carbohydrates Protein

20:1 60 100 6.8 ± 0.4 (18%) 4.8 ± 0.1 (15%)
20:1 60 120 12.7 ± 0.4 (34%) 7.3 ± 0.1 (23%)
20:1 60 140 15.9 ± 0.7 (43%) 12.4 ± 0.1 (39%)

3.2 shows that a higher amount of water-soluble compounds was obtained, as could

be explained by the ability of a higher amount of solvent to accommodate compounds

extracted from the lupin matrix.

Figure 3.2: The influence of solvent-to-solid ratio on the yield of water-soluble compounds
in the lupin powder extract (temperature: 100 ºC, time: 60 minutes). Error bars are given.

Table 3.6 shows that the yield of extraction of lupanine did not increase significantly

from a solvent-to-solid ratio of 20:1 to 40:1, thereby not showing an effect of improved

mass transfer as the concentration gradient gets higher.[66] The trend observed in the

extraction of alkaloids as temperature increased is not similar to that observed in previous

work [54]. The latter work reported an approximately 25% increase in the extraction of

alkaloids at 100 ºC when the solvent-to-solid ration increased from 20:1 to 40:1. This

could be due to the fact that the previous work assumed the final mass after alkaloid

extraction being all alkaloids. The Isolute column may have let through other nonpolar

compounds present in the extract.
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Table 3.6: The influence of solid-to-solvent ratio on the yield of lupanine in the powder
extract. The parenthesis gives the percentage of lupanine extracted. The values in paren-
thesis are the percentage of lupanine extracted, taking 1.35 g lupanine/100 g lupin as
100%.

Extraction conditions Yield of lupanine

Ratio Time (min) Temperature (°C) g/100 g lupin

20:1 60 100 0.95 (71%)
40:1 60 100 1.0 (74%)

As seen in Table 3.7, the amount of extracted protein is higher than that obtained with

a 20:1 solvent-to-solid ratio, but not that much higher, which is a positive result, given

that protein is a target nutritional component. Carbohydrates, on the other hand, seem to

be extracted in amounts similar to those obtained at 120 ºC with a 20:1 solvent-to-solid

ratio. At 100 ºC, the lupin matrix should be very resistant to hydrolysis, irrespective of

the solvent-to-solid ratio. At this temperature, water does not have the ability to destroy

the hemicellulose structure. Therefore, it was not to be expected that the amount of

sugars extracted at 100 ºC with a 40:1 solvent-to-solid ratio would be much different than

8 g/100 g lupin, the value determined for soluble sugars in the original lupin matrix.

Table 3.7: The influence of temperature on the yields of carbohydrates and protein in the
powder extract (data are reported on a dry matter basis; mean value ± standard deviation,
n=3).

Extraction conditions Yields (g/100 g lupin)

Ratio Time (min) Temperature (°C) Carbohydrates Protein

20:1 60 100 6.8 ± 0.4 (18%) 4.8 ± 0.1 (15%)
40:1 60 100 10.9 ± 0.4 (30%) 6.6 ± 0.1 (21%)

Two consecutive extractions were performed at 100 ºC, at a 20:1 solvent-to-solid ratio,

for 60 minutes, for both lupin powder and whole seeds. This consisted of using the residue

from the first extraction, after lyophilization, by submitting it to a second extraction at

otherwise identical experimental conditions as the first assay.

As shown in Figure 3.3, it seemed that the matrix had been nearly exhausted of ex-

tractable compounds in the first extraction, given the sharp decrease in the amount of

water-soluble compounds recovered in the second extraction.

A more detailed analysis of the extracts obtained corroborates the above conclusion

that the second extraction was not very effective, in that the increase in compounds

extracted was very low.

The amount of lupanine extracted in the first assay is slightly lower than that given

in Table 3.4 and Table 3.6 and should reflect the error associated with the measurement

of that quantity.

With the objective to study the effect of particle size on the yield of extraction, the next
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Figure 3.3: The influence of multiple consecutive extractions of lupin powder on the yield
of water-soluble compounds in the lupin extract (temperature: 100 ºC, solvent-to-solid
ratio: 20:1, time: 60 minutes). Error bars are given.

experiment was performed with whole lupin seeds. Again, two consecutive extractions

were carried out at 100 ºC with a 20:1 solvent-to-solid ratio. The results obtained were

similar for lupin powder and whole lupin seeds, as seen in Table 3.8 and Table 3.9.

Table 3.8: The influence of successive extractions using lupin powder on the yields of
lupanine, carbohydrates, and protein in the lupin extract (data are reported on a dry
matter basis; mean value ± standard deviation, n=3).

Extraction conditions Yields (g/100 g lupin)

Temp (°C) Ratio Extraction Lupanine Carbohydrates Protein

100 20:1 1 0.87 ± 0.1 (64%) 6.9 ± 0.7 (19%) 5.0 ± 1.3 (16%)
100 20:1 2 0.08 ± 0.1 (6%) 1.4 ± 0.2 (4%) 0.7 ± 0.1 (2%)

Total 0.95 ± 0.2 (70%) 8.3 ± 0.4 (22%) 5.8 ± 0.2 (18%)

Overall the same trend is observed in Table 3.8 and Table 3.9. A higher amount of

extracted protein in the second assay may be the result of increased accessibility to the

matrix after the first treatment. The yield of extraction of lupanine was lower than for

lupin powder, which may be explained by comparatively more difficult access to the inner

portions of lupin seeds.

Carbohydrates accounted for 7.5 g sugars per 100 g lupin, which means all nonstruc-

tural sugars were extracted. In terms of protein, 6.3 g of protein per 100 g of lupin were

removed, and it is an expected value since it is comparable to other assays at 100 ºC and
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20:1 ratio. Lupanine extraction was low since 0.9 g/100 g lupin were extracted from the

1.35 g of lupanine present at the beginning of the assays, making this a 62% successful

experiment only.

Table 3.9: The influence of multiple extractions using whole lupin seeds on the yields
of lupanine, carbohydrates, and protein in the lupin extract (data are reported on a dry
matter basis; mean value ± standard deviation, n=3).

Extraction conditions Yields (g/100 g lupin)

Temp (°C) Ratio Extraction Lupanine Carbohydrates Protein

100 20:1 1 0.63 (47%) 6.1 ± 0.6 (17%) 4.6 ± 0.1 (15%)
100 20:1 2 0.14 (10%) 1.4 ± 0.2 (4%) 1.8 ± 0.2 (6%)

Total 0.77 (57%) 7.5 ± 0.8 (20%) 6.4 ± 0.3 (20%)

The conclusions are evident in Figure 3.3 that shows a sharp decrease in the amount

of water-soluble compounds from the first to the second extraction.

Figure 3.4: The influence of multiple consecutive extractions of whole lupin seeds on the
yield of water-soluble compounds in the lupin extract (temperature: 100 ºC, solvent-to-
solid ratio: 20:1, time: 60 minutes). Error bars are given.

In this experiment, the agitator configuration and its shape were not adequate. Pre-

dictably, at the end of the assay, the seeds were not physically equal to those put in the

reactor. The results obtained for the two particle sizes could have been more different if

the whole seeds had remained intact.
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In this study, the quantification of alkaloids was also done in the lupin residue, as a

way to confirm if alkaloids were indeed being extracted in higher amounts at 140 ºC, but

not being detected in the analysis of the extract due to their degradation in the reactor.

Protein, carbohydrates, and lipids were also accounted for.

As can be seen in Table 3.10, the alkaloid content in the residue was higher at 100 ºC,

while only 0.05 g/100 g of lupin is accounted for in the lupin residue of the 140 ºC assay.

This implies that, at 140 ºC, there are major losses of lupanine and this can be due to heat

degradation in the reactor, which makes it not available for analysis in the extract.

Table 3.10: The influence of temperature on the yields of lupanine, carbohydrates, protein,
and lipids on the lupin powder residue (data are reported on a dry matter basis; mean
value ± standard deviation, n=3).

Extraction conditions Yields (g/100 g lupin)

Temp (°C) Ratio Lupanine Carbohydrates Protein Lipids

100 20:1 0.39 (29%) 21.9 ± 0.4 (59%) 23.7 ± 1.1 (75%) 6.6 ± 0.1 (77%)
120 20:1 0.13 (10%) 17.2 ± 0.2 (47%) 16.3 ± 0.1 (57%) 6.9 ± 0.2 (80%)
140 20:1 0.05 (4%) 14.7 ± 0.6 (40%) 14.1 ± 0.1 (45%) 7.8 ± 0.1 (91%)

Concerning the major nutritional values, the 100 ºC residue shows the best values for

protein and carbohydrates compared to other temperatures and also other solvent-to-solid

ratios (Table 3.11). Lipid content appears to increase in the residue with temperature.

This should reflect the fact that lipids are essentially not being extracted at the conditions

of the assay, its content varying within the experimental error.

Table 3.11: The influence of solvent-to-solid ratio on the yields of lupanine, carbohydrates,
protein, and lipids on the lupin powder residue (data are reported on a dry matter basis;
mean value ± standard deviation, n=3).

Extraction conditions Yields (g/100 g lupin)

Temp (°C) Ratio Lupanine Carbohydrates Protein Lipids

100 20:1 0.39 (29%) 21.9 ± 0.4 (59%) 23.7 ± 1.1 (75%) 6.6 ± 0.1 (77%)
100 40:1 0.16 (12%) 8.1 ± 0.9 (22%) 22.2 ± 0.2 (70%) 6.9 ± 0.2 (80%)

Figure 3.5 shows a mass balance for lupanine and highlights the high amount of

lupanine that is unaccounted for in the 140 ºC assay. The best lupanine yields in the

extract occur at 100 ºC with a 20:1 and 40:1 ratios. Although the yields of extraction of

lupanine appear similar in each case, the amount of lupanine in the 40:1 residue suggests

that the higher this ratio, the higher the extraction of lupanine from the lupin matrix.
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Figure 3.5: The influence of temperature and ratio on the yield of lupanine in the lupin
powder (solvent-to-solid ratio: 20:1 and 40:1). Error bars are given. 100% = 1.35 g
lupanine/100 g lupin.

As for the carbohydrates mass balance (Figure 3.6), it is known that soluble sugars are

always extracted during the assays and after hitting the 8 g of sugar per 100 g of lupin

mark, structural sugars are being removed from the lupin matrix. This is clear at 140 ºC.

By increasing the solvent-to-solid ratio to 40:1, the sugars in the residue decrease. Again,

this was not anticipated since water at 100 ºC does not have the ability to degrade the

lignocellulosic matrix, and only soluble sugars should have been available for extraction.

In the protein mass balance, protein being probably the most important component

for this study to accomplish soy substitution, it can be seen (Figure 3.7) that the best

yield of extraction when analyzing the residue was obtained at 100 ºC, with a 20:1 ratio,

with the least amount of losses. The result for protein in the 40:1 ratio assay is similar

to that obtained in the assay at 100 ºC for a 20:1 ratio, and the fraction of protein in the

residue should likewise be similar to that obtained in the 100 ºC, 20:1 assay. In previous

work [54] soluble protein was determined by extraction with water at 90 ºC, at a 20:1

solvent-to-solid ratio, yielding a value of 6.5 g/100 g lupin, similar to the amount of

protein measured in the extract.
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Figure 3.6: The influence of temperature and ratio on the yield of carbohydrates in the
lupin powder (solvent-to-solid ratio: 20:1 and 40:1). Error bars are given. 100% = 37.0 g
carbohydrates/100 g lupin.

Figure 3.7: The influence of temperature and ratio on the yield of protein in the lupin
powder (solvent-to-solid ratio: 20:1 and 40:1). Error bars are given. 100% = 31.5 g
protein/100 g lupin.
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4
Conclusions

This thesis aimed to find a green alternative for the debittering process of white lupin.

This lupin cannot be consumed before alkaloids, which confer a bitter taste and are toxic,

are removed. The method studied was extraction with subcritical water under batch

conditions.

First, white lupin was chemically characterized to find a high value of protein of

31.5%, which is more than found in many other legumes. In terms of carbohydrates, it

was found that around 29% are structural sugars, and 8% are non-structural, soluble

sugars. The lipids content was about 9%.

Afterwards, subcritical water extractions under batch conditions were performed to

study the best parameters for extracting alkaloids, namely temperature, solvent-to-solid

ratio, and successive extractions, while maintaining the very high nutritional value of the

lupin.

The subcritical water assays were performed at 100, 120, and 140 ºC involving two

solvent-to-solid ratios with a constant residence time of 1 hour and 50 bar of pressure.

The best lupanine extraction yield was achieved at 100 ºC and a 20:1 solvent-to-solid

ratio: 0.95 g of lupanine per 100 g of lupin were extracted, accounting for approximately

71% of the lupanine present in lupin, while maintaining in the lupin matrix the major

nutritional components (protein, carbohydrates, and lipids). As temperature increases

above 120 ºC, alkaloid degradation occurs due to their sensitivity to high temperatures.

Consecutive extractions at 100 ºC and a 20:1 solvent-to-solid ratio with both lupin

powder and whole lupin seeds showed that the second extraction barely enhanced the ex-

traction yield of lupanine. This can happen because the remaining alkaloids are trapped

in the lupin matrix, and water at these conditions cannot remove them. Even so, this

demonstrated that the particle size did not play a major role in the yield of extraction

since the yields of lupanine, protein, carbohydrates, and lipids were similar.
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Water-soluble compounds were also analyzed throughout this process. It was expected

a 12-27% loss of solids during the extractions, and indeed there were 12-21% losses in

this work. The highest amount of water-soluble components was obtained at 140 ºC and

a 20:1 solvent-to-solid ratio, namely 39 g/100 g of lupin. As a consequence of debittering

at that temperature, the nutritional value of lupin decreases as well, higher amounts of

protein and carbohydrates being removed from the lupin matrix.

Quantification of alkaloids was also done in the lupin residue not only to confirm

the extraction yields but also to close mass balances. By submitting the lupin residue to

8 successive extractions, it was possible to confirm that alkaloids are indeed extracted

from the lupin matrix in higher amounts at 140 ºC than at lower temperatures. If they

are not detected in equivalent amounts in the lupin extracts, it must be because they are

degraded in the reactor at 140 ºC. This finding clarifies previous work [54].

Protein, carbohydrates, and lipids were also analyzed in the residue after each assay,

again to confirm the results obtained from analyzing the lupin extracts and to close mass

balances, taking previous work [54] one step further. The best extraction conditions from

the standpoint of keeping protein in the lupin matrix were indeed 100 ºC and a 20:1

solvent-to-solid ratio, where 23.7 g/100 g of protein out of 31.5 g/100 g lupin remained

in the lupin residue. These extraction conditions also allowed 27.8 g/100 g lupin of

carbohydrates out of 37.0 g/100 g lupin to remain in the matrix. Additionally, it was

found that lipids essentially remain in the lupin residue. Even though these are positive

outcomes, the amount of alkaloids in the lupin residue after extraction at the conditions

indicated is still above the toxicity level allowed for consumption (0.02 g/100 g lupin).

GC-FID analysis made possible the quantification of lupanine, the major alkaloid

present in lupin, in amounts reported to represent 80 to 100% of all alkaloids. Previous

work [54] did not use a method of analysis focused only on lupanine, but rather on the

amount of a solid containing alkaloids. This can explain higher amounts of alkaloids

extracted when compared to those obtained in the present work. The work described in

this thesis did not succeed in bringing the alkaloids of lupin under toxicity level when

using subcritical water extraction. It confirmed that the quantification of alkaloids to

close mass balances is a highly time-consuming process. It also showed the need to

conduct several assays with the same experimental parameters to better quantify errors

associated with the assays.
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5
Future work

• Lupanine was the alkaloid monitored in this study. It represents from 80 to al-

most 100% of the total content of alkaloids in white lupin. Future work should be

done to account for the remaining alkaloids present in white lupin, such as albine,

angustifoline, 13α-hydroxylupanine, and 13α-angeloyloxy-lupanine.[12]

• Future work should consider varying the residence time. At 100 ºC, 60 minutes

might be a relatively short time for the extraction, as seen in the lupanine yield.

Previous work [54] used also 60 minutes of residence time in assays with subcritical

water. However, when performing extraction with water below its boiling point,

there was an improvement in extraction yields from 30 to 180 minutes. The sug-

gestion is thus to increase residence time in assays with subcritical water, to 90

minutes, or possibly higher.

• As mentioned earlier, it is also suggested to perform several extractions with the

same experimental parameters in order to quantify errors better, namely those

associated with the use of the batch reactor apparatus.
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Calibration curves

A.1 Colorimetric method

Figure A.1: Glucose calibration curve.
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APPENDIX A. CALIBRATION CURVES

A.2 GC-FID method

Figure A.2: Lupanine calibration curve (low range).

Figure A.3: Lupanine calibration curve (high range).
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