
Centralised Monitoring and Alerting Solution for

Complex Information Management Infrastructure

Yuri Ivanov Binev

Internship report presented as partial

requirement for obtaining the Master’s degree in

Data Science and Advanced Analytics

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

CENTRALISED MONITORING AND ALERTING SOLUTION FOR COMPLEX

INFORMATION MANAGEMENT INFRASTRUCTURE

by

Yuri Binev

Internship report presented as partial requirement for obtaining

the Master’s degree in Data Science and Advanced Analytics

Advisor: prof. Flávio Pinheiro

Co Advisors: Frederico Carvalho and Filipe Camelo

September 2020

ii

ABSTRACT

Monitoring and alerting receive increasing attention over the last years together with growth of the

information generated and managed from one side and increasing of the computing power and capacity of

the computing hardware. Monitoring solutions have been tightly linked to the software being monitored

making the broad view of the performance of the all interlinked services too complex and ineffective. In this

work a monitoring and alerting solution based on “Prometheus” is developed. Continuous collection of

metrics from various different services is performed and organized for visualization and monitoring in

several layers of precision. Different exporters for various systems were evaluated and many of them

enhanced. Alerting logic in response of detected performance problems and function irregularities has been

developed and implemented with “Alert Manager”. Another software is developed for recording and

visualizing current or past alerts and also is used as debugging tool of the alerts configuration. Visualization

is implemented for Grafana with several dashboards. All tools and software packages used for implementing

this monitoring and alerting solution are open source and free to use.

KEYWORDS

Monitoring and Alerting, Visualization, Big data, Time series, Prometheus, Grafana, Alert Manager

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

CPU Central Processing Unit, Main Processor

DAG Directed Acyclic Graph: Collection of tasks to be run in Airflow

ELK Elasticsearch, Logstash, Kibana: The components of Elastic Stack. To the same stack belongs Beats
even is not included in the abbreviation

ERD Entity-relationship diagram

HDFS Hadoop Distributed File System

HDP Hortonworks Data Platform (HDP®): Hadoop distribution by Hortonworks

GC Garbage Collection

JMX Java Management Extensions

JSON JavaScript Object Notation

JVM Java Virtual Machine

PromQL The query language of Prometheus

SMTP Simple Mail Transport Protocol

TICK Telegraf, InfluxDB, Chronograf, Kapacitor: The 4 main components of InfluxData platform.

TSDB Time series database

YAML Yet Another Markup Language or YAML Ain't Markup Language

YARN Yet Another Resource Negotiator, Apache YARN

iii

TABLE OF CONTENTS

1 Introduction‥‥‥1
2 Overview of Existing Monitoring Solutions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2
2.1 Push vs. Pull Architecture‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2
2.2 Ambari‥‥2
2.3 Elasticsearch‥‥‥3
2.4 InfluxData Platform‥‥‥4
2.5 Prometheus‥‥‥5
2.6 Grafana‥‥6
2.7 Comparison between evaluated generic solutions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6
3 Installing and Configuring monitoring and Alerting solution with Prometheus‥‥‥‥‥‥‥‥8
3.1 Prometheus and Alert Manager‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥8
3.2 Exporters‥‥‥8
3.2.1 Exporting metrics from Hadoop services‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥8
3.2.2 Exporters for Elasticsearch Ecosystem‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10
3.2.3 NiFi Exporters‥‥‥11
3.2.4 Exporters for specific services‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12
3.3 LogAlerts Program‥‥‥13
3.4 Grafana and additional panel plugins‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥14
4 Final Centralized Monitoring and Alerting Solutions‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥16
4.1 Testing Cluster‥‥‥16
4.1.1 Monitoring Hadoop based services‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥16
4.1.2 Monitoring Elastic Stack‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17
4.1.3 Monitoring Specific Services‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17
4.1.4 Graphical representation of the Testing Cluster Monitoring‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18
4.2 Production‥‥‥18
4.2.1 Monitoring HDP clusters‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥19
4.2.2 Monitoring Database services‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21
4.2.3 Airflow Cluster and Celery‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥22
4.2.4 Monitoring NiFi cluster‥‥23
4.2.5 Monitoring Kafka clusters‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥23
4.2.6 Monitoring services from Elastic stack‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥24
4.2.7 Monitoring NginX‥‥‥26
4.2.8 Monitoring the Operating Systems‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥26
4.2.9 Defining alerts and configuring Alert Manager‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥27
4.2.10 Prometheus self-monitoring‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥29
4.2.11 Structure of the Monitoring solution‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥29
4.3 Computational Chemistry Specialized Cluster‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31
4.3.1 Additional Exporters‥‥31
4.3.2 Building the monitoring solution‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥32
5 Conclusions‥‥‥35
6 Supplementary Material‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥35
7 Limitations and recommendations for future works‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥36
8 References‥‥‥37
9 Index‥‥‥39

iv

LIST OF FIGURES

Figure 1: Architecture of Ambari Metric System‥‥3

Figure 2: Structure of monitoring solution based on Beats, Elasticsearch and Kibana‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3

Figure 3: Structure of TICK Stack‥‥‥4

Figure 4: Representation of generic monitoring and alerting solution with Prometheus, Alert Manager and Grafana‥‥5

Figure 5: Comparison of the three approaches for monitoring Hadoop services with Prometheus: JMX Exporter (left),
Hadoop Exporter (middle) and Ambari Exporter (right)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10

Figure 6: ERD of the database used in LogAlerts program‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥13

Figure 7: Representation of the Monitoring Solution for the Testing Cluster‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18

Figure 8: Choosing ports for exporting metrics without (left) and with (right) using various IPs from loopback network
‥‥19

Figure 9: Common metrics for some services from both HDP clusters‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20

Figure 10: Panel displaying HDFS usage and some temporal data storage rate and metrics‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20

Figure 11: Internal Hadoop Exporter metrics: CPU and memory usage, left and scrape delays, right‥‥‥‥‥‥‥‥‥‥‥20

Figure 12: Metrics from Presto server associated with HDP2‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21

Figure 13: Fragment of a dashboard with Redis metrics‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21

Figure 14: Some PostgreSQL Metrics‥‥22

Figure 15: Airflow temporal DAGs and Tasks Performance (up) and status overview (down)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥22

Figure 16: Celery dashboard example‥‥23

Figure 17: Fragment of a dashboard displaying status and performance of Apache NiFi cluster‥‥‥‥‥‥‥‥‥‥‥‥‥‥23

Figure 18: Example of simple dashboard for Kafka‥‥24

Figure 19: Tabular representation of common metrics from some Logstash instances‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥24

Figure 20: Temporal plots for incoming events rate (left) and average delay (right)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥24

Figure 21: Example for Metricbeat dashboard‥‥‥25

Figure 22: Tables with Elasticsearch cluster-wide (up) and node-specific (down) status metrics‥‥‥‥‥‥‥‥‥‥‥‥‥‥25

Figure 23: Health status (up) and plots of filesystem transfer rate (left) and documents rate (right)‥‥‥‥‥‥‥‥‥‥‥26

Figure 24: Some metrics from nodes of HDP2 cluster‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥26

Figure 25: Tables with alerts about filesystem , memory and CPU overuse‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥27

Figure 26: Service statuses collected by Runit (left), Systemd (top, right) and Supervisord (bottom, right) collectors‥ 27

Figure 27: Screen shot of the web interface of LogAlerts program displaying some active and resolved alerts together
with alert labels and annotations.‥‥28

Figure 28: Panels with metrics from Prometheus and plot with current and estimated maximum TSDB size‥‥‥‥‥‥29

Figure 29: Panel displaying various active (red) and pending (yellow) alerts‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥29

Figure 30: Final structure of the Centralised Monitoring solution for Production‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30

Figure 31: Snapshot of table panel with some of the operating system and generalised smartctl (the last 4 columns)
metrics‥‥32

Figure 32: IPMI metrics and generalised sensor status‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33

Figure 33: Plots of some metrics from Apcupsd Exporter‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33

Figure 34: Dashboard with status overview of the Cluster‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34

Figure 35: Structure of the monitoring solution for the Cluster‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34

v

1 INTRODUCTION

This scientific report describes development and implementation of centralized monitoring and

alerting solution for information management services and infrastructure in Network Analytics

department in a big telecommunication companya. The department employs diverse big and classic

data solutions with complex interconnections between them. Partial monitoring solutions already

existed however they are specific for the various services and Big Data ecosystems. Implemented and

constantly enhanced and reinforced data and infrastructure security policies and personal data

protection rulesb impose additional restrictions for monitoring solutions and alerting routes.

Centralized monitoring solution would solve inconsistencies between the various ecosystems

and will make effective response and troubleshooting possible without circumvent or loosen the

information and infrastructure security.

Programs and services that are monitored include various services from Hadoop ecosystem

bundled in two of HDP distributions, two separated Kafka clusters, Airflow cluster, three different

versions of Elasticsearch, multiple instances of Logstash, Filebeats, Apache, two separated Celery

instances, NiFi cluster, various Postgres servers, three separated Redis servers, two Presto servers, an

internal Gitlab installation. Also operating system and hardware metrics are monitored from multiple

virtual and real hosts.

a NOS, Portugal
b Segment network access, Principle of Least Privilege among the others

1

2 OVERVIEW OF EXISTING MONITORING SOLUTIONS

An overview of existing and well known monitoring solutions was done. They were evaluated

with the five primary facets of a monitoring system: Data collection, Data storage, Visualization,

Analytics and reporting, Alerting [1]. Additional attention was paid to the ease of implementation and

support, resiliency, integration, cost.

2.1 PUSH VS. PULL ARCHITECTURE

Two main paradigm exist in monitoring architectures, accordingly to the site of data collecting

component [1]: Push and Pulla.

In Push architecture the data collection component is passive and the metrics and events are

sent on a regular basis or on event by the monitored program or the metric forwarding component.

So the monitored services, machines or infrastructure are emitters that send data to a central

collector [2]. In the most cases the emitters send the data to the collectors as soon it is available or

the event happened, avoiding the delay of time based collection and the risk of loosing rapidly

evolving metrics or events. The collection of the metrics and events are distributed over the

monitored entities therefore it is horizontally scalable.

In Pull architecture the data collecting component is the active part. It emits requests to the

monitored targets to collect the metrics and is the central part that is configured for the monitored

targets. The requests and data collection are performed on regular intervals and the result suitable

for storage and management as time series, but is prone to loss of short lived lived events.

Monitoring solutions with combined Push/Pull architectures are also studied and described [3]

as effort to combine positive sides of both approaches and mitigate theirs shortcomings. Earlier a

specific purpose monitoring solution implementing such hybrid model was implemented and

described [4], motivated by complementary properties of each simpler model.

Both types of architectures have advantages and disadvantages making them suitable for one

environment or another. For example Push would be better choice for event-driven monitoring while

Pull is for continuous metric collection of time series [5].

2.2 AMBARI

Apache Ambari [6] is management and monitoring software for Hadoop clusters. It may be

installed separately however often comes bundled with proprietary Hadoop distributions such as HDP

[7]. It has simple but powerful web interface for managing the services. Monitoring is implemented

over JMX exposed to the network and has alerting ability on pre-defined events. Monitoring with

Ambari is an example of Pull monitoring architecture. Simple representation of the Ambari metric

system is shown on Fig. 1.

a Still referenced as white box and black box respectively [2]

2

2.3 ELASTICSEARCH

Performance of Elasticsearch is monitored by its companion visualisation tool Kibana which is

part of Elastic Stack [8] or Open Distro [9] packages.

Elastic Stack offers extension pack for monitoring and alerting of the components of ELK.

Metrics include performance, system and CPU load, disk space used and others. Visualisation and

alerting is performed in Kibana.

Open Distro offers options to build similar metrics and configure alerts based on selected

conditions or detected anomalies.

More universal monitoring system to include external metric sources may be build after

including “beats” to collect metrics and events and to send them to the Elasticsearch cluster. “Beats”

are usually small native programs, in some cases extendible with plugins to support specific metric

and event sources. Beats are the active components sending the metrics to Elasticsearch directly or

through instances of Logstash. Several Beats implementations are available [10] and officially

supported. Fig. 2 displays model of monitoring solution based on Elasticsearch and Beats also

showing its Push type architecture.

3

(source: cwiki.apache.org/confluence/display/AMBARI/Metrics)

Figure 1: Architecture of Ambari Metric System

Figure 2: Structure of monitoring solution based on Beats, Elasticsearch and Kibana

Beats

Metricbeat

Filebeat

Heartbeat

Packetbeat

Auditbeat

Apps

Nets

Secure

https://cwiki.apache.org/confluence/display/AMBARI/Metrics

2.4 INFLUXDATA PLATFORM

InfluxData platform, also known as TICK Stack [11], is a widely used generic monitoring

platform, mostly free and open source, designed for collecting and storing time series capable of real

time monitoring, alerting and machine learning based analytics. Among the free platform InfluxData

promotes two more proprietary solutions commercialised as Influx Cloud and Influx Enterprise. Both

are based on TICK stack and are managed by InfluxData, former is run on Amazon’s AWS and the

latter – on any internal or external platform chosen by the customer.

The platform consists of four main components: Telegraf, InfluxDB, Chronograf and Kapacitor.

All the components are developed in Go [12] resulting in great performance and portability. Each

component has specific tasks and communicate with the others by HTTP based API allowing them to

work independently. The next Fig. 4 shows the structure of TICK Stack. Similarly to ELK Stack solution

it has a mostly Push type architecture.

Telegraf is the component collecting data from the monitored services [13]. It is designed with

plugin architecture with plugins grouped in 4 main types – inputs, ouputs, aggregators and

processors. Input plugins collect statuses and metrics from the operating system and hardware of the

monitored machines and running services. Large number of inupt plugins are already available and

new ones may be developed [14]. Output plugins send the collected and processed data to databases

and aggregation systems typically InfluxDB and Kapacitor but there are options for external services

and APIs like Openmetrics, Elasticsearch, Kafka among others. Multiple destinations can be defined.

InfluxDB is the central component of a monitoring solution. It is a specialized time series

database capable of high data and query load [15]. Paid version also exists which includes horizontal

scalability and clustering support. InfluxDB receives data from collecting agents such as Telegraf.

Multiple levels of compression and granulation and retention policies are implemented. Queries are

done in SQL based language called “InfluxQL” or more recently developed and more specialized

query language called “Flux”.

4

(Recreated from www.influxdata.com/time-series-platform/kapacitor/)
Figure 3: Structure of TICK Stack

System

Stats

Databases

Networking

Applications

Message

Queues

Alerting

Q
ue

ry

C
on

fig
ur

e

A
le

rt

R
es

ul
t

Framework

Service
Discovery

Anomaly
Detection

Machine
Learning

User Defined
Functions

Pull

https://www.influxdata.com/time-series-platform/kapacitor/

Chronograf is the visualisation and configuration tool of the InfluxData platform[16]. It is a web-

based tool with support for custom dashboards for various types of data and alerts visualisations and

multilevel access controls and various authentication schemes. Configuration utilities include

managing InfluxDB and Kapacitor.

Kapacitor is the data processing component [17] bearing various modules with advanced

statistical and machine learning algorithms or user defined functions and capable for querying and

storing back to InfluxDB. Kapacitor is also responsible for defining and sending alerts through various

messaging and alerting frameworks. The paid version has clustering support for horizontal scaling.

2.5 PROMETHEUS

Prometheus [18] is a time series database integrated with metrics collection and storage

capabilities. It uses own query language PromQL [19] permitting the users to select and aggregate

data together with functions for conversion and manipulations of the metrics. Defined are 2 basic

types of metrics: Counter and Gauge. Counter is a metric that always increase, not necessary by

integer numbers. Examples include CPU time used by some process, network traffic passed through

some network interface. A decrease of a Counter is considered as “Reset” and is ignored by functions

calculating rates. A Gauge is a metric that may both increase and decrease. Examples for gauges may

be temperature or memory usage.

Prometheus includes simple visualization web-based “Expression Browser” used for preparing

queries and exploring time series. It is not suitable for general purpose monitoring and visualisation

[20]. To create visualisation dashboards external tool such as Grafana should be used.

To collect metrics Prometheus relies on “Exporters”. Exporters generally are small programs that

collect metrics from the monitored system and to translate to simple text format ready to be

collected by Prometheus on regular intervals, typically 30 seconds to 4 minutes. Software developers

are encouraged [21] to implement exporting metrics in Prometheus format such as Prometheus be

able to collect metrics directly, without the need of intermediate exporter. A notable example is

NginX with its VTS module [22].

5

Figure 4: Representation of generic monitoring and alerting solution with Prometheus, Alert Manager and
Grafana

Prometheus

Grafana

Dashboards

Alert

E-mail

SMTP

Webhook

Instant

HTTPAPI

HTTP

Exporter

Program

Program

Exporter

Program

Program

PromQL

Messengers
Manager

There are many “official” exporters available [23]. Additionally libraries for most major

languages are developed making relatively easy creating new or custom exporters.

There is internal alerting component for defining and sending alerts to the companion software

Alert Manager or any other program implementing the appropriate API. According to the

configuration Alert Manager will group alerts and forward through the some of the supported

channels. Fig. 4 shows an example of simple monitoring solution with Prometheus and Grafana.

2.6 GRAFANA

Grafana [24] is a free and open source visualization tool and is widely used. It is written in Go

[12] making its native executables compatible with wide range of hardware, operating systems,

distributions and versions.

Many data sources are available through plugins, including for Elastic Search, InfluxDB and

Prometheus which are have are internally supported as “Native plugins” [25]. Visualization is

implemented as dashboards and panels presented in web based application. Huge collection of panel

plugins exist making visualisation in Grafana very flexible.

Grafana has internal alerting solution configurable on metric values through visualization

panels. Alerts can be send by e-mail, several instant messaging networks or external APIs and

Webhooks. Alert Manager from Prometheus is also supported.

Being free and open source, together with it’s resilience and flexibility make Grafana the

preferred choice for many monitoring and visualisation solutions.

2.7 COMPARISON BETWEEN EVALUATED GENERIC SOLUTIONS

Following the criteria listed on page 2, Influxdata (TICK Stack), Elasticsearch (ELK Stack) and

Prometheus/Grafana based solutions are compared on Table 1.

Table 1: Comparison between InfluxDB, Elasticsearch and Prometheus based monitoring solutions

TICK Stack ELK Stack Prometheus/Grafana

Source Open source Mostly Open source Open source

Licensing Mostly free Free/Optional paida Free

Design/Purpose Monitoring and Alerting Search Engine Monitoring and Alerting

Alerting Kapacitor Not by design Alert Manager

Architecture type Push Push Pull

Installation Moderate Straight forward Easy

Configuration Moderate Simple/Moderate Moderate

Diversity of sources
Many,

Possible to develop new
Few

Many,
Easy to develop new

Scalability Clustering, paid Clustering Federation

a Open Distro [9] is Free and Open source alternative

6

TICK Stack ELK Stack Prometheus/Grafana

Development language Go Java Go

Operation requirements Moderate High Low

Although Elasticsearch is installed and used in the department the other two solutions –

InfluxDB and Prometheus – have as advantage being designed for the purpose of monitoring and

alerting. Additionally both have support for many services and being developed in Go is expected to

exhibit good stability and performance.

Prometheus has the advantage having completely free and open source license, including the

advanced features. The Push architecture makes Prometheus based solution more suitable for the

purpose as monitored data consists mostly of metrics and logs and events were considered lower

priority.

Prometheus based solution was selected for further exploration and implementation.

7

3 INSTALLING AND CONFIGURING MONITORING AND ALERTING SOLUTION WITH

PROMETHEUS

3.1 PROMETHEUS AND ALERT MANAGER

Prometheus and Alert manager are downloadable [26] as binary packages for various operating

systems including Linux. The binaries are static and independent of the distribution and version of the

operating system. Neither need elevated access be run as regular or preferably as dedicated user with

restricted access for improved security. The processes are managed either by supervisord or systemd

and are configured as system or user services.

The configuration is done with command line options and one or more configuration files

written in YAML. To create notification texts Alert Manager uses template files based on Go

templating system [27].

Prometheus may need significant amount of disk space to store the database. In the main

monitoring solution described in this work Prometheus database grew up to 25GB.

3.2 EXPORTERS

In this section will be reviewed existing exporters for the various services used in the

Department. Will be taken in account running requirements, available metrics, stability and

implications.

The most basic exporter is Node Exporter [28] which is stand-alone program. It collects metrics

about operating system and hardware status and performance for Linux and collected metrics are

exported with embedded http server for Prometheus. It has modular structure permitting enabling or

disabling metrics collectors depending on needs.

Node Exporter must be installed and run on every monitored node. The executable is single file

and there is no configuration files – the configuration is done by command line only and is managed

by the generic Linux startup managers. In this work both systemd and supervisord were used.

By default Node exporter does not need to be run with elevated privileges. In some specific

cases such as monitoring system manages special privileges may be needed.

3.2.1 Exporting metrics from Hadoop services

Many Java-based services use MBeans to communicate statuses and metrics. JMX Exporter [29]

which is part of Prometheus ecosystem use MBeans to export metrics from the JVM. It is used as

“Java agent” and must be included in the JVM command line that starts the monitored Java service:

java -javaagent:/fullpath/jmx_prometheus_javaagent.jar=8080:/fullpath/config.yaml -
jar theService.jar

With above example metrics will be collected from MBeans and will be served by embedded

http server listening on port 8080. Metrics will include generic ones available in any JVM, such as

8

memory and CPU usage and specific to the monitored application. The configuration file is used to

redefine names of the exported metrics and optionally to exclude some.

Alternatively JMX Exporter may be used as stand-alone application but is discouraged as it is

more complicated to configure and will not export the generic metrics [29].

With Ambari environment, such as HDP, inclusion of JMX Exporter as Java agent requires

modification of the startup files *_env.sh of every service.

Including Java agent in the JVM has several implications:

• Adding or modifying JMX Exporter configuration in the JVM command line requires restart of

the monitored service. Even in redundant character of Hadoop based services such restart

may affect the stability of the whole ecosystem.

• Re-using a port number of the embedded http server or error in the configuration file will fail

the inclusion of the Java agent and will prevent the JVM to start. Additionally there is no error

message related to the JMX or Java agent on the output making such error difficult to track

and resolve.

• Including multiple -javaagent options in the JVM command line is an error. This is

particularly important in Ambari environment where the *_env.sh files are reused for

multiple services and options are added cumulatively, so the -javaagent option should be

only added if not exists already.

• The jmx_exporter_javaagent.jar and its configuration files must be copied to all nodes in

the cluster.

• Re-configuration of the JVM command line of the services usually requires additional

privileges to all the nodes of the cluster or when Ambari is used for management full access

to Ambari configuration.

For services from Hadoop ecosystem instead if JMX Exporter the stand-alone Hadoop Exporter

[30] may be used as alternative. It is a Python program designed to scrape metrics from multiple

Hadoop based services and export them to Prometheus. The program relies on JMX web service to be

enabled in the services, which is by default in the used HDP distributions. It does not require to be

installed on the Hadoop nodes and can collect metrics remotely. Using this Hadoop Exporter avoids

most of the difficulties implied by the JMX Exporter.

The original version of Hadoop Exporter has several shortcomings:

• Scrapping is done in single thread making it to take long time – from few seconds to tens of

seconds.

• To get a list of services to be scrapped Hadoop Exporter relies on command line where only

single service of a type can be specified or on a service by Ambari which is not enabled by

default

9

To overcome those shortcomings Hadoop Exporter was heavily modified and enhanceda:

• The command line options code was reworked

• There is no limit for number of services monitored of the same type

• Scrapping is made multi-threaded making the whole process much faster

• Multiple bug fixes and optimisations were done

• The list of services can be loaded from file avoiding the need of long command line

• The program is ported from Python 2.x to Python 3.5+

Another option for monitoring Hadoop services managed by Ambari is Ambari Exporter [31]. It

collects the metrics from Ambari instead of directly as in Hadoop Exporter. This may have advantage

of more centralized metrics transfer – all metrics are collected from the same server, but makes it too

dependent of Ambari itself.

The Ambari Exporter is developed using .NET framework and designed to run in Microsoft Azure

environment and compiling and running it in Linux requires additional efforts for installing new

development tools and would introduce additional overhead for running the exporter in Wine and

Mono [32].

Fig. 5 shows the difference between the above described approaches for monitoring Hadoop

based services.

3.2.2 Exporters for Elasticsearch Ecosystem

Exporters for Elasticsearch, Beats and Logstash exist and they have similar functionality. All of

them are stand-alone programs capable of collecting metrics remotely.

a A fork of the of Hadoop exporter with those enhancements included is made public, keeping the original Open
Source license, at https://gitlab.com/y1b/hadoop_exporter

10

Figure 5: Comparison of the three approaches for monitoring Hadoop services with Prometheus: JMX Exporter
(left), Hadoop Exporter (middle) and Ambari Exporter (right)

Prometheus

Service
/metrics

Node 1

Service
/metrics

Node N

Prometheus

Service
/jmx

Node 1

Service
/jmx

Node N

Hadoop

Exporter

Prometheus

Service
/jmx

Node 1

Service
/jmx

Node N

Ambari

Exporter

https://gitlab.com/y1b/hadoop_exporter

Elasticsearch exporter [33] is a stand-alone application written in Go. Can be compiled from

sources or used pre-compiled binaries. One instance per monitored node is required to collect node

specific metrics both for Elasticsearch and the operating system. Cluster-wide metrics such as number

of online nodes and cluster status are repeated from all exporter instances.

Configuration is done with command line and environment variables. For setting the credentials

for access Elasticsearch environment variables should be used instead of command-line for improved

security.

Several different Logstash Exporter forks exist, but the one published by “Bonnier News” [34]

was chosen for further investigation. Similarly to Elasticsearch Exporter it is a standalone single

executable program, but with much simpler configuration.

Logstash after version 5 has the necessary option “Web API” enabled by default however the

listening port by default will take consecutive values starting from 9600, which leads to difficulties of

the configuration of the exporter. It is advisable to set the “Web API” port to some fixed

number ,using the setting http.port, specific for each Logstash instance running on the same

machine.

The original sources were patcheda to implement some enhancements that were found

necessary but missing:

• Add labels “name” and “id” to Logstash_info_node metric – this permits associating the

Logstash instance with the Exporter instance even without setting the fixed number of “Web

API” port;

• Add Logstash_info_status metric with possible values 0, 1 and 2 corresponding to status

“green”, “yellow” and “red” if available;

• Add start_time metric.

Beats Exporter[35] is another standalone, single executable program written in Go. It has very

few command-line options. It has full support for Filebeat and Metricbeat and partial for Packetbeat

and Auditbeat.

Unlike Logstash Beats do not have the necessary “Web API” enabled by default. The options

http.enabled and http.port must be set in the respective *beat configuration files.

3.2.3 NiFi Exporters

Several different exporters exist for Apache NiFi:

• nifi_exporter [36] is stand-alone program developed in Go configurable with single

configuration file. It requires the authentication in NiFi to be enabled;

• NiFi Exporter [37] is a Python implemented exporter for NiFi to Prometheus;

a logstash_exporter.patch in Supplementary Material

11

• nifi-prometheus-reporter [38] is a reporting task for NiFi to send statistics to Prometheus

Pushgateway [39];

• Solution based on JMX Exporter [29] together with appropriate Grafana dashboard is

available [40].

The Go implementation was compiled from sources without modifications and used for the

monitoring solution of the testing cluster (see p. 16 below).

The second option – the Python implementation was modifieda to enable monitoring NiFi

without authentication and is used for production.

3.2.4 Exporters for specific services

PostgreSQL instances can be monitored by the stand-alone PostgreSQL Exporter [41]. To permit

remote monitoring and avoid using the exporter with elevated privileges both for the operating

system and the database server it is required to create a dedicated database account with limited

privileges together with special views with database-wide access.

PostgreSQL Exporter instances are managed by available Linux startup managers. The database

connection string which contains the credentials for the dedicated database user is defined in

environment variable for improved security.

Stand-alone dedicated Presto exporter with small set of metrics is available [42]. Run by the

standard Linux startup managers and can be used remotely. Alternatively generic JMX Exporter based

monitoring is also possible providing equivalent set of metrics.

Redis Exporter is available [43]. It was compiled from original sources without modifications.

The exporter is capable of collecting metrics remotely over the network or locally through Unix

socket.

Kafka metrics may be exported from Kafka brokers by JMX Exporter and the special

configuration file included distribution.

As alternative stand-alone Kafka Exporter is available [44]. It may be used remotely no

configuration changes or restart are needed but credentials for access are required.

NginX is widely used web-server implementation. The default setup has

“ngx_http_stub_status_module” that exposes limited set of metrics that can be scrapped by “nginx-

prometheus-exporter” [45]. The "status module" is not enabled by default in most binary

distributions. Enhanced version of the module with more metrics is implemented in commercial

"Nginx Plus". Independent module "nginx-module-vts"[22] exists and was selected as better

alternative. The module is capable of exporting metrics directly in Prometheus format and may be

compiled as plugin and enabled in the NginX main configuration file without the need of re-

compilation of NginX itself. For compilation of the module, source code of exactly the same version of

NginX is required.

a NiFi_Exporter.patch in Supplementary Material

12

To monitor Airflow the Prometheus exporter[46] which is implemented as plugin in airflow. It

defines a DAG and a Task to export metrics directly scrapable by Prometheus. Installation is done by

common Python tools such as “pip install airflow-exporter” executed inside Airflow Python

virtual environment.

Celery is another Python based service and it’s activity monitoring is performed on its database

back-end by Celery Prometheus Exporter[47] which is stand-alone program developed in Python. It is

run inside Python virtual environment with Celery and database back-end installed.

3.3 LOGALERTS PROGRAM

Alert Manager from Prometheus ecosystem has extensive features for receiving, grouping and

forwarding or silencing alerts send by Prometheus or other software implementing it’s API. However

it does not keep history of past inactive or resolved alerts which was found necessary for the

monitoring solution. To meet this requirement the LogAlerts program was developed and publisheda

with open source license

LogAlerts implements partially Alert Manager API used by Prometheus (and eventually others)

to send alerts. The API is at /alerts/v1/alerts and is accepting only POST requests with JSON

describing active alerts. LogAlerts keeps track of active and resolved(not active, passed) alerts and

stores them in SQLite3 database. The database is automatically created of startup if does not exists.

The schema is hard-codded in the program. Fig. 6 shows the ERD of the database.

LogAlerts implements also simple web server, by default on port 9131, to serve the single index

page and the list of alerts in JSON format, which is then rendered to a table by JavaScript. The page

displays list of all alerts (active and resolved) started last 24 hours by default and optionally may be

set to show active alerts only. Screen shot of the web interface is displayed on Fig. 27 on page 28.

a YB, LogAlerts, https://gitlab.com/y1b/logalerts

13

Figure 6: ERD of the database used in LogAlerts program

alerts

startsAt
fingerprintId

endsAt UNSIGNED INTEGER
generatorUrlId INTEGER
updatedAt UNSIGNED INTEGER

annotations

startsAt
fingerprintId
labelNameId

labelValueId UNSIGNED INTEGER

fingerprints

fingerprintId

fingerprint CHAR[16]

labelNames

labelNameId

labelName VARCHAR

labelValues

labelValueId

labelValue VARCHAR

labels

fingerprintId
labelNameId

labelValueId UNSIGNED INTEGER

status

statusName

statusInt INTEGER

alerts

startsAt
fingerprintId

endsAt UNSIGNED INTEGER
generatorUrlId INTEGER
updatedAt UNSIGNED INTEGER

annotations

startsAt
fingerprintId
labelNameId

labelValueId UNSIGNED INTEGER

fingerprints

fingerprintId

fingerprint CHAR[16]

labelNames

labelNameId

labelName VARCHAR

labelValues

labelValueId

labelValue VARCHAR

labels

fingerprintId
labelNameId

labelValueId UNSIGNED INTEGER

status

statusName

statusInt INTEGER

https://gitlab.com/y1b/logalerts

Simple pagination is implemented to move back and forward by 24 hours. Also is possible to

select manually day and hour. Active alerts are always displayed.

Automatic refresh every 60 seconds is implemented and enabled by default but it can be

disabled. Columns Name, Description and Query are clickable to display more extensive information

of the alert.

Lack of connectivity, down time, misconfiguration may cause LogAlerts to miss the API message

that an alert was resolved. Then the alert is listed always as active, even is not shown in Prometheus.

The bug is mitigated by manually changing the "updatedAt" timestamp to be equal or bigger by

few seconds to the "endsAt" timestamp for the alerts where "updatedAt" is older than (2 hours in the

example) and endsAt is bigger than updatedAt. The following shell command may be used:

The API to update the alerts is allowed only from localhost, and so on the same host where

Prometheus is running. No other access control is implemented. Everyone who has access to the

listening port and any IP of the machine can read the list of alerts. Internal SQL queries are designed

to be secure against common SQL threads (i.e. SQL injections).

To collect alerts from Prometheus it is necessary to include its local IP address and port in the

“alerting” section of the Prometheus configuration file:

AlertManager(s) and LogAlerts work in parallel and independently of each-other.

LogAlerts consists of single python file (logalerts.py) and 3 files with the web page code

(index.html, index.css and index.js). Those files are never served directly, but they are combined by

the program and then sent to the client. The program requires python3 but no special modules are

required. The program is started by common startup managers and a restricted account may be used.

A part from SQLite3 database logalerts.db and it's journal logalerts.db.wal no other write

access is needed.

3.4 GRAFANA AND ADDITIONAL PANEL PLUGINS

Installing Grafana is straightforward – several distributions are available including generic Linux

one [24]. It is uncompressed in the file system and can be run from there. The distribution includes

various data source plugins including for Prometheus.

Despite of variety of included visualisation panels some non-standard panel plugins were used.

BoomTable [48] is a panel plugin for rendering tables in Grafana with multiple metrics. The

plugin is still in development with frequent breaking changes. The version used is tagged "3c1ad62"

in Github and downloadable as version 1.3 from Grafana.com.

14

#alertmanager configuration
alerting:
 alertmanagers:
 - static_configs:
 - targets:
 - 127.0.0.1:9093 #AlertManager
 - 127.0.0.1:9193 #LogAlerts

$ sqlite3 logalerts.db "update alerts set updatedAt=endsAt where
endsAt>updatedAt and updatedAt<strftime('%s', 'now')-2*60*60;"

This version orders columns produced by single query randomly and changes the order on every

time change or refresh. It can be mitigated by performing multiple queries with different set of labels

for each column – The columns will be displayed in the order of queries.

Changing the order of the rows is possible only by sorting by value of some column, which is not

practical in most of the cases. By default no column is selected and rows are displayed by order

served by Prometheus which can't be controlled. This was solved by small modificationa of the plugin

code which will sort the rows by row name by default, when no sorting column is selected. There is

no control that can make or reverse order of the rows – it is possible only by editing the

"sorting_props" in the code of the panel. The ordering bugs are resolved by latter versions but new

ones are introduced.

Statusmap is panel plugin to create temporal status maps [49]. It is frequently developed but no

breaking changes are noticed and current version (r142, 4b7d111) works correctly.

To create pie charts panels special plugin is used [50] which is seldom updated and stable.

a boomtable-sortbyrow-r260.patch in Supplementary Material

15

4 FINAL CENTRALIZED MONITORING AND ALERTING SOLUTIONS

The Department uses two separated clusters – one for testing and initial development and

another for production. Additionally, as voluntary project, monitoring solution was implemented for a

cluster dedicated to computational chemistry in external academic organizationa.

4.1 TESTING CLUSTER

The testing cluster consisted of 4 virtual nodes running Linux. It was running HDP v.2

distribution with HDFS, HBase, Hive and Kafka managed by Ambari. There there was Apache NiFi

instance over all 4 nodes, Elastic Stack which was later replaced with Open Distro and a PostgeSQL

server running on one of the nodes.

Prometheus, Alert Manager and Grafana were installed manually on one of the nodes.

Grafana was configured to use port 3009 instead of the default port 3000. Additionally the

“Prometheus AlertManager Datasource” plugin for Grafana [51] was installed.

Alert Manager was configured to send alerts by e-mail through internal e-mail server.

The operating system and hardware metrics on all 4 nodes are exported by node_exporter

which was installed and managed by supervisord without any special options enabled.

4.1.1 Monitoring Hadoop based services

All Hadoop based services were monitored by JMX Exporter installed as javaagent. For this

purpose jmx_prometheus_javaagent.jar was copied to all 4 nodes and re-used for the monitored

Hadoop services. The command line changes were done in Ambari administrator console.

For HDFS services the javaagent command line options were added in hadoop-env.sh after

variables HADOOP_…_OPTS are defined. The modification avoids multiple inclusion of -javaagent

option as explained shortly on page 9. With the codeb snipped below JMX exporter was configuredc to

serve metrics on ports 7003 for Primary and Secondary Name Nodes and 7004 for the Data Nodes.

The Name Nodes were on different machines which allowed to use the same port number for both.

HBase had Master Server running on one node and there were Region servers and Query

servers on the other 3 nodes. The lines below were added to hbase-env.sh in HBase advanced

configuration in Ambari:

a DQ-FCT-UNL
b Here and thereafter with “/→/” is denoted the full path to the file
c Configuration files were taken from Wikimedia Foundation Puppet repo

16

[-z "${HADOOP_DATANODE_OPTS##*-javaagent:*}"] \
 || HADOOP_DATANODE_OPTS="$HADOOP_DATANODE_OPTS \
 -javaagent:/→/jmx_prometheus_javaagent.jar=7004:/→/datanode_jmx.yaml "

[-z "${HADOOP_NAMENODE_OPTS##*-javaagent:*}"] \
 || HADOOP_NAMENODE_OPTS="$HADOOP_NAMENODE_OPTS \
 -javaagent:/→/jmx_prometheus_javaagent.jar=7003:/→/namenode_jmx.yaml "

[-z "${HADOOP_SECONDARYNAMENODE_OPTS##*-javaagent:*}"] \
 || HADOOP_SECONDARYNAMENODE_OPTS="$HADOOP_SECONDARYNAMENODE_OPTS \
 -javaagent:/→/jmx_prometheus_javaagent.jar=7003:/→/namenode_jmx.yaml "

https://github.com/wikimedia/puppet/tree/production/modules/profile/files/hadoop

Configuration file that may be used for this approach is available [52] and is the same for the 3

services.

After restarting the HBase services, metrics from HBase Master were served on port 7001, from

the Region Server – on port 7002 and from Query Server – on port 7010.

Zookeeper’s configuration filea was distributed on the 3 nodes were Zookeeper was running

and the line was added to the environment configuration:

After restarting Zookeeper JMX Exporter was serving metrics on port number 7005

Similarly to above the configuration fileb was copied to the two Kafka broker nodes and the line

was added to the Kafka environment configuration such as the metrics to be served on port 7006:

4.1.2 Monitoring Elastic Stack

Elasticsearch Exporter [33] and Logstash Exporter [34] were installed on all nodes and

configured to monitor the local Elasticsearch and Logstash instances. The metrics were served on

ports 9098 and 9097 respectively.

Later the Elastic stack was replaced by Open Distro but no changes of the exporter

configurations were necessary.

4.1.3 Monitoring Specific Services

To monitor the NiFi installation Nifi_exporter [36] was installed on a single node and was

configured to collect metrics from the local NiFi node.

On one of the nodes was running PostrgeSQL server and PostgreSQL exporter was installed on

the same node as described on page 12 above.

Prometheus, Alert Manager export metrics that can be collected by Prometheus. This option is

enabled by default.

Grafana also exports Prometheus metrics but this option is not enabled in the default

configuration. It was enabledc in the modified configuration file.

a JMX Exporter Zookeeper example
b JMX Exporter Kafka example
c enable=true in [metrics] group as described

17

[-z "${HBASE_MASTER_OPTS##*-javaagent:*}"] \
 || HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS \
 -javaagent:/→/jmx_prometheus_javaagent.jar=7001:/→/hbase_jmx.yaml "

[-z "${HBASE_REGIONSERVER_OPTS##*-javaagent:*}"] \
 || HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS \
 -javaagent:/→/jmx_prometheus_javaagent.jar=7002:/→/hbase_jmx.yaml "

[-z "${PHOENIX_QUERYSERVER_OPTS##*-javaagent:*}"]
 || PHOENIX_QUERYSERVER_OPTS="$PHOENIX_QUERYSERVER_OPTS \
 -javaagent:/→/jmx_prometheus_javaagent-0.12.0.jar=7010:/→/hbase_jmx.yaml "

[-z "${SERVER_JVMFLAGS##*-javaagent:*}"] \
 || SERVER_JVMFLAGS="$SERVER_JVMFLAGS \
 -javaagent:/→/jmx_prometheus_javaagent.jar=7005:/→/zookeeper.yaml "

[-z "${KAFKA_OPTS##*-javaagent:*}"] \
 || KAFKA_OPTS="$KAFKA_OPTS \
 -javaagent:/→/jmx_prometheus_javaagent.jar=7006:/→/kafka-0-8-2.yml "

https://grafana.com/docs/grafana/latest/administration/metrics/
https://github.com/prometheus/jmx_exporter/blob/master/example_configs/kafka-0-8-2.yml
https://github.com/prometheus/jmx_exporter/blob/master/example_configs/zookeeper.yaml

4.1.4 Graphical representation of the Testing Cluster Monitoring

4.2 PRODUCTION

Production environment includes of two separated HDP clusters, one full Elastic stack cluster,

two Kafka clusters, an Apache NiFi cluster, Airflow cluster and various independent machines. In this

section will be described metrics scrapping solutions for the monitored components, conversion and

graphical representation of the collected metrics and some of the defined alerts.

Prometheus, Alert Manager, LogAlerts and most of the exporters are running on single

machinea. Same machine runs Gitlab installation which is bundled own monitoring solution based on

Prometheus and Grafana. Prometheus, Alert Manager, Node Exporter and Grafana from Gitlab were

disabled in favour of the ones part of the centralized monitoring solution and theirs functionality was

replicated. The additional panel plugins described in section 3.4 were installed in Grafana.

Most of the stand-alone exporters are concentrated on the Monitoring Node. With very few

exceptions one exporter instance is required for each monitored service making the number of

running exporters significant. Each exporter occupies different port to serve the Prometheus metrics.

The large number of used ports may be difficult to manage and may introduce conflicts between the

services disrupting theirs functionality. This problem was mitigated by allocation various IPs from the

loopback network together with range of port numbers. Such approach is graphically represented on

the next Fig. 8.

a Will be referenced as “Monitoring Node”

18

Figure 7: Representation of the Monitoring Solution for the Testing Cluster

Additionally renaming the instances in Prometheus configuration would be much simpler. The

Prometheus configuration fragment below makes label “instance” correspondent to the nodes where

each service is running for the hypothetical set-up shown on right side of Fig. 8:

4.2.1 Monitoring HDP clusters

Two HDP clusters – versions 2 and 3 are monitored. Metrics from both clusters are scrapped by

the modified Hadoop Exporter described on page 10. Single instance of the exporter is used to export

metrics from all services from both clusters and is running on the Monitoring Node. In single

configuration file are listed all monitored services with their type, cluster and node which includes

the cluster name and JMX location with simple text format:

The monitored services are: HDFS (Name, Data and Journal Nodes), YARN (Resource and Node

Managers), Hive (Server and LLAPDaemon), HBase (Master and Region Servers) and MapReduce (Job

History Server).

Metrics exported by scrapped by Prometheus. Special care was taken in Prometheus

configuration to define additional labels in the metrics to distinguish the clusters and the nodes.

Some of the common metrics are suitable for displaying in tables. Fig. 9 shows example of

tables of common metrics Up Time, CPU usage, GC Loada, Heap Usage. Colours of the cells are chosen

to draw attention to metrics with non-optimal values.

a GC Load is a measure for the fitness of memory management; Defined as portion of time or computing power
used for GC; Values above 10% may be symptom for memory allocation problems and poor performance.

19

SERVICE_TYPE HDPx%NODEn http://n.n.n.n:port/jmx
…

Figure 8: Choosing ports for exporting metrics without (left) and with (right) using various IPs from loopback
network

P
ro

m
et

he
us

Service A
Node 1

Service B

Service C

Service A
Node N

Service B

Service C

Monitoring Node

Service A
Node 2

Service B

Service C

*:9001

*:9002

*:9003

*:9004

*:9005

*:9006

:9001+3(n-1)

:9002+3(n-1)

:9003+3(n-1)

P
ro

m
et

he
us

Service A
Node 1

Service B

Service C

Service A
Node N

Service B

Service C

Monitoring Node

Service A
Node 2

Service B

Service C

Service A
Exporter 127.0.0.1:9001

Service B
Exporter 127.0.0.1:9002

Service C
Exporter 127.0.0.1:9003

Service A
Exporter 127.0.0.2:9001

Service B
Exporter 127.0.0.2:9002

Service C
Exporter 127.0.0.2:9003

Service A
Exporter 127.0.0.n:9001

127.0.0.n:9002

Service C
Exporter 127.0.0.n:9003

Service A
Exporter

Service B
Exporter

Service C
Exporter

Service A
Exporter

Service B
Exporter

Service C
Exporter

Service C
Exporter

Service B
Exporter

Service A
Exporter

Service B
Exporter

 - job_name: 'ServiceA'
 static_configs:
 - targets:
 - '127.0.0.001:9001'
 - '127.0.0.002:9001'
 ⋮
 - '127.0.0.00n:9001'
 relabel_configs:
 - target_label: instance
 source_labels: [__address__]
 regex: '127\.0\.0\.(\d+):9001'
 replacement: 'Node${1}'

 - job_name: 'ServiceC'
 static_configs:
 - targets:
 - '127.0.0.001:9003'
 - '127.0.0.002:9003'
 ⋮
 - '127.0.0.00n:9003'
 relabel_configs:
 - target_label: instance
 source_labels: [__address__]
 regex: '127\.0\.0\.(\d+):9003'
 replacement: 'Node${1}'

 - job_name: 'ServiceB'
 static_configs:
 - targets:
 - '127.0.0.001:9002'
 - '127.0.0.002:9002'
 ⋮
 - '127.0.0.00n:9002'
 relabel_configs:
 - target_label: instance
 source_labels: [__address__]
 regex: '127\.0\.0\.(\d+):9002'
 replacement: 'Node${1}'

Snapshot of HDFS usage and temporal storage metrics is shown of Fig. 10 as example of specific

metric graphical representation.

Hadoop exporter has very low resource requirements despite large set of managed metrics. Fig.

11 has graphical representation of CPU and memory usage and scrapping delays for period of about

30 minutes.

20

Figure 9: Common metrics for some services from both HDP clusters

Figure 10: Panel displaying HDFS usage and some temporal data storage rate and metrics

Figure 11: Internal Hadoop Exporter metrics: CPU and memory usage, left and scrape delays, right

4.2.2 Monitoring Database services

Two Presto servers associated to each HDP cluster are monitored. Metrics are collected

remotely by two instances of Presto Exporter installed on the Monitoring Node. The metrics exported

to Prometheus are limited in number but enough for monitoring of status and performance of the

server. Fig. 12 shows panels with some of the collected metrics from one Presto server.

Two separated Redis servers are monitored together with another one part of Gitlab

installation. All three exporters are running on the Monitoring Machine. On the Fig. 13 below some of

the metrics collected from one of the Redis servers are represented.

Four separated PostgreSQL servers are monitored remotely by PostgreSQL Exporter instances all

running on Monitoring Machine. On Fig. 14 are shown some basic metrics collected from one of the

servers.

21

Figure 12: Metrics from Presto server associated with HDP2

Figure 13: Fragment of a dashboard with Redis metrics

4.2.3 Airflow Cluster and Celery

Airflow cluster has 3 nodes. The exporter [46] is installed in the Airflow environment and the

metrics are collected from one of the nodes. The metrics are limited – only DAG and Task last run

statuses and Time Running are available but with more sophisticated queries much more

performance information can be obtained. Fig. 15 shows example for temporal performance metrics

and status overview for last 24 hours.

There are two instances of Celery configured with backed Redis. Monitoring is done by two

instances of Celery Exporter installed on the Monitoring Node and configured to monitor the

corresponding Redis database. Metrics are limited but enough to monitor the service. Fig. 16 shows

snapshot of the simple Celery dashboard.

22

Figure 14: Some PostgreSQL Metrics

Figure 15: Airflow temporal DAGs and Tasks Performance (up) and status overview (down)

4.2.4 Monitoring NiFi cluster

Apache NiFi cluster is monitored by the implemented in Python NiFi Exporter shortly described

on p. 11. Because of security concerns Monitoring Node does not have direct access to the NiFi

cluster and the exporter was installed on different node and metrics were collected remotely by

Prometheus. Next Fig. 17 has panels showing current status of the NiFi cluster together with some

performance metrics.

4.2.5 Monitoring Kafka clusters

Two separated clusters are monitored. Two instances of the stand-alone Kafka Exporter [44] are

running on Monitoring Node. Available metrics permit precise monitoring of the overall performance

and individual topics and consumer groups. Fig. 18 has example of dashboard containing table with

topics and numbers of messages for the last 24 hours and plots with message rate and lag for

selected topics.

23

Figure 16: Celery dashboard example

Figure 17: Fragment of a dashboard displaying status and performance of Apache NiFi cluster

4.2.6 Monitoring services from Elastic stack

In total about 50 Logstash instances distributed over various nodes are monitored. The

modified version of Logstash Exporter described on page 11 was used. All associated exporter

instances are running on the Monitoring Node. Fig. 19 shows fragment of the table with common

metrics and statuses for various Logstash instances including some special situations such as exporter

is offline, target Logstash instance cannot be connected. The colour of the third column corresponds

to the status of the Logstash instance when available. On Fig. 20 temporal plots of incoming events

rate and average delay of the same Logstash instances are presented.

24

Figure 18: Example of simple dashboard for Kafka

Figure 19: Tabular representation of common metrics from some Logstash instances

Figure 20: Temporal plots for incoming events rate (left) and average delay (right)

Single instance of Metricbeat is monitored remotely with Beats Exporter [35] installed on

Monitoring Machine. On Fig. 21 is shown simple dashboard with the basic metrics collected.

Two separated Elasticsearch instances are used and monitored: A single node Elasticsearch

instance running on Monitoring Node and a multi-node cluster. Elasticsearch Exporter [33] is used

and one instance for each node is used to export metrics. Cluster-wide metrics such as cluster

healths, numbers of shards, number of nodes are repeated in every metric set. All Elasticsearch

Exporter instances are running on the Monitoring Node with Prometheus metrics served on the same

port but with different IPs from the loopback network corresponding on the nodes as described on

page 18.

Fig. 22. shows status snapshot of the cluster both for cluster-wide and node specific metrics.

Note the cluster-wide table includes status for both monitored Elasticsearch installations.

On the next Fig. 23 temporal plots of filesystem transfer rates and document rates and overall

cluster health status are displayed.

25

Figure 21: Example for Metricbeat dashboard

Figure 22: Tables with Elasticsearch cluster-wide (up) and node-specific (down) status metrics

4.2.7 Monitoring NginX

Several instances NginX servers are used, among them one used in Gitlab installation and

another used as main gateway to the internal services. In all cases the NginX VTS module [22] was

compiled and used to serve metrics for Prometheus. Metrics include number of requests and latency

by result code, virtual server and back-end.

4.2.8 Monitoring the Operating Systems

To monitor the status of the operating system of the nodes Node Exporter is used. It was

installed on about 30 nodes, including the ones of HDP2 and ELK clusters. Most of the exporters are

used with default configuration, which already gives rich set of metrics including CPU load, memory

usage, filesystem status, network usage.

26

Figure 23: Health status (up) and plots of filesystem transfer rate (left) and documents rate (right)

Figure 24: Some metrics from nodes of HDP2 cluster

On the Fig. 24 is given example of tabular representation of some operating system and

hardware metrics together with plots of CPU load and network performance.

Using tables with coloured cells with metrics for large numbers of nodes is useful for getting

broad overview on the status of the infrastructure but may have too much information transmitting

to the viewer and some unusual situation may be ignored. As alternative were created table panels

where will be shown only metric values that deserve attention. Such panel with filesystem overuse,

CPUs excessive load and and memory overuse is displayed on Fig. 25.

Among the others optional metric collectors, Node Exporter is capable collecting statuses from

start startup managers such as systemd, supervisord and runit. That permits monitoring status of the

services without metrics capabilities or with no known exporters.

Metrics exported by those collectors are limited – if the service is running, type of the service

and for some – startup time. Fig. 26 has part of a dashboard displaying statuses of some services

managed by the monitored startup managers. On the right in the table are services managed by runit

from the Gitlab installation where is visible that instances of Alert Manager, Node Exporter and

Grafana that are bundled with it are configured but disabled. On the right is temporal status of few

services managed by systemd and down various service statuses managed by supervisord on the

Monitoring Node.

4.2.9 Defining alerts and configuring Alert Manager

Alerts are defined in Prometheus configuration. PromQL is used to describe the conditions that

will trigger an alert and may be defined delays before the alert to be sent and additional labels and

descriptive annotations.

The example below defines alert that is triggered when some filesystem is used more than 85%

and forwarding the alert to the configured alert managers is delayed by 2 minutes. The labels of the

27

Figure 25: Tables with alerts about filesystem , memory and CPU overuse

Figure 26: Service statuses collected by Runit (left), Systemd (top, right) and Supervisord (bottom, right)
collectors

alert is inherited from the metrics used in the query and new label “severity” is added. Two

annotations are included which texts are generated from some of the labels.

Multiple alerts were defined with broad sources and conditions and some groups are defined as

well 4 levels of severity. Some of them are:

• Alerts from Elasticsearch cluster:
◦ disk space used for data is more than 92% used (warning);
◦ a node from ELK cluster is unreachable (error);
◦ a node is reporting unhealthy status (warning);
◦ queries are delayed by more than 5 seconds (warning).

• Alerts from the operating systems:
◦ A node has rebooted (info);
◦ A partition is more than 85% full (warning);
◦ A partition is more than 98% full (error).

• Logstash streams:
◦ A Logstash instance has stopped receiving events (warning);
◦ A Logstash instance has not received any event for some period (warning).

• Alerts from Redis servers:
◦ Cache misses are more than 80% (warning);
◦ Redis is rejecting client connections (warning).

• Alerts from Airflow:
◦ Airflow is down or unreachable (critical);
◦ No DAGs were run for more than 5 minutes.

While Prometheus defines the alerts and sends them on the configuration of the Alert Manager

depends how the alerts are forwarded. Various “receivers” were defined forward alerts to different e-

mail addresses depending of the alerts grouping. The content of the e-mails are generated from the

labels and annotations defined in the alerts. The configuration of the e-mail receivers permits also

modifying the headers of the e-mails including “From:” header that is used to identify the alert

source.

The LogAlerts program was also installed and configured to work together with Alert Manager it

is used to keep history of past and resolved alerts and also as a debugging tool when defining the

alerts in Prometheus and configuring the Alert Manager. On the next Fig. 27 screen shot of the web

interface of LogAlerts used in Production is shown.

28

Figure 27: Screen shot of the web interface of LogAlerts program displaying some active and resolved alerts
together with alert labels and annotations.

 - alert: PartitionFull
 expr: 1-node_filesystem_avail_bytes/node_filesystem_size_bytes>0.85
 for: 2m
 labels:
 severity: warning
 annotations:
 summary: 'Home dir at {{$labels.instance}} from {{$labels.cluster}} is overused'
 description: 'Filesystem mounted at {{$labels.mountpoint}} at {{$labels.instance}} from
{{$labels.cluster}} is more than 85% used'

4.2.10 Prometheus self-monitoring

Prometheus exports and was configured to store own extensive metrics. They include CPU and

memory usage, number of collected time series, query engine state, database status and size.

Prometheus automatically deletes older that some pre-configured period, here equal to 6

months. The database size metric helps to estimate disk space that would be required at the end of

the period, assuming no metrics are added or removed, by extrapolating the data size over some

reasonable period to the time when old metrics start to be deleted. On the Fig. 28 are displayed

current CPU, memory and TSDB disk space usage together of plots of current disk usage an estimated

maximum disk space required for the TSDB for a period of 6 months. The steps correspond to the

moment when large sets of metrics were included.

Prometheus has special internal metrics for current pending or active alerts. This allows

creating panels to display list of current alerts interdependently of Alert Manager. This functionality

does not replace the Alert Manager or LogAlerts program. On Fig. 29 is displayed snapshot of a table

panel listing two active and two pending alerts of various types.

4.2.11 Structure of the Monitoring solution

The graphical representation of the full Monitoring Solution is presented on the Fig. 30 on the

next page 30. In the centre is the Monitoring Node with Prometheus, Grafana, Alert Manager and

LogAlerts together with most of the exporters. On the top are the ELK cluster and the two HDP

clusters. In the bottom are Airflow cluster and both Kafka clusters. All Node Exporters are represented

separately, on the bottom left.

29

Figure 28: Panels with metrics from Prometheus and plot with current and estimated maximum TSDB size

Figure 29: Panel displaying various active (red) and pending (yellow) alerts

30

Figure 30: Final structure of the Centralised Monitoring solution for Production

ELK "Main"

Monitoring Node

Prometheus

:9090

Alert

:9995

LogAlerts

:9093

Alerts

TS
INEC021

NGINX vts

Gitlab

Grafana
:3007

:9999

smtp.mngt.local

Haraka
SMTP

:8082

:9229

:8060

:9121

:9187

:9236

Postgres Exp

Redis Exp

NGINX vts

Workhorse

sidekiq

gitaly

Redis

Postgres Exps
127.0.0.004:9099
127.0.0.213:9099
127.0.0.005:9099

Postgres
:5777

:960x
Logstash

Beats Exp
127.0.66.4:9479

INEC213
Airflow

10.135.99.141:8790

Postgres
10.135.99.141:8777

10.135.99.141:8778

Redis

Celery Exps
127.0.0.005:8888
127.0.0.213:8888

:5778
:5778/3

10.135.99.141:8778/4

INEC007
INEC008
INEC025
INEC030

Kafka

Logstash Exps

127.0.1.210:990x

127.0.1.222:9900

Knox Exp
127.0.0.018:9097

NiFi_Exporter
:9103

INEC018
Knox

:8843

Postgres
:5777

FileBeat
:5066

NGINX vts
:443

n*Logstash
:96xx

INEC004

INEC015
ES Master :9200

n*Logstash :960x

INEC019
ES Master :9200

n*Logstash :960x

INEC016
n*Logstash :960x

INEC017
n*Logstash :960x

INEC009
ES Data :9200

INEC010
ES Data :9200

INEC011
ES Data :9200

INEC012
ES Data :9200

INEC003
ES Data :9200

INEC006
ES Data :9200

INEC013
ES Client :9200

n*Logstash :960x

INEC014
ES Client :9200

n*Logstash :960x

127.0.0.206:990x

Airfl...

INEC214 INEC215

NANN001
NameNode :50070
JournalNode :8480
ResManager :8088

NANN002
NameNode :50070
JournalNode :8480

:8088
HBase Master :16010
History Server :19888

Res. Manager

Presto :8080

NADN001
DataNode :50075
JournalNode :8480

:8042
:19888

NodeManager

NADN002
DataNode :50075

:8042
HBase RegionS :19888
NodeManager

NADN003
DataNode :50075

:8042
HBase RegionS :19888
NodeManager

NADN004
DataNode :50075

:8042
HBase RegionS :19888
NodeManager

NADN005
DataNode :50075

:8042
HBase RegionS :19888
NodeManager

NADN006
DataNode :50075
JournalNode :8480

:16010
HBase RegionS :19888
HBase Master

Logstash :9600
HBase RegionS

INEC211
NameNode :50070
JournalNode :8480

:8088
HBase Master :16010
History Server :19888

Res. Manager

INEC210
NameNode :50070
JournalNode :8480

:8088
HBase Master :16010
Hive LLAP :15002

Res. Manager

Hive SrvInteract :10502

NADN201
DataNode :50075
JournalNode :8480

:16010
HBase RegionS :19888
HBase Master

NADN202
DataNode :50075

:8042
HBase RegionS :19888
NodeManager

NADN203
DataNode :50075

:8042
HBase RegionS :19888
NodeManager

HDP HDP3

Node Exporter
127.0.0.1:9100

INEC003

INEC006

INEC009

INEC010

INEC011

INEC012

INEC013

INEC014

INEC015

INEC016

INEC017

INEC019

NANN001

NANN002

NADN001

NADN002

NADN003

NADN004

NADN005

NADN006

INEC004

INEC018

INEC021

INEC028

INEC029

INEC020

Node Exporters - ServiceIP:9100

INEC201
INEC202
INEC203
INEC204

HDF

INEC205
INEC206
INEC207
INEC208

Prometheus Metrics
JMX Data

OtherClient Server
Multiple Connections

INEC020

Presto
:8285

Kafka Exps
127.1.0.002:9308
127.0.0.007:9308

NAKF002
NAKF003
NAKF004
NAKF005

Kafka SSL

NAKF006

NAKF002

NAKF003

NAKF004

NAKF005

NAKF006

Hadoop Exporter
127.0.0.5:9131

127.0.0.209:990x
127.0.1.209:990x

127.0.0.205:990x
127.0.1.205:990x

Elasticsearch

127.0.0.208:990x
127.0.1.208:990x
127.0.0.212:990x
127.0.1.212:990x
127.0.0.196:99xx
127.0.0.197:990x

Presto Exps
127.0.0.221:9095
127.0.0.239:9095

127.0.0.003:9098
127.0.0.006:9098
127.0.0.009:9098
127.0.0.010:9098
127.0.0.011:9098
127.0.0.012:9098
127.0.0.013:9098
127.0.0.014:9098
127.0.0.015:9098
127.0.0.019:9098

ES Main Exps

ES Mon Exp
127.0.1.005:9098

ES Mon

Redis Exps
127.0.0.005:9121
127.0.0.213:9121

manager

4.3 COMPUTATIONAL CHEMISTRY SPECIALIZED CLUSTER

With the experience acquired developing the previous two centralised monitoring solutions

similar solution for specialised cluster was developed and implemented as a voluntary project which

will be shortly described in this section.

The cluster consists of about 80 computing nodes from various generations, one file server and

one Command and Control servera. Computing nodes have the same operating systems installed and

the software is equivalent with few exceptions. The job queueing system is implemented with

SLURMb and the nodes are grouped in several partitions by hardware configuration.

4.3.1 Additional Exporters

From the exporters discussed in 3.2 only Node Exporter is used. To monitor the specific services

and hardware additional exporters were evaluated and installed.

IPMI Exporter [53] is a program developed in Go. It relies in on external binaries from FreeIPMI c

package to collect hardware status information remotely. Single instance of the exporter is capable to

collect metrics from all the nodes in the cluster. Metrics include hardware component temperatures,

cooling fans performance, power consumption. IPMI Exporter does not follow the recommendations

for creating exporters because it starts external programs to collect the metrics.

Smartctl Exporter [54] uses smartctl program from S.M.A.R.T. Monitoring Tools to collect

metrics from hard disks and export them to Prometheus. Similarly to IPMI Exporter Smartctl exporter

executes external program to collect the metrics. The exporter together with recent version of

smartctl need to be installed and run on all monitored nodes and Prometheus collects the metrics

remotely. Metrics include internal temperature, age, restart and reload counts, number of relocated

sectors and others that help detecting pre-failing status to replace failing hard disks before loosing

data or disrupting the while cluster in case of catastrophic failure.

SLURM Exporter [55] is used to collect metrics from the queueing system. Metrics are allocation

statuses of CPUs and nodes, number of jobs by status and scheduler information.

Apcupsd Exporter [56] is a stand-alone Go program queries apcups daemon to collect metrics

about status of UPSs made by APC . Metrics include battery charge, power line status, load, estimated

available time and ambient temperature.

Some of the nodes have installed GPUs produced by NVIDIA. Node Exporter does not collect

status of GPUs and for that purpose special NVIDIA Exporter [57] is used. It is a stand-alone program

that uses NVIDIA Management Library to access the devices and is installed on the computing nodes.

It does not execute any external binary to collect metrics.

a Will be referenced as CC
b Simple Linux Utility for Resource Management, Slurm Documentation
c Tools and library to access IPMI, https://www.gnu.org/software/freeipmi/

31

https://www.gnu.org/software/freeipmi/
https://slurm.schedmd.com/

4.3.2 Building the monitoring solution

Prometheus is installed on the File Server to have direct access to the main storage for its TSDB.

Grafana is installed and running on CC. Because of security consideration connections from and to the

cluster are restricted – only CC can be accessed from Internet and only by SSH and so visualising

dashboards from Grafana and accessing Prometheus web console is possible through SSH tunnel

only.

Alerts were not defined and Alert Manager was not installed.

Node Exporter is installed on all nodes and the two servers, running the default configuration

and is managed by Systemd.

Smartctl Exporter and recent smartctl executable is installed on all nodes and CC. Configuration

files that include list of monitored hard disks are specific for each node. Scrapping interval in

Prometheus was chosen to be 4 minutes – larger than the generic one of 60 seconds.

On Fig. 31 is shown table combining some metrics from Node Exporter and Smartctl Exporter.

Only small portion of the nodes is included. Selected are examples for fully and partially loaded, idle

and offline nodes from the different partitions. The right 4 columns are smartctl metrics.

Single instance of IPMI Exporter and freeipmi executables are installed on the FileServer and it

collects metrics from all nodes. On Fig 32 below is displayed table with some of the collected

hardware metrics.

32

Figure 31: Snapshot of table panel with some of the operating system and generalised smartctl (the last 4
columns) metrics

NVIDIA Exporter was installed on the nodes with GPUs.

The cluster is powered by UPS which has network interface used by the own service to control

the nodes in response of power failures. Same service is monitored by Apcupsd Exporter to collect

and export metrics about the UPS status. Apcupsd Exporter is installed and running on the FileServer.

Fig. 33 shows plots of some of the metrics for a period of 15 days.

Monitoring the running jobs and status of the queueing system is done by Slurm Exporter. It is

stand-alone program installed and running on the File Server.

A cockpit-like dashboard shown on Fig. 34 was created to give overview on the whole cluster

status - number of CPUs and nodes by allocation status reported by Slurm Exporter. As cooling system

is of concern environment temperature reported by the UPS is included together with some averaged

temperatures reported by Node, IPMI and Smartctl Exporters. Below are portions of CPU load by

partition as reported by Node Exporter.

33

Figure 32: IPMI metrics and generalised sensor status

Figure 33: Plots of some metrics from Apcupsd Exporter

The diagram on Fig. 35 shows the structure of the monitoring solution.

34

Figure 34: Dashboard with status overview of the Cluster

Figure 35: Structure of the monitoring solution for the Cluster

CC

Grafana
127.0.0.1:3000

Prometheus

SSHD

Node Exporter

Smartctl Exporter

IPMI Exporter

FileServer

Node Exporter

Smartctl Exporter

Slurm
Exporter

:9090

apcupsd
Exporter

apcupsd

slurmctld

Node Exporter

Smartctl Exporter

NVIDIA Exporter

GPU Nodes

Node Exporter

Smartctl Exporter

Nodes

SSH

5 CONCLUSIONS

For this work extensive research for existing centralized monitoring solutions was done and

various approaches and software packages for designing and building monitoring solutions were

studied. Evaluated were complexity, versatility, cost of development and support, hardware and

infrastructure requirements. Three major approaches – InfluxDB, Elasticsearch and Prometheus

based – were compared further. Considering many advantages of Prometheus based solution it was

selected for development and implementation.

To implement monitoring infrastructure around Prometheus large number of metric exporters

were evaluated, some were modified and enhanced to fulfil better the requirements. Existing Hadoop

Exporter was extensively enhanced to improve performance and add new features. Performance and

behaviour of the monitored services were studied to define alerts and configure the Alert Manager.

Additionally companion program LogAlerts was developed to store and display history of active and

resolved alerts. It has own web interface and is used as debugging tool for defining alerts and alert

routes.

Complex centralised monitoring and alerting solution was developed and implemented covering

most of the services used in the Department and multiple dashboards for visualising statuses and

metrics were developed. Based on the experience earned, another monitoring solution for

infrastructure with different architecture and purpose was developed and implemented as a

voluntary project.

6 SUPPLEMENTARY MATERIAL

boomtable-sortbyrow-r260.patch: Modifications done to Boom Table plugin for Grafana described
on page 15. Solves sorting misbehaviour of rendered tables.

elasticsearch_exporter.patch: Modification to Elasticsearch Exporter to add Uptime metric.

logstash_exporter.patch: Patch for Logstash Exporter described on page 11. Adds Uptime, Status
and Name metrics.

NiFi_Exporter.patch: Modification to NiFi Exporter to enable scrapping metrics without
authentification.

Testing.json: Combined portable dashboard for Grafana that demonstrates part of the metrics and
queries included in this report

AirflowCeleryDashboard.json: Combined Dashboard for Airflow and Celery similar to Figs. 22 and
23.

logalerts.zip: LogAlerts program described in section 3.3. It is also published at https://gitlab.com/
y1b/logalerts.

hadoopexporter.zip: Modified version of Hadoop Exporter [30] enhanced for speed, multitasking
and features as described on page 10. Modifications are tracked at
https://gitlab.com/y1b/hadoop_exporter.

35

https://gitlab.com/y1b/hadoop_exporter
https://gitlab.com/y1b/logalerts
https://gitlab.com/y1b/logalerts

7 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

Even when designed to be resilient a complex monitoring infrastructure need to be constantly

supported and developed following (or anticipating) the changes and growth of the monitored

services. Open Source nature of Prometheus ecosystem promotes development of new exporters and

enhancements of the existing and implementing integrated Prometheus metrics in the services.

The described in this report solutions may benefit of further development to include more

services in the monitoring pool. For example the “textfile” collector from Node Exporter may be used

to collect metrics from services that do not have monitoring endpoints but are capable creating logs

and files with metrics.

Some of the used exporters may need improvements or even re-implementations. A notable

example is IPMI Exporter which calls external executables to collect metrics. It is against the

recommendations and may introduce significant system load. Alternative IPMI Exporter may be

developed based on “freeipmi” library and respective bindings.

Alerting logic are routes must be carefully designed. Approaches to send everything to

everybody is contra-productive for generating unnecessary noise and causing the alerts being

ignored.

Single Prometheus instance solution is not redundant – in case of failure of Prometheus it self

or the machine where it is running no alerts will be generated and it may remain unnoticed. To

mitigate such problems federated Prometheus instances on different machine may be configured.

Federating may be also used for combined monitoring of multiple separated informational

infrastructures.

36

8 REFERENCES

[1] Mike Julian, Practical Monitoring, O’Reilly, 2018

[2] James Turnbull, The Art of Monitoring, Turnbull Press, 2016

[3] Hassan Jamil Syed, Abdullah Gani, Raja Wasim Ahmad, Muhammad Khurram Khan and Abdelmuttlib
Ibrahim Abdalla Ahmed, CloudMonitoring: A Review, Taxonomy, and Open Research Issues, Journal of
Network and Computer Applications

[4] He Huang and Liqiang Wang, P&P: a Combined Push-Pull Model for Resource Monitoring in Cloud
Computing Environment, in: Cloud Computing(CLOUD), 3rd International Conference on Cloud Computing,
IEEE, 2010

[5] James Turnbull, Monitoring With Prometheus, Turnbull Press, 2018

[6] Apache Software Foundation, Apache Ambari, 2019, https://ambari.apache.org

[7] Cloudera, Hortonworks Data Platform (HDP®), https://www.cloudera.com/downloads/hdp.html

[8] Elastic, Elastic Stack, https://www.elastic.co/elastic-stack

[9] Amazon, AWS, Open Distro for Elasticsearch, https://opendistro.github.io/for-elasticsearch/

[10] Elastic, Beats: Data Shippers for Elasticsearch, https://www.elastic.co/beats/

[11] InfluxData, Introduction to the InfluxData platform, https://docs.influxdata.com/platform/

[12] Go, https://golang.org

[13] Influxdata, Telegraf 1.15 documentation, https://docs.influxdata.com/telegraf/

[14] David G. Simmons , How to Write a Telegraf Plugin for Beginners, 2017, https://www.influxdata.com/blog/
how-to-write-telegraf-plugin-beginners/

[15] Influxdata, InfluxDB 1.8 documentation, https://docs.influxdata.com/influxdb/v1.8/

[16] Influxdata, Chronograf 1.8 documentation, https://docs.influxdata.com/chronograf/v1.8/

[17] Influxdata, Kapacitor 1.5 documentation, https://docs.influxdata.com/kapacitor/v1.5/

[18] Cloud Native Computing Foundation, Prometheus, https://prometheus.io/,
https://prometheus.io/docs/introduction/overview/

[19] PromQL: Prometheus Query Language, https://prometheus.io/docs/prometheus/latest/querying/basics/

[20] Brian Brazil, Prometheus: Up & Running, O’Reilly, 2018

[21] Openmetrics, https://github.com/OpenObservability/OpenMetrics, https://openmetrics.io

[22] YoungJoo Kim (김영주), Nginx virtual host traffic status module, https://github.com/vozlt/nginx-module-

vts

[23] Exporters and integrations | Prometheus, https://prometheus.io/docs/instrumenting/exporters/

[24] Grafana Labs, Grafana, https://grafana.com/grafana/

[25] Grafana Labs, Prometheus data source,
https://grafana.com/docs/grafana/latest/features/datasources/prometheus/

[26] Download | Prometheus, https://prometheus.io/download/

[27] Notification template reference | Prometheus, https://prometheus.io/docs/alerting/latest/notifications/

[28] Prometheus, Exporter for machine metrics, https://github.com/prometheus/node_exporter

[29] Prometheus, JMX Exporter, https://github.com/prometheus/jmx_exporter

[30] Wu Lixuan (吴立轩), Hadoop exporter for Prometheus,

https://github.com/cauwulixuan/hadoop_exporter

37

[31] Microsoft, Ambari Based Hadoop Exporter, https://github.com/microsoft/AmbariBasedHadoopExporter

[32] Mono, https://wiki.winehq.org/Mono

[33] JustWatch, Elasticsearch stats exporter for Prometheus,
https://github.com/justwatchcom/elasticsearch_exporter

[34] Christoffer Kylvåg, Prometheus exporter for Logstash metrics,
https://github.com/BonnierNews/logstash_exporter

[35] Audrius Karabanovas, Elastic beat-exporter for Prometheus, https://github.com/trustpilot/beat-exporter

[36] Mikołaj Siedlarek, Apache NiFi metrics exporter for Prometheus,
https://github.com/msiedlarek/nifi_exporter

[37] NiFi Exporter, https://github.com/mormor83/NiFi_Exporter

[38] Matthias Nguyen, Nifi Prometheus Reporter, https://github.com/mkjoerg/nifi-prometheus-reporter

[39] Prometheus, Push acceptor for ephemeral and batch jobs, https://github.com/prometheus/pushgateway

[40] Hemantha Kumara, NiFi JMX exporter, https://grafana.com/grafana/dashboards/9544

[41] Will Rouesnel, PostgreSQL Server Exporter, https://github.com/wrouesnel/postgres_exporter

[42] Yahoo! JAPAN, Presto Exporter, https://github.com/yahoojapan/presto_exporter

[43] Prometheus Redis Metrics Exporter, https://github.com/oliver006/redis_exporter

[44] Daniel (Shijun) Qian, Kafka exporter for Prometheus, https://github.com/danielqsj/kafka_exporter

[45] NGINX Inc., NGINX Prometheus Exporter, https://github.com/nginxinc/nginx-prometheus-exporter

[46] Airflow prometheus exporter, https://github.com/epoch8/airflow-exporter

[47] Horst Gutmann, Celery prometheus exporter, https://github.com/zerok/celery-prometheus-exporter

[48] Sriramajeyam Sugumaran, Boom Table Panel for Grafana, https://github.com/yesoreyeram/yesoreyeram-
boomtable-panel

[49] Statusmap panel for Grafana, https://grafana.com/grafana/plugins/flant-statusmap-panel,
https://github.com/flant/grafana-statusmap

[50] Grafana Labs, Pie Chart Panel Plugin, https://github.com/grafana/piechart-panel,
https://grafana.com/grafana/plugins/grafana-piechart-panel

[51] Camptocamp SA, Grafana datasource for Prometheus Alertmanager, https://grafana.com/grafana/plugins/
camptocamp-prometheus-alertmanager-datasource, https://github.com/camptocamp/grafana-
prometheus-alertmanager-datasource

[52] Bas Harenslak, Monitoring HBase With Prometheus, 2017, https://godatadriven.com/blog/monitoring-
hbase-with-prometheus/

[53] Soundcloud, Prometheus IPMI Exporter, https://github.com/soundcloud/ipmi_exporter

[54] Maxim Gorlov (Максим Горлов),), Smartctl Exporter,, https://github.com/Sheridan/smartctl_exporter

[55] Victor Penso, Prometheus Slurm Exporter, https://github.com/vpenso/prometheus-slurm-exporter

[56] Matt Layher, NVIDIA GPU Prometheus Exporter, https://github.com/mdlayher/apcupsd_exporter

[57] Rohit Agarwal, NVIDIA GPU Prometheus Exporter,
https://github.com/mindprince/nvidia_gpu_prometheus_exporter

38

9 INDEX

Ambari 2, 9, 10, 16
Elastic Stack 3, 6

Beats 3
Elasticsearch 3
Kibana 3
Logstash 3

Exporters
Airflow 13, 22
Ambari 10
Apcupsd 31
Beats 11, 25
Celery 13, 22
Elasticsearch 11, 25
Hadoop 9, 19
IPMI 31
JMX 8, 12, 16
Kafka 12, 23
Logstash 11, 24
NginX VTS 5, 12, 26
NiFi 17, 23
Node 8, 16, 26, 32
NVIDIA 31
PostgreSQL 12, 17, 21

Presto 12, 21
Redis 12, 21
SLURM 31
Smartctl 31, 32

Grafana
Alerting 6
Installation 14
Plugins 6, 14

BoomTable 14
Pie Chart 15
Statusmap 15

Hadoop 9, 16
HBase 16, 19
HDFS 16, 19
Hive 19
Kafka 17
MapReduce 19
YARN 19
Zookeeper 17

InfluxData
Flux 4
InfluxQL 4
TICK Stack 4, 6

Chronograf 5
InfluxDB 4
Kapacitor 5
Telegraf 4

JMX 2, 19
NginX 12
Open Distro 3, 17
PostgreSQL 12
Process Managers

Runit 27
SLURM 31
Supervisord 8, 27
Systemd 8, 27

Prometheus
Alert Manager 6, 13, 28
Alerts 28, 29
Exporter 5
PromQL 5, 27

Counter 5
Gauge 5

TSDB 29
SQLite3 13
Supervisord 16

39

	1 Introduction
	2 Overview of Existing Monitoring Solutions
	2.1 Push vs. Pull Architecture
	2.2 Ambari
	2.3 Elasticsearch
	2.4 InfluxData Platform
	2.5 Prometheus
	2.6 Grafana
	2.7 Comparison between evaluated generic solutions

	3 Installing and Configuring monitoring and Alerting solution with Prometheus
	3.1 Prometheus and Alert Manager
	3.2 Exporters
	3.2.1 Exporting metrics from Hadoop services
	3.2.2 Exporters for Elasticsearch Ecosystem
	3.2.3 NiFi Exporters
	3.2.4 Exporters for specific services

	3.3 LogAlerts Program
	3.4 Grafana and additional panel plugins

	4 Final Centralized Monitoring and Alerting Solutions
	4.1 Testing Cluster
	4.1.1 Monitoring Hadoop based services
	4.1.2 Monitoring Elastic Stack
	4.1.3 Monitoring Specific Services
	4.1.4 Graphical representation of the Testing Cluster Monitoring

	4.2 Production
	4.2.1 Monitoring HDP clusters
	4.2.2 Monitoring Database services
	4.2.3 Airflow Cluster and Celery
	4.2.4 Monitoring NiFi cluster
	4.2.5 Monitoring Kafka clusters
	4.2.6 Monitoring services from Elastic stack
	4.2.7 Monitoring NginX
	4.2.8 Monitoring the Operating Systems
	4.2.9 Defining alerts and configuring Alert Manager
	4.2.10 Prometheus self-monitoring
	4.2.11 Structure of the Monitoring solution

	4.3 Computational Chemistry Specialized Cluster
	4.3.1 Additional Exporters
	4.3.2 Building the monitoring solution

	5 Conclusions
	6 Supplementary Material
	7 Limitations and recommendations for future works
	8 References
	9 Index

		2020-10-23T15:01:11+0100
	Yuri Binev

