

Layered Genetic Programming for Feature
Extraction in Classification Problems

Justina Padolskaitė

Dissertation presented as the partial requirement for

obtaining a Master's degree in Data Science and Advanced

Analytics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/389472628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

LAYERED GENETIC PROGRAMMING FOR FEATURE EXTRACTION IN
CLASSIFICATION PROBLEMS

by

Justina Padolskaitė

Dissertation presented as the partial requirement for obtaining a Master's degree in Data

Science and Advanced Analytics

Advisor: Leonardo Vanneschi

Co-Advisor: Illya Bakurov

August 2020

iii

ABSTRACT

Genetic programming has been proven to be a successful technique for feature extraction in various

applications. In this thesis, we present a Layered Genetic Programming system which implements

genetic programming-based feature extraction mechanism. The proposed system uses a layered

structure where instead of evolving just one population of individuals, several populations are evolved

sequentially. Each such population transforms the input data received from the previous population

into a lower dimensional space with the aim of improving classification performance.

The performance of the proposed system was experimentally tested on 5 real-world problems using

different dimensionality reduction step sizes and different classifiers. The proposed method was able

to outperform a simple classifier applied directly on the original data on two problems. On the

remaining problems, the classifier performed better using the original data. The best solutions were

often obtained in the first few layers which implied that increasing the size of the system, i.e. adding

more layers was not useful. However, the layered structure allowed control of the size of individuals.

KEYWORDS

Genetic Programming; Feature Extraction; Dimensionality Reduction; Classification

iv

INDEX

1. Introduction ... 1

2. Theoretical background ... 3

2.1. Machine learning .. 3

2.2. Genetic programming ... 4

2.2.1. Representation of individuals .. 4

2.2.2. Population initialization... 5

2.2.3. Fitness evaluation ... 6

2.2.4. Selection ... 6

2.2.5. Genetic operators ... 7

2.3. Genetic programming for feature extraction .. 8

3. Layered Genetic Programming System ... 16

3.1. System design ... 16

3.1.1. Representation of individuals .. 17

3.1.2. Population initialization... 17

3.1.3. Evaluation of individuals.. 19

3.1.4. Classification ... 19

3.1.5. Genetic operators ... 22

3.1.6. Elitism ... 23

4. Experimental study .. 24

4.1. Datasets ... 24

4.2. Experimental setup... 25

4.3. Experimental results ... 30

5. Conclusions and future work .. 42

6. Bibliography ... 44

v

LIST OF FIGURES

Figure 1. Machine learning process. ..3

Figure 2. Example of a tree-based representation of a GP individual. ..5

Figure 3. An example of standard crossover. ...7

Figure 4. An example of subtree mutation. ...8

Figure 5. System structure. ... 16

Figure 6. An example of a GP individual composed of multiple trees. .. 17

Figure 7. One-point crossover. .. 23

Figure 8. Dataset split representation. .. 26

Figure 9. The evolution of F1 score on training and test sets as the number of generations increase and

the layers change. For comparison, F1 scores achieved using simple classifiers on the original data

are shown by dashed lines. ... 41

vi

LIST OF TABLES

Table 1. Description of datasets. ... 25

Table 2. Tested probabilities of applying genetic operators to GP individual...................................... 28

Table 3. Parameter settings that were common in all experiments. .. 29

Table 4. Parameter grid. .. 30

Table 5. Results of different LGP configurations on BIODEG dataset. The configuration which showed

best results in terms of median F1 score on the development set is highlighted in grey. 33

Table 6. Results of different LGP configurations on WDBC dataset. The configuration which showed

best results in terms of median F1 score on the development set is highlighted in grey. 34

Table 7. Results of different LGP configurations on SONAR dataset. The configuration which showed

best results in terms of median F1 score on the development set is highlighted in grey. 35

Table 8. Results of different LGP configurations on IONO dataset. The configuration which showed best

results in terms of median F1 score on the development set is highlighted in grey. 36

Table 9. Results of different LGP configurations on CREDIT dataset. The configuration which showed

best results in terms of median F1 score on the development set is highlighted in grey. 37

Table 10. Results of LGP on full training and test sets of different datasets. 39

Table 11. Median F1 scores on training and test sets obtained using LGP and simple classifiers. 40

vii

LIST OF ABBREVIATIONS AND ACRONYMS

GP Genetic Programming

LGP Layered Genetic Programming System

DT Decision Tree

KNN K-Nearest Neighbors

LR Logistic Regression

GA Genetic Algorithm

ADFs Automatically Defined Functions

SVM Support Vector Machine

MLP Multi-Layer Perceptron

1

1. INTRODUCTION

Many real-world problems can be modeled as classification problems, which make the classification

perhaps one of the most widely studied problems in the data mining and machine learning

communities, with numerous applications that cover different domains, such as medical diagnosis [1,

2, 3, 4, 5], e-mail spam detection [6, 7], fraud detection [8, 9], and customer churn prediction [10, 11],

to name a few. The set of input features plays an important role for the success of a good classification

model. In many classification tasks, the representation of the original feature set is rarely optimal and

thus can be improved. Very often, data contain irrelevant or redundant features, and the features have

complex interactions between them which should be taken into consideration. Some systems have an

intrinsic part of the learning process which attempts to select relevant features or construct new

possibly more insightful features based on the original ones. For instance, decision trees (DTs) use

feature selection in every step when constructing the tree [12]; hidden neurons of artificial neural

networks implicitly create new features [13]. Feature selection and extraction methods are often

applied to enhance the quality of the feature set, reduce the dimensionality and thus to improve the

performance of the algorithm in terms of learning time and predictive accuracy [14].

While feature selection methods aim to choose a subset of most relevant and discriminant original

features [13], the goal of feature extraction is to map original features to a new feature space with

improved separability of different classes [15]. There are various techniques that have been used for

feature extraction over the years that range from the principal component analysis [16] and support

vector machines (SVM) [17] to genetic algorithms (GAs) [18]. Indeed, the application of genetic

programming (GP) in order to construct/extract new features has become increasingly popular due to

the capability of GP to automatically build mathematical expressions based on some objective

function. To-date, GP has been used in different scenarios showing promising results.

In this thesis, we contribute to the study of the application of GP for feature extraction. The novelty of

this thesis stems from the implementation of a layered structure. That is, in each layer a separate GP

population is evolved with the aim of mapping the original feature set to a new feature space with

reduced dimensionality, thereby making the classification task easier and also improving the

performance of a classifier. The rationale for stacking the GP populations into several layers is based

on the architecture of the deep artificial neural networks where only the first layer receives as input

the original data and in all other layers, the input is the output of the previous layer. The primary

question of this work is whether GP can benefit from the layered structure.

2

This thesis is organized as follows. Section 2 provides a theoretical background necessary for this work.

That is, Section 2 introduces the reader to the machine learning concepts, presents the basic aspects

of the GP as well as the previous work on the application of GP to feature extraction. Section 3

introduces the proposed system by describing its design and functioning in more detail. Section 4

presents the experimental study conducted to evaluate the performance of the proposed system.

Finally, the concluding remarks and future research are presented in Section 5.

3

2. THEORETICAL BACKGROUND

2.1. MACHINE LEARNING

Machine learning is the subfield of Artificial Intelligence which studies the algorithms that

automatically improve with experience, i.e. learn [19]. Data are at the core of machine learning, as

they serve as examples used for learning. When the machine learning algorithm is provided with the

training data, it outputs a trained model. Having created a predictive algorithm, it will generate a

predictive model which, when a new data instance is given as input to it, outputs a prediction based

on the data that was used for training. This basic machine learning process is illustrated in Figure 1.

Machine learning techniques are typically classified into three broad categories: supervised learning,

unsupervised learning, and reinforcement learning. In supervised learning, the training data are

labelled, i.e. there are known target values, and the aim is to learn a mapping function from the input

to the output. In unsupervised learning, unlabeled data are used, i.e. desired output is unknown, and

the aim is to discover the hidden structures and relationships in these data. In reinforcement learning,

the aim is to maximize a reward signal. It involves exploration of an adaptive sequence of actions in a

given environment with the motivation to maximize the cumulative reward. In addition, a type of

learning, which has some unknown target values, and thus is between supervised and unsupervised

learning is called semi-supervised learning.

In supervised learning, the problem can either be a regression problem or a classification problem.

With respect to regression problems, the output variable is a real value. In the classification problems,

the output variable is a category, and the goal is to find a model that accurately predicts a class label

for a given instance of input data.

Examples

(training data)

Machine learning system or

algorithm

Machine

learning model

New data

Prediction

Figure 1. Machine learning process.

4

2.2. GENETIC PROGRAMMING

In the early 1990s, GP [20] became a popular search technique. GP is the subfield of evolutionary

algorithms which applies the principles of Darwin's theory of evolution and natural selection [21] to

search for the fittest computer program (individual) in the space of all possible computer programs

(individuals). The individuals reproduce, adapt, and compete amongst themselves.

GP starts with a randomly initialized population of individuals. Consequently, GP evaluates each

individual’s performance using a fitness function and assigns a fitness value to each of them. Based on

the fitness values, it then chooses some of the individuals and produces a new population for the next

generation from these chosen individuals by means of genetic operators. The search repeats until an

optimal or acceptable solution is found, or a certain other stopping criterion is met. A general GP

algorithm can be summarized by the following pseudo-code:

1. Generate an initial population of random individuals, P.

2. Evaluate the fitness of each individual in the population P.

3. Until an acceptable solution is found or some other termination criterion (e.g., the prefixed

maximum number of generations has been executed) is met, repeat:

a. Create an empty population, P’.

b. Until the number of individuals in P’ is equal to the number of individuals in P, repeat:

i. With a probability based on fitness, select one or two individual(s) from P.

ii. With specified probabilities, create new individual(s) by applying genetic

operators.

iii. Insert the individuals created in the previous step into P’.

c. Evaluate the individuals in P’.

d. Replace P with P’.

4. Return the individual with best fitness.

In the following subsections, representation of individuals, initialization of GP population, fitness,

selection and genetic operators are explained in more detail.

2.2.1. Representation of individuals

In the GP population, an individual is a computer program that is a solution to a problem that is

intended to be solved. The way GP program is encoded varies among different GP systems. Based on

the representation of individual, some categories of GP can be mentioned such as linear GP [22], where

5

GP programs are linear sequences of instructions, Cartesian GP [23], in which a program is represented

as an indexed graph, encoded in the form of a linear string of integers, and grammar-based GP [24, 25,

26] which uses a context-free grammar to define the initial GP structures. However, perhaps the most

common representation is a tree structure, as shown in Figure 2, and it was used in this work.

Based on the example given in Figure 2, variables (X1, X2, X3) and constant (4) in the program are leaves

of the tree, which in GP are called terminals, while the arithmetic operations (+, -, /) are internal nodes

called functions. Terminal set and function set define a set of elements which are available to GP to

create computer programs and are defined on the problem domain. Commonly, the terminal set

consists of the program’s external inputs (variables), functions with no arguments and constants, while

the function set includes arithmetic operations, mathematical functions, Boolean operations,

conditional operators, iterative operations and any other domain-specific functions that may be

defined [22].

In the tree structure, each node has a depth value associated to it which is the number of edges from

the tree’s root node to that node. The depth of a tree is the depth of its deepest leaf.

2.2.2. Population initialization

The initialization of the population consists of the creation of the programs that will later be evolved.

The individuals in the initial population are typically randomly generated. Three earliest methods

described by Koza [20] are Full, Grow, and their combination known as Ramped Half-and-Half. In all

these methods, the initial individuals do not exceed the maximum depth specified by the user.

Figure 2. Example of a tree-based representation of a GP individual.

functions

terminals

+

- /

X1 X2 X3 4

6

Full method. While the maximum depth is not reached, nodes are taken at random from the function

set. Once the maximum depth is reached, only terminals are randomly chosen. This way, all the leaves

of a generated tree are at the same depth and the depth of a tree is always equal to the predefined

maximum depth.

Grow method. Nodes at depths less than the predefined maximum are randomly chosen from the

combined set consisting of the union of the function set and the terminal set. Once a branch contains

a terminal node, that branch is terminated. The random selection of nodes at the maximum depth is

restricted to the terminal set. Since the branch may be terminated before the specified maximum

depth has been reached, trees created using Grow method are likely to have irregular shapes.

Ramped Half-and-Half method. Let d be the predefined maximum tree depth. The population is divided

evenly into d groups, and, for each such group, a distinct maximum depth value is set from a range

between 1 and d. Then, for each depth group, half of the individuals in the group are created using the

Full method and another half of the individuals are created using the Grow method. This initialization

method creates trees having various sizes and shapes and, this way, enhances the diversity of initial

population. For this reason, it is the most commonly used initialization method.

2.2.3. Fitness evaluation

In order to determine how well a GP individual performs, i.e. how well-suited an individual is to solve

a given problem, the individual needs to be evaluated. A function to evaluate individuals is called

fitness function, and the result of the evaluation (a numeric value) is fitness. The fitness function plays

an important role in guiding GP to obtain the best solutions within a large search space, and hence, its

design is critical. A good fitness function guarantees a more effective and efficient exploration of

search space while an inappropriate fitness function can make GP trapped in a local optimum [27].

2.2.4. Selection

The selection methods are used to select individuals to which genetic operators will be applied. A key

property of selection mechanism is selection pressure, which is defined as the degree to which better

performing individuals are favored [28]. Good genetic material in the chosen parents is expected to be

propagated along evolution in order to speed up population convergence. A method with high

selection pressure highly favors the individuals having better fitness while a method with a weak

selection pressure is less discriminating.

7

The most commonly used method to select individuals in GP is tournament selection [22], which is

based on competition within a subset of the population. A number of individuals are randomly sampled

with replacement from the current population into a tournament, and then the one which has the best

fitness from the tournament is chosen to be a parent for the next generation. By using different

tournament sizes, the selection pressure can be adjusted: the larger the tournament size, the higher

the selection pressure.

2.2.5. Genetic operators

Genetic operators are applied to the individuals selected in the selection step to produce offspring for

the next generation. The crossover operator generates new offspring by combining the genetic

information of two existing individuals. Given two individuals as parents, the standard GP crossover

[20], also known as swap crossover, begins by selecting one random point (a node) in each parent. The

selected point is called crossover point for that parent. Two offspring individuals are then produced by

exchanging the subtrees rooted at the crossover points, as illustrated in Figure 3.

+

* 5

X2 X2

Parent #2

Crossover

point

+

- /

X1 X2 X3 4

Parent #1

Crossover

point

Offspring #2

/

4 X3

 5

+

Offspring #1

*

X2 X2

-

X1 X2

+

Figure 3. An example of standard crossover.

8

Mutation operator operates on only one parental program. The standard GP mutation [20], called

subtree mutation, begins by randomly selecting a point, called mutation point, within the selected

individual and then substitutes the subtree rooted there with a randomly generated subtree as

illustrated in Figure 4. This operator allows to better explore potentially new genetic information, i.e.

areas of the search-space, as it introduces previously unseen structures in the individuals.

The genetic operators are applied with a given probability, and in GP usually they are mutually

exclusive. When the rates of crossover and mutation (probability of applying crossover and probability

of applying mutation) add up to a value which is less than 1, a reproduction operator is used, which

simply inserts a copy of a selected individual into the new population.

2.3. GENETIC PROGRAMMING FOR FEATURE EXTRACTION

Due to its capability to automatically generate solutions and detect the underlying relationship that

exists in the data as well as its flexibility, GP is a good choice for generating features. It has been widely

applied to different scenarios showing promising results. Considering the GP’s interaction with the

+

- 5

X1 X2

Parent

Mutation

point

 +

*

X1 X1

Randomly generated subtree

3 X2

-

Offspring

-

X1 X2

+

 +

*

X1 X1 3 X2

-

Figure 4. An example of subtree mutation.

9

final learner, two major categories can be noted based on previous research. In one category, which

can be seen as a wrapper approach, the final learner is incorporated in the evolutionary process and

its performance on generated features determines the fitness of GP individuals; in another category,

feature construction or extraction is done as a preprocessing phase, and no particular classifier is

involved in the evaluation of the new features, expecting to obtain more general results. However,

regarding the latter approach, a problem independent indicator is needed to determine the

appropriateness of generated features, thus the design of a fitness function might be more challenging

[29]. Below, we briefly describe the main aspects of other researchers’ work.

Raymer et al. [30] applied GP to modify the original feature space to improve the performance of

K-nearest neighbors (KNN) classifier. In their approach, for problems with n features individuals

consisted of n automatically defined functions (ADFs), where each ADF was evolved for a particular

feature using that feature and zero or more constants. Fitness of individuals was measured based on

the classifier performance on extracted features. The system was applied to a biochemistry problem

and showed slightly better results compared to a similar system with genetic algorithm.

Similarly to [30], in [31], Bot proposed a GP framework for automatic feature extraction to improve

the accuracy of KNN classifier on the new features, however, it also aimed to reduce the dimensionality

of the dataset. Proposed approach was a greedy algorithm, where new features were added

one-at-a-time, and only if the relative increase in the accuracy on training set was greater than the

predefined constant. The system was applied to 16 different datasets, where the number of features

varied from 4 to 60. It was shown that the system was able to reduce the dimensionality of most

datasets to one or two features while improving or at least not worsening the classification

performance of KNN classifier.

Sherrah [32] created a feature extraction system based on GP where the individuals were multi-trees,

each of which encoded one new feature, and fitness was the estimated misclassification rate of a

particular classifier trained on the pre-processed data. A set of classifiers used by the system included

minimum distance to means classifier, parallelepiped classifier, and Gaussian maximum likelihood

classifier. According to Sherrah, the classifiers used by the system should not be too powerful,

otherwise they would do all the classification work by themselves and there would be no pressure for

the system. The experiments carried out using synthetic and real-world datasets from different

domains, such as medical diagnosis, social sciences and image processing, showed that although the

simple classifiers performed poorly on their own, the system was able to improve their classification

performance by evolving appropriate features. For the real-world problems, however, the proposed

10

method did not result in a significantly better classification performance than the multi-layer

perceptron (MLP). Overall, the effectiveness of the system broke down on high-dimensional problems.

Kotani et al. [33] proposed a feature extraction method using GP to improve the classification accuracy

in the pattern recognition tasks. They assumed that extracted features were the polynomial

expressions of the original features and searched for them using GP, they then fed the generated

features into a KNN classifier to evaluate the classification performance and evaluate the fitness of

individuals. Experiments performed on two artificial tasks and the acoustic diagnosis for compressors

as a real-world task confirmed the effectiveness of the proposed method.

Krawiec [34] used GP for changing the representation of the input data with the objective to improve

the performance of a particular classifier, namely C4.5 DT. Under the standard approach, individuals

in the evolving population were encoded as a fixed-length vector of expression trees and during the

evolutionary search random modifications by means of genetic operators were applied to all features.

However, the preliminary experiments of Krawiec showed that while some parts of the solution (some

features) were improved due to genotype changes, at the same time some other parts might have

undergone deteriorating modifications. Because of that, in addition to the general framework for

GP-based feature extraction, an extended approach, in which useful features were preserved during

an evolutionary process, was proposed. Under the extended approach, the genotype of each individual

was split into two disjoint parts, where the former part was a subject to evolutionary search, and the

latter part was treated as a repository where most valuable features of the individual were stored. This

way, two evaluation mechanisms were implemented: one that was used to evaluate an individual as a

whole (the whole feature set) and another one that was used to evaluate a particular feature. The

utility of a feature was evaluated using a scalar utility measure based on feature usage statistics in the

DT construction. Performed experiments showed that for all considered problems (3 real-world and 3

artificial problems), one of the two presented approaches provided better classification accuracy than

the one obtained on original dataset; the solution obtained under the extended approach was better

than the solution obtained under the standard approach at least for two problems. However, the

results did not allow to state that the proposed extended method outperformed the approach under

which the raw input data were used in a systematic and statistically significant manner. Moreover,

overfitting was noticed in many of the experiments.

In [35], Bhanu and Krawiec proposed another version of standard approach to use GP for feature

extraction presented in [34], which was based on the paradigm of cooperative coevolution. In [34],

features were evolved autonomously and then co-adapted to the remaining part of the derived

dataset. More precisely, each species in cooperative coevolution algorithm was responsible for

11

developing one feature for the derived dataset, and each GP individual representing a particular

species implemented a single feature. In this way, the entire solution was obtained by n cooperating

GP individuals, where n is the dimensionality of the derived dataset. The experimental results showed

that, in terms of classification accuracy of C4.5 DT obtained on the derived dataset, features found by

means of coevolutionary search were better than features extracted under the standard approach.

The obtained results also indicated the presence of overfitting. However, the experiments were

performed only on one benchmark dataset and it is not clear how the presented method would work

on different problems.

Guo et al. [36] applied GP-based feature extraction method to bearing conditions monitoring task.

Instead of using the classification results to determine the fitness value of GP individuals, they adapted

the Fisher criterion based on maximization of between-class scatter over the within-class scatter and

sought to maximize the degree of difference between the classes, this way reducing the computational

demands. Experimental results by Guo et al. demonstrated that artificial neural networks and SVM

were able to obtain better classification accuracy when features extracted by GP were used, compared

with the classification accuracy obtained using features generated by other classical feature extraction

methods.

Similarly to [36], in [37], Guo and Nandi proposed to evaluate fitness based on the Fisher criterion, but

to overcome the drawback of the Fisher criterion when it is used as a measure of class separation (it

can result in a large value not only due to well-separated clusters but also due to the overlapping

classes with small variances), they developed a modified Fisher criterion where the within-class scatter

was based on the distance instead of the variance between any two patterns belonging to the same

class. The experiments carried out with a simple minimum distance classifier on breast cancer

diagnosis problem demonstrated that a proposed method could significantly reduce the

dimensionality required to describe the problem and made the classification effective in

one-dimensional feature space, improving the classification performance and outperforming more

sophisticated classifiers like MLP and SVM used with a set of all original features.

Firpi et al. [38] applied a general-purpose algorithm consisting of GP module and KNN classifier to

epileptic seizure prediction task. There GP generated artificial features directly from the reconstructed

state-space trajectory of the EEG signals, attempting to find the best discrimination between the

non-seizure data and pre-seizure data by minimizing the error-risk objective function. The extracted

features were then fed into a KNN classifier. Performed experiments showed that features generated

by GP matched or exceeded the performance of traditional conventional features.

12

Similarly to [30], [31], [33] and [38], in the GP-based feature extraction system proposed by Guo et al.

in [15], a GP module was used in conjunction with a KNN classifier. The novel part of the system was a

new primitive function introduced in a function set that determined the number of extracted features

automatically during GP evolution, with no need to predefine that number beforehand. More

precisely, a new feature was obtained using the subtree under that function node, and in this way, the

number of times that function appeared in the tree structure determined the number of generated

new features. The experiments carried out on the epileptic EEG classification problems showed that

proposed method was successful in increasing the classification accuracy and significantly reducing the

dimensionality.

Neshatian et al. [29] used GP for feature extraction in classification tasks aiming to improve the

classification performance as well as reduce the dimensionality and learn a smaller DT. The number of

generated new features was equal to the number of classes in a dataset and each of those features

was created by a separate GP run. Rather than using the classification performance as fitness, they

designed GP fitness function based on class dispersion and entropy. The approach was examined on

12 benchmark classification problems and results showed that this approach outperformed the

standard way of using DTs on original features in terms of classification performance, dimensionality

and learned DT size. Moreover, compared with classification using only new features, the classification

results using a combined feature set (new features and original features) were worse for most of the

datasets.

Smith and Bull [39] examined the use of GP and GA to improve the classification performance of,

initially, C4.5 DT. In the proposed system, GP was used to construct new features from the original

data and GA was applied to find the most predictive ones which then were fed to the final classifier.

There GP individuals consisted of multiple trees, where the number of trees was equal to the number

of numeric attributes in the dataset. However, the minimum number of compound trees was

introduced to ensure that, for datasets with a small number of features, there would be a sufficient

number of new features as subsequent feature selection was performed using a combined set of

GP-based features and original features. Fitness of individuals was based on the classification

performance of the same classification method as used to create a final classifier, evaluated on

constructed new features. Experimental results showed that the proposed hybrid system was able to

improve the classification accuracy of C4.5 DT on most of the datasets.

In [40], Otero et al. used GP to construct a single generally-useful feature out of original real-valued

attributes which then was appended to the set of original features for use by C4.5 algorithm. Under

their approach, the feature construction was independent from the classification algorithm. The

13

information gain ratio was used as fitness function, making the evaluation of individuals relatively

more efficient compared to the evaluation of individuals when fitness is based on the classification

performance, since it did not require the execution of classification algorithm. However, such fitness

criterion is only applicable to a single feature and could not be considered for a set of features [39].

Experiments performed on 4 public-domain datasets showed that GP-based feature was useful for 2

datasets as the error rate of C4.5 DT decreased when such feature was used, but for other 2 datasets

there was no significant difference between the error rate of the classifier applied to a set of original

features with and without the GP-based feature.

Afzali et al. [41] applied GP to salient object detection. In the proposed method, GP was used to

automatically select and combine complementary saliency features to produce the final saliency map.

The goodness of each individual was evaluated using fitness function based on the Kullback-Leibler

divergence. The experimental results proved the ability of the proposed method to tackle a wide range

of saliency features from different segmentation levels and effectively choose and combine them. The

GP-based method either significantly outperformed or achieved a comparable performance to the

other methods on benchmark datasets.

Bi et al. [42] proposed a multi-layer tree GP approach to feature extraction and image classification

which could benefit from the prior designed image-related operators and descriptors. They designed

a new tree-based GP program structure composed of 5 layers to achieve automatic region detection,

high-level feature extraction, feature construction, and binary classification simultaneously. A new

terminal set including 4 types of terminals representing the input image as well as a new function set,

including image operators and region descriptors to detect more informative high-level features, were

proposed. The experiments carried out on 6 different image datasets of varying difficulty showed that

proposed method was able to achieve either a significantly better or comparable classification

performance compared with the baseline methods (5 other GP methods for image classification and

42 non-GP methods based on 7 commonly used classification algorithms and 6 image feature

extraction methods).

In [43], Tran et al. investigated the use of GP for feature construction and selection on

high-dimensional classification problems. A GP individual was represented using tree-based structure;

however, such individual not only generated a new high-level feature, but also worked as a binary

classifier whose balanced accuracy was used as a fitness measure to guide the search. A single-tree

generated by best individual of GP run was proposed to be used to create 6 different feature sets,

namely 1) a single constructed feature; 2) a combined feature set of the original features and a

constructed feature; 3) a set composed of original features used in terminal nodes; 4) a combined set

14

of 1) and 3); a set containing new features created using all possible subtrees of the tree obtained by

best GP individual; 5) a combined set of 3) and 5). The sets 1), 2), 3), and 5) had been used by other

researchers, for instance 1) can be found in [44], 2) in [40], [44], and sets 3) and 5) were used in [45];

however, sets 4) and 6) were proposed for the first time. The performed experiments showed that GP

could choose informative features and construct new features that had better discriminatory ability

than original features.

Instead of executing multiple GP runs or using multi-tree representation of individual to construct

multiple features, Ahmed et al. [45] proposed to evolve a single tree and generate new features using

all subtrees of that tree. Moreover, they proposed a fitness function which combined the Fisher

criterion and p-value, where the Fisher criterion worked by maximizing the between-class scatter and

minimizing the within-class scatter while the p-value ensured the separation between the different

classes is significantly large. The proposed method was examined on a number of mass spectrometry

datasets using 7 different classification methods and showed good performance results in terms of

dimensionality reduction, classification performance and biomarker identification.

In [46], Tan et al. used GP to evolve composite operators which generated feature vectors from the

original orientation field in fingerprint classification problem. The primitive operators were separated

into computation and feature generation operators, and feature vector that represented a fingerprint

image and was used for classification was formed by features computed whenever feature generation

operators were used in the evolved binary tree structure. The experimental results showed that GP

could try unconventional ways of combining primitive image processing operations and find good

composite operators to extract useful features. Compared with the results of other previously

published research, the proposed approach was efficient and promising.

Huertas et al. [47] proposed to use GP for automatic feature extraction for cloud classification. Under

the proposed approach, GP was used to evolve a function that aimed to transform an image pixel by

pixel, then the mean and standard deviation of the transformed image was computed and used as

input features for a linear SVM classifier. The performance of proposed method was tested on

whole-sky cloud images and compared with the results obtained using a set of expert-defined features

proposed by Heinle et al. [48], which are widely used in the cloud classification problems. The

experimental results showed that the proposed method was able to achieve a similar classification

accuracy to the 4 most important expert-defined features, but it was unable to reach the highest

accuracy obtained using 12 standard features.

In [49], Aslam et al. proposed a three-stage method, composed of feature selection, GP-based feature

extraction and classification, for diabetes classification problem. In this method, different subsets of

15

original features were formed based on the order of feature importance obtained by averaging the

results of several feature selection methods, and for each such subset GP was trained generating one

new feature, which was then used as input for a classifier. The performed experiments showed that

GP-based features helped KNN and SVM classifiers to achieve a significant improvement in

performance compared to the performance achieved using original diabetes features.

To summarize, the aforementioned studies indicate that GP can be successfully used for extracting

new and potentially more discriminant features.

16

3. LAYERED GENETIC PROGRAMMING SYSTEM

3.1. SYSTEM DESIGN

In this work, we present a Layered Genetic Programming system (LGP) which consists of two parts,

namely GP, which is used to transform the input dataset into a new dataset with a lower

dimensionality, and a simple classifier that is trained on the transformed dataset during the GP training

stage and is used to perform the final classification. Given the input dataset D, the objective of the GP

population is to transform this dataset into a new dataset D’ that has lower dimensionality, in such a

way that using the transformed dataset D’ classification performance would be improved. In fact, the

work of the GP population can be interpreted as feature extraction as it derives new features from the

original ones.

As it has already been discussed in the theoretical part in 2.3, GP has been widely used for feature

extraction. However, there are several aspects that make the system design proposed in this study

different than in previous work. To be more specific, the current system employs a layered architecture

as shown in Figure 5, where in each such layer a GP population is evolved and used to transform a

dataset outputted by another GP population in the previous layer. Using this type of structure, only

the GP population in the first layer receives as input the original dataset that characterizes the

problem. Moreover, in each subsequent layer, the dimensionality of the dataset is gradually reduced.

As a result, the final classification is performed using fewer new features than the number of original

features.

In the following subsections, the main aspects of system design and functioning, namely

representation of GP individuals, the method used to initialize the GP population in each layer, fitness

evaluation of the GP individuals, and the application of genetic operators are described in more detail.

Figure 5. System structure.

 GP population

P1

Original

dataset D

Transformed

dataset D’1
 GP population

P2

Transformed

dataset D’2 … GP population

Pm

Transformed

dataset D’m

Layer 1 Layer 2 Layer m

 Classifier Classifier Classifier

17

3.1.1. Representation of individuals

The output vector of a traditional GP individual (a single tree) can be considered as one new feature

derived from the original features. However, when transforming the input dataset, not only do the

features themselves matter but also their synergy. In order to allow two scales of search – a search

over the features themselves and a search over combinations of features – an individual consists of

multiple trees, like in [34, 39]. Thus, each GP individual is n-dimensional vector of trees, where each

tree is responsible for creating one distinct feature in the new dataset. When all trees are evaluated

on the input dataset, a complete dataset characterized by n new features is obtained. An example

showing a representation of a GP individual consisting of 4 trees that can be used to create a new

dataset consisting of 4 features is depicted in Figure 6.

3.1.2. Population initialization

In each layer, an initial GP population consists of randomly generated GP individuals. As each tree in

the GP individual is responsible for creating one new feature, it is important to ensure the diversity not

only between the individuals in the population but also within each individual, i.e. between the trees

that the individual is composed of. If the trees of the GP individual output the same semantics, such

an individual is not useful. To address this issue and ensure enough diversity in the initial trees in each

layer, an initialization method, which creates each tree in the GP individual using a different input

feature subset, is used. The way how the feature subsets are generated depends on the dimensionality

of the input dataset in a particular layer. If the dimensionality is relatively large, it is reasonable to use

Figure 6. An example of a GP individual composed of multiple trees.

Observation 3

Original features

Observation 1

Observation 2

Observation m

Observation 4

Original dataset New dataset

Observation 1

Observation 2

Observation 3

Observation 4

Observation m

New features

The values of original

features

GP individual

T4 T1 T2 T3

Observation j

Computed values of new features

For each observation j = 1, 2, …, m

Observation j

… … ……………

f11 f12 f1n f13 … … … … …

f21 f22 f2n f23 … … … … …

f31 f32 f3n f33 … … … … …

f41 f42 f4n f43 … … … … …

fm1 fm2 fmn fm3 … … … … …

fj1 fj1 fj1 fjn … … … … …

fj1 fj2 fj3 fj4

fj1 fj2 fj3 fj4

fj1 fj2 fj3 fj4

fj1 fj2 fj3 fj4

fj1 fj2 fj3 fj4

fj1 fj2 fj3 fj4

…………..

18

disjoint feature subsets to increase the possibility of each input feature to be used in the initial trees

at least once. However, if the number of features in the input dataset is not that large, the full feature

set can be used.

The implemented initialization method starts by performing a simple random sampling without

replacement to generate a distinct subset of input features for each tree in the individual. If the

number of features in the full feature set divided by the number of the required feature subsets

(number of trees in the individual) is greater than 2, disjoint subsets of the size equal to this calculated

number are created. Otherwise, the subsets with intersection of the size equal to the greater value out

of 30% of the full feature set size and the number of features in the input dataset divided by the

number of required feature subsets are created if the input dataset does not have less than 10

features, or each of the trees is created using the full feature set if there are less than 10 features in

the input dataset. Once the feature subset for a particular tree is formed, the tree is created using full

or grow method, where each of these two methods has an equal probability of being used. The depth

for the tree is randomly chosen from the predefined range.

The initialization of GP population can be summarized as follows:

1. Define feature subset size ds for disjoint subsets.

2. For each tree i = 1, 2, …, n in the GP individual:

2.1. If ds > 2 then

Create disjoint feature subset Si of size ds.

 Else if the number of features in the full feature set is greater or equal to 10 then

Create feature subsets with intersection where subset size is equal to max(a, b), where

a = 0.3 * feature set size, b = feature set size / number of feature subsets.

 Else

Use the full feature set.

2.2. Select a method to create the tree from {full, grow}.

2.3. Select the tree depth from the predefined range.

2.4. Create the tree.

19

3.1.3. Evaluation of individuals

Different measures to evaluate the fitness of GP individuals that return as output a new feature or

feature set have been proposed in the literature and tested experimentally, such as classification

accuracy [34, 31, 35], misclassification value [15], information gain ratio [40], the Fisher criterion [49,

37], entropy [29]. If a classification performance metric is used, such as classification accuracy or

misclassification rate, the utility of the entire new feature set is evaluated, however, it requires a

classifier to be trained using new features every time an individual needs to be evaluated, which makes

the process computationally demanding.

Assuming that time is not a constraint in the training process, we use a fitness function which is based

on the classifier’s performance on the dataset outputted by a GP individual. More precisely, fitness of

a GP individual is the F1 score computed on the transformed dataset returned as output by that

individual. F1 score is chosen because the classification accuracy may be a misleading metric in case of

imbalanced datasets. F1 score combines precision (what proportion of positive identifications was

actually correct) and recall (what proportion of actual positives was identified correctly) into one

metric giving equal relative contribution to both of them [50]. The range of F1 score is [0; 1], where

the greater the value, the better is the performance of a model. Thus, this is a maximization problem.

The fitness evaluation procedure for an individuali is as follows:

1. Given training data, use individuali to create a new training set.

2. Train a classifier on the training set obtained in step 1).

3. Predict the class of each instance in the training set obtained in step 1) using the trained

classifier obtained in step 2).

4. Compute F1 score and assign this value as fitness of individuali.

To obtain fitness on test set, the same procedure is repeated using the test data, except the step 2)

which is then omitted.

3.1.4. Classification

The classification method applied on the output of GP individual is either DT, or KNN, or logistic

regression (LR). These three widely used methods perform conceptually different classification, are

relatively simple and easy to implement. Below, a brief description of each method is given, including

their main advantages and disadvantages.

20

Decision tree. To model the relationships among the features and the target classes, the DT use a tree

structure that can be represented as a set of the if-then rules. The DT is built using a recursive

partitioning also known as divide and conquer where the training instances are recursively partitioned

into disjoint subsets until some stopping criterion is met. The algorithm for constructing DT usually

works top-down, at each step choosing the feature that is best for splitting the data. In order to

determine which feature is the best one, various measures can be used, for instance, entropy, Gini, or

misclassification error [51]. Generally, such measures define how pure or impure the obtained subsets

are with respect to the target variable. The purer the obtained subsets, the better the split. In the

obtained tree, the root node and internal nodes of the tree contain attribute test conditions, the edges

correspond to the outcome of a test, and each of the leaf nodes (also known as terminal or decision

nodes) is labeled with one class representing the most appropriate target value or contains a

probability vector representing the probability of the target variable being of a particular class. An

instance is classified by traversing from the root node to the leaf node according to the outcome of

the attribute tests.

Among the advantages of the DTs is the interpretability – the obtained classification rules are the

sequences of simple rules given in a tree form which is easy to assimilate. Moreover, DTs can be easily

used with a mixture of numeric and categorical features, they do not require the feature scaling, and

perform internal feature selection [52]. However, there is a high risk of overfitting with DT which

happens when the tree grows large and becomes too specific for the training set. Furthermore, DTs

can be non-robust, i.e. small changes in the training data can lead to large changes in obtained

classification rules [53].

K-nearest neighbors. KNN is an instance-based learning technique that does not have a specialized

training phase but performs a classification at runtime directly based on the training data which is

stored in memory. The idea of the KNN is to label new instances based on their similarity to already

labelled instances in the training data. The similarity is determined using a distance measure, where

the Euclidean distance is among the most frequently used ones. In general, for the new data point that

needs to be classified, the k closest neighbors (training data points) are found and using a majority

vote the class which appears most frequently in the defined neighborhood is assigned to that new data

point. This way, instead of trying to draw decision boundaries across the whole space, the KNN

classifier makes a decision based on the local information.

The main advantages of the KNN method include its simplicity, interpretability, and adaptability to

irregular feature spaces [54, 55]. However, the KNN classifier is sensitive to the curse of dimensionality

[19, 56] as in high dimensional data, the data points are relatively distant from each other considering

21

all different dimensions. Furthermore, this method can have a poor run-time performance if the

training set is large.

Logistic regression. LR is a parametric classification method which models the probability of

class-membership based on the values of a set of given features. In its basic form, the LR uses a logistic

function, also called sigmoid function which constrains the probability estimates to between 0 and 1

and ensures that they sum up to one. This way the obtained probabilities are sensible for all values of

the explanatory variables. In fact, LR model is a linear combination of the inputs, but this linear

combination relates to the logarithm of odds (log-odds) where the odds is the ratio of the probability

of the predicted event occurring to the probability of that event not occurring. Differently from the DT

and KNN, LR model has parameters that are learnt from the training data using a learning algorithm.

The LR models are widely used due to their simplicity and possibility to interpret the model’s

coefficients easily in terms of odds ratios [57, 58]. LR works well on the linearly separable problems as

it is a linear classifier which produces linear decision boundaries (if nonlinear versions of the

explanatory variables are not included in the model, for instance, the squared values of explanatory

variables) [57]. However, overfitting problem may arise in LR models, especially with high dimensional

and/or sparse data [59].

Regarding how the classification methods are used in the system, two approaches are considered:

1) One classification method is randomly chosen and used for a specified number of GP

generations, after which the random choice is repeated.

2) One classification method is used during the system training process.

In case of 1), the system does not depend on one specific classification method but tries to take

advantage of several different methods in order to achieve better classification performance. In case

of 2), the work of GP population is wholly directed to changing the data representation to make it more

appropriate to a particular classification method.

When solving a given problem, the performance of a classifier is dependent on the specified

hyper-parameter values. Each dataset transformation done by GP individuals implies a problem

change and thus requires hyper-parameters of the classifier to be optimized. However, doing this for

every dataset returned by GP individuals highly increases the time required to train a system. For this

reason, the hyper-parameters are tuned only when a new GP population is initialized, i.e. once in each

layer. For each individual in the initial generation, on a training set returned as output by that

22

individual, the specified hyper-parameters of a classifier are exhaustively explored using a

cross-validated grid search over a specified parameter grid. Those hyper-parameters that result in

highest F1 score on the left-out data are selected and used when evaluating fitness of the individual.

Once all individuals in the initial generation are evaluated, the hyper-parameter values that were

selected on the dataset returned as output by the best-of-generation individual are set in the next

generations.

3.1.5. Genetic operators

As the GP individual consists of multiple trees, the traditional genetic operators (subtree mutation and

standard crossover that were described in 2.2.5) are applied, with a given probability, to all its trees.

In other words, for each i = 1, 2, 3, …, n, where n is the number of trees in the individual, the tree Ti is

mutated with a given probability pm, where pm is a parameter of the algorithm. In case of crossover,

two individuals parent1 and parent2 are selected, each tree in the parent1 is paired with a randomly

selected tree from the parent2, and then for each i = 1, 2, 3, …, n, where n is the number of trees in

the parent1, the pair of trees Pairi is crossed over with a given probability pc, where pc is a parameter

of the algorithm. This way, using the crossover operator one offspring is obtained which consists of

the same number of trees as the first individual, yet it carries some genetic information from both

parents.

It is important to highlight that mutation and crossover operators are applied independently to each

tree or pair of trees. This implies that, although all trees in the individual to which mutation is applied

have the same probability of being mutated and all pairs of trees have the same probability of being

crossed over, some of the trees would be mutated whereas others would not, and respectively, some

of the pairs of trees would be crossed over while others would not (in such case, a respective tree from

parent one is replicated).

Because of its structure, the GP multi-tree individual can be treated as an individual of GA [60]. There

each tree in GP individual corresponds to one gene of GA individual. This allows the usage of some

traditional genetic operators of GA, for instance, one-point crossover. Given two GP individuals

parent1 and parent2 as parents, a random crossover point is chosen, and the offspring is generated by

taking all the trees that are in the positions from the crossover point to the left from parent1 and all

the trees that are in the positions from the crossover point to the right from parent2 as shown in Figure

7. This way the obtained offspring outputs a new dataset that contains some features generated by

parent1 and some by parent2.

23

3.1.6. Elitism

A common approach to ensure that the quality of the obtained solution will not decrease from

generation to generation is to use elitism strategy. Using this strategy, some of the best individuals

obtained in the current generation are carried over to the next generation unaltered thus preserving

the best genetic material and making it available for further improvement.

In LGP, elitism is used in two ways. First, the usual elitism strategy is used within each layer by copying

the best individual in the current generation to the next generation and making it available for further

evolution. Secondly, the elitism strategy is used between the GP layers. As in each layer a new GP

population is initialized, there is a risk that the best individual obtained in the next layer will be worse

than the best individual in the current layer. To reduce this risk, the best individual obtained in the

current layer is always retained. When the best individual in the last generation in the new layer is

obtained, it is compared to the best individual of the previous layer and if it is fitter, it becomes the

best so far obtained solution, otherwise the best individual from the previous layer stays as the best

of best individual. Differently from the elitism strategy within the layers, the best-of-layer individual is

only retained but not inserted into the new layer.

Figure 7. One-point crossover.

Parent1

T4 T1 T2 T3

Parent2

T4 T1 T2 T3

Offspring

T4 T1 T2 T3

Crossover point

24

4. EXPERIMENTAL STUDY

The objective of experimental study is to test the performance of the proposed LGP system. The key

question is whether the GP that uses a layered structure can reduce the dimensionality of the dataset

while improving the classification performance of simple classifiers. In the following subsections, test

problems, design of experiments, and experimental results are presented.

4.1. DATASETS

In the performed experiments, 5 real-world binary classification problems were used. In each of these

problems, the objective is to discriminate between the two classes: ready and not ready biodegradable

chemicals (QSAR Biodegradation dataset [61] that hereinafter will we referred to as BIODEG); sonar

signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock (Sonar dataset

[62] that hereinafter will we referred to as SONAR); benign and malignant tumors (Wisconsin

Diagnostic Breast Cancer dataset [63] that hereinafter will we referred to as WDBC); good and bad

radar system returns (Ionosphere dataset [64] that hereinafter will we referred to as IONO); approved

and rejected credit card applications (Credit Approval dataset [65] that hereinafter will we referred to

as CREDIT).

The datasets differ in terms of the number of features and instances, the features/instances ratios,

and types of the features. The number of features varies from 30 to 60, the number of instances varies

from 208 to 1055, and the features/instances ratio varies from 0.039 to 0.288. The WDBC dataset

contains only numeric features. In BIODEG dataset, there are both numerical and categorical features,

with the latter already provided in a numeric form of 1/0 corresponding to the presence/absence of a

certain feature. In SONAR dataset, all features are numerical in a range [0.0, 1.0]. In IONO dataset, the

features are numerical, continuous. The CREDIT dataset originally contains both numerical and

categorical features, 15 in total, but the categorical ones were converted into dummy variables for

each category after that obtaining 37 features in total. All datasets, except for CREDIT, have no missing

values. In the CREDIT dataset, 7 features have missing values (67 missing values in total), which were

replaced with mode for categorical features and median for numeric features. Table 1 summarizes the

main characteristics of the datasets. All these datasets are available at UCI Machine Learning

Repository [66].

25

Table 1. Description of datasets.

Dataset # Classes # Features # Instances
Features/instances

ratio
Target class proportion

(0/1)

QSAR Biodegradation (BIODEG) 2 41 1055 0.039 0.66/0.34

Sonar (SONAR) 2 60 208 0.288 0.53/0.47

Wisconsin Diagnostic Breast Cancer
(WDBC)

2 30 569 0.053 0.63/0.37

Ionosphere (IONO) 2 34 351 0.097 0.64/0.36

Credit approval (CREDIT) 2 37 690 0.054 0.56/0.44

4.2. EXPERIMENTAL SETUP

The performed experiments were divided into two phases. In the first phase, for each test problem,

different configurations of the LGP were tested. In the second phase, the performance of the LGP with

the best configuration found in the first phase was compared with the performance of the classification

methods applied directly on the original datasets. The classification methods applied on the original

datasets were the same ones that were used in the LGP system, i.e. if the best performance was

achieved by LGP where the classifier was LR, then its performance was compared with the LR trained

and tested on the original data.

Considering the stochastic nature of GP and the volatility of the results depending on the data

partition, for each test problem the experiments were run 30 times using different seeds of the

pseudo-random number generator, and then the results were summarized using the medians. Each

time, the original dataset was randomly partitioned into training and test sets where the former

contained 80% of samples and the latter contained the remaining 20% of samples. In the first

experimental phase, only the training set was used. In each run, this set was further partitioned into

sub-training set containing 80% of the full training set samples and development set containing the

remaining 20% of the full training set samples. Then different LGP configurations were tested. The

sub-training set was used by GP individuals for learning while the decision which configuration to

choose was made based on the median fitness value (median F1 score) on the development set

achieved by the best-of-run individuals. Once the best configurations of LGP were found for all test

problems, these configurations were used in the next experimental phase. In the second phase, the

full training set was used by GP individuals for learning and the test set which contained previously

unseen data was used for the final performance evaluation. To evaluate the performance of

classification method applied directly on the original dataset, the method was applied for 30 times on

26

each test problem, using the same set of 30 different data partitions as with LGP. The representation

of how the dataset was split and which sets where used in each experimental phase are showed in

Figure 8.

In addition to the usual GP parameters, there are some new parameters that are specific to the LGP

system. That is, the number of layers which defines the size of the system and thus has impact on the

time required for the training phase (the more layers there are, the longer the training lasts as more

GP populations have to be evolved), and also the dataset dimensionality reduction step size, which

defines by what number of features to reduce the dimensionality of the dataset from layer to layer,

and the classifier used for evaluating the fitness of individuals. Regarding the dimensionality reduction

step and the size of the system, the following variants were considered:

1. In each new layer, the number of features in the transformed dataset is equal to the largest

integer that is not greater than the number of features in the input dataset in that layer divided

by 2. This way, in each layer, the dimensionality is reduced by half, approximately. New GP

layers are added until the original data are transformed into a one-dimensional space. For

WDBC dataset this required 4 GP layers, and for all other test problems – 5 layers.

2. In each new layer, the number of features is reduced by the square root of the number of

features in the input dataset in that layer. Similarly to the previously described variant, the

dimensionality is reduced gradually, however, slower, and in order to transform the input data

into a one-dimensional space it would require a larger LGP system, i.e. more GP layers.

However, for each test problem, we used the same number of layers as in the first variant so

Figure 8. Dataset split representation.

Original dataset

2nd experimental

phase: evaluate

and compare
Training set 80% Test set 20%

1st experimental

phase: find best

configuration

Sub-training set 80%
Develop

ment set

20%

Before the

experiments

27

as to ensure that when comparing different variants, the final solutions would be obtained

using the same total number of generations.

3. The GP population contains individuals of different sizes and so, the dimensionality reduction

step depends on a particular individual. Let n be the number of features in the input dataset

in a particular layer. Then in that layer, each individual i in the initial population is composed

of mi trees, where mi is an integer number randomly chosen from a range [1, n-1]. This allows

to automatically determine the dimensionality of the transformed dataset during the

evolution of population instead of having to specify a dimensionality reduction step

beforehand and ensures that the transformed dataset has fewer features than the input

dataset. However, in each layer, the search space for the GP population is larger compared to

the previously described variants. For each test problem, the same number of layers was used

as in the first variant.

4. Although the idea of the proposed system is to reduce the dimensionality of the input dataset,

a variant where the dimensionality is kept the same from layer to layer is also considered in

order to observe the behavior of the system in such case. For each test problem, the same

number of layers was used as in the first variant.

Regarding the classification methods applied on the transformed dataset, the following variants were

considered:

1. In each generation, a classification method is randomly chosen with a uniform probability from

{DT, KNN, LR}. This way, it may happen that in each generation a different classifier is used to

evaluate individuals.

2. A classification method is randomly chosen with a uniform probability from {DT, KNN, LR} and

is used for 10 generations, after which the selection is repeated. This ensures some stability in

fitness evaluation as the same classifier is used for assessing individuals for several

generations.

3. In the first generation in each layer, a classification method is randomly chosen with a uniform

probability from {DT, KNN, LR}, and subsequently this method is used to evaluate fitness of

individuals in all generations in that layer, i.e. the classifiers may differ only between the layers.

4. In all layers in all generations the same classification method is used which is DT or KNN or LR.

For the first variant of dimensionality reduction step, all variants of classification method choice were

tested. Other three variants of dimensionality reduction step were tested in combination with the

28

variant where the classification method was randomly chosen in each generation. Thus, in total 9

different combinations of these parameters tested. Furthermore, three genetic operators, namely

subtree mutation, standard crossover, and one-point crossover were tested with different

probabilities which are given in Table 2. In fact, these are the probabilities of applying a respective

genetic operator to an individual. If either the subtree mutation or standard crossover was applied,

the probability of mutating each tree or crossing over each pair of trees was 0.5.

Table 2. Tested probabilities of applying genetic operators to GP individual.

No. Prob. of subtree mutation Prob. of standard crossover Prob. of one-point crossover

1 1.0 0 0

2 0.8 0.2 0

3 0.5 0.5 0

4 0.2 0.8 0

5 0.8 0 0.2

6 0.5 0 0.5

7 0.2 0 0.8

Other parameter settings that were common in all experiments are listed in Table 3. In each layer, GP

population of 100 individuals was evolved for 30 generations and then the dataset returned as output

by the best individual in the last generation was transferred to a subsequent layer. The number of

generations per layer was chosen such that it is a multiple of 3 in order to ensure that all three

classification methods may be used for an equal number of generations in the cases when the

classification method is randomly chosen in each generation or when the same classification method

is used for 10 subsequent generations. Moreover, a relatively small number of generations per layer

was chosen considering the overall time required to evolve all populations. However, this number of

generations should be enough to obtain a good solution.

29

Table 3. Parameter settings that were common in all experiments.

Parameter Value

Runs 30

Population size 100

Number of generations in each GP layer 30

Selection Tournament selection of size 5

Initialization Initialization using subsets of features as described in 3.1.2,
with the initial tree depth in range [1, 4]

Function set {+, -, *, /1}

Terminal set Variables of considered problem, and constants that are
randomly generated from a range [-1, 1]

Elitism Keep best-of-generation individual and best-of-layer individual

Termination criterion in each layer Maximum number of generations is reached

The classification methods (DT, KNN, LR) used in the system were the ones that are available in Scikit

Learn [67]. Their hyper-parameters were tested and selected using a parameter grid shown in Table 4

in each initial generation as described in Section 3.1.4. For KNN, the Euclidean distance was used as a

distance metric. The values tested as the number of neighbors to use (k) were chosen such that they

would include smaller and larger values. Although large values of k make the method computationally

expensive, they decrease the chance that the decision will be influenced by the noise in training data

[68]. Moreover, an often-used rule of thumb is to choose k which equals the square root of the number

of instances in the training set [69, 70, 71] and so, such value was included in the parameter grid for

each considered dataset. DT has many more hyper-parameters that could be potentially tested, but

that would substantially slow down the computation. For this reason, the hyper-parameters that

control the size of the tree and thus can help to prevent the tree from overfitting, namely the maximum

tree depth and the minimum number of samples required to be at a leaf node, were chosen to be

optimized, and other hyper-parameters of DT were used as default. For LR, the liblinear solver was

used. L1 and L2 norms used in the penalization were tested with different values of parameter C, which

is the inverse of regularization strength. All other parameters were used as default.

1 Protected as that can help to prevent in [20].

30

Table 4. Parameter grid.

Parameter Values

DT: maximum depth of the tree 1, 2, 3, 4

DT: minimum number of samples required to be
at a leaf node

10, 25, 50, 100

KNN: number of neighbors to use 5, 7, 9, 25, √# training instances

LR: the norm used in the penalization L1, L2

LR: C 1 x 10-2, 1 x 10-1, 1 x 100, 1 x 101, 1 x 102

The hyper-parameters of the classifiers that were applied on the original datasets were tuned too. For

that, the same parameter grid given in Table 4 was used. To analyze the statistical significance of the

results, the Wilcoxon signed-rank test was used considering a significance level of 0.05. The project

was developed using Python programming language. As a base for LGP system, gplearn package [72]

was used, and then it was further developed based on the needs of this project.

4.3. EXPERIMENTAL RESULTS

In this sub-section, the obtained results are presented. Table 5, Table 6, Table 7, Table 8, and Table 9

summarize the main results for BIODEG, WDBC, SONAR, IONO, and CREDIT problems respectively

obtained in the first experimental phase in 30 runs where the objective was to test different LGP

configurations and choose the best one in terms of median F1 score achieved on the development set.

In these tables, the following information is provided:

- LGP config. column refers to the tested combination of dimensionality reduction step and

classification method choice, where:

1. DIV2GEN1 – in each subsequent layer, the dimensionality of the input dataset was reduced

by half, and the classifier applied on the transformed dataset was randomly chosen in each

generation.

2. DIV2GEN10 – in each subsequent layer, the dimensionality of the input dataset was

reduced by half, and the classifier applied on the transformed dataset was randomly

chosen for every 10 generations.

31

3. DIV2GEN30 – in each subsequent layer, the dimensionality of the input dataset was

reduced by half, and the classifier applied on the transformed dataset was randomly

chosen for every 30 generations.

4. DIV2DT – in each subsequent layer, the dimensionality of the input dataset was reduced

by half, and the classifier applied on the transformed dataset was DT.

5. DIV2KNN – in each subsequent layer, the dimensionality of the input dataset was reduced

by half, and the classifier applied on the transformed dataset was KNN.

6. DIV2LR – in each subsequent layer, the dimensionality of the input dataset was reduced

by half, and the classifier applied on the transformed dataset was LR.

7. SQRTGEN1 – in each subsequent layer, the dimensionality of the input dataset was

reduced by the square root of the number of features in the input dataset in that layer,

and the classifier applied on the transformed dataset was randomly chosen in each

generation.

8. NOREDUCGEN1 – in the subsequent layers, the dataset was transformed without changing

its dimensionality, and the classifier applied on the transformed dataset was randomly

chosen in each generation.

9. RANDGEN1 – the initial populations contained GP individuals of different sizes as described

in 4.2, and the classifier applied on the transformed dataset was randomly chosen in each

generation.

- Mutation/Crossover column shows with which probability of applying mutation or crossover

operator to an individual the highest median F1 score of 30 runs was achieved on the

development set. There P_MUT refers to the probability of applying subtree mutation

operator, P_XO – standard crossover operator, and P_XO1P – one-point crossover operator.

- Fitness on training set column shows the median fitness of best individual achieved on the

training set, with the standard deviation provided in the parentheses.

- Fitness on development set column shows the median fitness of best individual achieved on

the development set, with the standard deviation provided in the parentheses.

- The column # trees shows the median number of trees that the best individual was composed

of, with the minimum and maximum number of trees given in the parentheses. In other words,

this is the dimensionality of the obtained transformed dataset on which the best classification

performance was noticed.

- Avg. tree depth column gives the median of average tree depth in the best individual.

- Max. tree depth column gives the median of maximum tree depth in the best individual.

- Avg. tree size column shows the median of the average number of nodes in the tree of the

best individual.

32

- Max. tree size column shows the median of the maximum number of nodes in the tree of the

best individual.

- In Classif. method column, the classification method which was applied on the transformed

dataset outputted by the best individual, is given. If the classification method was randomly

chosen and used for a certain number of generations, it might happen that in different runs a

different classification method was used on the final transformed dataset. In such cases, the

classification method that was used in the largest number of runs is given.

- Layer of best individual column shows in how many runs the best individual was obtained in a

certain layer. There the percentage is out of the total number of runs.

Looking at the results obtained on different datasets and in different variants, it can be noticed that

most often, the best individual was found in the first few layers. This implies that from a certain point

LGP was often not able to improve the previously obtained solutions anymore. There is the largest

percentage of runs where the best individual was obtained in the first layer, following by the second

and third layers. A slightly different behavior was observed for DIV2DT where for all considered

problems, the best individual was more often obtained in the second layer rather than in the first layer.

When considering the RANDGEN1 variant, where instead of a having a predefined dimensionality

reduction step size the algorithm automatically determined the dimensionality of the transformed

dataset during the evolution of population, it can be noted that for all considered problems, it reduced

the dimensionality of the dataset slower. The result of this was that the final transformed dataset

contained more features compared to the number of features in the final transformed datasets

obtained in other LGP variants where the dimensionality reduction step size was specified in advanced.

Moreover, it can be also noticed that keeping the same number of features in the next layers was not

useful as regarding the F1 score achieved on the development set, the results of NOREDUCGEN1

variant were worse than those of other tested variants.

The LGP showed an ability to control the sizes of the trees that the individuals were composed of. As

several layers were used and in each such layer a new population was initialized with the individuals

composed of the trees with the depth not exceeding the predefined maximum depth, this did not

allowed the trees to grow very large. As a result, for all considered problems, in all tested variants the

median of maximum tree depth of best individual was less than 10 and the median of maximum tree

size was less than 40 nodes.

33

Table 5. Results of different LGP configurations on BIODEG dataset. The configuration which showed
best results in terms of median F1 score on the development set is highlighted in grey.

No. LGP config.
Mutation/
Crossover

Fitness
on
training
set

Fitness on
development
set

trees
Avg.
tree
depth

Max.
tree
depth

Avg.
tree
size

Max.
tree
size

Classif.
method

Layer of best
individual

1 DIV2GEN1
P_MUT=0.5
P_XO1P=0.5

0.873
(0.010)

0.775
(0.041)

20
(5-20)

2.1 4 8 29 KNN
L1: 17 (56.7%)
L2: 6 (20.0%)
L3: 7 (23.3%)

2 DIV2GEN10
P_MUT=0.2
P_XO1P=0.8

0.867
(0.017)

0.767
(0.047)

20
(5-20)

2.2 4 9.3 31 KNN
L1: 19 (63.3%)
L2: 7 (23.3%)
L3: 4 (13.3%)

3 DIV2GEN30
P_MUT=0.2
P_XO=0.8

0.875
(0.015)

0.773
(0.038)

20
(2-20)

2.8 7 10 30 KNN

L1: 16 (53.3%)
L2: 7 (23.3%)
L3: 5 (16.7%)
L4: 2 (6.7%)

4 DIV2DT
P_MUT=0.8
P_XO=0.2

0.862
(0.010)

0.763
 (0.050)

10
(5-20)

2.4 5 9.4 31 DT
L1: 7 (23.3%)
L2: 17 (56.7%)
L3: 6 (20.0%)

5 DIV2KNN
P_MUT=0.5
P_XO1P=0.5

0.887
(0.009)

0.770
(0.039)

20
(10-20)

2 4 8.2 31 KNN
L1: 22 (73.3%)
L2: 8 (26.7%)

6 DIV2LR
P_MUT=0.2
P_XO=0.8

0.849
(0.011)

0.802
(0.046)

20
(5-20)

2.6 6 8.4 28 LR
L1: 20 (66.7%)
L2: 8 (26.7%)
L3: 2 (6.7%)

7 SQRTGEN1
P_MUT=0.2
P_XO1P=0.8

0.881
(0.009)

0.770
(0.041)

29
(15-35)

2 4 8.2 31 KNN

L1: 11 (36.7%)
L2: 7 (23.3%)
L3: 8 (26.7%)
L4: 1 (3.3%)
L5: 3 (10.0%)

8 NOREDUCGEN1
P_MUT=0.5
P_XO=0.5

0.873
(0.011)

0.771
 (0.042)

41
(41-41)

2.2 6 8 35 KNN

L1: 12 (40.0%)
L2: 5 (16.7%)
L3: 8 (26.7%)
L4: 2 (6.7%)
L5: 3 (10.0%)

9 RANDGEN1 P_MUT=1
0.871

(0.010)
0.761

(0.060)
37

(17-40)
2.1 5 8.1 33 KNN

L1: 16 (53.3%)
L2: 7 (23.3%)
L3: 3 (10.0%)
L4: 2 (6.7%)
L5: 2 (6.7%)

34

Table 6. Results of different LGP configurations on WDBC dataset. The configuration which showed
best results in terms of median F1 score on the development set is highlighted in grey.

No. LGP config.
Mutation/
Crossover

Fitness
on
training
set

Fitness on
development
set

trees
Avg.
tree
depth

Max.
tree
depth

Avg.
tree
size

Max.
tree
size

Classif.
method

Layer of best
individual

1 DIV2GEN1
P_MUT=0.5
P_XO1P=0.5

0.996
(0.004)

0.956
(0.026)

15
(3-15)

2.2 4 9.7 31 LR
L1: 26 (86.7%)
L2: 3 (10.0%)
L3: 1 (3.3%)

2 DIV2GEN10
P_MUT=0.2
P_XO1P=0.8

0.994
(0.005)

0.955
(0.024)

15
(7-15)

2.2 4 9.5 31 LR
L1: 25 (83.3%)
L2: 5 (16.7%)

3 DIV2GEN30
P_MUT=0.8
P_XO1P=0.2

0.993
(0.006)

0.955
 (0.026)

15
(3-15)

2.3 4 9.3 30 LR
L1: 19 (63.3%)
L2: 8 (26.7%)
L3: 3 (10.0%)

4 DIV2DT
P_MUT=0.5
P_XO=0.5

0.989
(0.006)

0.949
 (0.036)

7
(1-15)

2.7 5 10.7 24 DT

L1: 6 (20.0%)
L2: 19 (63.3%)
L3: 3 (10.0%)
L4: 2 (6.7%)

5 DIV2KNN
P_MUT=0.5
P_XO=0.5

0.993
(0.004)

0.954
 (0.029)

7
(3-15)

2.7 5 9.9 29 KNN
L1: 13 (43.3%)
L2: 15 (50.0%)
L3: 2 (6.7%)

6 DIV2LR
P_MUT=0.8
P_XO1P=0.2

1.000
(0.003)

0.957
(0.031)

15
(7-15)

2.2 4 9.6 31 LR
L1: 27 (90.0%)
L2: 3 (10.0%)

7 SQRTGEN1
P_MUT=0.5
P_XO1P=0.5

1.000
(0.002)

0.955
 (0.031)

20
(12-25)

2.2 4 9.1 31 LR

L1: 14 (46.7%)
L2: 10 (33.3%)
L3: 4 (13.3%)
L4: 2 (6.7%)

8 NOREDUCGEN1 P_MUT=1
1.000

(0.003)
0.944

(0.028)
30

(30-30)
2.2 4 9.5 31 LR

L1: 15 (50.0%)
L2: 12 (40.0%)
L3: 1 (3.3%)
L4: 2 (6.7%)

9 RANDGEN1
P_MUT=0.5
P_XO=0.5

1.000
(0.004)

0.949
(0.026)

25
 (4-29)

2.3 5 9 31 LR

L1: 16 (53.3%)
L2: 8 (26.7%)
L3: 3 (10.0%)
L4: 3 (10.0%)

35

Table 7. Results of different LGP configurations on SONAR dataset. The configuration which showed
best results in terms of median F1 score on the development set is highlighted in grey.

No. LGP config.
Mutation/
Crossover

Fitness
on
training
set

Fitness on
development
set

trees
Avg.
tree
depth

Max.
tree
depth

Avg.
tree
size

Max.
tree
size

Classif.
method

Layer of best
individual

1 DIV2GEN1
P_MUT=0.5
P_XO1P=0.5

0.992
(0.023)

0.758
(0.090)

30
(7-30)

2.1 4 8.7 31 LR
L1: 26 (86.7%)
L2: 2 (6.7%)
L3: 2 (6.7%)

2 DIV2GEN10
P_MUT=0.5
P_XO1P=0.5

0.980
(0.023)

0.725
(0.088)

30
(15-30)

2 4.5 8.8 31 LR
L1: 28 (93.3%)
L2: 2 (6.7%)

3 DIV2GEN30
P_MUT=0.2
P_XO=0.8

0.975
(0.020)

0.746
(0.091)

30
 (7-30)

2.4 6 9 32 LR
L1: 20 (66.7%)
L2: 6 (20.0%)
L3: 4 (13.3%)

4 DIV2DT
P_MUT=0.2
P_XO=0.8

0.960
(0.013)

0.750
(0.090)

15
(3-30)

2.1 6 7.1 20 DT

L1: 5 (16.7%)
L2: 12 (40.0%)
L3: 10 (33.3%)
L4: 3 (10.0%)

5 DIV2KNN
P_MUT=0.2
P_XO=0.8

0.975
(0.011)

0.759
(0.087)

15
(7-30)

2 7 6.8 25 KNN
L1: 14 (46.7%)
L2: 13 (43.3%)
L3: 3 (10.0%)

6 DIV2LR
P_MUT=0.8
P_XO=0.2

1.000
(0.005)

0.736
(0.093)

30
(15-30)

2 5 8.4 31 LR
L1: 29 (96.7%)
L2: 1 (3.3%)

7 SQRTGEN1
P_MUT=0.2
P_XO1P=0.8

1.000
(0.007)

0.721
 (0.101)

52
(26-52)

1.9 4 8.1 31 LR
L1: 20 (66.7%)
L2: 9 (30.0%)
L5: 1 (3.3%)

8 NOREDUCGEN1
P_MUT=0.5
P_XO=0.5

1.000
(0.001)

0.699
(0.103)

60
(60-60)

2 4 8.4 31 LR

L1: 16 (53.3%)
L2: 7 (23.3%)
L3: 5 (16.7%)
L4: 1 (3.3%)
L5: 1 (3.3%)

9 RANDGEN1
P_MUT=0.8
P_XO=0.2

1.000
(0.018)

0.705
(0.097)

54
(28-59)

2 5 8.8 31 LR

L1: 16 (53.3%)
L2: 10 (33.3%)
L3: 2 (6.7%)
L4: 2 (6.7%)

36

Table 8. Results of different LGP configurations on IONO dataset. The configuration which showed
best results in terms of median F1 score on the development set is highlighted in grey.

No. LGP config.
Mutation/
Crossover

Fitness
on
training
set

Fitness on
development
set

trees
Avg.
tree
depth

Max.
tree
depth

Avg.
tree
size

Max.
tree
size

Classif.
method

Layer of best
individual

1 DIV2GEN1
P_MUT=0.2
P_XO=0.8

0.956
(0.014)

0.838
(0.062)

8
(1-17)

2.2 5 7.2 21 DT

L1: 13 (43.3%)
L2: 8 (26.7%)
L3: 6 (20.0%)
L4: 2 (6.7%)
L5: 1 (3.3%)

2 DIV2GEN10
P_MUT=0.2
P_XO=0.8

0.957
(0.014)

0.833
(0.066)

8
(2-17)

2.3 5 8.3 23 DT

L1: 12 (40.0%)
L2: 8 (26.7%)
L3: 7 (23.3%)
L4: 3 (10.0%)

3 DIV2GEN30
P_MUT=0.5
P_XO=0.5

0.962
(0.015)

0.857
(0.066)

12
(4-17)

2 4.5 6.9 20 DT
L1: 15 (50.0%)
L2: 12 (40.0%)
L3: 3 (10.0%)

4 DIV2DT
P_MUT=0.5
P_XO=0.5

0.969
(0.010)

0.861
(0.068)

8
(2-17)

2.1 5 7.6 19 DT

L1: 8 (26.7%)
L2: 10 (33.3%)
L3: 9 (30.0%)
L4: 3 (10.0%)

5 DIV2KNN
P_MUT=0.5
P_XO=0.5

0.960
(0.012)

0.846
(0.063)

8
(4-17)

2 4.5 6.8 16 KNN
L1: 3 (10.0%)
L2: 14 (46.7%)
L3: 13 (43.3%)

6 DIV2LR
P_MUT=0.5
P_XO=0.5

0.969
(0.017)

0.868
(0.067)

17
(4-17)

2.1 5 6.5 17 LR
L1: 17 (56.7%)
L2: 7 (23.3%)
L3: 6 (20.0%)

7 SQRTGEN1
P_MUT=0.2
P_XO=0.8

0.988
(0.013)

0.842
 (0.074)

23
(10-28)

2.3 6.5 8.1 29 LR

L1: 13 (43.3%)
L2: 5 (16.7%)
L3: 2 (6.7%)
L4: 6 (20.0%)
L5: 4 (13.3%)

8 NOREDUCGEN1 P_MUT=1
0.981

(0.019)
0.811

(0.070)
34

(34-34)
2.1 5 7.8 31 LR

L1: 12 (40.0%)
L2: 9 (30.0%)
L3: 5 (16.7%)
L4: 2 (6.7%)
L5: 2 (6.7%)

9 RANDGEN1
P_MUT=0.8
P_XO1P=0.2

0.972
(0.017)

0.835
(0.069)

28
(6-33)

2 5 7.6 31 LR

L1: 11 (36.7%)
L2: 7 (23.3%)
L3: 7 (23.3%)
L4: 4 (13.3%)
L5: 1 (3.3%)

37

Table 9. Results of different LGP configurations on CREDIT dataset. The configuration which showed
best results in terms of median F1 score on the development set is highlighted in grey.

No. LGP config.
Mutation/
Crossover

Fitness
on
training
set

Fitness on
development
set

trees
Avg.
tree
depth

Max.
tree
depth

Avg.
tree
size

Max.
tree
size

Classif.
method

Layer of best
individual

1 DIV2GEN1
P_MUT=0.2
P_XO1P=0.8

0.913
(0.011)

0.833
(0.042)

9
(1-18)

2.2 4 10.2 31 KNN

L1: 10 (33.3%)
L2: 12 (40.0%)
L3: 4 (13.3%)
L4: 3 (10.0%)
L5: 1 (3.3%)

2 DIV2GEN10
P_MUT=0.2
P_XO1P=0.8

0.906
(0.011)

0.832
(0.029)

9
(4-18)

2.2 4 9.6 31 KNN
L1: 12 (40.0%)
L2: 9 (30.0%)
L3: 9 (30.0%)

3 DIV2GEN30
P_MUT=0.8
P_XO=0.2

0.906
(0.011)

0.836
(0.035)

9
(1-18)

3.1 6 11.3 31 KNN

L1: 10 (33.3%)
L2: 6 (20.0%)
L3: 7 (23.3%)
L4: 6 (20.0%)
L5: 1 (3.3%)

4 DIV2DT P_MUT=1
0.911

(0.013)
0.835

(0.036)
4

(2-18)
2.5 4 8.8 17 DT

L1: 1 (3.3%)
L2: 11 (36.7%)
L3: 16 (53.3%)
L4: 2 (6.7%)

5 DIV2KNN
P_MUT=0.5
P_XO1P=0.5

0.920
(0.009)

0.833
(0.041)

9
(1-18)

2.3 4 10.1 31 KNN

L1: 10 (33.3%)
L2: 12 (40.0%)
L3: 6 (20.0%)
L4: 1 (3.3%)
L5: 1 (3.3%)

6 DIV2LR P_MUT=1
0.893

(0.012)
0.844

(0.034)
9

(2-18)
2.4 5 9.7 28 LR

L1: 13 (43.3%)
L2: 15 (50.0%)
L3: 1 (3.3%)
L4: 1 (3.3%)

7 SQRTGEN1
P_MUT=0.2
P_XO1P=0.8

0.920
(0.009)

0.831
(0.039)

18
(12-31)

2.1 4 9 31 KNN

L1: 4 (13.3%)
L2: 6 (20.0%)
L3: 5 (16.7%)
L4: 10 (33.3%)
L5: 5 (16.7%)

8 NOREDUCGEN1
P_MUT=0.8
P_XO=0.2

0.916
(0.011)

0.825
(0.036)

37
(37-37)

2.2 6.5 8.4 36 LR

L1: 2 (6.7%)
L2: 3 (10.0%)
L3: 7 (23.3%)
L4: 8 (26.7%)
L5: 10 (33.3%)

9 RANDGEN1
P_MUT=0.8
P_XO=0.2

0.910
(0.007)

0.833
(0.052)

24
(11-36)

2.2 5.5 7.7 31 DT

L1: 5 (16.7%)
L2: 4 (13.3%)
L3: 9 (30.0%)
L4: 6 (20.0%)
L5: 6 (20.0%)

38

In the discussed results tables, for each considered problem, the LGP configuration that showed the

best result in terms of F1 score on the development set is highlighted in grey. On 4 out of 5 considered

problems, namely BIODEG, WDBC, IONO, and CREDIT the largest F1 score on the development set was

achieved by reducing the dimensionality of the input dataset by half in the subsequent layers and using

LR as the classifier on the transformed dataset. Similarly to that, on SONAR dataset, the best result in

terms of F1 score on the development set was achieved by also reducing the number of features in the

transformed dataset by half in the subsequent layers, however using KNN as the classifier on the

outputted dataset instead of LR. When the same classification method is used in all generations, there

is more stability in the fitness evaluation of the individuals, which seems to be useful for the algorithm.

Regarding which genetic operator – mutation or crossover – is more useful in LGP, there is no clear

trend as on some datasets better results were achieved when the mutation operator was applied with

a higher probability while on other datasets application of a standard or one-point crossover with a

higher probability worked better. For instance, for CREDIT, the best combination was DIV2LR and

mutation operator applied with probability of 1, which implies mutating every selected individual. For

IONO dataset, DIV2LR showed better results when either the mutation operator or standard crossover

operator was applied with probability of 0.5. For BIODEG problem, DIV2LR worked better when the

mutation was applied with probability 0.2 and standard crossover with probability of 0.8. Similarly, for

SONAR dataset, DIV2KNN also showed better results when the mutation was applied with probability

of 0.2 and standard crossover with probability of 0.8. For WDBC, LGP showed better results when

DIV2LR was used in a combination with mutation operator applied with probability of 0.8 and

one-point crossover with probability of 0.2.

In the second experimental phase, for each test problem, the best configuration of LGP was run using

the full training set for learning and test set containing previously unseen data for final evaluation.

Then the performance of LGP was compared with the performance of the simple classifiers applied

directly on the original datasets. The results of LGP obtained on the full training set and test set are

given in Table 10. This table summarizes the results of 30 runs. Fitness on training set column shows

the median fitness of best individual achieved on the full training set, with the standard deviation

provided in the parentheses. Fitness on test set column shows the median fitness of best individual

achieved on the test set, with the standard deviation provided in the parentheses. All other columns,

namely # trees, Avg. tree depth, Max. tree depth, Avg. tree size, Max. tree size, Classif. method, Layer

of best individual provide the same kind of information as the respective columns in the previously

discussed tables of results.

39

For all considered problems, the best individual was most often obtained in the first layer. However,

there were runs when the LGP kept improving the obtained solutions in the subsequent layers. For

BIODEG problem, there were 12 runs (40% of total number of runs) when the best solution was

obtained in the second or further layer, for WDBC problem – 3 such runs (10% of total number of runs),

for SONAR problem – 14 such runs (46.7% of total number of runs), for IONO problem – 10 such runs

(33.3% of total number of runs), for CREDIT problem – 10 such runs (33.3% of total number of runs).

The lowest dimensional space to which the LGP transformed the original dataset was 2-dimensional

space for BIODEG, IONO and CREDIT problems, 3-dimensional space for WDBC problem and

7-dimensionl space for SONAR dataset (note that SONAR dataset had the largest number of original

features out of all considered datasets).

Table 10. Results of LGP on full training and test sets of different datasets.

Dataset
Fitness on
training set

Fitness on
test set

trees
Avg. tree
depth

Max. tree
depth

Avg. tree
size

Max.
tree size

Classif.
method

Layer of best
individual

BIODEG
0.842

(0.010)
0.791

(0.035)
20 (2-20) 2.6 6 8.1 24 LR

L1: 18 (60.0%)
L2: 8 (26.7%)
L3: 2 (6.7%)
L4: 2 (6.7%)

WDBC
0.997

(0.003)
0.952

(0.022)
15 (3-15) 2.3 5 9.4 31 LR

L1: 27 (90.0%)
L2: 2 (6.7%)
L3: 1 (3.3%)

SONAR
0.968

(0.008)
0.775

(0.068)
30 (7-30) 2.2 6 7.1 25 KNN

L1: 16 (53.3%)
L2: 12 (40.0%)
L3: 2 (6.7%)

IONO
0.960

(0.011)
0.854

(0.064)
17 (2-17) 2.2 5 7.6 23 LR

L1: 20 (66.7%)
L2: 4 (13.3%)
L3: 5 (16.7%)
L4: 1 (3.3%)

CREDIT
0.888

(0.008)
0.851

(0.031)
18 (2-18) 2.2 5 8.3 31 LR

L1: 20 (66.7%)
L2: 8 (26.7%)
L4: 2 (6.7%)

In Table 11, for each test problem, the median F1 scores achieved on training and test sets by LGP and

the simple classifiers applied directly on the original datasets are provided. The values in the

parentheses are the standard deviations. The results on the test set for which there is a statistically

significant difference are given in bold. In addition, Figure 9 shows the evolution of the median F1 score

on training and test sets as the number of generations increases and the layers change. For

40

comparison, in the plots, the dashed line shows the median F1 scores achieved by simple classifiers on

the respective set of the original datasets.

For all considered problems, the LGP increased the F1 score on the training set. However, the

performance on the test set varied depending on the dataset. For two problems, namely SONAR and

IONO, LGP improved the F1 score on the test set and outperformed the simple classifiers applied

directly on the original datasets, which was a statistically significant result. However, on BIODEG and

WDBC problems, LGP was outperformed by simple classifiers. On CREDIT dataset, LGP achieved a lower

F1 score on the test set than the simple classifier, but the difference was not statistically significant.

Table 11. Median F1 scores on training and test sets obtained using LGP and simple classifiers.

Dataset

Median F1 score on training set Median F1 score on test set

LGP Classifier on original dataset LGP Classifier on original dataset

BIODEG 0.842 (0.010) 0.830 (0.011) 0.791 (0.035) 0.799 (0.030)

WDBC 0.997 (0.003) 0.979 (0.003) 0.952 (0.022) 0.976 (0.018)

SONAR 0.968 (0.008) 0.869 (0.022) 0.775 (0.068) 0.763 (0.067)

IONO 0.960 (0.011) 0.935 (0.023) 0.854 (0.064) 0.800 (0.059)

CREDIT 0.888 (0.008) 0.849 (0.007) 0.851 (0.031) 0.856 (0.030)

Overall, the LGP showed quite different results on training and test sets which implies the existence of

the overfitting. In Figure 9, it can be noticed that fitness on the training set continuously improved over

generations and layers until it stabilized. However, on the test set, the fitness tended to improve for

some generations, then at some point it decreased, and later stabilized at some value.

41

Figure 9. The evolution of F1 score on training and test sets as the number of generations increase and
the layers change. For comparison, F1 scores achieved using simple classifiers on the original data are
shown by dashed lines.

42

5. CONCLUSIONS AND FUTURE WORK

In this work, the LGP system was presented. The LGP implemented a layered structure where several

GP populations were evolved sequentially and used to transform the original data into a lower

dimensional space where the regularities in the data should be more easily detected by the

classification algorithm. The performance of a classifier applied on the transformed dataset defined

the fitness of GP individuals and thus, classification performance was a key factor leading the GP

evolutionary process.

The performance of the proposed system was experimentally tested on 5 different binary classification

problems. The performed experiments showed that LGP could reduce the dimensionality of the data

but the classification performance on such transformed data sometimes could be worse than on the

original dataset. In terms of the median F1 score achieved on the test set, on 2 considered problems,

LGP outperformed the classifier applied directly on the original dataset in a statistically significant

manner, on other 2 datasets it was outperformed, and on 1 dataset it achieved a slightly lower median

F1 score on the test set but the difference was not statistically significant. Thus, the performance of

the LGP is problem dependent – on some problems it might extract features that are fewer in number

compared to the original features but are more useful for the classification task and allows to improve

the performance of the classifier, on some other problems the layered GP-based feature extraction

mechanism does not work well.

In the ideal scenario, we would expect that the final solution was obtained in the last layer, where the

data were transformed into the smallest possible dimension and the performance of the classifier

using such data was improved. However, for the later populations the difficulty of the task increased,

and the chosen number of generations was not enough to improve the solution obtained by the first

few populations. As a result, often the best solution was obtained in the first few layers. Thus, larger

system size, i.e. more layers were not useful. On the other hand, the use of several layers allowed to

control the size of the trees that the individuals were composed of. As in each layer a new population

was initialized and it was evolved for a relatively small number of generations, this prevented the trees

from growing extremely large.

One of the drawbacks of LGP is overfitting. There was a large difference in the performance of the

obtained classifier on the transformed training set and the transformed test set. On the one hand, it

might be the case that GP was evolving over-specialized features. On the other hand, the LGP was

designed in such a way that only the classifier’s performance on the training set was considered when

evaluating the fitness of individuals and that might have led to the overfitting. More precisely, to obtain

43

the fitness value, the classifier was trained and evaluated on the same set. It might be useful to have

two separate subsets of training data where one subset would be used for training the classifier and

another subset that would be used only for evaluating the performance of the classifier and obtaining

a value that would be used as fitness of GP individual.

Overall, when designing such classification system as LGP, it is very important to choose appropriate

classification algorithms as each of them has its own advantages and disadvantages which may have

impact on the overall performance of the system. The classification methods employed in the system

described in this work were LR, KNN, and DT. These methods were mostly chosen because of their

simplicity. However, other classification method should be tested too. For instance, an ensemble

method could be employed in the system. It combines predictions of several classifiers, and thus gives

a more robust final prediction. On the other hand, using very sophisticated classification methods, less

work would be left for GP. Moreover, in terms of computational complexity, the current system is

already expensive as the classifier needs to be trained and evaluated every time the fitness of an

individual is being evaluated. Using more complex classification methods which take longer to train

would make the process even more computationally demanding. Due to its computational complexity

the system is not suitable for highly dimensional datasets.

So far, the proposed system was tested only on binary classification problems. Applying the proposed

system to multi-class classification problems is left for the future. In fact, to use LGP for multi-class

classification problems, we would only need to employ a classification method that can perform

multiclass classification.

44

6. BIBLIOGRAPHY

[1] A. F. M. Agarap, "On breast cancer detection: an application of machine learning algorithms on

the wisconsin diagnostic dataset," in ICMLSC '18 Proceedings of the 2nd International Conference

on Machine Learning and Soft Computing, 2018, pp. 5-9.

[2] E. Zafiropoulos, I. Maglogiannis and I. Anagnostopoulos, "A support vector machine approach to

breast cancer diagnosis and prognosis," in Artificial Intelligence Applications and Innovations. AIAI

2006. IFIP International Federation for Information Processing, Springer, Boston, MA, 2006, pp.

500-507.

[3] S. A. Soliman, S. Abbas and A. B. M. Salem., "Classification of thrombosis collagen diseases based

on C4.5 algorithm," in 2015 IEEE Seventh International Conference on Intelligent Computing and

Information Systems (ICICIS), 2015, pp. 131-136.

[4] W. Xu, J. Zhang, Q. Zhang and X. Wei, "Risk prediction of type II diabetes based on random forest

model," in 2017 Third International Conference on Advances in Electrical, Electronics, Information,

Communication and Bio-Informatics (AEEICB), 2017, pp. 382-386.

[5] T. K. Paul and H. Iba, "Prediction of cancer class with majority voting genetic programming

classifier using gene expression data," IEEE/ACM transactions on computational biology and

bioinformatics / IEEE, ACM, vol. 6, no. 2, pp. 353-367, 2009.

[6] P. Sharma and U. Bhardwaj, "Machine learning based spam e-mail detection," International

Journal of Intelligent Engineering and Systems, vol. 11, no. 3, 2018.

[7] W. A. Awad and S. M. Elseuofi, "Machine learning methods for spam e-mail classification,"

International Journal of Computer Science & Information Technology (IJCSIT), vol. 3, no. 1, pp.

173-184, 2011.

[8] N. Khare and S. Y. Sait, "Credit card fraud detection using machine learning models and collating

machine learning models," International Journal of Pure and Applied Mathematics, vol. 118, no.

20, pp. 825-837, 2018.

[9] K. Zou, W. Sun, H. Yu and F. Liu, "ID3 decision tree in fraud detection application," 2012

International Conference on Computer Science and Electronics Engineering, vol. 3, pp. 399-402,

2012.

[10] S. F. Sabbeh, "Machine learning techniques for customer retention: a comparative study,"

International Journal of Advanced Computer Science and Applications, vol. 9, no. 2, pp. 273-281,

2018.

45

[11] T. Vafeiadis, K. I. Diamantaras, G. Sarigiannidis and K. C. Chatzisavvas, "A comparison of machine

learning techniques for customer churn prediction," Simulation Modelling Practice and Theory,

vol. 55, pp. 1-9, 2015.

[12] P. N. Tan, M. Steinbach and V. Kumar, Introduction to data mining, Pearson, 2006.

[13] I. Guyon and A. Elisseeff, "An Introduction to Feature Extraction," in Feature Extraction. Studies

in Fuzziness and Soft Computing, vol. 207, Springer, Berlin, Heidelberg, 2006, pp. 1-25.

[14] H. Motoda and H. Liu, "Feature selection, extraction and construction," Communication of IICM,

vol. 5, no. 2, pp. 67-72, 2002.

[15] L. Guo, D. Rivero, J. Dorado, C. R. Munteanu and A. Pazos, "Automatic feature extraction using

genetic programming: An application to epileptic EEG classification," Expert Systems with

Applications, vol. 38, no. 8, pp. 10425-10436, 2011.

[16] H. M. Ebied, "Feature extraction using PCA and Kernel-PCA for face recognition," in 2012 8th

International Conference on Informatics and Systems (INFOS), 2012.

[17] Y. Tajiri, R. Yabuwaki, T. Kitamura and S. Abe, "Feature extraction using support vector machines,"

in Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in

Computer Science, vol. 6444, Springer, Berlin, Heidelberg, 2010, pp. 108-115.

[18] M. Pei, E. D. Goodman and W. F. Punch, "Feature extraction using genetic algorithms," in

Proceeding of International Symposium on Intelligent Data Engineering and Learning’98

(IDEAL’98), 1997.

[19] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.

[20] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection, Cambridge, MA, USA: MIT Press, 1992.

[21] C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of

Favoured Races in the Struggle for Life, 1859.

[22] R. Poli, W. B. Langdon and N. F. McPhee, A Field Guide to Genetic Programming (With

contributions by J. R. Koza), Published via http://lulu.com and freely available at http://www.gp-

field-guide.org.uk, 2008.

[23] J. F. Miller and P. Thomson, "Cartesian Genetic Programming," in Genetic Programming. EuroGP

2000. Lecture Notes in Computer Science, vol. 1802, Springer, Berlin, Heidelberg, 2000, pp. 121-

132.

[24] P. A. Whigham, "Grammatically-based genetic programming," in Proceedings of the Workshop on

Genetic Programming: From Theory to Real-World Applications, 1995.

46

[25] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan and M. O’Neill, "Grammar-based Genetic

Programming: a survey," Genetic Programming and Evolvable Machines, vol. 11, no. 3-4, pp. 365-

396, 2010.

[26] M. L. Wong and T. Mun, "Evolving recursive programs by using adaptive grammar based genetic

programming," Genetic Programming and Evolvable Machines, vol. 6, no. 4, pp. 421-455, 2005.

[27] W. Fan, E. A. Fox, P. Pathak and H. Wu, "The effects of fitness functions on genetic programming-

based ranking discovery for Web search," Journal of the American Society for Information Science

and Technology, vol. 55, pp. 628-636, 2004.

[28] B. L. Miller and D. E. Goldberg, "Genetic algorithms, tournament selection, and the effects of

noise," Complex Systems, vol. 9, pp. 193- 212, 1995.

[29] K. Neshatian, M. Zhang and M. Johnston, "Feature construction and dimension reduction using

genetic programming," in AI 2007: Advances in Artificial Intelligence. AI 2007. Lecture Notes in

Computer Science, vol. 4830, Springer, Berlin, Heidelberg, 2007, pp. 160-170.

[30] M. L. Raymer, W. F. Punch, E. D. Goodman and L. A. Kuhn, "Genetic programming for improved

data mining: application to the biochemistry of protein interactions," in Proceedings of the 1st

Annual Conference on Genetic Programming, Cambridge, Massachusetts, MIT Press, 1996, pp.

375-380.

[31] M. C. J. Bot, "Feature extraction for the K-Nerest Neighbors Classifier with Genetic Programming,"

in Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol. 2038, Springer,

Berlin, Heidelberg, 2001, pp. 256-267.

[32] J. Sherrah, "Automatic feature extraction for pattern recognition," Ph.D. Thesis, The University of

Adelaide, 1998.

[33] M. Kotani, M. Nakai and K. Akazawa, "Feature extraction using evolutionary computation,"

Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, vol. 2, p. 1230–1236,

1999.

[34] K. Krawiec, "Genetic programming-based construction of features for machine learning and

knowledge discovery tasks," Genetic Programming and Evolvable Machines, vol. 3, no. 4, pp. 329-

343, 2002.

[35] B. Bhanu and K. Krawiec, "Coevolutionary construction of features for transformation of

representation in machine learning," in Intelligent Information Processing and Web Mining,

Proceedings of the International IIS: IIPWM'03 Conference held in Zakopane, Poland, June 2-5,

2003, Springer, Berlin, Heidelberg, 2004, pp. 139-150.

[36] H. Guo, L. B. Jack and A. K. Nandi, "Feature Generation Using Genetic Programming With

Application to Fault Classification," IEEE Transactions on Systems, Man, and Cybernetics, Part B,

vol. 35, no. 1, pp. 89-99, 2005.

47

[37] H. Guo and A. K. Nandi, "Breast cancer diagnosis using genetic programming generated feature,"

Pattern Recognition, vol. 39, no. 5, pp. 980-987, 2006.

[38] H. Firpi, E. Goodman and J. Echauz, "Genetic programming artificial features with applications to

epileptic seizure prediction," IEEE-EMBS 2005, 27th Annual International Conference on

Engineering in Medicine and Biology Society, pp. 4510-4513, 2005.

[39] M. G. Smith and L. Bull, "Genetic Programming with a Genetic Algorithm for feature construction

and selection," Genetic Programming and Evolvable Machines, vol. 6, no. 3, p. 265–281, 2005.

[40] F. E. B. Otero, M. M. S. Silva, A. A. Freitas and J. C. Nievola, "Genetic programming for attribute

construction in data mining," in Genetic Programming. EuroGP 2003. Lecture Notes in Computer

Science, vol. 2610, Springer, Berlin, Heidelberg, 2003, pp. 384-393.

[41] S. Afzali, H. Al-Sahaf, B. Xue, C. Hollitt and M. Zhang, "Genetic programming for feature selection

and feature combination in salient object detection," in Theory and Applications of Models of

Computation, 2019, pp. 308-324.

[42] Y. Bi, B. Xue and M. Zhang, "An automatic feature extraction approach to image classification

using genetic programming," in Applications of Evolutionary Computation. EvoApplications 2018.

Lecture Notes in Computer Science, vol. 10784, Springer, Cham, 2018, pp. 421-438.

[43] B. Tran, B. Xue and M. Zhang, "Genetic programming for feature construction and selection in

classification on high-dimensional data," Memetic Computing, vol. 8, no. 1, p. 3–15, 2016.

[44] M. Muharram and G. D. Smith, "Evolutionary Constructive Induction," IEEE Transactions on

Knowledge and Data Engineering, vol. 17, no. 11, pp. 1518 - 1528, 2005.

[45] S. Ahmed, M. Zhang, L. Peng and B. Xue, "Multiple feature construction for effective biomarker

identification and classification using genetic programming," in GECCO'14 Proceedings of the

2014 Annual Conference on Genetic and Evolutionary Computation, 2014, pp. 249-256.

[46] X. Tan, B. Bhanu and Y. Lin, "Fingerprint classification based on learned features," IEEE

Transactions On Systems, Man, And Cybernetics—Part C: Applications And Reviews, vol. 35, no.

3, pp. 287 - 300, 2005.

[47] J. Huertas, J. Rodríguez-Benítez, D. Pozo, R. Aler and I. M. Galván, "Genetic programming to

extract features from the whole-sky camera for cloud type classification," Renewable Energy and

Power Quality Journal, vol. 1, no. 15, pp. 132-136, 2017.

[48] A. Heinle, A. Macke and A. Srivastav, "Automatic cloud classification of whole sky images,"

Atmospheric Measurement Techniques, no. 3, p. 557–567, 2010.

[49] M. W. Aslam, Z. Zhu and A. K. Nandi, "Feature generation using genetic programming with

comparative partner selection for diabetes classification," Expert Systems with Applications, vol.

40, no. 13, p. 5402–5412, 2013.

48

[50] M. Sokolova, N. Japkowicz and S. Szpakowicz, "Beyond accuracy, F-score and ROC: a family of

discriminant measures for performance evaluation," in AI 2006: Advances in Artificial Intelligence,

19th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, December 4-8, 2006,

Proceedings, 2006, pp. 1015-1021.

[51] I. D. Dinov, "Decision Tree Divide and Conquer Classification," in Data Science and Predictive

Analytics, Springer, Cham, 2018, pp. 307-343.

[52] T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning: data mining,

inference, and prediction, Springer, 2009.

[53] G. James, D. Witten, T. Hastie and R. Tibshirani, An introduction to statistical learning with

application in R, Springer, 2013.

[54] Z. Yao and W. L. Ruzzo , "A Regression-based K nearest neighbor algorithm for gene function

prediction from heterogeneous data," BMC Bioinformatics, vol. 7, no. S11, 2006.

[55] G. H. Chen and D. Shah, "Explaining the Success of Nearest Neighbor Methods in Prediction,"

Foundations and Trends in Machine Learning, vol. 10, no. 5-6, pp. 337-588, 2018.

[56] N. Kouiroukidis and G. Evangelidis, "The effects of dimensionality curse in high dimensional KNN

search," 2011 15th Panhellenic Conference on Informatics, 2011.

[57] M. Kuhn and K. Johnson, Applied predictive modeling, Springer, 2013.

[58] S. Domínguez-Almendros, N. Benítez-Parejo and A. R. Gonzalez-Ramirez, "Logistic regression

models," Allergologia et Immunopathologia, vol. 39, no. 5, pp. 295-305, 2011.

[59] H. Deng, Y. Sun, Y. Chang and J. Han, "Probabilistic Models for Classification," in Data

classification: algorithms and applications, Chapman & Hall/CRC, 2014.

[60] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley

Publishing Company, 1989.

[61] QSAR biodegradation Data Set. Available:

https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation#. [Accessed 5 11 2018].

[62] Connectionist Bench (Sonar, Mines vs. Rocks) Data Set. Available:

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%29

[Accessed 5 11 2018].

[63] Breast Cancer Wisconsin (Diagnostic) Data Set. Available:

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29.

[Accessed 5 11 2018].

49

[64] Ionosphere Data Set. Available: https://archive.ics.uci.edu/ml/datasets/ionosphere. [Accessed 5

11 2018].

[65] Credit Approval Data Set. Available: https://archive.ics.uci.edu/ml/datasets/Credit+Approval.

[Accessed 5 11 2918].

[66] D. Dua and C. Graff, "UCI Machine Learning Repository," Irvine, CA: University of California,

School of Information and Computer Science, 2019. Available: http://archive.ics.uci.edu/ml.

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg and and others, "Scikit-learn: Machine learning in Python,"

Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[68] N. J. Nilsson, Introduction to machine learning, 1996.

[69] A. B. Hassanat, M. A. Abbadi and G. A. Altarawneh, "Solving the Problem of the K Parameter in

the KNN Classifier Using an Ensemble Learning Approach," International Journal of Computer

Science and Information Security, vol. 12, no. 8, August 2014.

[70] B. Lantz, Machine learning with R, Birmingham: Packt Publishing, 2013.

[71] K. H. Rosen, Ed., Handbook of Discrete and Combinatorial Mathematics, 2nd ed., Chapman and

Hall/CRC, 2017.

[72] T. Stephens, "gplearn: Genetic Programming in Python," 2018. Available:

https://github.com/trevorstephens/gplearn. [Accessed 15 09 2018].

Page | i

