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ABSTRACT 

This report will describe the activities developed during an internship at EDP Distribuição, focusing on 

a Predictive Maintenance analytics project directed at high voltage electrical grid assets including 

Overhead Lines, Power Transformers and Circuit Breakers. The project’s main goal is to support EDP’s 

asset management processes by improving maintenance and investing planning. The project’s main 

deliverables are the Probability of Failure metric that forecast asset failures 15 days ahead of time, 

estimated through supervised machine learning models; the Health Index metric that indicates 

asset’s current state and condition, implemented though the Ofgem methodology; and two asset 

management dashboards. The project was implemented by an external service provider, a consultant 

company, and during the internship it was possible to integrate the team, and participate in the 

development activities. 
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1. INTRODUCTION 

This report will focus on the activities performed during an internship at EDP Distribuição. 

The main objective of the internship was to support an analytics project concerning Predictive 

Maintenance of high voltage assets, including Overhead Lines, Power Transformers and Circuit 

Breakers. 

The project’s main objective is to support EDP’s Asset Management processes by improving 

maintenance and investing planning. 

The project was divided into multiple Minimum Viable Products according to asset type and 

deliverable, and relied on agile project management techniques. 

The deliverables including the Probability of Failure metric that forecast asset failures 15 days ahead 

of time, estimated through supervised machine learning models; the Health Index metric that 

indicates asset’s current state and condition; and two asset management dashboards. 

The development was carried by an external service provider, a consultant company that deployed a 

multidisciplinary team to EDP’s premises. During the internship it was possible to integrate the 

consultant team, support and monitor the progression of the MVPs, and take part in the 

development effort. 

The activities discussed in this report are most of the times connected with this project, most notably 

the Overhead Lines MVP. The report will be focused on more practical or hands-on activities, 

including implementing specific requirements using the technologies presented forward. Most of the 

work discussed in this report was integrated in the products. 

A great part of the report is going to be dedicated to feature cleaning, feature transformation and 

feature engineering, since these tasks constitute great part of the work developed for this project 

during the internship. Nevertheless, other topics concerning other phases of the project are also 

going to be presented. 

1.1. COMPANY OVERVIEW 

Energias de Portugal (EDP) is a Portuguese electric utility company. It was founded in 1976 under the 

name Eletrecidade de Portugal (EP) as a result of a merger of 13 Portuguese electric companies 

nationalized in 1975 (EDP Distribuição, 2018).   

The company underwent several organizational changes with the introduction of the 1996’s 

European Union directive concerning common rules for the internal market in electricity (European 

Parliament, 1997). The following year, 1997, marks the beginning of the first phase of a privatization 

program that results in the in the selling of 30% of EDP’s capital (EDP Distribuição, 2018). The fourth 

phase of this program was deployed in 2000, by then, EDP is a privately held company with 70% of its 

capital owned by the private sector. In the same year EDP Distribuição is founded (EDP Distribuição, 

2018).  

In 2006 customers were able to freely choose their own electricity supplier and EDP Distribuição is 

responsible for the resulting supplier change management processes (EDP Distribuição, 2018). 
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According to Reuters (2019) EDP operates in the following business segments: 

• Long Term Contracted Generation in Iberia, which includes the activity of electricity generation 

of plants with contractual stability compensation and special regime generation plants in 

Portugal and Spain;  

• Liberalized Activities in Iberia, which includes the activity of unregulated generation and supply 

of electricity in Portugal and Spain, and gas in Spain;  

• Regulated Networks in Iberia, which includes the activities of electricity distribution in Portugal 

and Spain, gas distribution in Spain, and last resort supplier;  

• EDP Renováveis, which includes power generation activity through renewable energy 

resources; 

• EDP Brasil, which includes the activities of electricity generation, distribution and supply in 

Brazil; 

• Other related areas, such as engineering, laboratory tests and property management. 

As of 2019 EDP Distribuição has 228 046 Km of connected electrical grid, 3085 workers, more than 6 

million clients, a net profit of 78 million euros (EDP Distribuição, 2019). The entire EDP Group had a 

net profit of 512 million euros in 2019 (EDP Group, 2019). 

Labelec 

Labelec is a company owned by EDP Group which carries out activities in the electric power and 

environmental sectors. Its main client is EDP group, however specialized services for external clients 

are also provided (EDP Labelec, 2020b). The company provides the following services (EDP Labelec, 

2020a): 

• Tests and trials - “management and maintenance of assets in order to increase safety, reduce 

failures and incidents and optimize environmental and maintenance costs”; 

• Environment – “collection of water samples, chemical and biological laboratory tests, studies, 

consultancy and technical support to meet environmental obligations”; 

• Certification, Qualification and Inspections – “development of certification, qualification and 

inspection activities of electrical equipment and external service providers”; 

• Energy Consulting – “specialized analytical and numerical simulation studies, consulting 

projects, development and applied innovation projects in the energy sector”. 

1.2. THE TEAM AND ACTIVITIES 

The internship took place in EDP’s Data Management and Analytics department, that according to 

EDP Distribuição organizational structure belongs to the Digital Acceleration area that belongs to the 

Digital Platform direction. The team is composed of 7-10 people with different roles, related to 

Business Intelligence, Data Science, Data Engineering, Data Architecture, GIS Analytics, Business 

Processes, GDPR, Privacy and Information Security.  
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The team is responsible for tasks including the following:  

• Oversight and support of projects during development, deployment and production;  

• Managing the documentation of projects, applications, data sources and schemas;  

• Fulfillment of requests concerning data extraction from an internal or external source, 

providing details about an application, system or business area by involving domain experts; 

• Maintain, implement new requirements, or provide data ingestion pipelines to other projects;  

• Creating or fostering new initiatives;  

• Creating policies, setting forward data models and architectures for systems and applications;  

• Creating and presenting training sections, and learning material for other departments; 

The external consultant team on the predictive asset maintenance project had 10-20 elements and 

was composed of Data Scientists, Data Engineers and Domain Experts in the field of electrical 

engineering.  

The main activity developed during the internship was to provide support to the predictive asset 

maintenance project and making part of the development effort. 

1.3. INTERNSHIP GOALS 

The following plan stating the main internship goals together with a detailed action plan was 

delivered by EDP during the beginning of the internship. 

Main goals: 

• Participate in the Predictive Asset Maintenance Project from EDP Distribuição and other 

analytics initiatives relevant for the internship’s curricular program. 

Action plan: 

• Get to know EDP Distribuição mission, vision and its role as a Distribution System Operator 

(DSO); 

• Get familiarized with the organizational structure, roles and responsibilities of EDP 

Distribuição’s business areas; 

• Know DOD’s responsibilities and clients; 

• Acquire knowledge in the field of Knowledge Management; 

• Collaborate in several activities from the Predictive Asset Maintenance Project; 

• Participate in other department initiatives in the field of Analytics; 

• Acquire knowledge in other tools commonly used in the field of Information Management, 

including SAS, SAP-BO, SIT, GSA, and others. 
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2. THEORETICAL FRAMEWORK 

A brief theoretical contextualization of some subjects discussed throughout the report is going to be 

presented in this section. 

2.1. ASSET MANAGEMENT 

According to the ISO 55000 standard, Asset Management consists on the coordinated activity of an 

organization to realize value from assets (International Organization for Standardization, 2014). 

According to EDP internal learning materials (Universidade EDP, 2019), an asset’s lifecycle includes 

the following stages: 

• Identification of requirements – the necessity for a new asset can have different sources, for 

example, increased demand or improving electrical grid efficiency; 

• Assessment and decision – financial resources are scarce and the electric power distribution 

sector is capital intensive and regulated; 

• Conception – assessment of external factors, including environment and terrain; 

• Project – conceptualization of a feasible solution that must be approved and licensed; 

• Adjudication and Construction – technical requirements for the acquisition of materials and 

equipment, guaranteeing quality standards. Construction is usually outsourced to external 

contractors; 

• Commissioning – reception of the asset after construction, acceptance testing;  

• Operation and Maintenance – Go live, when the asset start contributing to business results. 

During the asset’s operational phase, it is essential to maximize its use, guarantee acceptable 

levels of performance and optimize costs of operation and maintenance. This is the longest 

stage of the asset’s life, when the business impact can be greater. It is represented by four 

cyclical phases: plan, execute, monitor and optimize. 

• Decommissioning - disposal of asset, can have different causes like irreparable damage, 

economically infeasible repair, theft, vandalism or obsolete technology. The process is 

monitored for environmental and fiscal compliance, and the recycled scraps can generate 

gains for the company. 

2.2. ASSET MAINTENANCE  

According to EDP’s internal learning materials Maintenance is the activity that aims to keep or 

restore asset’s technical condition or health, assure safety and preserve the correct and reliable 

performance of its functions. 

According to the learning materials (Universidade EDP, 2019), there are two types of maintenance 

identified: 

• Corrective Maintenance, or activities that are deployed after the occurrence of a failure to 

restore the asset to its operational condition and guarantee the execution of its functions. The 

type of corrective maintenance can be Healing or Palliative; 
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• Predictive Maintenance, that involves fixed and pre-established servicing or inspection tasks 

carried out to an asset periodically and based on its condition. Types of predictive 

Maintenance include Systematic Maintenance, e.g. essential, carried out periodically or 

regulated; Condition Maintenance that is planned based on an asset’s current health or 

condition; Predictive Maintenance, that attempts to predict and prevent future failures and 

optimize planning and costs; and Extraordinary Maintenance, related to infrequent high cost 

activities recommended by manufactures to extend an asset’s useful life. 

2.3. ASSET FAILURE 

According to EDP’s learning materials on Asset Management (Universidade EDP, 2019), a Failure 

represents the loss or limitation of an asset’s function. 

There are several types of failure identified: 

• Functional Failure, when there is loss of function, e.g. transformer malfunction or a broken 

conductor; 

• Potential Failures, that are present in the asset but didn’t cause loss of functions, and don’t 

manifest until some point in time. Potential Failures can be Latent, when they limit or 

condition functions, e.g. a hot-spot detected in a thermographic inspection or broken element 

connected in a chain; or Hidden if the functions affected were not requested so far, e.g. a 

defective backup battery. 

Potential failures turn into Functional failures if not addressed in due time. 

A failure can be analyzed by the following perspectives: 

• Mode - manner by which a failure can happen; 

• Cause - factors that affect an asset’s characteristics and surroundings; 

• Root Cause - directly responsible for causing the failure; 

• Effect - functions that are not executed or are poorly executed; 

• Consequence – impact on business value, or situations that are caused by the occurrence of a 

failure. 

When analyzing failures, the type of element that failed should also be accounted for. EDP’s assets 

are organized in a tree structure or hierarchy that represents their relationships and contains 

complex assets, simple assets, and components.   

Recording and storing a detailed and standardized history of past failures including context, analysis 

and research of past occurrences is essential and allows, in the long term, to reduce the number of 

failures, to continuously improve performance and to manage assets more efficiently. A common 

example is using Machine Learning models to calculate the Probability of Failure, or other KPIs to 

monitor and optimize asset performance and maintenance planning. 
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2.4. ELECTRICAL GRID ASSETS 

In this report some high voltage electrical grid assets will be referenced. A very brief and basic 

description partially based on EDP’s learning materials (Universidade EDP, 2019) is presented below. 

• Overhead Power Line, an above ground electrical line composed of cables, insulators and 

appropriate supports. The example in Figure 1 - A shows a 60 kV Overhead Line; 

• Transformers are used to increase voltage to allow for electricity transmission at greater 

distances with lower power losses and decrease voltage to distribute electricity safely to 

consumers’ homes (Figure 1 - B); 

• Circuit Breaker, an electrical switch that detects defective electrical current and can 

automatically or manually cut and close or open and reestablish current to its normal levels 

(Figure 1 - C). 

A B C 

  

 

Figure 1 – Images of High Voltage Assets 
Source: EDP 

2.5. DATA STRUCTURES 

Some data structures frequently referenced in the next chapters of the report are presented here. 

R-tree 

An R-tree is a hierarchal data structure used for efficiently indexing multidimensional geometric 

objects (Guttman, 1984).  

This data structure is usually applied to geographic data in two-dimensional space and uses the 

minimum bounding rectangle (MBR) of a geometry as input, described by 4 coordinates (xmin, xmax, 

ymin, ymax).  

The MBRs are then organized in a tree structure where “each node of the R-tree corresponds to the 

MBR that bounds its children” (Manolopoulos et al., 2006). 

An example of an R-tree applied to 2-d data is shown in Figure 2. 
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Figure 2 - Examples of R-tree in 2 dimensions 
Source: (Wikipedia contributors, 2020) 

R-tree implementations usually allows for two types of query - Spatial Join and Nearest Neighbor. 

Spatial Join queries can result in false positives, since MBRs of different geometries can intersect 

without their geometries intersecting. At the same time full recall is guaranteed, meaning that when 

querying the R-tree all geometries that intersect, or their indexes, are returned.  

Therefore, to obtain an exact solution it’s necessary to test the intersection of all pairs of candidate 

solutions obtained (Jacox & Samet, 2007). This operation is expensive if applied using a brute-force 

approach, however by using this structure the number of geometries that have to be tested is 

reduced to a small subset of candidates. 

Nearest Neighbor queries can be challenging, because full recall isn’t guaranteed in Python’s 

implementation. Geometries that intersect a queried MBR will be returned in situations where other 

geometries are closer but don’t intersect. The simplest solution is to increase the number of 

neighbors and test the distances, this approach will result in an approximation. Another alternative is 

to expand each queried geometry MBR according to the radius of a neighbor obtained from a 

previous approximation, guaranteeing exact results at the expense of increased computational cost. 

Ball Tree 

A Ball Tree is a hierarchal data structure based on a binary tree that recursively partitions space using 

hyperspheres and is used for indexing points in multidimensional space through a distance metric 

(Dolatshah et al., 2015). A 2-d example can be seen in Figure 3.  

Construction and query time vary according to the type of algorithm and implementation 

(Omohundro, 1989).   

This data structure allows to perform efficient Nearest Neighbor queries to retrieve the closest first K 

number of samples or to retrieve all samples within a Radius. In Scikit-learn’s implementation several 

distance metrics are supported including Manhattan (L1), Euclidean (L2) and Haversine. 

This data structure is commonly used by instance-based learners (K-nearest neighbors) and clustering 

algorithms (K-means) (Witten & Frank, 2005, pp. 129–136). 

Nearest neighbor queries in high dimensional spaces are still an open problem in computer science 

(SciPy community, 2020). 
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Figure 3 - Ball-tree example 
Source: (Ivezic et al., 2014) 

2.6. DATA MINING 

Data mining is the process of automatically or semiautomatically “extracting implicit, previously 

unknown, and potentially useful information from data“ (Witten & Frank, 2005, p. xxiii). 

The process involves building computer programs that automatically analyzes and searches large 

quantities of data to discover patterns that generalize, allowing “to make accurate predictions on 

unseen or future data” (Witten & Frank, 2005, p. xxiii).  

The patterns discovered “must be meaningful in that they lead to some advantage, usually an 

economic advantage” (Witten & Frank, 2005, p. 5). 

Cross-Industry Standard Process for Data Mining or CRISP-DM (Figure 4), is a common Data Mining 

methodology that proposes “comprehensive process model for carrying out data mining projects” 

that is independent of “industry sector and the technology used” (Wirth & Hipp, 2000). 

 

Figure 4 - Phases of the CRISP-DM Process Model 
Source: (Wirth & Hipp, 2000) 

The methodology describes the lifecycle of a Data Mining project in 6 phases as shown in Table 1. 
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Phase Tasks Description 

Business 

Understanding 

o Determine Business Objectives 

o Assess Situation 

o Determine Data Mining Goals 

o Produce Project Plan 

“Understanding the project objectives and 

requirements and converting this knowledge into a 

data mining problem definition”. E.g. meetings with 

business experts and domain experts to define main 

goals and targets. 

Data 

Understanding 

o Collect Initial Data 

o Describe Data 

o Explore Data 

o Verify Data Quality 

Acquiring and exploring initial data “to identify data 

quality problems, to discover first insights, and to 

form hypotheses”. E.g. creating an Exploratory Data 

Analysis (EDA) to summarize datasets visually. 

Data 

Preparation 

o Select Data 

o Clean Data 

o Construct Data 

o Integrate Data 

o Format Data 

Creating the final dataset, the input of the modeling 

phase, from raw data. Some tasks include “table, 

record, and attribute selection, data cleaning, 

construction of new attributes, and transformation of 

data for modeling tools”. E.g. feature engineering, 

feature scaling, data transformations, dummy coding. 

Modeling 

o Select Modeling Technique 

o Generate Test Design 

o Build Model 

o Assess Model 

“Selecting and applying several modeling techniques 

and calibrating their parameters to optimal values”, 

considering that each technique has different 

prerequisites and “requires specific data formats”. 

E.g. designing a validation strategy, creating a 

baseline, hyperparameter optimization. 

Evaluation 

o Evaluate Results 

o Review Process 

o Determine Next Steps 

Evaluate the model results and verify if it achieves the 

business objectives, taking corrective action if 

necessary, by considering specific business issues and 

improving previous phases. “Decide if the if the data 

mining result is going to be used”. E.g. validation of 

results by business experts, acceptance testing. 

Deployment 

o Plan Deployment 

o Plan Monitoring & Maintenance 

o Produce Final Report 

o Review Project 

“Organize and present the knowledge gained” to the 

client according to the project requirements. 

Complexity can vary “from generating a report to 

implementing a repeatable data mining process”. 

“Usually the client carries out the deployment steps”, 

so it is important to have all necessary actions and 

required information properly documented.  E.g. 

deploying a data pipeline to production environment, 

documentation and knowledge transfer.  

Table 1 - Description of Phases and Tasks of CRISP-DM Process Model 

Source: (Wirth & Hipp, 2000) 

2.7. MACHINE LEARNING 

According to Mitchell (1997) “the field of Machine Learning is concerned with the question of how to 

construct computer programs that automatically improve with experience”. The main application of 

Machine Learning is Data Mining (Kotsiantis, 2007).  
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According to Russell & Norvig (2009), there are different types of learning motivated by different 

types of feedback, these include: 

• Unsupervised learning, where “the agent learns patterns in the input even though no explicit 

feedback is supplied”. Common learning tasks include Clustering, or grouping similar samples 

automatically, Dimensionality Reduction and Anomaly Detection; 

• Supervised learning, where “the agent observes some example input–output pairs and learns a 

function that maps from input to output”. “The goal of supervised learning is to build a concise 

model of the distribution of class labels in terms of predictor features” (Kotsiantis, 2007). 

Common learning tasks include Regression, used to estimate continuous or numerical variable, 

and Classification, used to estimate categorical variables or classes;  

• Semi-supervised learning, that combines few labeled examples together with a large collection 

of unlabeled examples. 

Supervised Machine Learning algorithms take as input a tabular dataset where each row represents 

an instance or sample, and each column represents a variable or feature that can be continuous, 

categorical or binary (Kotsiantis, 2007), as shown in Figure 5. Each sample has a known label that 

corresponds to the correct output (Kotsiantis, 2007), identified as target variable. It’s worth 

mentioning Deep Learning techniques can have as input multidimensional datasets. 

 

Figure 5 - Example of a Supervised ML Classificatoin Dataset 
Source: (Kotsiantis, 2007) 

According to Kotsiantis (Kotsiantis, 2007) the “process of applying Supervised Machine Learning to a 

real world problem”, can be summarized according to Figure 6. 

 
Figure 6 – Supervised ML process for Classification 

Source: (Kotsiantis, 2007) 
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After acquiring all relevant and accessible datasets, it’s necessary to conduct multiple steps including 

data cleaning, preparation and pre-processing, creating and selecting variables, defining a cross-

validation strategy to evaluate and control the quality of the results and estimate model 

performance on unseen data, train one or several ML Algorithms and optimize its hyperparameters. 

These steps can be repeated and improved in multiple iterations. 

2.8. DATA PREPARATION 

Data preparation addresses data quality issues including cleaning and handling potential problems in 

data. Most datasets have low quality and noise. This process is specific to the type of analysis carried 

out and ML models being deployed. 

According to Kotsiantis (2007, pp. 52–53): 

• “Integrating data from different sources usually presents many challenges. Different 

departments will use different styles of record keeping, different conventions, different time 

periods, different degrees of data aggregation, different primary keys, and will have different 

kinds of error. The data must be assembled, integrated, and cleaned up”. 

Inaccurate or incoherent values are an example of a very common data quality problem that affects 

most datasets. Frequent problems involve invalid entries (e.g. 9999), numerical fields with text, 

different date formats, duplicated records, etc. Before carrying out any statistical analysis or 

inputting data into algorithms, it’s necessary to account for, determine and treat these types of 

values to prevent low quality results. 

Frequent data quality problems and strategies to deal with these issues are described below. 

Missing values  

The presence of missing values is very common in most datasets. It’s important to determine the 

root cause of the missing values and understand its meaning (Kotsiantis, 2007). Some common 

causes include, nonresponses in a study, loss of communication from a sensor, data sources with 

infrequent or irregular updates, Information System defects, incorrectly executed business 

processes.  

According to Mack et al. (2018) missing data is categorized according to three types: 

• Missing completely at random (MCAR), “the fact that the data is missing is independent of the 

observed and unobserved data”. This means that “no systematic differences exist between 

samples with missing data and those with complete data”; 

• Missing at random (MAR), “the fact that the data is missing is systematically related to the 

observed but not the unobserved data”. This means that the missing data is related with a 

known feature from the dataset (e.g. non-responses associated with participants gender); 

• Missing not at random (MNAR), “the fact that the data is missing is systematically related to 

the unobserved data”, more specifically events or facts not measured. 

The most common strategy to handle missing data are imputation techniques. Even though some 

models support missing values, imputation can improve predictive performance. 
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Univariate imputation techniques use the mean or median of a single variable to estimate the 

missing values while multivariate imputation techniques use the complete set of features (Scikit-

learn developers, 2020b). Examples of multivariate methods include KNN imputation that averages 

the value of the K closest samples to estimate the missing point, or MICE that “models each feature 

with missing values as a function of other features in a round-robin fashion” (Scikit-learn developers, 

2020b). 

Outliers 

Outliers are “extreme values that abnormally lie outside the overall pattern of a distribution of 

variables” (Kwak & Kim, 2017). These types of value are also common in most datasets.  

Outliers can have negative effects on the results of data analysis and ML models by “introducing bias 

into statistical estimates such as mean and standard deviation, leading to underestimated or 

overestimated resulting values” (Kwak & Kim, 2017). 

It’s important to identify the root cause of outliers and adopt the appropriated strategy to treat 

these values. Some common causes include Information System defects, communication problems, 

noisy readings from sensors, human error, fraud and others.  

Univariate Outlier detection methods include: 

• Z-score, that assumes that the variable is normally distributed, and “measures the distance 

between a data point and the center of all data points to determine an outlier” (Kwak & Kim, 

2017). This is achieved by calculating the mean and SD of the dataset. If a sample lies outside 

of the interval defined by the mean and SD multiplied by a threshold, [μ - 2σ, μ + 2σ], then it’s 

considered an outlier; 

• Interquartile range (IQR), that uses the median and interquartile range and is less sensitive to 

outliers (Kwak & Kim, 2017). If a point falls outside the interval defined by the median and the 

IQR multiplied by a threshold, [Q1 - 1.5 × IQR, Q3 + 1.5 × IQR], where IQR = Q3 - Q1, then it’s 

considered an outlier (Hubert & Van Der Veeken, 2008); 

Multivariate outlier detection methods consider combinations of features instead of a single variable. 

For example, for a specific region values of 33 oC temperature or 90% relative humidity might not be 

considered outliers when analyzed individually, however the combination of both data points might 

represent an abnormality, rare event or noise. Anomaly detection algorithms like Isolation Forest 

(Tony Liu et al., 2008) or strategies that involve clustering algorithms like DBSCAN are examples of 

multivariate outlier detection methods. 

The are multiple methods to treat outliers, common approaches include removing instances from the 

dataset, trimming variables, e.g. defining upper and lower bounds, and replacing outliers by an 

estimation, e.g. though imputation. Applying some types of non-linear transformations can also 

minimize the impact of outliers, e.g. Logarithm or Sigmoid. 
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2.9. FEATURE ENGINEERING 

According to Zheng & Casari (2018) feature engineering can be defined as “the act of extracting 

features from raw data and transforming them into formats that are suitable for the machine 

learning model”. 

A feature is a “numeric representation of raw data” (Zheng & Casari, 2018) that provides context or 

information about a specific subject. The optimal representation of features varies according to 

problem type and ML models applied. 

There is a relation between feature complexity, model complexity, and domain knowledge. Simpler 

features require complex models that can learn abstract representations, and complex features that 

encode domain knowledge and directly account for factors that are influencing the outcome, require 

simpler models (Zheng & Casari, 2018). 

Using Time Series forecasting as an example, it’s possible use simpler ML models (e.g. Random 

Forest), which require creating complex features that encode temporal information, moving window 

statistics, differencing, and other advanced time series decomposition methods, even from the signal 

processing field. Using the same dataset, it’s also possible to deploy time series forecasting models or 

Deep Learning techniques involving Recurrent Neural Networks, that can learn dependencies 

between timesteps (e.g. memory), using simple features as input, usually a window of the previous 

values, and achieve similar levels of performance.  

Some feature engineering techniques include: 

• Calculating simple aggregation statistics at different levels of granularity (e.g. counts, averages, 

etc.); 

• Discretizing binning continuous variables; 

• Encoding categorical variables using strategies like one-hot-encoding, mean encoding or 

Bayesian target encoding. Encoding cyclical variables and ordinal variables. 

• Applying non-linear transformations like the Log-transformation to skewed distributions; 

• Creating interaction features that describe “the product of two features” (Zheng & Casari, 

2018); 

• Combining features using domain Knowledge (e.g. obtaining wind direction and magnitude 

from u and v components), or using statistical or information theory measures; 

• Feature scaling and normalization, to account for different scales of input variables, that affect 

some models (e.g. KNN). Common approaches include min-max scaling, that conforms each 

feature scale between 0 and 1, and Z-score standardization, that subtracts each feature by its 

mean and divides it by its standard deviation; 

• Automatic Dimensionality Reduction techniques, including Principal component Analysis (PCA), 

that “reduces the dimensionality of a dataset, while preserving as much variability or statistical 

information as possible” (Jolliffe & Cadima, 2016). It’s used to project data into a lower 

dimensional space by creating new uncorrelated variables called Principal Components (PCs) 

that are linear combinations of the original variables.  
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2.10.   FEATURE SELECTION 

Feature selection is a dimensionality reduction technique that aims to find an optimal subset of 

features. It’s usually considered an important step of data science projects and has several 

advantages since it helps reduce the number of variables and avoid the curse of dimensionality, it 

can reduce training time and produce simpler and more compact models, it can reduce overfitting 

and improve generalization (Mayo, 2017). 

According to (Guyon & Elisseeff, 2003), there are three types of feature selection methods: 

• Filters select “subsets of variables as a pre-processing step, independently of the chosen 

predictor”. Examples are filtering variables based on their correlation coefficient or variance, 

assuming a threshold. Variables with small variance carry a small amount of information and 

can usually be discarded. Correlated variables are usually redundant and can affect model 

performance by causing numerical instability in some methods and masking relationships 

between variables (Tuv et al., 2009). Other filter methods rely on Mutual Information measure, 

used to estimate the dependence between two variables.  

• Wrappers use a machine learning algorithm “to score a subset of variables according to their 

predictive power”. These methods are usually based on greedy search algorithms that select 

variables iteratively by training models on a subset of all variables. This subset is adjusted in 

each iteration based on model performance, by removing or adding features (Kaushik, 2016). 

Common examples of algorithms are Forward Selection and Backward Elimination; 

• Embedded perform “variable selection in the process of training and are usually specific to 

given learning machines”. An example is Linear Regression with L1 regularization, also known 

as Lasso Regression. A strong penalty term will produce solutions with sparse coefficients. 

Weights of irrelevant variables will be zero, having no effect on model output. 

Boruta (Kursa & Rudnicki, 2010) is a feature selection algorithm that works by duplicating features in 

a dataset and shuffling each one, creating “shadow features”. A Random Forest is trained with both 

original features and shadow features do determine feature importance1 using Gini Importance also 

known as Mean Decrease in Impurity (MDI) or alternatively Permutation Importance also known as 

Mean Decrease Accuracy2 (MDA). 

The importance of the highest-ranking shadow feature is obtained, all original features that have 

higher importance than this threshold are marked as a hit. This process is repeated and 

“accumulated hit counts are assessed” (Kursa, 2020). Using a statistical test Boruta “rejects features 

which significantly under-perform best shadow feature” by removing them “from the set for all 

subsequent iterations” and confirms those “which significantly outperform best shadow” (Kursa, 

2020). 

 
1 According to Brownlee (2020c), “feature importance refers to techniques that assign a score to input 

features based on how useful they are at predicting a target variable”. 
2 Mean Decrease Accuracy (MDA) measures the decrease in model score when a single feature is 

randomly shuffled (Scikit-learn developers, 2020c). 
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2.11.   CLASSIFICATION ALGORITHMS 

In this section a description of classifiers referenced in the report is going to be presented. A classier 

“is a function that maps an unlabeled instance to a class label using internal data structures” (Kohavi, 

1995).  

Parametric learning algorithms “summarize data with a set of parameters of fixed size, independent 

of the number of training examples”. They are faster at the cost of “making stronger assumptions 

about the nature of the data distributions”. Nonparametric models “cannot be characterized by a 

bounded set of parameters” but are more flexible at the cost of being slower with larger datasets 

and increasing the risk of overfitting3 the data (Murphy, 2012, p. 16; Russell & Norvig, 2009, pp. 737–

738). 

K-nearest neighbor (KNN) 

K-nearest neighbor (KNN) classifier is a simple example of a non-parametric model. For an unlabeled 

input sample, KNN retrieves the K nearest labeled samples from the training dataset, using a distance 

metric as similarity criteria, and outputs the most frequent or most voted class label (Murphy, 2012, 

p. 16; Russell & Norvig, 2009, pp. 737–738). KNN is also an instance-based learning or memory-based 

learning method (Russell & Norvig, 2009, p. 737). An example of KNN applied to 2-dimensional 

classification dataset is shown in Figure 7 - KNN prediction surfaceFigure 7. 

 
Figure 7 - KNN prediction surface 

Source: (Murphy, 2012, p. 23) 

Logistic Regression 

Logistic Regression is a Parametric Linear Classifier that generalizes Linear Regression to Binary 

Classification using the sigmoid function (Murphy, 2012, p. 21). It creates a linear combination of 

input features by assigning each feature a weight, computing the dot product and adding a bias or 

intercept term. This linear combination is then fed into a sigmoid function (Figure 8) that “squashes” 

it between an interval of 0 and 1, that represents a probability. The weights or parameters are 

optimized using maximum likelihood estimation (MLE). 

 
3 Complex or highly flexible models, noisy data, reduced number of training examples and high 

dimensional datasets (curse of dimensionality) are all factors that contribute to overfitting (Mitchell, 1997, p. 
67). Overfiting can be described as having better performance on training data at the cost of lack of 
generalization to new out-of-sample instances. 
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Figure 8 - Sigmoid function and example of Logistic Regression 
Source: (Murphy, 2012, p. 21) 

Logistic Regression is a white-box statistical model that can be interpreted, and usually provides a 

good linear baseline for several types of problems and datasets.  

A Neural Network can be seen as a generalization of Logistic Regression (Dreiseitl & Ohno-Machado, 

2002). An Artificial Neural network made of a single output neuron with a sigmoid activation has 

similar properties to Logistic Regression. 

Decision Tree 

A Decision Tree is a Nonparametric Classifier that learns a set of decision rules from a dataset by 

“recursively partitioning the input space and defining a local model in each resulting region of input 

space” (Murphy, 2012, p. 544). 

A decision tree, as shown in Figure 9, can be summarized according to Kotsiantis (2007): 

• “Decision trees are trees that classify instances by sorting them based on feature values. Each 

node in a decision tree represents a feature in an instance to be classified, and each branch 

represents a value that the node can assume. Instances are classified starting at the root node 

and sorted based on their feature values”. 

 

 

Figure 9 - Example of decision tree 
Source: (Kotsiantis, 2007) 

Most Decision Trees use as splitting criteria Gini impurity or Information gain. For classification tasks, 

“the fraction of samples of the same class in a leaf node” corresponds to the class probabilities 

(Scikit-learn developers, 2020d). 
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Some strengths and weaknesses of this model (Murphy, 2012, p. 550; Scikit-learn developers, 

2020a), that depend on the implementation and type of tree (CART, ID3, etc.), are shown in Figure 

10. 

Strengths Weaknesses 

o Relatively robust to outliers; 

o Insensitive to monotone transformations; 

o Does not require data normalization or scaling; 

o Handles continuous and categorical data;  

o Handles missing values; 

o Automatic variable selection; 

o Computationally cheap and scales to large 

datasets; 

o Interpretable white-box. 

o High variance estimator; 

o Suffers from numerical instability, where small 

changes in input result in large changes in output, 

producing completely different trees; 

o Tends to overfit the data; 

o Based on greedy heuristic algorithms that do not 

guarantee a global optimum tree; 

o Sensible to class imbalance. 

Figure 10 - Strengths and weaknesses of Decision Tree models 

Random Forest 

Random Forest models address the issues of decision trees, combining different techniques, as 

described below. 

Ensemble learning “refers to learning a weighted combination of base model” (Murphy, 2012, p. 

580). An ensemble combines the predictions of individually trained classifiers, usually high variance 

estimators, resulting in a “more accurate estimate than any of the single classifiers in the ensemble” 

(Opitz & Maclin, 1999). 

Bootstrap aggregation or bagging is a technique to “reduce the variance of an estimate by averaging 

together many estimates”. In practice, this can be achieved by training different models on different 

random subsets of data with replacement (Murphy, 2012, pp. 550–551). However, “running the 

same learning algorithm on different subsets of the data can result in highly correlated predictors, 

which limits the amount of variance reduction that is possible” (Murphy, 2012, pp. 550–551). 

The Random Forests algorithm grows an ensample of decision trees by randomly sampling a subset 

of instances and a subset of input variables (Meinshausen, 2006; Murphy, 2012, pp. 550–551). This is 

an attempt to “decorrelate the base learners” and reduce variance, while creating a strong learner 

from an ensemble of weak learners (Figure 11). 

This meta-estimator can be adapted to classification problems by using the “mean predicted class 

probabilities of the trees in the forest” as output class probability (Scikit-learn developers, 2020d). 

Random Forests usually provide “very good predictive accuracy” (Murphy, 2012, pp. 550–551) while 

requiring less preprocessing and data preparation. 
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Figure 11 - Example of Random Forest architecture 
Source: (Verikas et al., 2011) 

Gradient Boosting  

Boosting is an ensemble method that combines multiple models that complement one another 

(Witten & Frank, 2005, p. 321). Similar to bagging, boosting uses models of the same type, frequently 

decision trees, and can be adapted to classification problems (e.g. averaging predictions or voting). 

The main difference is that in bagging “individual models are built separately” and are attributed 

equal weight, while in boosting “each new model is influenced by the performance of those built 

previously” and model contribution is weighted based on performance (Witten & Frank, 2005, p. 

321). The new models will focus on instances incorrectly classified by early models (Figure 12). 

AdaBoost is an example of a simple bosting algorithm used for classification, that “applies weights to 

the observations, emphasizing poorly modelled ones” (Elith et al., 2008). 

Gradient boosting interprets this framework as a “numerical optimization problem where the 

objective is to minimize the loss of the model, represented as an arbitrary differentiable loss 

function, by adding weak learners using a gradient descent like procedure” (Brownlee, 2020a).  

These methods have shown to be efficient, scalable, highly effective and provide state of the art 

results when applied on many machine learning tasks and datasets, often structured or tabular data, 

while requiring less preprocessing and data preparation (Chen & Guestrin, 2016; Ke et al., 2017). 

Recent algorithms and implementations include XGBoost, LightGBM and CatBoost, that focus on 

gradient boosting on decision trees (GBDT), also known as Gradient Tree Boosting. 

 

Figure 12 – Visual example of gradient Boosting 
Source: (Z. Zhang et al., 2018) 
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2.12.   CLASSIFICATION METRICS 

Most classifications metrics presented in this report can be derived from the confusion matrix that 

provides a performance overview of a classification model. The matrix, showed in Figure 13, 

categorizes samples according to true class labels on the x-axis and predicted class labels on the y-

axis, returning the number of correctly classified labels – True Positives (TP) and True negatives (TN) 

– and the number of incorrectly classified labels – False Positives (FP) and False Negatives (FN). 

 
Figure 13 - Example of 2x2 confusion matrix for binary classification 

Source: (Tharwat, 2018) 

From this matrix several metrics can be calculated, as shown in Table 2. 

Metric Description Formula 

Accuracy 
“Ratio of the correctly classified samples to the 

total number of samples”.  

Positive prediction value (PPV) 

(Precision) 

“Ratio of the correctly classified positive samples to 

the total number of positive predicted samples”.  

True Positive Rate (TPR) 

(Recall, Sensitivity) 

“Ratio of the correctly classified positive samples to 

the total number of positive samples”.  

True Negative rate (TNR) 

(Specificity) 

“Ratio of the correctly classified negative samples 

to the total number of negative samples”.  

False Positive Rate (FPR) 
“Ratio of the incorrectly classified negative samples 

to the total number of negative samples”.  

False Negative Rate (FNR) 
“Ratio of the incorrectly classified positive samples 

to the total number of positive samples”.  

Table 2 - Description of basic classification metrics 
Source: (Tharwat, 2018) 

F1-Score 

The F1-Score metric is frequently used to estimate the performance of language processing (NLP) or 

information retrieval (IR) systems (Goutte & Gaussier, 2005). It represents the harmonic mean 

between Precision and Recall (Figure 14 - F1-Score formulaFigure 14). The F1-Score is a special case of 

the Fβ-Score, calculated using a weighted harmonic mean between Precision and Recall  (Tharwat, 

2018). 

 

Figure 14 - F1-Score formula 
Source: (Tharwat, 2018) 

The F1-Score ranges from 0 to 1, where “high values indicate high classification performance” 

(Tharwat, 2018). 
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This metric uses only 3 elements of the confusion matrix and disregards True Negatives, therefore 

“two classifiers with different TNR values may have the same F-score” (Tharwat, 2018). 

Matthews correlation coefficient (MCC) 

Matthews correlation coefficient (MCC) was introduced in 1975 by biochemist Brian W. Matthews. It 

represents the “correlation between the observed and predicted classification” (Tharwat, 2018). It’s 

calculated using all 4 elements of the confusion matrix, as shown in Figure 15, and it’s sensitive to 

imbalanced data. 

 

Figure 15 - MCC formula 
Source: (Tharwat, 2018) 

Similar to Pearson correlation, the MCC ranges from -1 to 1, from inverse association to strong 

association between predicted and observed class labels. 

Some authors claim that MCC “produces a more informative and truthful score in evaluating binary 

classifications than accuracy and F1 score” (Chicco & Jurman, 2020). 

This metric was used in the “VSB Power Line Fault Detection” Kaggle competition hosted by the 

Technical University of Ostrava, situated in the Czech Republic. The competition objective was 

“detect faults in above-ground electrical lines” (Enet Centre - VSB, 2019).  

Receiver Operating Characteristics (ROC) 

The receiver operating characteristics (ROC) curve “is a two-dimensional graph in which the True 

Positive Rate (TPR) represents the y-axis and False Positive Rate (FPR) is the x-axis” (Tharwat, 2018). 

It’s used to evaluate diagnostic systems (e.g. biomarkers), medical decision-making systems, and 

machine learning algorithms (Tharwat, 2018). 

 

Each point on the ROC curve is generated “by changing the threshold on the confidence score” and 

calculating both metrics (Tharwat, 2018). A point above the reference line represents a classifier 

better than chance and a point closer to the top left corner represents a classifier with both high 

Sensitivity (TPR) and high Specificity (1-TNR), where positive and negative samples are correctly 

classified. An example of a ROC curve is shown in Figure 16. 

 
Figure 16 - ROC curve example and interpretation 

Source:  (Tharwat, 2018) 

 
Figure 17 - ROC-AUC example 

Source:  (Tharwat, 2018) 
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The Area under the ROC curve, shown in Figure 17, summarizes the ROC curve between a score of 0 

and 1 (Tharwat, 2018). Any classifier with an AUC score greater than 0.5 outperforms a random 

classifier and has capacity to discriminate between classes. 

Youden’s index (J) or Youden’s J statistic combines specificity and sensitivity and ranges between 0 

and 1, from no discrimination to perfect discrimination (Tharwat, 2018). It’s commonly applied to 

find the optimal cut-off value in the ROC curve, where the maximum value of J represents the highest 

point above the ROC reference line or the closest point to the top left corner (FPR=0, TPR=1) (Unal, 

2017). Youden’s index is defined according to the following formula YI = TPR + TNR - 1. 

Precision-Recall (PR) 

Precision-Recall curve shows the relation between Precision (y-axis) and Recall (x-axis), as shown in 

Figure 18. Similar to the ROC curve both metrics are calculated for different probability thresholds. 

Points closer to the top right corner represents classifiers with both high Precision and Recall. The PR 

curve does not include TN values (Tharwat, 2018). 

 

Figure 18 - Example of PR curve 
Source:  (Tharwat, 2018) 

The area under the PR curve is defined by the Average Precision metric that can range from 0 to 1, 

representing a model with no skill to a perfect classifier (Brownlee, 2020d). 

Some authors claim that “when dealing with highly skewed datasets, PR Curves give a more 

informative picture of an algorithm’s performance” when compared with ROC Curves (Davis & 

Goadrich, 2006). 
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3. TOOLS AND TECHNOLOGY 

Some of the tools and technologies used during the internship and considered relevant to the report 

are presented in the chapters below. 

3.1. AZURE 

Azure is a cloud provider from Microsoft that offers several solutions, technologies and frameworks. 

It includes different products under IaaS, PaaS and SaaS models that can be applied to different 

fields, e.g. web development, big data, data science projects etc. 

EDP Distribuição is migrating its On-Premises Infrastructure to cloud providers. Currently there are 

several solutions and architectures being implemented in Azure, including several Data Lakes and 

Analytics Platforms based on Databricks.  

The Data Lakes provides a similar interface of a file system, with folders and files that usually 

represent data partitions and originate from legacy systems. There are pipelines in Azure Data 

Factory responsible for the ETL process between Information Systems and the Data Lake. The output 

files are usually in a Big Data format like Avro or Parquet. 

There is an emerging data architecture being developed and implemented in EDP. There is an 

enterprise wide Data Lake, and other smaller Data Lakes that are project dependent. The predictive 

asset maintenance project has its own Data Lake.  

Usually to transfer information between Data Lakes there is an ETL process implemented in Data 

Factory that copies the files or alternatively a mount point is requested and created between Data 

Lakes allowing direct access. 

3.2. PYTHON 

Python is a high-level general-purpose interpreted programming language released in 1991 and 

created by Guido van Rossum (Kuhlman, 2013).  

It’s one of the main tools used during development, deployment and more general problem solving 

during the internship. Python was used together with multiple environments, including in Databricks, 

Jupyter Notebooks and Google Collaboratory. 

Python has a vast amount of open source and actively developed libraries for different kinds of 

domains. Some of the libraries used include: 

• NumPy (van der Walt et al., 2011) for linear algebra and multidimensional array manipulation 

SciPy for statistics and interpolation; 

• Pandas (McKinney, 2010) for tabular data processing, data exploration, data cleaning, feature 

engineering and transformations, and computing basic statistics; 

• Scikit-learn (Varoquaux et al., 2015) for machine learning algorithms and other steps including 

preprocessing, feature engineering and transformations, feature importance and selection, 

metrics and evaluation; 
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• LightGBM (Ke et al., 2017) as a modeling framework for tree based gradient boosting; 

• SHAP (K. Zhang et al., 2012) for explaining the output of black box models; 

• Matplotlib, Seaborn, Bokeh, Holoviews and Datashader for data visualization; 

• GeoPandas, Shapely, PyGEOS, GeoPy, Rtree and Rasterio for spatial queries, including reading 

and processing shapefiles and raster data, converting spatial reference systems, calculating 

geographic distances, performing Spatial Joins and Nearest Neighbors joins; 

• Dask (Rocklin, 2015) used for specific use cases of distributed computing and prototyping, e.g. 

reading shapefiles by chunks and saving as parquet. 

3.3. DATABRICKS AND APACHE SPARK 

Databricks is a collaborative Big Data cloud platform based on Apache Spark. 

Apache Spark (Zaharia et al., 2010) is described as an “unified engine designed for large-scale 

distributed data processing” (Damji et al., 2020). More precisely Spark is an open source distributed 

computing framework based on community clusters that supports Data Engineering and Data 

Science workflows and allows to create, read, query and transform large datasets, thought data 

structures and data abstractions. 

Databricks interface consists of code notebooks, similar to Jupyter, it includes a cluster management 

section with a library management tool, a data explorer tool where it’s possible to show existing 

databases, tables and preview datasets and an input section to upload datasets. 

Python, R, SQL and Scala are supported programming languages used to interact with Databricks and 

Spark. Thorough the internship, the developed projects used Python and SQL, meaning that 

interactions with Spark are implemented though PySpark, an API between Python and Spark, and 

Spark SQL (Armbrust et al., 2015). 

Usually a cluster setup is composed of a driver machine that serves as workspace for all users, where 

non-distributed code is executed, similar to notebook or a VM running Python, and the worker 

nodes, used to process distributed operations and dataset partitions. Usually the user can abstract 

from low-level operations related to the distribution process of a query, that happens in the 

background. 

One of the most recurring and important topics when working and integrating these technologies is 

designing the implementation of a specific workflow to be as efficient as possible when working with 

large datasets. This means that operations need to scale vertically avoiding O(n^2) complexity or 

worse when possible and to scale horizontally by using a distributed implementation, unlocking all 

resources of the cluster, providing linear speedups. 

The main data structures provided by Spark are Data Frames, used for structured data and tabular 

datasets, with operations very similar to a traditional database, and RDDs, deployed on the cluster 

memory, and usually used for unstructured data that requires a specialized preprocessing (e.g. text). 

EDP’s projects usually consisted of tabular datasets and mainly used data frames, however later on 
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during the internship both data structures were used to take full advantage of Spark for advanced 

use cases. 

Through PySpark, raw files usually in the format of CSV, Parquet or Avro are consumed from the data 

lake processed and stored as optimized Hive tables stored in the Databricks environment.  

3.4. GOOGLE COLLABORATORY 

Collaboratory is a free cloud service from Google. It allows everyone with a Google account to read, 

create, save and run Python notebooks. The notebooks are automatically attached to a virtual 

machine with considerable amount of computing resources. There is also a GPU and TPU available to 

accelerate the training of neural networks with deep learning frameworks like Keras and TensorFlow 

or PyTorch. 

When the data being worked on wasn’t confidential, Collab was used to rapidly develop procedures, 

by allowing to acquire all required online resources and libraries, and contain errors caused by 

resource exhaustion or failed installations, that would otherwise break the Databricks cluster driver 

disrupting users and running processes. For these reasons, whenever more experimental work had to 

be executed that didn’t involve private or confidential data, Colab was the environment of choice. 

3.5. SAS ENTERPRISE GUIDE 

SAS enterprise guide is the main access point to all EDP’s Information Systems that rely on relational 

databases, data marts and replicas. 

SAS Guide allows to build complex pipelines of queries using different kinds of operations and 

transformations, visually through wizards or SQL and SAS code. It supports multiple inputs from 

different sources and allows to save results as tables in SAS libraries. 

SAS environment depends on legacy technologies like relational databases running on servers that 

only scale vertically. These servers are usually overloaded because they’re accessed and used by 

many collaborators at the same time for all kinds of data processing tasks and hold many sessions of 

SAS.  

Some SAS tables are also pushed to the limit concerning the number of records they hold. A good 

example is the tables that store Smart Counter readings. These timeseries have very high granularity 

and resolution, since records are taken form millions of Counters spread throughout the country, 

with sampling frequency of 15 minutes. This kind of data tends to grow very fast and is pushing EDP 

to adopt new solutions based on Big Data technologies and Cloud providers that can scale and fulfill 

the necessary requirements. 
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4. PROJECTS 

The main objective of the internship was to support the Predictive Asset Maintenance Project. For 

this reason, the report will only focus on this project, that is described in detailed throughout the 

following chapters. 

4.1. TIMELINE 

The internship started January 16th, 2020 and is scheduled to end on October 15th, 2020. Several 

activities were performed concerning different projects in the field of Analytics and Business 

Intelligence. The main priority of the internship was to support the Predictive Asset Maintenance 

project.  

The hands-on activities performed for the project include feature cleaning, feature engineering, 

working with geospatial data and general problem solving. Other activities include following and 

reporting on project progression, decisions taken, architecture and code, advising on some specific 

data science issues on EDP side and discussing and brainstorming solutions with the consultant team 

for more specific requirements or problems that would come up.  

Some of the data related activities performed, considered relevant for the report, and later discussed 

in detail include: 

• Helping constructing the training dataset and some general features based on failures e.g. 

moving averages and encoding cyclic variables like month number with trigonometric 

functions (Adams & Vamplew, 1998);  

• Creating a very basic exploratory data analysis for several Lablec datasets, with correlation 

matrixes using Pearson and Spearman correlation for continuous variables. Spearman 

correlation was useful to capture non-linear relationships, that would otherwise only show up 

in Pearson after log transforming the variables. For categorical variables Cramér's V was used 

as a measure of association. Other basic visualizations like histograms and scatter plots were 

used in bulk to provide an idea of the distribution of each variable (frequently positively 

skewed), possible univariate outliers, and the relationship between variables. 

• Creating the preprocessing scheme for Labelec datasets; 

• Analyzing and interpreting the IPMA dataset; 

• Creating solutions for geospatial problems, including elevation, terrain cover and distance to 

coastline; 

• Creating a naïve baseline for the Overhead Lines PoF metric; 

• Applying Logistic Regression and LightGBM models together with walk-forward cross 

validation, to test and select variables at the same time they were being created. However, 

this was only done during a very short phase of the project; 

• Developing an example notebook for a presentation, containing all steps from data 

transformation and preprocessing to model training, validation, evaluation and interpretation. 

This notebook is important because it sums up concepts that later will be addressed in the 

report, and contains no sensitive data. 
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4.2. PREDICTIVE ASSET MAINTENANCE PROJECT 

The predictive Asset maintenance Project, including its scope, objectives, main challenges, datasets, 

processing and techniques are going to be described in detail. 

4.2.1. Motivation 

The Predictive Asset Maintenance Project is an Analytics and Business Intelligence initiative that aims 

to support EDP business and experts on management activities of high voltage power distribution 

assets, including maintenance planning and investing planning. 

EDP had other smaller analytics initiatives in the past, focused on power distribution assets and 

predictive maintenance, usually pilots or proof of concepts with limited scope based on a subset of 

assets, for example predicting only certain types of failures for HV Circuit Breakers.  

The Predictive Asset Maintenance Project is one of EDP’s Distribuição most ambitious projects in the 

area so far. It is a collaborative effort between several EDP’s business areas and departments, 

together with an external consultant company of large dimension, that deployed a multidisciplinary 

team to EDP’s Distribuição offices. 

The project was managed using concepts from agile methodologies, with short iterations and 

incremental development of “working pieces of software”. The project was organized and divided in 

several Minimum Viable Products according to asset type and metric being estimated: 

• MVP High Voltage Transformers Health Index; 

• MVP High Voltage Circuit Breakers Health Index; 

• MVP High Voltage Overhead Lines Health Index; 

• MVP High Voltage Circuit Breakers Probability of Failure; 

• MVP High Voltage Overhead Lines Probability of Failure; 

• MVP for Maintenance and Investing Planning Dashboards. 

4.2.2. Timeline 

The actual project timeline is summarized below. Since this is an ambitious project with a wide 

scope, and many challenges, there was some deviation from the planned schedule. 

The project started on September 2019. Onboarding and Scoping activities took place in October and 

November 2019. 

The development phase that includes Data Visualization, Data Collection, Feature Engineering and 

Modeling activities lasted from the beginning of the project all the way through May 2020.  

The Handover activities, that includes documentation and knowledge transfer started on January 

2020 and ended in July 2020. 

The Industrialization activities, that include deploying the project in pre-production environment, 

started on May 2020 and ended in July 2020, with some activities of corrective maintenance being 

reopened in August and lasting until November 2020. 
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4.2.3. Technology and Development 

All MVPs were developed in Microsoft Azure Cloud ecosystem. The main development platform is 

Databricks, most of the code is written in Python and SQL notebooks.  

Azure Data Lake was used together with Data Factory ETL pipelines to retrieve most of the data 

sources used, that were processed and saved as optimized Hive tables in Databricks for later usage. 

Multiple environments were used including development, test and pre-production. The development 

environment is powered by three large clusters with four workers each. When including the driver 

machine and workers the computing resources amount to 540 GB of RAM and 72 CPU cores on each 

cluster. 

The notebooks contain all the processing including transformations and models, the intermediary 

results are saved to Hive tables and the final output to a SQLServer relational Database that feeds the 

dashboards built on top of PowerBI, that also include Dax and M queries. 

The notebooks are deployed with Data Factory by creating sequential drag and drop pipelines that 

define their execution. 

4.2.4. Health Index (HI) 

The Health Index metric is based on “Common Network Asset Indices Methodology” (Ofgem, 2017) 

from the Office of Gas and Electricity Markets (Ofgem), a governmental regulatory body for the 

electricity and gas market in Great Britain. The Ofgem methodology is used to estimate asset health 

and criticality, and to answer to reporting requirements. 

The methodology contains a set of rules, mappings, and functions used to calculate the Health Index 

of an asset. It can be thought of as a “pre-trained model” that can be applied to other utility 

companies and their electrical grid. 

There was an active effort between EDP asset experts and the project team to identify, select, map 

and adapt relevant variables of the methodology to EDP’s Information Systems and sources.  

Each source presented a challenge, for example, all sorts of data quality problems could be found, 

some sources were unavailable because the cloud ETL pipelines had not yet been created were 

temporarily replaced by static extractions, some variables were unavailable because EDP did not 

record them in the past, but were recognized as valuable and documented as future work, other 

variables had to be obtained and calculated from external sources, e.g. altitude. 

The selection and mapping process consisted in business and domain experts identifying all the 

possible variables from the Ofgem methodology that could be applied and were relevant to EDP’s 

context. The methodology accounts for dozens of factors and respective variables. 

The Modeling Phase consisted on implementing the methodology and following calibration 

guidelines, tables with parameters that account for different contexts, e.g. types of material of a 

pole. These were applied and the results validated iteratively. 
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This phase also depended on the input and validation of business experts while being developed. 

Since the Ofgem methodology describes a white-box model it’s possible to determine which factors 

are influencing a specific outcome.  

Usually, excel files were created a specific component of the Ofgem Model and applied to a sample 

of assets, then delivered to experts, who would validate the results, having knowledge on current 

assets condition and wear, manually tune the model parameters to achieve a desired outcome or 

propose changes.  

Some parameters and factors were changed so the methodology could be adapted to EDP’s context. 

For example, the “Oil Test Modifier” of HV Transformers, is based on oil condition information 

including moisture content, acidity and breakdown strength (Ofgem, 2017), and is composed of 

several factors. During calculation some of these factors had to be adjusted, because some variables 

from oil tests conducted by EDP had a different distribution and did not match the intervals proposed 

in Ofgem.  

The Health Index output, consists of 5 bands, each asset is allocated to one band based on their 

“Health Score” (Ofgem, 2017). The first band represents assets in excellent condition and the last 

band assets with deteriorated health. 

4.2.5. Probability of Failure (PoF) 

The Probability of Failure is a metric that was defined by the business and consists in forecasting if an 

asset will fail exactly 15 days ahead of time.  

The prediction frequency is daily, and the granularity of the training dataset is also daily at the level 

of each asset. The training dataset spans from 2008 through 2019. 

Several probabilistic classification Machine Learning Models were applied together with a loose data 

mining framework and multiple iterations to create this metric. 

4.2.6. Maintenance and Investing Planning Dashboards 

The dashboards are the main deliverables of the project, they incorporate the Health Index and 

Probability of Failure metrics together with context information from the assets. 

Two dashboards were created with different themes to support activities of Maintenance Planning 

and Investing Planning. 

The Maintenance Planning dashboard are designed at an operational level, to support decisions that 

affect the assets maintenance and operation. It includes lists and details of assets, a complex view 

with aggregated information for certain types of asset, e.g. Overhead Lines instead of Line Sections, 

and a geographic view. The HI and PoF metrics are highlighted in all dashboards together with 

complex filters and search patterns. It’s possible to list all Ofgem parameters defined for each asset.  

A section that explains each metric is also included. For each asset the parameters that are 

contributing to the displayed HI are highlighted. There is also an attempt to make the black-box 

model behind the PoF interpretable, by displaying an ordered static list of feature importance, 

however there is no information at the level of each prediction. 
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The Investing Planning dashboard are strategic, they intend to support medium and long-term 

decisions of, for example, determining when to retire an asset using metrics like the “Remaining 

Useful Life” (RUL). The main component of the dataset is a risk matrix (Figure 19) that groups assets 

by their PoF and Consequence of Failure (CoF) and prescribes generic maintenance strategies or 

course of actions depending on the quadrant each asset belongs to.    

 
Figure 19 - Investing Planning Risk Matrix 

4.2.7. Data Description 

Some of main sources consumed by the Predictive Asset Analytics project or used during 

development are listed in Table 3. Most datasets consist on structure tabular data from relational 

databases, some examples include including logs, events, states, attributes. Data types also include 

time series, geospatial information, hierarchies and networks. There are external and internal 

sources, automated and static. 

Source Dataset Description 

EDP Distribuição 

Centralized Information System 

– Asset Information 
Asset hierarchy, attributes and IDs. 

Centralized Information System 

– Work Orders 

Information about field trips carried out by 

electrical grid technicians, including order 

state. 

Centralized Information System 

– Repair Notes 

Asset repair notes with information about 

failures, anomalies and maintenance. 

Electrical Grid Control System 

Logs from an Industrial Control System (ICS) 

that monitors and records states and events of 

electrical grid and assets. 

Electrical Grid Events 

Aggregated version of the Electrical Grid 

Control System data source used to track 

occurrences by control room operators. 

Geographic Information System 

Describes all geographic attributes of assets, 

including their geometry in space. The 

topology of the electrical grid is available in a 

specialized graph database. 

Static Sources 
Complementary information provided by EDP 

in file format due to integration challenges. 

Labelec Overhead Line Inspections 

Report of recorded anomalies detected in 

Overhead Lines and components. Information 

aggregated from different sources, e.g. 

thermographic scans and lidar. 
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Source Dataset Description 

Transformer Tests 

Tests carried out to Transformers. 

Measurements and condition assessment, e.g. 

insulation resistance 

Circuit Breaker Tests 

Tests carried out to Circuit Breakers. 

Measurements and condition assessment, e.g. 

contact resistance. 

Transformer Oil tests Chemical tests carried out to transformers’ oil. 

IPMA and third party Numerical weather predictions 

Daily 3-day predictions, with 3-hour interval for 

weather variables including temperature, 

atmospheric pressure, wind speed and 

direction, precipitation. 

Directorate General for 

Territory (DGT) 
Land Cover (COS) 

Inventory of land use and land cover 

classification for mainland Portugal. 

Institute for Nature 

Conservation and Forests 

(ICNF) 

Burnt Area 

Burnt areas in mainland Portugal published 

annually. Available since the year 2000 until 

2019. 

Society for the Study of 

Birds (SPEA) 
Important Bird Areas 

Areas identified as important for protecting 

endangered bird species. Relevant for 

Overhead Lines, to account for the presence of 

nesting birds (e.g. storks), a potential cause for 

failures. 

EU’s Copernicus 

Programme 

Digital Elevation Model over 

Europe (EU-DEM) 

Raster tiles with elevation data for mainland 

Portugal. 

Surface Water Body 
Shapefile of Europe’s coastline and other water 

bodies. 

Table 3 - Predictive Asset Maintenance Project main Data Sources 

Training Dataset 

The training dataset has two main axes, time and asset. For all PoF MVPs the granularity of the time 

axis is daily, with a range spanning from 2008 to 2019. The asset is represented as a whole, by its 

identifier, and not at the level of its components. For example, for the Overhead Lines MVP a 

previously identified requirement was making higher granularity predictions at the level of the 

Overhead Lines’ Segments, however it was not possible to match a failure with a particular Segment 

because this type of information is not captured. 

To create the dataset, a range or interval of dates is generated, a list of unique asset identifiers in 

scope is retrieved, a Cartesian product is applied between these two sets. This results on all 

combinations of dates with assets (Figure 20). 
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Figure 20 - Example of Training Dataset creation 

All features created and presented below will be transformed into the shape of the training dataset 

and appended to it. 

Target 

The most challenging and time-consuming activity of the project was to determine when a failure 

had occurred for a specific asset. This step is extremely important since this feature is the target 

required for the supervised models that estimate the PoF metric. This process started in the end of 

2019 and lasted until the first trimester of 2020.  

The team of consultants worked alongside EDP experts to develop an algorithm that allows to 

determine when an asset failed, in this case a High Voltage Circuit Breaker or Overhead Line. 

The pipeline implemented gathers data mainly from the Electrical Grid Control System and Electrical 

Grid Events datasets. These datasets consist of multiple timeseries of millions of events and states 

and represent some of the largest sources used. The algorithms implemented consists of hundreds of 

rules, applied though queries, and took many iterations and validation sessions to design and until a 

consensus could be reached. 

The output for the Overhead Lines was mostly recognized as accurate. However, Circuit Breaker 

failures could not be determined exactly. This type of asset is regularly tested by grid operators, 

these tests add noise to the logs making it difficult to discriminate between an actual failure and 

tests.  

Performance was also an issue, since the algorithm consisted of complex rules and there was very 

limited time, some of the Spark Data Frames being used were collected and converted Python lists 

and iterated with nested loops and If conditions. This resulted in massive overhead, since the 

computation was no longer distributed, a high percentage of available RAM memory was being 

allocated to hold the dataset, and the nested loops applied to non-optimized data structures 

produced queries with O(n2) time complexity. For Circuit Breakers the entire algorithm takes almost a 

week to run on the entire training dataset. 

Later it was showed that it was possible to reduce the processing time of these loops from 10-12 

hours to 5-10 minutes by taking advantage of Spark queries to produce a reduced subset of 

candidate results, collecting this subset to memory, and use optimized Python data structures, 

including dictionaries and sets (hash tables), to run the rest of the algorithm and filter out False 
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Positives. This later implementation allows to reduce the time complexity and memory usage of the 

algorithm, improving scalability, a necessary requirement for processing a greater volume of logs. 

These code optimizations are also important to reduce the execution time of the production pipeline 

that is close to the acceptable limit, since the pipeline runs during the night and the results are 

expected at 9am each day. 

The result of this process is a table with dates of asset failures. For the Overhead Lines the type of 

failure is also recorded and can be incipient or catastrophic. To create the binary feature 

representing if an asset has failed on a particular day, the failures table is merged with the training 

dataset, its null values are filled with zeroes, representing normal operation (negative samples), and 

the Failures are converted to ones, representing at least one failure (positive samples). The target is 

created by displacing this feature 15 days into the past (Figure 21), this behavior is also achieved with 

a join operation. 

 
Figure 21 - Example of how to create 1 day ahead PoF target 

Lablec Overhead Lines Inspection Dataset 

Labelec Overhead Lines Inspections is a tabular dataset of recorded anomalies of Lines and its 

components. The dataset’s main source are aerial thermographic inspections carried out and 

processed by Lablec with a specific time frequency. Only records about detected anomalies are 

included, this means that for lack of computing power, whenever a new inspection is carried out, 

Overhead Lines and components in good condition are not registered.  

The integration of this dataset in the HV Overhead Lines PoF MVP was deemed essential by business 

experts because it gives a relatively updated snapshot of the physical state of Overhead Lines and 

respective components, information that can be relevant to predict possible future failures.  

There are five types of anomalies recorded, as shown below. Each anomaly type has multiple 

subtypes. 

• Strip – anomalies concerning the strip of land or buffer surrounding the Overhead Line, also 

known as Rights of Way (ROW). Usually the main potential causes are trees that can fall, lean 

or touch and damage the Line, cause failures, power outages or even fires. EDP has other 

projects just focused on detecting vegetation near OH lines, using LIDAR measurements and 

satellite images; 



33 
 

 

Figure 22 - Overhead Line Rights of Way cleared of vegetation 
Source: (Universidade EDP, 2019) 

• Conductors – damaged, worn out, broken, or corroded cables; 

• Insulator – damaged, worn out, broken, or corroded insulator chains; 

• Hot spots – components with higher than normal recorded temperature; 

  

Figure 23 - Example of a Hot Spot captured during a Thermographic Inspection 
Source: (Universidade EDP, 2019) 

• Poles – utility poles can be damaged, broken, tilted, corroded, have missing pieces or contain 

bird nests. Issues concerning the foundation of the poles are also recorded. 

Each row of the dataset represents an anomaly detected at the level of a specific Component, 

Overhead Line and Date (Figure 24). A single report can have associated multiple anomalies where 

each type and subtype of anomaly can also occur more than once. This representation is possible 

because each Overhead Line, composed of multiple Line Segments, can span for several kilometers, 

therefore its structure and respective components can repeat and be similar throughout. For 

example, during an inspection the same Overhead Line can have three broken insulators of the same 

type at different locations. 

 

Figure 24 - Example of Labelec Inspection Dataset 

Even though the dataset contains dozens of attributes, the business experts only identified as 

relevant the Anomaly occurrence itself and its Priority. Each anomaly has a priority that can differ 
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between A, B or C, ordered from more to less serious. This attribute is created and processed by 

Labelec and takes into consideration the temperature of the hotspot and other criteria. 

Limitations 

During the analysis, cleaning and transformation of the dataset some limitations were identified. 

The first integration challenge was related with data quality and data cleaning. Data provided by 

Labelec was stored in a Microsoft Access Database, and during collection no validation rules were 

enforced. This means that some numeric fields will occasionally have text, invalid and incoherent 

values. The same applies for text and categorical attributes that can have unrecognizable entries, or 

multiple values with different case, spaces or punctuation representing the same entity or category 

level. The Date or Timestamp column can contain dates in multiple formats, some dates have 

characters or text appended to them which makes it especially difficult to parse, others are 

incoherent or invalid (e.g. year 9999). 

The second integration challenge concerns the Asset Identifier used in the Labelec’s dataset and its 

relation to the Training Dataset, or in other words, how to merge each Inspection Report with the 

respective Overhead Line. This identifier was present in three different columns and in different 

formats representing the different Information Systems it originated from. It was necessary to apply 

transformation rules to Labelec’s Overhead Line Ids, according to origin, and combining several 

relation tables previously available, to convert each Identifier into the same format of the Training 

Dataset. 

This process was applied for all three columns. The result is obtained by reducing the columns into a 

single Identifier. The criteria applied was to choose the first not-null value. In cases where more than 

one Id column was defined the Identifier values were equal.  

The main limitation identified was not knowing when an anomaly is repaired or resolved. For 

example, an Overhead Line has several critical anomalies with priority A detected in an inspection, 

these anomalies are promptly addressed and repaired, however if months later a new inspection is 

carried out and that Line has no other defects, it’s state will not be updated in the inspection dataset 

for reasons discussed above.  

The problem is that inspections are carried out by helicopter affecting multiple dates and territories 

in phases, and not on a single campaign, and at that time there was no way to know if the absence of 

records since the last inspection means that the Overhead Line underwent corrective maintenance 

works and the defects were repaired or if the Overhead Line wasn’t re-inspected to that date. The 

same applies for Overhead Lines that have no recorded inspections, possible reasons include no 

inspections ever carried out or no anomalies detected during all inspections. 

To address this issue, the business experts identified as relevant integrating other Data Source with 

Labelec’s inspections, the Repair Notes (Table 3), enabling to trace back any maintenance operations 

carried out, to determine when a specific Anomaly was resolved. This introduces more frequent 

Anomaly state updates and increases the resolution of the dataset. 

Other limitation that could not be addressed include some Inspections that couldn’t be integrated 

due to being recorded in analogue format. 
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Preprocessing 

Some of the preprocessing applied to this dataset during the first iterations is going to be discussed 

below. 

Several features were created, and transformations applied. The features proposed were based on 

counts of anomalies by type, counts of anomalies by subtype, counts of anomalies by priority, and 

counts of anomalies by priority and type. Since the Inspection Dataset has different granularity 

compared to the Training Dataset it was necessary to reshape it. The dataset was pivoted, resulting 

in a table where the index is represented the Overhead Line Identifier and Date, the columns 

represent each feature (e.g. A, B, C), and the values are computed using the count of occurrences 

(Figure 25).  

 

Figure 25 - Example of pivoted features from the Lablec Inspections dataset 

After this process several hypotheses had to be tested and decisions taken.  

The Lablec Dataset was merged with the Training Dataset, this happen before having the Repair 

Notes. Consequently, the features were only filled when an inspection had occurred, not very 

frequently, for example one or two times per year. To impute these features missing values the 

method applied was to carry the last registered feature value, or Anomaly count, forward, at the 

level of each Line, also known as Last Observation Carried Forward (LOCF). This means that if an 

Overhead Line had a specific number of Anomalies of a type registered in the Date of Inspection, this 

value will be carried forward until a new Inspection is conducted.  

 
Figure 26 - Example of merging Hot Spot anomaly counts with Training Dataset 

At this phase, to address the issue of not knowing when an Anomaly is solved, a feature that 

represents the time elapsed since each Line’s last recorded anomaly of any type was created. This 

feature was then transformed into a decay, or the inverse of the time elapsed, meaning that on the 

day an anomaly is registered this decay is at its maximum value and as days go by it starts to 

decrease and converge to its lower bound. Several tests were conducted adjusting the rate of the 
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decay. This was an attempt to introduce information about how long ago an inspection was 

conducted to the Training Dataset, so the Machine Learning models later applied could combine it 

with other features, e.g. the Anomaly counts, reducing or increasing their importance with time.  

For Lines that never had an inspection or for the time-period before the first registered inspection, 

the Anomaly count features were imputed using zero and the decay was imputed using the value of 

its lower bound, also zero. For this type of occurrences, the interpretation of this imputation strategy 

is that an inspection has never been carried out and zero anomalies exist. Even though this strategy 

might not, in some situations, reflect reality accurately, it provided consistent results. Other more 

sophisticated methods were tested but didn’t outperform, e.g. imputing Overhead Lines that never 

had a registered inspection using the average anomaly count of the entire population of Lines in the 

last period of days to the day in cause, through a group by date, average by anomaly counts and a 

moving average. 

The resulting features introduced other challenges - they are relatively sparse, not all Lines Overhead 

have anomalies all the time and the ones do are only affected by a reduced number of types and 

subtypes; the features tend to have low variance, this happens because of infrequent updates, 

meaning that anomaly counts do not change that often and tend to stay the same for large periods 

of time; there is a high number of resulting features, some of them will be highly correlated and 

redundant, others will have low or none discriminative power. 

To address the last point, some features based on rare anomaly subtypes that had a very low number 

of occurrences, less than a threshold, were summed and grouped into the same feature, reducing 

the cardinality of the dataset (Figure 27). When anomalies had no recorded priority or type, it was 

proposed to represent them by a single “null” feature, or alternatively combine them with the “rare” 

feature stated above. Correlated and irrelevant features were addressed and filtered during the 

Feature Selection phase. 

 

Figure 27 -Example of combining infrequent Anomaly Subtypes 

Elevation Dataset 

During the project’s meetings, it was identified as an essential requirement having elevation data for 

every asset. This data is required for all Health Index MVPs, as an input for the Ofgem Methodology, 

and as a possible input for the Probability of Failure MVPs. As a result, business experts requested its 

inclusion. 

During the first attempts the project’s consultant team made a request to EDP Distribuição to extract 

elevation data from their Geographic Information System, where the entire distribution 

infrastructure, including network topology, assets, components, and other information is laid out in 

detail through a spatial component. However, this was not possible due to interoperability problems 
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between the GIS system and EDP’s Data Lake and other integration problems, so EDP instead 

requested the acquisition of the data from an external source. 

After conducting a search through possible freely available, trustworthy, updated and low error 

sources, the Digital Elevation Model over Europe (EU-DEM) was chosen. This elevation model is the 

result of the Copernicus Programme from the European Union and it covers all countries from the 

European Environment Agency (H. Dufourmont, J. Gallego, H. Reuter, 2014). To achieve full 

consistent coverage, it combines data from multiple sources.  

The model was validated using NASA’s ICESat mission as reference. It has a vertical accuracy of 

approximately 2.9 m RMSE that varies according the latitude and slope of the terrain, being lowest in 

lowlands, and increasing in midlands and mountains (H. Dufourmont, J. Gallego, H. Reuter, 2014). For 

Mainland Portugal the accuracy is approximately 2 m RMSE.  

EU-DEM’s spatial reference system is ETRS89 LAEA, it has spatial resolution of 25 m, vertical 

resolution of 5 m, and is arranged in 1000 km by 1000 km tiles (Copernicus Programme, 2020). 

Therefore, it was only necessary to acquire 2 raster files to cover Mainland Portugal’s in its full extent 

– E20N10, E20N20 as shown in Figure 28. These files are in GeoTIFF format. 

 

Figure 28 - EU-DEM vizualization 
Source: (Copernicus Programme, 2020) 

Preprocessing 

A function was created to receive a list of coordinates as input and output the respective elevation 

for each point. This function would later be used in the project to get elevation data for all assets. 

Multiple steps had to be implemented. First, the raster metadata is loaded to determine its Spatial 

Reference System, the input points are then converted from their original coordinate system 

(WGS84) to the raster’s projected coordinate system (ETRS89).  

The next steps are applied to each raster file and include extracting the tile bounds from the 

metadata and create a polygon or box that represents the tile shape and covers the same area. 

Afterwards the intersection between each input point and tile is checked. For all the points that are 

contained within the raster bounds, a Rasterio function is applied. The function uses an affine 

transformation to map each point represented by geographic coordinates to the index of the raster 

array that represents that point, or simply put the “pixel coordinates”. 
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Finally, the raster file is loaded in memory as a 2d NumPy array, and the previous mentioned indexes 

are used to extract the elevation values from the array. The values are then concatenated in the 

same order as the input points, the process repeats for other raster files, and the result is outputted. 

Tests 

Several versions of this function were created during the project and for each one a set of tests were 

conducted to guarantee the same consistent results. These tests include creating 600 000 points on 

an evenly spaced grid covering Mainland Portugal and getting the elevation values for each point. 

This allows to verify the performance of the function by measuring how much time it takes and to 

compare the result with previous versions guaranteeing they provide equal output. 

The second test consists of getting 220 elevation values by selecting random points from an external 

website’s map (DaftLogic, 2018), importing the list into Python, getting EU-DEM elevation for points 

in the list and calculating regression metrics, in this case MAE and RMSE to compare both sources. 

The reported error was approximately 3 meters RMSE. As expected, there were some small 

discrepancies, caused by comparing different elevation providers. 

The third test consists in manually selecting points from Google Earth and comparing their elevation, 

which provided very similar results. It was also verified if the function worked with a single input 

point and not only multiple input points. 

Deployment Issues 

During the project’s deployment in pre-production environment, the execution of the pipeline 

responsible for Overhead Lines PoF failed and throwed an out of memory error. The root cause was 

high RAM memory consumption used by the elevation function during the process of loading the 

raster, even though each layer was being loaded individually.  

Each geoTIFF file is stored using compression and occupies less than 1gb in disk space, however when 

loaded into memory each raster will take approximately 7 to 8gb of ram as a NumPy array, and the 

entire process, will require a machine with approximately 25gb of RAM or slightly less to run 

smoothly. At the time, this function was being developed in a Google Collaboratory notebook that 

complied with these requirements, and had similar specifications to the cluster’s driver machine. 

However, during deployment, the driver machine of the cluster was downscaled to keep costs down. 

This, and the fact that other resources of the same pipeline and notebook had memory allocated, 

contributed to the general problem. Later, it was discovered that the same function was running in 

other parts of the pipeline without causing any issues, because they had less memory allocated from 

previous tasks.  

During the deployment meeting where this issue was discussed, several solutions that would involve 

refactoring the code in the least amount of time possible were considered, including the following:  

1. Making a distributed version of the code using PySpark, so the task could be executed using all 

nodes and resources of the cluster; 

2. Keep most of the code intact and instead of loading each complete raster into memory, only 

load a single chunk or piece at a time and proceed with similar processing logic. 
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To implement the 1st solution multiple approaches are possible: 

• Using native distributed solution that would require installing and configuring a geospatial 

library that can run on top of the Spark cluster and supports raster processing. Most of these 

libraries are not easy to deploy, not accessible or don’t have a stable release available. This 

would require changes to the cluster achieved through initialization scripts and other methods, 

which can be a complex process, create compatibility issues and even break the current 

environment that was being deployed to pre-production. Also, the code and process logic had 

to be recreated from scratch. 

• Creating a hybrid distributed solution, either through Spark DataFrames or RDDs integrated 

with functions from Rasterio, Shapely and GeoPandas libraries. This process should read 

multiple pieces of the raster concurrently, and either save the resulting matrix for later access, 

or output the elevation values directly. The first approach is challenging because Spark does 

not natively support multidimensional arrays meaning that storing such structure would 

require saving the matrix using custom formats (e.g. HDF5 chunks), conforming to the available 

output formats by saving the matrix as a nested structure in binary format, or transforming the 

matrix into pairs of coordinates and values, which, due to each raster’s high resolution, would 

yield 1,6 billion rows. The second approach is simpler and would require aligning Spark Data 

Frame partitions with sets of input points that belong to the same raster chunk and map each 

partition though RDDs to read the respective raster chunk and retrieve elevation values for all 

points. This way each raster chunk would only be read once and multiple partitions 

representing different chunks would be processed in parallel. Afterwards the RDD would be 

converted to Data Frame and the result saved. 

Due to the urgency required, the 2nd non distributed solution being the fastest to implement was 

chosen to fix the issue. It consists in keeping the same basic structure and single threaded code and 

taking advantage of Rasterio’s window functionality that allows to slice a raster and retrieve only a 

square tile or chunk efficiently and with a very small footprint. Therefore, it becomes possible to read 

and manipulate raster files that are larger than memory (Rasterio developers, 2018). 

In practice, to implement this solution, an evenly square grid is created over each raster with a 

predefined number of tiles, so each reading window can be defined. Afterwards, for each input 

coordinate it’s necessary to determine which window it belongs to. This can be achieved efficiently 

through spatial join that by default uses a R-tree data structure to index spatial information. This 

operation avoids unnecessary queries to the index of each window that would otherwise yield out of 

bound error and hurt performance by creating a N*M number of steps, where N is the number of 

input points and M the number of windows. ´ 

 

Figure 29 - Spatial reference system and Pixel coordinate system 
Source: (Perry, 2015) 
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Finally, for each group of input points, the corresponding raster window is loaded into memory, then 

an affine transformation for that window is computed, allowing to transform the spatial reference 

system into the raster’s window reference system (Perry, 2015), as shown in Figure 29. Using that 

affine transformation, it’s possible to map all input geographic coordinates to indexes of the NumPy 

matrix and retrieve the elevation values.  

A B C 

 
Figure 30 - Real example of extracting LPPT elevation value from EU-DEM 

A real example of the process is shown in Figure 30, where the elevation for the Lisbon Airport is 

obtained, marked by a white dot in all images. The square box in A represents the Raster tile loaded 

by the function and displayed in B. Below the images it’s possible to see all the transformations 

between spatial reference systems until the exact raster index and corresponding elevation value is 

obtained as shown in C.  

The real output of the function is shown in Figure 31, where the elevation value is aroximately 101 

meters. The point selected is close to runaway 35, that has na official elevation of 101 meters 

(Aeronautical Information Service, 2019). 

 

Figure 31 - Real example of elevation function output 

Results 

Some tests were conducted to profile memory usage and execution time in both versions of the code 

using the same environment. The input data used to conduct the test consists of 600 thousand 

coordinates, previously generated and described above. 

The old version reported a peak memory usage of approximately 14.1 GB, where 13.8 GB are used by 

the elevation function, and it took approximately 1 minute and 36 seconds to execute. The new 

version reported a peak memory usage approximately 1.2 GB, where 945 MB are allocated to the 

elevation function, and it executed in approximately 2 minutes and 21 seconds. 

Version Processing time Memory consumption 

Simple 1m 36s 13.8 GB 

Optimized 2m 21s 0.95 GB 

Table 4 - Profiling of Elevation functions 
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At the cost of computing time that increased 47%, it was possible to reduce memory consumption by 

91% as shown in Table 4. This tradeoff is caused by the increased number of operations introduced 

by the second approach, leading to multiple disk reads.  

Improvements 

The current version can be further improved: 

• Use vectorized operations, already supported by Rasterio and NumPy to retrieve elevation 

values, instead of using a Python loop, that in most cases will be slower; 

• Perform a spatial join to match raster boundaries and input points instead of intersecting all 

points with all raster files being used. This improvement would have greater impact if in future 

versions more European countries were included, and the number of raster files and input 

coordinates increased; 

• Create a distributed version of this procedure, using the previously described solutions in 

Spark or using an alternative distributed computing framework that support processing of 

multidimensional arrays, e.g. Dask with Zarr arrays.  

Land Cover (COS) 

To perform spatial queries using asset information EDP frequently uses the Land Cover Dataset 

(Carta de Uso e Ocupação do Solo - COS) from the Directorate General for Spatial Planning (Direção 

Geral do Território - DGT). The dataset is available online (Direção-Geral do Território, 2020), open to 

the public and it’s published in multiple formats, including a shapefile. It contains a timeseries 

component, where 5 years are available to download as separate files. The schema and 

nomenclature changes between versions, however the latest available version is from 2018 and 

includes 9 main classes (e.g. water bodies, florets, agriculture, etc.) and 83 subclasses with finer 

granularity (e.g. pine forest, airport, etc.). 

One of the requirements of the Overhead Lines MVP was to enrich the training dataset using 

features derived from the type of terrain each Overhead Line goes through. These features were 

extracted from the COS dataset. 

Preprocessing 

Several steps were necessary to extract and create these features. 

First, an EDP specialist in Overhead Lines, decided, based on domain knowledge and experience, 

which classes and subclasses of the COS had potential to create disruptions and possible failures, and 

therefore were relevant to include in the model. The chosen classes were all related with vegetation 

and species of trees, based on several factors like growth rate, potential height or species of nesting 

birds that might live near such trees. This step helped reduce processing time, since most of the COS 

records and geometries can be filtered out, and helped accelerate the feature selection process. 

The second step was to extract features from the COS. To accomplish that, the spatial reference 

system of all Points that represent the start and end of each Line Section, stored in WGS84, a 

geographic coordinate system, were transformed into a projected coordinate system, PT-
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TM06/ETRS89. This projected coordinate system is finetuned for Mainland Portugal providing small 

distortion. This operation guarantees that EDP’s geometries and COS geometries are both in the 

same spatial reference system and that all geometries are projected into a cartesian plane. This is a 

prerequisite of python’s geographic libraries, including GeoPandas and Shapely. 

Afterwards the Overhead Line Segments created from Start and End Points are aggregated into Lines. 

A Spatial Join is performed to determine which COS records and geometries, each EDP Overhead Line 

intersects, as shown in shown in Figure 32 – B. The result of this process is tabular and conceptually 

similar to a database join, where records from both tables will be matched when a criterium is met, 

in this case if the left geometry intersects the right geometry. 

Each COS geometry retrieved is then overlapped with the corresponding Overhead Line geometry, 

creating a third geometry that represents the geographic intersection of both shapes, as shown in 

Figure 32 - C. Since the Overhead Line geometry is always represented by a LineString, and the COS 

geometries are most of the times Polygons and LineStrings, the output geometry of the overlay 

operation will always be a LineString.  

 

   
A B C 

Figure 32 - Visual example of spatial join between an Overhead Line and COS 2018 

This length of the overlapping LineString is then retrieved. This distance represents how many meters 

a specific Overhead Line goes through a specific subclass of the COS, e.g. Overhead Line XYZ goes 

through 100 meters of eucalyptus trees, and 200 meters of Agriculture terrain (Figure 33). 

 

Figure 33 - Example of Spatial Join between Overhead Lines and COS 2018 

The resulting dataset is then pivoted by subclass, and distances summed, so each subclass of the COS 

becomes a feature or column, and each row represents an Overhead Line, with the same granularity 

of the training dataset (Figure 34). This feature is considered constant and doesn’t change with time.  
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Figure 34 - Example of Terrain Cover features in Training Dataset 

Using the same example of Figure 32, the real ouput in meters from the Terrain Cover script is shown 

below in Figure 35. 

 

Figure 35 - Real example of Terrain Cover script output 

The exact same procedure was then applied by the consultant team to the Burnt Area dataset and 

the Important Bird Areas dataset. 

Improvements 

Due to time constraints this task was delivered without feature selection and transformation steps. 

Further improvements could be made to the calculated features including excluding or combining 

subclasses. 

This approach could be further improved, if the Overhead Line’s original and more detailed 

geometries were used, instead of start and end points of each Overhead Line Segment, this was not 

possible due to integration problems with EDP’s GIS. A second improvement would be to create a 10-

20m buffer around each Overhead Line geometry, to account for possible vegetation present in the 

border zone and calculate the intersection area instead of intersection length. 

IPMA Dataset 

EDP, as a service subscriber, receives weather forecasts from IPMA that are used in several predictive 

analytics projects.   

The forecasts are the result of a numerical weather predictions model. Usually these types of models 

have as output a multidimensional array, e.g. ECMWF models, but in this case the data is obtained in 

table format.  

In the first version of the dataset analyzed, the forecasts were received everyday around midnight 

and spanned 3 days into the future, with a 3-hour frequency, for several coordinates that cover 

mainland Portugal. The coordinates represent points on a regular WGS84 grid. 

The dataset contains several variables, usually calculated at 2m above the surface, including wind 

speed and direction (magnitude and direction of u and v components), temperature, precipitation 

and sea level atmospheric pressure. The variables were pivoted and treated as columns. 
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Limitations 

The main problem with the IPMA dataset is that it frequently contains missing values. These missing 

values usually affect all variables and all locations and represent days when no prediction was 

received due to problems on the IPMA side. There are gaps of entire months and years with almost 

no records. 

There was an initial effort on designing a simple strategy and prototypes to impute these values 

using past predictions to fill out missing predictions. These include: 

• On the temporal axis, carrying the most recent observation forward (LOCF), or even using 

autoregressive moving average models to capture trend and seasonality; 

• On the spatial axis, using spatial interpolation methods, including bilinear, nearest-neighbor or 

inverse-distance weighting. 

A prototype was created using the bilinear method on a projected cartesian grid to interpolate 

missing wind speed values using SciPy (Figure 36). For a single day, approximately 50% of random 

values were removed and later recovered so the reconstruction error between both versions could 

be estimated. The result was consistent with downsampling an image.  

 

Figure 36 - Average IPMA wind speed predictions for a single day 

The prototype had a limitation since it expected values to be missing completely at random and 

uniformly distributed in space, and this was the best-case scenario. 

However, all approaches discussed and tested have prerequisites and were based on assumptions 

that later would not be verified in the real dataset, and therefore were not adequate to solve the 

problem. When the extent of the problem was recognized, an EDP project manager responsible for 

the Predictive Asset Maintenance project devised a backup solution. 

The solution consisted on using another weather prediction source that EDP acquired from an 

external company and used in other projects. The second source consisted on a proprietary model 

based on the European ECMWF model, with no missing records. Since IPMA also uses the ECMWF 

model and follows the same standards, metadata was consistent between both models, including the 

locations, variables, and predictions timestamps. 
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It was decided to combine both models and complete IPMA dataset’s missing observations with the 

ECMWF dataset. However, no verification was conducted to determine if the variables defined for 

both models matched or were closely related, e.g. Pearson correlation, regression metrics or 

statistical tests. 

Improvements 

Features extracted from the IPMA dataset consist of moving averages applied to weather variables, 

e.g. average temperature in the past 30 days. Even though this approach is useful, it is basically 

introducing information of historical weather into the models, since the lag introduced by the moving 

average overshadows the 3 day ahead predictions.  

Potential new features can be created using only the predictions for days ahead. Since these 

predictions are already the result of weather models they are smoothed out and have very low noise.  

All weather variables are timeseries and are autocorrelated. To avoid creating correlated features 

(e.g.  windt+1, windt+2), aggregation could be used, e.g. moving average of predictions for days ahead, 

or other strategies like differencing, e.g. calculating the difference or rate of change between days, 

and decomposition.  

Distance to coastline 

An asset’s shortest distance to coastline was also a requirement from the OFGEM methodology, and 

a desired feature for the probability of failure models. This feature is relevant because the proximity 

to shore, together with factors like humidity and salt, might have a negative impact and accelerate 

deterioration of assets that are affected by corrosion. 

A prototype was designed based on Surface Water Body Dataset from the European Union 

Copernicus Programme. This dataset was acquired as a shapefile and consists of information about 

the coastline and other water bodies in the European Union. 

Preprocessing 

To process this dataset and extract features a slightly different approach was taken, regarding the 

previous geographic datasets. The spatial reference system worked on was WGS84, this means that 

Shapely library could no longer be used. 

The coastline and water bodies were represented by geometries, more specifically polygons. The 

dataset was filtered only to include Iberian Peninsula coastline records, and the exterior of each 

polygons was extracted as lines, and from each line all points were extracted.  

This operation will result in approximately 2 million of points, making it practically impossible to use 

brute-force methods to calculate nearest neighbor between an asset position and a coastline point. 

The query does not scale and would require N*M number of distance calculations between 

thousands of assets and millions of points. 

To solve this problem Scikit-learn’s Ball Tree implementation was used. This implementation 

supports Haversine distance also known as great-circle distance, the shortest distance between two 
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points on a sphere. This metric is used to approximate distances on the surface of the earth because 

it’s computationally cheap to calculate.  

There is other more accurate distance metric based on Vincenty's formulae later improved by Karney 

(Karney, 2013), that take into account the shape of earth as an ellipsoid, at the cost of being 

computationally expensive. 

The solution was implemented follows these steps: 

• Get the points that represent the Portuguese coastline, remove duplicates; 

• Convert the WGS84 coordinates from degrees to radians; 

• Create the Ball Tree with coastline coordinates, adjusting the leaf size parameter and testing 

performance tradeoffs between creation time and query time; 

• Get all assets’ WGS84 coordinates, convert to radians and query Ball Tree obtaining index and 

distance of closest coastline point; 

• Multiply distances by the radius of the earth in meters to obtain the desired feature “distance 

to coastline”. 

Limitations 

It’s important to mention that this method only provides an approximation, since it’s calculating the 

distance between coastline vertices and asset points and not using the full representation of line 

geometry. This means, theoretically, if an asset is close or intersects the middle of a line segment, the 

distance calculated will be to the closest start or end vertex of that segment, even though the asset is 

at approximately zero meters of the segment.  

However, the geometry that represents the coastline is very detailed and is composed of many 

vertices, limiting the error of the approximation. Alternative solution that takes into account the 

geometries could be more complex. 

Other features were calculated including distance to other water bodies, e.g. rivers and lakes, but 

were discarded due to lack of time. 

4.2.8. Model and Analysis 

A summary of some key aspects concerning the PoF MVPs modelling phase are going to be presented 

in this chapter. 

Since there is a relatively small number of failures on High Voltage assets, this is a positively 

imbalanced binary classification dataset. For example, in the Overhead Lines MVP only 1.5% of the 

samples are classified as positive and represent actual failures. 

To deal with class imbalance the consultant team used a combination of downsampling, by randomly 

subsampling negative instances or non-failures, together with oversampling achieved with SMOTE 

(Chawla et al., 2011), by generating synthetic instances to increase the number of positive examples 

or failures in the training dataset. 

The cost function used with all models was Log Loss also knows as Binary Cross Entropy.  
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To address class imbalance, tests were performed using LightGBM with Focal Loss cost function (Lin 

et al., 2017), originally applied to object detection. According to the authors, this function is a 

modified version of cross entropy, that “reduces the relative loss for well classified examples putting 

more focus on hard, misclassified examples”, preventing a “vast number of easy negatives from 

overwhelming the detector during training” (Lin et al., 2017). It has two hyperparameters that need 

to be adjusted during cross validation:  

• Alpha, that controls the “importance of positive and negative values”, this parameter is similar 

to weighted cross entropy used for balancing classes, by allocating more weight to rare classes 

and less weight to common classes, usually using the inverse class frequency; 

• Gamma, the parameter that “reshapes the loss function” and controls the tradeoff between 

“down-weighting easy examples” and “focusing training on hard negatives”; 

However Focal Loss cost function wasn’t adopted for any MVP. 

The cross-validation strategy applied by the consultant team was based on the stratified holdout 

method4 with shuffling. This method splits the dataset samples randomly between training and test 

set, while guaranteeing the same percentage of class labels on both sets, to account for the highly 

skewed class distribution. Some theoretical issues were raised by EDP concerning this cross-

validation strategy and its implementation. 

Since the dataset consists of multiple timeseries, by shuffling the dataset and disregarding the 

ordering of samples, the model is going to be validated with samples from prior dates relative to the 

train set and trained with samples from posterior dates relative to the test set. This means the model 

is trained with data from the “future”, that should not have access to, and validated with data from 

the “past”, which has already been seen.  

Time series, images, graphs and geospatial data are examples dependent data, that frequently have 

local structure and show significant autocorrelation - “adjacent observations have similar data 

values” (Haining, 2001). For example, if on a given day at 9am the temperature is 10 degrees Celsius, 

at 9:10 the temperature value will probably be very close to 10 degrees; if at location A there is a 

forest, it’s very likely that 10 meters from location A is still the same forest.  

Consequently, samples that are close to each other and likely similar will end up on both training and 

test set, and both sets will share information. 

Another limitation identified by EDP’s team concerns the absence of a validation set. It’s a well-

known good practice to keep a hidden test set to guarantee a final unbiased evaluation of the 

results, while using the training and validation sets to train models, optimize hyperparameters and 

make modeling decisions, e.g. what type of imputation strategy provides better result. Using the test 

 
4 The holdout method “partitions the data into two mutually exclusive subsets called a training set and a 

test set or holdout set. It is common to designate 2/3 of the data as the training set and the remaining 1/3 as 
the test set” (Kohavi, 1995). The classifier is trained using the training set and evaluated on the test. This 
method can have disadvantages, especially when used with small datasets since “the evaluation can have a 
high variance and depend heavily on which data points end up in the training set and which end up in the test 
set, and thus the evaluation may be significantly different depending on how the division is made” (Schneider, 
1997). It’s a common practice, when computationally feasible, to use K-fold cross-validation to address these 
issues. 
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set “to both choose a hypothesis and evaluate it” is referred to as peeking and keeping final and 

hidden test set allows for “an independent evaluation of the final hypothesis” (Brownlee, 2020e; 

Russell & Norvig, 2009, p. 709; Varma & Simon, 2006). 

All of these factors put together can possibly contribute to leakage between training and test set 

resulting in a biased and overly-optimistic model evaluation. 

Designing a validation strategy to replicate as much as possible the same conditions that will be 

observed in production, can be useful during analysis, simplify interpretation, and provide a more 

realistic performance estimation. A common option for evaluating time series forecasting models is 

using out-of-sample or prequential approaches, as described by Cerqueira et al. (2019). The 

prequential method also known as walk-forward validation (Brownlee, 2019), is “usually applied in 

data stream mining”, where “each observation is first used to test the model, and then to train the 

model” (Cerqueira et al., 2019). This approach can be applied in “blocks of sequential instances”. 

 
Figure 37 - Possible Implementation of Walk-forward validation 

Source: based on (Cerqueira et al., 2019) 

An example of this strategy is shown in Figure 37, where the criteria chosen to split the dataset was 

the calendar year. The first split or fold consists on using the first year of data as training set and 

evaluating the results using the following year, the second split consists on using the first two years 

of data as training set and using the following year as validation set, and so on. The last fold is used 

as a hidden test set. The evaluation estimations from all validation sets are then averaged5 to obtain 

the final classification metric value.  

This method reflects performance on different periods and accounts for changing conditions, e.g. the 

year 2017 can be harder to forecast because fires caused more Overhead Line failures. It’s also very a 

feasible strategy to deployed during production, involving retraining the model on a regular basis 

with all available current data, apply it to predict subsequent data, and monitor quality. 

The main evaluation metric monitored during the project progression was the Area Under the Curve 

of the Receiver Operating Characteristic (ROC-AUC) that summarizes False Positive Rate and Positive 

Negative Rate under multiple thresholds. F1-Score, the harmonic mean of precision and recall was 

also monitored. 

To deal with missing values usually very simple imputation strategies were used independent of 

context, like the mean or median value. For time series carrying the last observation forward (LOCF) 

was also proposed. In most cases outliers were not treated. Categorical features were initially 

 
5 Cross-validation should only be used to estimate model performance. The final model or models 

should be trained on the complete dataset, using the best hyperparameters and modeling decisions that were 
selected with cross-validation. It’s also a common but less correct practice to average the results of all models 
trained during cross-validation creating an ensemble. 
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encoded using dummy coding, dropping one level to avoid perfect multicollinearity, also known as 

dummy variable trap. However, this resulted in sparse matrixes with high dimensionality for 

categories with many level (e.g. city), for that reason a second approach was later adopted. 

The models officially applied include Logistic Regression, Random Forest and XGBoost. The final 

selected model was XGBoost, since it outperformed the other models, handles missing values, and is 

robust to features scale and outliers. 

There was no defined procedure or criteria for feature selection. The process was performed 

manually, using business expert insights, filtering strongly correlated variables and removing weak 

features according to the importance score from the model, retraining and repeating these steps. 

During the first modeling iterations, when the team was getting acquainted with the models being 

deployed, hyperparameter optimization was also conducted manually. During later iterations, when 

XGBoost was adopted, hyperparameter optimization was carried out with Grid Search6 on a subset of 

the most relevant hyperparameters, e.g. maximum tree depth. Since there was no validations set, 

results were evaluated on the test set. 

While the initial modeling results were being presented by the consultant team, a naïve baseline was 

created without using a model for the HV Overhead Lines PoF MVP. The baseline relied only on 

Failure feature that informs if an asset has failed or not during the current day.  

A Cumulative Moving Average was applied to this feature, at the level of each asset, where the 

window start is anchored to the beginning of the dataset, and the average is calculated up to each 

day in the dataset. This results in Rate of Failure for each asset since the beginning of the dataset 

until the current day.  

The ROC-AUC score between Failure Rate baseline and the Target is 0.75. During the first iterations, 

this value was not being reached, however later on this result was bested by all models deployed. 

4.2.9. Optimal classification threshold 

As mentioned in previous chapters, to monitor model performance and capacity to discriminate 

between classes, and control the quality of the PoF metric, ROC-AUC was used together with F1-

Score to make results more interpretable during meetings. 

Some authors claims that ROC-AUC “presents several flaws and it’s sensitive to class imbalance” 

(Chicco & Jurman, 2020). This point motivated some experiments made using Average Precision, that 

summarizes the tradeoff between Precision and Recall under different thresholds (Zhu, 2004). The 

objective was to monitor both metrics. However, this topic was studied only halfway of the modeling 

iterations and therefore Average Precision was not adopted. 

All models used have as output soft probabilities. To create a decision-making process based on 

model forecasts, considering a prescriptive analytics approach, or to simply calculate metrics like the 

F1-score, it’s necessary calculate a decision threshold parameter. The threshold converts the 

 
6 Brute-force or exhaustive search of hyperparameters conducted by defining a set of possible values, 

generating all combinations and evaluating the results. 
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probability into a hard class label (normal operation or failure), that if acted upon can have a positive 

or negative effect in business results. 

The consultant team selected the threshold based on the highest point on the ROC curve above the 

reference line, closest to the top left corner, maximizing both sensitivity and specificity, using 

Youden's J statistic (Brownlee, 2020b), and kept this method for the rest of the project. 

However, by using this method or any other that maximizes a specific classification metric it’s not 

possible to guarantee that the threshold chosen maximizes business value. For example, according to 

(Spiegel et al., 2018) work on cost-sensitive learning for predictive maintenance “highest F1-score, 

does not necessarily result in minimum maintenance cost, but can instead lead to additional 

expenses”. The authors propose to evaluate model results based on economic costs by “closely 

examine the business processes in order to gain a better understanding of the cost structure and 

incorporate the individual cost factors into the Predictive Maintenance optimization” (Spiegel et al., 

2018). 

An attempt was made to create a business metric that accounts for the energy lost or number of 

clients affected by a failure and corresponding power outage and other factors including 

maintenance costs, however EDP was not able to gather all the necessary information required. 

During the presentation that showcased the Predictive Analytics Project with the main steps and 

decisions taken at a smaller scale, focusing only one Overhead Line, a minimalistic example of how 

such metric could be defined was displayed. 

It consisted on attributing a return and cost to each quadrant of the confusion matrix: 
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Table 5 - Economic cost of an Asset Failure 

It’s worth to point out that this is a simplification of a much more complex optimization problem 

considering that: 

• There are in fact thousands of assets, maintenance costs are not constant and can vary 

according to multiple factors, for example a catastrophic failure has a greater cost compared 

to an incipient failure; 

• There is a limited response capacity by the maintenance teams that varies according to region 

and external service provider; 

• The cost of a failure is difficult to quantify and varies according to multiple factors; 
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• Adding to the complexity each asset can have its own threshold, accounting for all the factors 

that affect it, and the threshold can change with time. 

After having a metric that translates business value, it’s possible to approximate an optimal 

classification threshold that maximizes this metric. Using an Average Failure Cost of 35000 Monetary 

Units and an Average Maintenance Cost of 5000 Monetary Units, the result obtained is showed on 

Figure 38. 

 

• Failure average cost: 25000 MU 

• Maintenence average cost: 5000 MU 

 

Figure 38 - Maintenance Returns metric according to decision threshold 

It’s also possible to see the effect of choosing a threshold that maximizes a business metric on the 

F1-Score (Table 6). In this particular case, attributing the same weight to recall, that describes the 

ratio of detected failures relative to all actual failures, and precision, that describes the ratio of 

correctly labeled failures from the detected failures, might not be the optimal, because the cost of an 

asset failure is usually higher than the cost of maintenance meaning that recall is probably more 

important than precision. 

 Precision Recall F1-Score 

F1-Score Threshold 0.94 0.5 0.65 

Business metric Threshold 0.19 0.83 0.31 

Table 6 - Effect of different thresholds on the F1-Score 

Finally, for different values of Average Failure Costs and Average Maintenance Costs, it’s possible to 

verify the effect on the optimal classification threshold that maximizes business value (Figure 39).  

 
Figure 39 - Optimal threshold according to Average Failure Cost and Average Maintenance Cost 

The result is as expected, low failure costs together with high maintenance costs contribute to higher 

thresholds, since maintenance is more expensive, it makes sense in the short term to be more 

selective and minimize it as much as possible, only performing it on high PoF values.  
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The reverse also applies, high failure costs together with low maintenance costs yields lower 

thresholds, in this case it makes sense to perform more maintenance activity, to avoid as many 

failures as possible, even if some of the maintenance turns out to be non-essential, therefore acting 

out on lower PoF values and prioritizing detection. 

4.2.10. Model Explainability 

During the final development iterations, when the model results were being presented and 

validated, the business experts showed interest in having a more detailed analysis and understanding 

of the model output and what factors might be influencing it. 

Multiple approaches were applied, however all of them used feature importance from a specific 

algorithm, usually gradient tree boosting. These methods resulted on a bar a plot of ordered features 

by some importance metric, for example in LightGBM the importance metric is the “number of times 

a feature is used in a model”.  

To achieve the desired result SHAP was proposed, a method based on game theory that promises to 

explain the output any machine learning model (K. Zhang et al., 2012). A feature importance plot that 

summarizes variables effects on model output was presented (Figure 40), where it’s possible to see 

the distribution of all samples for each feature, sorted by the impact on the model output though 

SHAP values, where higher values contribute for the positive class, an asset failure, and negative 

values to the negative class or normal asset operation. Each sample is also rated by color scale 

according to its magnitude, where warmer colors represent higher sample values for that feature and 

colder colors represent lower values.  

 
Figure 40 - SHAP feature importance and effects (summary plot) 

For example, using this method, visually it’s possible to conclude that higher values of sea-level 

atmospheric pressure (Figure 40 – “msl_max”) appear to contribute to Overhead Line failure, what is 

counterintuitive, since higher atmospheric pressure is usually associated with good weather, and 

lower values with storms. However, after analyzing the atmospheric pressure history for the location 

and asset in scope, very high values and peaks could be found during the winter months of every 

year, a factor that might be influencing this particular outcome. It’s also possible to verify that the 
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most important variable identified was the average failure rate since the beginning of the dataset 

(Figure 40 – “falha_maa_asset”). 

This approach was adopted for the PoF MVPs and included in the project documentation. 

SHAP offered a second method to explain each sample of the dataset by showing what features are 

pushing a prediction higher or lower, in this case a failure or normal operation (Figure 41). This 

means that, it’s possible to visualize and determine what features and corresponding observation 

values are contributing to a specific PoF prediction, on a given day, for particular asset. However, 

even though this method answered the requirements of the request set forward by the business 

experts, it was not implemented by the consultant team because it required changes to the 

dashboard that were out of scope for the project. 

 
Figure 41 - SHAP prediction explainer (force plot) 

It’s important to point out that SHAP does not guarantee causality, and it constitutes an attempt to 

explain the behavior of machine learning models and make the results more interpretable. However, 

it’s a relevant tool that emerged in the recent years, and when used correctly can contribute to the 

widespread acceptance of a particular model or metric throughout a company. 

SHAP can also be used as a robust feature importance metric together with a feature selection 

framework, e.g. recursive feature elimination or Boruta, and as a method to debug models. 

4.2.11. Results and Discussion 

Some of the features discussed in the previous chapters were selected and included in the final 

Overhead Lines PoF model.  The delivered model included 36 features as showed in Table 7. 

Dataset % Feature Importance7 Number of Features 

Overhead Line Failure rates 40,65% 3 

Number of Labelec Anomalies by class and priority 26,39% 6 

Weather variables 9,79% 7 

Other variables (Age, Length, Month, etc.) 8,11% 6 

Intersection length of Land Cover vegetation subclasses 6,68% 7 

Number of Repair Notes 3,49% 1 

Intersection length of Important Bird Areas 2,53% 3 

Maximum elevation of Overhead Line 0,83% 1 

Distance to coastline 0,77% 1 

Intersection length of Burnt Area 0,76% 1 

Grand Total 100,00% 36 

Table 7 - Feature Importance by Dataset 

 
7 Feature Importance metric used was Gain from XGBoost framework that uses tree boosting 

algorithms. According to XGBoost documentation (XGBoost developers, 2020) “Gain is the improvement in 
accuracy brought by a feature to the branches it is on”. These values were retrieved from the final version of 
project the documentation and then aggregated by theme. 
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From all sources used at least one or more features were included in the model. Features related 

with past failures, are among the most important ones for both Circuit Breakers and Overhead Lines, 

usually with longer time windows, e.g. the failure rate in the last 2 years. 

The following results were reported for the PoF metrics: 

Asset AUC-ROC 

HV Circuit Breakers 0.73 

HV Overhead Lines 0.83 

Table 8 - PoF Results 

The Overhead Lines PoF model together with the classification threshold reported, provided 0.08 

recall and 0.23 precision. The real-word applicability of both models was later discussed by EDP. 

4.3. IMPROVEMENTS 

After the main Development phase and Industrialization phase of the Predictive Asset Analytics 

Project finished, validations from EDP experts continued for several weeks, together with essential 

corrective maintenance activities supported by the external service provider. 

To this day some problems and improvements were identified, that are holding the project back from 

being deployed from pre-production to the production environment. 

Example of some feedback provided by EDP include the following topics: 

• The dashboards are very heavy and slow; 

• Some very relevant internal EDP sources used for the projected are not connected or linked to 

the automated version in the data lake, and are instead static; 

• Variables created form external sources are merged with the dataset before they are available 

online or before the event occurs, e.g. the Burnt Area; 

• Some errors concerning business rules, bugs, and variables that do not have the correct time 

interval; 

• Versioning problems, where the last version of the notebooks was not deployed to the pre-

production environment; 

• Some issues were raised concerning incomplete or vague documentation. 

• Uncertainty about real-world applicability of PoF metrics based on the reported performance 

estimations; 

However, the project and its outcome should not be seen as unsuccessful, since all products 

delivered are MVPs with vast scope and complexity, tight schedules and many challenges, including 

legacy systems, complex domain and problem, very complex business rules, large developing teams 

with different backgrounds working with different technologies, high coordination required with 

different EDP’s business areas and experts, during all phases of the project.  

Even though quality might not be the best during the first version of these products, the structure 

and most of the work is there, and the successful handover and knowledge transfer allowed EDP to 
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start working on and improving all MVPs, to allow for a successful deployment. This is expected since 

software products developed with agile methodologies are improved during consecutive iterations 

and only essential requirements are delivered. 

The ETL process, including data loading, pre-processing, cleaning, transformations, feature 

engineering and identifying the target variables was without a doubt the most time-consuming 

activities of the whole project, however provide the necessary foundation for the later modeling 

phases.  

The results provided by both PoF metrics provide a baseline that can be improved upon with new 

modeling iterations:  

• By taking advantage of other internal EDP information sources and variables, e.g. readings 

from sensors, monitoring electrical signals, and further exploring integrated datasets, 

especially the Electrical Grid Control System and Events; 

• New techniques and models. Creating a stronger baseline by testing time series forecasting 

models like ARMA and ARIMA. Applying Deep Learning methods using Neural Networks, and 

testing different architectures, including Recurrent layers (e.g. GRU, LSTM), Convolutional 

layers, Attention layers, Embedding layers, etc.; Creating ensembles of different classifiers, 

stacking predictions from previous days, or from other models, etc.; 

• Redefining the problem or the approach to solve the problem, for example predicting the 

probability of failure within the next 15 days instead of probability of failure on the 15th day 

ahead. Using unsupervised time series anomaly detection techniques to detect abnormal asset 

behavior. Apply other ML methods used to model and forecast extreme or rare events. 
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5. CONCLUSIONS 

A project composed of several MVPs concerning Prediction Maintenance of high voltage power grid 

assets, using two approaches, OFGEM and probabilistic machine learning classification algorithms. 

The main conclusions are going to be presented in this section, including limitations, lessons learned, 

and future work. 

5.1. CONNECTION TO THE MASTER PROGRAM 

During the internship, most of the tasks developed where related to Data Analytics, Data Science, 

and Business Intelligence. Many and diverse topics were analyzed and worked on. 

Most of the theoretical and practical knowledge acquired during the Master Program was applied. 

Almost all theoretical and practical course materials from Data Mining I and II, Text Analytics and Big 

Data Analytics, played a central role and supported most of the functions developed during the 

internship.  

For Data Mining I and II this includes knowledge acquired of data mining processes and frameworks, 

data cleaning and preprocessing, feature engineering and selection, descriptive and predictive 

models, validation strategies and evaluation metrics. For text analytics, topics concerning more 

advanced machine learning concepts that are transversal to other fields outside of NLP, e.g. Hidden 

Markov Model (HMM) Recurrent Neural Networks (RNN) and sequential data, text cleaning and 

preprocessing, and other concepts already referenced. For Big Data analytics, the concept distributed 

computing, distributed file systems, clusters and of manipulating, processing and transforming 

datasets bigger than available memory, by splitting larger files into partitions and distributing them 

by computing resources while saving the outputs in a file system. 

All practical knowledge obtained applying these concepts in Python notebooks using the Python Data 

stack, in Big Data technologies, most notably Spark and the Databricks platform, was directly used in 

the internship, explored thoroughly and improved.  

Other course units also proved useful during the internship. Concepts of ETL, Data Warehousing, SQL, 

Relational Databases, Data Models and Data Visualization approached in Business Intelligence I and 

II. Knowledge about social network analysis and graphs from Knowledge Management was also 

relevant to the internship, since the electrical grid and assets can be described as a network through 

edges and nodes. Finally, knowledge about Business Processes and BPMN notation was also used to 

implement new requirements in a process mining project, not discussed in this report. 

5.2. INTERNSHIP EVALUATION 

The evaluation of the internship is overall very positive. Most of the requirements and objectives set 

forward for the second year of the Master’s program were accomplished, these include: 

• Finding an internship related with Data Analytics, Data Science, or Machine Learning fields. 

Guaranteeing that the activities performed during the internship are aligned with the Master’s 

program;  
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• The internship also included a hands-on approach. Working on challenging and interesting 

problems and datasets, applying recent algorithms, and using mainstream development 

platforms and tools, usually open source supported by a wide community, where recent 

papers are implemented; 

• Being included in a major advanced analytics project, working side by side with one of the 

biggest IT consulting companies in the market, provided a real-world experience in the Energy 

Sector and privileged insight of the state of Data Science in Portugal; 

• Working for one of the largest Portuguese companies, more specifically in the Energy 

Distribution Sector, also provided unique insights on a wide variety of topics. 

During the internship, most of the work performed was on data cleaning, transformation, feature 

engineering, where a great percentage of the effort of the project was allocated as expected. 

However, it could also have been a very interesting experience to work more closely in the next steps 

of the process, most notably the modeling phase, while using more experimental approaches. 

5.3. LIMITATIONS 

There were several limitations identified concerning the Predictive Asset Maintenance Project, 

described below. 

• Very ambitious project scope and tight scheduling. There were several meetings every week, 

where objectives, activities and deliverables were planned. Sometimes there was only one or 

two days available until the next meeting to complete the work and deliver results, however 

the problems solved during this period could be very complex and require great effort. 

Sometimes this would result in delays, rushed or poorly executed requirements, cutting 

corners, and not extensively testing code being developed. Consequently, the concept of an 

MVP was pushed to the limit; 

• There was no clear software testing methodology. During the development EDP recommended 

the adoption of some good practices, concerning the product architecture and methods being 

deployed, however these were sometimes overlooked by the service provider. Business 

validations and acceptance testing was carried out during final stages of the project, which 

revealed many issues, that later were confirmed in the source code delivered. More explicit 

quality control may have prevented some issues, but typically agile methodologies overlook 

quality in favor of rapid development cycles, and constant and incremental improvements; 

• All sorts of data quality problems affecting internal sources. All datasets consumed by the 

project required cleaning and preprocessing. The cleaning effort varies according to dataset; 

• Integration problems with legacy systems and interdependencies with other projects, some 

sources were not available in the data lake during early stages;  

• Very complex business rules and business domain that required coordination and very close 

participation of EDP experts of diverse business areas and fields during most stages of the 

development. Lack of documentation and knowledge base. Business knowledge required for 

deciphering and manipulating the information from datasets was usually locked within a 

limited number of experts; The fact that EDP has a low turnover of employees may account for 

a less strict knowledge management practices.  
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• At least 7 MVPs were being developed at the same time, each one with different complexity 

levels. The consultant team had approximately 10 to 20 members actively developing all MVPs. 

With some frequency elements would leave the team and new elements would be introduced. 

Each element had different background and specialization, and different levels of experience 

working with technologies being used, and the methods being applied. Sometimes exploration 

and analysis of problems, learning and training, and implementation of requirements was 

performed at the same time. This required a great coordination effort. 

5.4. LESSONS LEARNED 

Some general thoughts concerning topics that could have been improved by the author during the 

internship, and overall good practices and experience acquired is going to be presented below. 

The first point that could be improved concerns a more thorough monitoring and involvement during 

the development of the Predictive Asset Maintenance project. Some problems could have been 

anticipated and avoided if closer monitoring and testing had been performed during development. 

Possible issues and errors could have been reported so adjustments could have been made.  

The second point that could have been improved concerns providing more information about EDP’s 

business domain and internal sources to the consultant team, to speed up development and assure 

the correct implementation of business rules. However, since the author was not acquainted with 

some topics in the first months of the internship, a viable alternative would have been to connect the 

consultant team with the appropriated EDP business experts, to bridge the knowledge gap whenever 

a requirement being implemented required details or interpretation about some source, dataset or 

business domain. The reverse also applies, since it was possible to integrate the consultant team 

from an early period, knowledge documentation and transfer about the project and deliverables, 

including the products source code, logic and architecture, could have also been done more 

comprehensively. 

The third point consists on flowing good practices for software development. It’s important to 

carefully manage the development environments, code readability, software dependencies and 

libraries versions, to guarantee compatibility, integration and long-term support, so that the product 

does not stop working in the future because of changes to the environment. It’s also important to 

document all code being developed both conceptually and technically, providing information on 

what and how it is doing - what problem is being solved and what solution is being implemented. 

This is important to enable other developers to build on top of or improve the product, or to clarify 

any questions from EDP business users. 

The fourth point concerns the importance of having a well-defined scope and very organized and 

result oriented approach to implementing software requirements.  

Having a static scope is essential, because new specifications and problems usually change the 

architecture of the solution being implemented, similar to how a painter needs its subjects to stand 

still when drawing a portraited. However, unanticipated problems that have to be addressed should 

also be accounted for. 

It’s important to first research and analyze the problem, finding candidate solutions, and selecting 

the optimal solution without implementing all candidates, maintaining a balance between 
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exploration and exploitation. It’s also very easy when working on an interesting problem lose track of 

time or the objective, or testing different approaches, to compare results, when a workable solution 

has already been found. Though the knowledge acquired is usually useful for other tasks ahead. 

Research and analysis of the problem should consider current literature, relevant open source 

development communities and platforms, and mainstream software libraries and its 

implementations of algorithms. It’s usually safer and faster to use well established and tested 

implementations, instead of custom development, or “reinventing the wheel”, even if means 

sacrificing some performance.  

Generalization is time consuming can be a pitfall. Usually well-defined solutions generalize well, 

however highly specific parts of code that are contained, can be left more tailored to the task being 

solved. The entire pipeline should be viewed as an approximation of reality, including the statistical 

models, so it’s important to manage time and effort, to achieve a good enough solution without 

consuming all resources.  

The fifth point concerns the importance of the domain experts in a data science project. In this case, 

the business experts had a very important role during all stages of the project, including data 

cleaning, feature engineering and feature selection processes, because they possess extended 

domain knowledge about assets, their operation and behavior, maintenance procedures, internal 

and external factors (e.g. weather or vegetation) and their effect, and Information Systems, e.g. data 

structure, relational model, and retrieval processes.  

This allows the experts to share invaluable insight that include for example: 

• Features that might be relevant to discriminate the target or irrelevant features that should be 

excluded;  

• Formulas, rules or criteria to transform, combine and create new variables;  

• Describe and justify apparent relations between variables or detect spurious relationships;  

• Determine the cause of missing values and advise on the best way to impute them, e.g. 

estimating the value using other assets from the same manufacturer, or in some cases the 

expert acquired and provided the values using other Information System;  

• Determine the cause of an incoherent values and advise on possible solutions to deal with 

such values, e.g. identify the value or consider it null;  

• Help explain or justify outliers and provide lower and upper bounds or lists of possible 

expected values;  

• Help interpret and validate model results and other procedures.  

These inputs will also affect, guide or justify multiple modeling decisions throughout the project.  

The sixth point consist on controlling performance, overhead and resource consumption of the 

operations being implemented. It’s important to have a notion of the computational cost of the 

operations and algorithms being implemented, usually described using time complexity and memory 

complexity. This is especially relevant on big datasets, avoiding or approximating when possible, 
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algorithms with time complexity worse than O(n Log n) and using the appropriate data structures 

and algorithms to manage and reduce the cost of operations (Figure 42).  

It’s also worth noting that creating distributed implementations of an algorithm usually provides a 

linear speedup, where the problem is solved N times faster depending on the number of machines. 

This speedup is overshadowed by algorithms that require polynomial time or worse according to the 

size of the input. 

 

Figure 42 - Big-O Complexity Chart 
Source: (Rowell, 2016) 

Tradeoffs between types of resources should also be accounted for, a generic example is designing a 

pipeline that uses less RAM memory at the expense of more disk operations and slower execution 

times. Databricks does not provide a user-friendly way to monitor memory being used by the 

working notebook connected to the driver, however code profiling can be easily deployed in python 

to detect high memory usage and execution times. 

Operations implemented should generally be designed using distributed computing paradigm to 

scale horizontally, especially when there is a clear and identified requirement or advantage in doing 

so. It’s also important to identify situations that do not require distributed computing and can be 

solved using single threaded python scripts. This can happen for several reasons, for example: 

• Trying to solve specialized problems that are out of scope of the main functionality provided 

by the distributed computing framework, considering that integration attempts could proof to 

be a major effort, and a simpler design is efficient and effective enough to provide the 

necessary results, e.g. the elevation script referenced in the report. It’s always worth to 

analyze a problem considering that there are no universal solutions, and that distributed 

computing is suitable for subset of problems, in this case applied for processing structured and 

tabular data; 

• Less complex situations where datasets being worked on are relatively small and fixed size, do 

not grow in the future, and can be easily processed with mainstream libraries like Pandas, 

taking less effort, and providing less overhead, while sometimes being more efficient. Using a 

cluster to process small amounts of data can be compared to using an elevator to get to the 

first floor instead of using the stairs, it will probably take longer. However, during interactions 

with Spark in the Databricks environment using the cluster setup, the framework showed to be 

very fine-tuned to handle datasets of all sizes. 
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The seventh point concerns a common good practice of starting modeling activities by creating a very 

simple baseline, usually without using a statistical model, based on one or two basic rules, and 

increasing the complexity of methods used and models deployed as iterations progress. This allows 

to keep track of performance during iterations, and determine if complex models are outperforming 

the baseline provided by simpler models from previous iterations, and if the choice of using a 

complex model is indeed justified. 

The eight point concerns soft skills including communication, reporting and presentation, that in this 

case, can be improved. These skills can be enhanced by practicing, e.g. preparing before 

presentations, training with colleagues, etc. 

5.5. FUTURE WORK 

Currently several new initiatives are being followed or developed. Some of these initiatives are 

presented below. 

Several corrections and improvements for the Predictive Asset Maintenance project, some of them 

discussed in this report, are currently being identified and implemented by an EDP team, with the 

goal of deploying all products to production as soon as possible. This first iteration only explored part 

of the potential that this project and its products can deliver, from a technical, analytical and 

business or functional perspective. One example of some improvements consists on refining 

objectives and requirements (e.g. prediction window), integrating new data sources, developing new 

features and applying other modeling techniques.  

• One of the greatest opportunities that has not been explored consists on using all resources of 

the cluster to train models. Since the dataset is relatively small, and consists of approximately 

4 million samples, currently only one XGBoost model is trained using the driver resources, in a 

multithread setup. There are distribution implementations of this model integrated with 

PySpark, usually deployed for datasets that are larger than memory and require collective 

resources to be trained. However, since it’s possible to run the model in memory there is also 

the opportunity to run instances of a model in different machines, using Spark but applying a 

concept closer to parallel computing. Considering the large amount of resources available in 

the cluster this approach would allow to train multiple models at the same time, this is a very 

useful property to apply advanced strategies including cross validation (e.g. walk-forward), 

feature selection (e.g. recursive feature elimination or Boruta), hyperparameter optimization 

(e.g. grid search or even Bayesian optimization), and ultimately creating ensembles of models, 

that would otherwise be unfeasible due to limited resources and large execution times. This 

kind of strategy would also accelerate a result driven exploration and analysis of the dataset 

and the effects of applying different techniques.  

• Deploying advanced approaches based on Deep Learning, for example, applying Recurrent 

Neural Networks to leverage predictions from previous time steps and capture “the history of 

all the past elements of the sequence” (Lecun et al., 2015). This approach would require a 

different architecture - a batch generator should be created, since the preprocessing would 

yield a larger dataset with more than two dimensions. This generator would return batches of 

fixed size of a multidimensional array the form of (batch size, time steps and features), a 

fourth dimension could be added, representing the asset, and the weights could be shared on 
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this axis, between all assets. Integration strategies with Spark should be studied, considering 

that training batches or samples should be shuffled, as this is a requirement of mini batch 

Stochastic Gradient Descent optimizers (Goyal et al., 2017), that improves generalization and 

reduces overfitting. However perfect shuffling of a large stored dataset can introduce 

overhead and latency, since accessing random indexes of an array requires for the same 

partitions be loaded multiple times. Usually Neural Networks can be computationally intensive 

and are accelerated with GPUs, which provide seamless integration with Keras, and are 

available on Databricks, therefore it’s important to have a low latency, high throughput 

pipeline, that can feed the GPU, and does not constitute a bottleneck; 

• Using a semi-supervised8 approach to more accurately determine Circuit Breaker failures. A 

sampling strategy could be designed, e.g. select a small sample of random dates, and select log 

events using a time window centered on these dates to account for data locality and 

autocorrelation (other factors should be studied to create a representative sample). 

Afterwards, create a simple and minimalistic interface that shows all required information, so 

business experts can quickly classify these samples with a high degree of confidence. The 

resulting small dataset can be enhanced with some of the most accurately classified events 

already deployed in the current pipeline that were obtained by applying very complex business 

rules. Semi-supervised approaches could then be applied, the simplest example is using a “self-

training scheme”, it consists on training a model using all available labeled samples, and use 

high confidence predictions obtained from unlabeled data as training samples for following 

iterations (Kingma et al., 2014); 

A proof of concept to automatically identify incorrectly positioned elements of EDP’s electrical grid 

from its geographic information system is currently being developed. For this project it was 

necessary to implement a spatial join with Spark, since this operation is not natively supported, 

Python libraries where integrated with the framework. This implementation will also be used as an 

improvement from the Predictive Asset Maintenance project, to expand the Land Cover features, as 

previously discussed. The design had to take into consideration that there are parts of the process 

that can be distributed and integrated with Spark and others that aren’t thread safe or use objects 

that can’t be serialized and must be executed in Python.  

• Python’s Rtree library isn’t thread safe and can’t be serialized, however it can take as input the 

identifier of each record, and the bounding box of each geometry, in the form of a python 

generator. This is a very useful property since spark RDDs also offer an option to be accessed 

through a generator, meaning that, the dataset does not have to be loaded into memory. And 

even though this process is executed sequentially on a single machine or core it’s relatively 

fast. The result is an in-memory spatial index. 

• To query the Rtree the same strategy can be used, however the results are saved in memory as 

a python list that maps each identifier of the left geometries to the identifiers of the right 

geometries, creating a relation table of possible intersections. Since the identifiers saved in a 

Python list are just integers this process continues to scale to hundreds of millions of 

geometries without consuming all available memory. The relation list has then to be converted 

 
8 According to (Kingma et al., 2014) “semi-supervised learning considers the problem of classification 

when only a small subset of the observations have corresponding class labels”. It’s utilized in situations where 
there is a large number of unlabeled samples that are hard to classify (Kingma et al., 2014) 
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to a Spark Data Frame. This is the slowest part of the non-distributed process, taking 

approximately 10-15 minutes for every 2 million geometries queried, considering the 

infrastructure and dataset being used; 

• The next step consists on merging both left and right tables using the relation table obtained 

using a Spark join and finally testing if each pair of geometries intersects, filtering out the ones 

that don’t. This step can be achieved with distributed computing, by mapping a function that 

serializes both geometries and tests the intersection using Shapely functions and prepared 

geometries, retuning a Boolean flag, later used as filter. This reduces the execution time from 

several minutes to seconds. The result are two merged datasets based on the condition if their 

geometries intersect. 

Other initiatives include: 

• An analytics project that aims to predict energy consumption and generation in real-time is 

being accompanied; 

• A process mining and business intelligence project that is going through a new iteration. New 

requirements and some improvements are currently being implemented; 

 

 

 

 

 



64 
 

6. BIBLIOGRAPHY 

Adams, A., & Vamplew, P. (1998). Encoding and Decoding Cyclic Data. The South Pacific Journal of 
Natural Science, 16, 54–58. 

Aeronautical Information Service. (2019). Manual VFR. 
https://www.nav.pt/docs/AIS/aerodromos/lisboaa7bd57cda4b86c298a71ff00009f255e.pdf?sfv
rsn=46 

Armbrust, M., Ghodsi, A., Zaharia, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., 
Kaftan, T., & Franklin, M. J. (2015). Spark SQL: Relational Data Processing in Spark Michael. 
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data - 
SIGMOD ’15, 41(6), 1383–1394. https://doi.org/10.1145/2723372.2742797 

Brownlee, J. (2019). How To Backtest Machine Learning Models for Time Series Forecasting. 

Brownlee, J. (2020a). A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning. 
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-
machine-learning/ 

Brownlee, J. (2020b). A Gentle Introduction to Threshold-Moving for Imbalanced Classification. 
Machine Learning Mastery. https://machinelearningmastery.com/threshold-moving-for-
imbalanced-classification/ 

Brownlee, J. (2020c). How to Calculate Feature Importance With Python. 
https://machinelearningmastery.com/calculate-feature-importance-with-python/ 

Brownlee, J. (2020d). ROC Curves and Precision-Recall Curves for Imbalanced Classification. 
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-
classification/ 

Brownlee, J. (2020e). What is the Difference Between Test and Validation Datasets? 
https://machinelearningmastery.com/difference-test-validation-datasets/ 

Cerqueira, V., Torgo, L., & Mozetic, I. (2019). Evaluating time series forecasting models: An empirical 
study on performance estimation methods. 1–28. http://arxiv.org/abs/1905.11744 

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2011). SMOTE: Synthetic Minority 
Over-sampling Technique. Journal of Artificial Intelligence Research, 2009(Sept. 28), 321–357. 
https://doi.org/10.1613/jair.953 

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 785–
794. https://doi.org/10.1145/2939672.2939785 

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over 
F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 6. 
https://doi.org/10.1186/s12864-019-6413-7 

Copernicus Programme. (2020). EU-DEM v1.1 - Metadata. https://land.copernicus.eu/imagery-in-
situ/eu-dem/eu-dem-v1.1?tab=metadata 

DaftLogic. (2018). Find Altitude on Map. https://www.daftlogic.com/sandbox-google-maps-find-
altitude.htm 



65 
 

Damji, J. S., Wenig, B., Das, T., & Lee, D. (2020). Learning Spark: Lightning-Fast Data Analytics (2nd 
ed.). O’Reilly Media. https://www.oreilly.com/library/view/learning-spark-
2nd/9781492050032/ch01.html 

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. 
Proceedings of the 23rd International Conference on Machine Learning - ICML ’06, 233–240. 
https://doi.org/10.1145/1143844.1143874 

Direção-Geral do Território. (2020). Cartografia de Uso e Ocupação do Solo (COS, CLC e Copernicus). 
https://www.dgterritorio.gov.pt/cartografia/cartografia-tematica/COS-CLC-COPERNICUS 

Dolatshah, M., Hadian, A., & Minaei-Bidgoli, B. (2015). Ball*-tree: Efficient spatial indexing for 
constrained nearest-neighbor search in metric spaces. http://arxiv.org/abs/1511.00628 

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network 
classification models: a methodology review. Journal of Biomedical Informatics, 35(5–6), 352–
359. https://doi.org/10.1016/S1532-0464(03)00034-0 

EDP Distribuição. (2018). Who we are. https://www.edpdistribuicao.pt/en/about-us/who-we-are 

EDP Distribuição. (2019). Os nossos números. https://www.edpdistribuicao.pt/pt-pt/sobre-nos/os-
nossos-numeros 

EDP Group. (2019). A EDP em Números - Indicadores Financeiros. https://www.edp.com/pt-pt/a-
edp/edp-em-numeros 

EDP Labelec. (2020a). História. https://labelec.edp.com/pt-pt/historia 

EDP Labelec. (2020b). Who are we. https://labelec.edp.com/en/who-are-we 

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of 
Animal Ecology, 77(4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x 

Enet Centre - VSB. (2019). VSB Power Line Fault Detection. https://www.kaggle.com/c/vsb-power-
line-fault-detection/overview 

European Parliament. (1997). Directive 96/92/EC of the European Parliament and of the Council of 19 
December 1996 concerning common rules for the internal market in electricity. https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996L0092 

Goutte, C., & Gaussier, E. (2005). A Probabilistic Interpretation of Precision, Recall and F-Score, with 
Implication for Evaluation (pp. 345–359). https://doi.org/10.1007/978-3-540-31865-1_25 

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., & He, K. 
(2017). Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. 
http://arxiv.org/abs/1706.02677 

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. ACM SIGMOD Record, 
14(2), 47–57. https://doi.org/10.1145/971697.602266 

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal of 
Machine Learning Research, 3, 1157–1182. https://doi.org/10.1162/153244303322753616 

H. Dufourmont, J. Gallego, H. Reuter, P. S. (2014). EU-DEM Statistical Validation Report. 
https://ec.europa.eu/eurostat/documents/7116161/7172326/Report-EU-DEM-statistical-
validation-August2014.pdf 



66 
 

Haining, R. P. (2001). Spatial Autocorrelation. In International Encyclopedia of the Social & Behavioral 
Sciences (pp. 14763–14768). Elsevier. https://doi.org/10.1016/B0-08-043076-7/02511-0 

Hubert, M., & Van Der Veeken, S. (2008). Outlier detection for skewed data. Journal of 
Chemometrics, 22(3–4), 235–246. https://doi.org/10.1002/cem.1123 

International Organization for Standardization. (2014). ISO 55000:2014: Asset management — 
Overview, principles and terminology. International Organization for Standardization, Geneva, 
Switzerland. https://www.iso.org/obp/ui/#iso:std:55088:en 

Ivezic, Ž., Connolly, A. J., VanderPlas, J. T., & Gray, A. (2014). Statistics, Data Mining, and Machine 
Learning in Astronomy (1st ed.). Oxford University Press. 
https://www.astroml.org/book_figures/chapter2/fig_balltree_example.html 

Jacox, E. H., & Samet, H. (2007). Spatial join techniques. ACM Transactions on Database Systems, 
32(1), 0–70. https://doi.org/10.1145/1206049.1206056 

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. 
Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 
374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202 

Karney, C. F. F. (2013). Algorithms for geodesics. Journal of Geodesy, 87(1), 43–55. 
https://doi.org/10.1007/s00190-012-0578-z 

Kaushik, S. (2016). Introduction to Feature Selection methods with an example. 
https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-
with-an-example-or-how-to-select-the-right-variables/ 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly 
efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 
2017-Decem(Nips), 3147–3155. 

Kingma, D. P., Rezende, D. J., Mohamed, S., & Welling, M. (2014). Semi-supervised learning with deep 
generative models. Advances in Neural Information Processing Systems, 4(January), 3581–3589. 

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model 
selection. International Joint Conferences on Artificial Intelligence (IJCAI), 2, 1137–1143. 
https://doi.org/10.5555/1643031.1643047 

Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Techniques. 
Informatica, 31, 249–268. https://dl.acm.org/doi/10.5555/1566770.1566773 

Kuhlman, D. (2013). A Python Book. A Python Book, 1–227. 

Kursa, M. B. (2020). Boruta for those in a hurry. 1–6. https://cran.r-
project.org/web/packages/Boruta/vignettes/inahurry.pdf 

Kursa, M. B., & Rudnicki, W. R. (2010). Feature selection with the boruta package. Journal of 
Statistical Software, 36(11), 1–13. https://doi.org/10.18637/jss.v036.i11 

Kwak, S. K., & Kim, J. H. (2017). Statistical data preparation: Management of missing values and 
outliers. Korean Journal of Anesthesiology, 70(4), 407–411. 
https://doi.org/10.4097/kjae.2017.70.4.407 

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 
https://doi.org/10.1038/nature14539 



67 
 

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense Object Detection. 
http://arxiv.org/abs/1708.02002 

Mack, C., Su, Z., & Westreich, D. (2018). Managing Missing Data in Patient Registries. 
https://www.ncbi.nlm.nih.gov/books/NBK493611/pdf/Bookshelf_NBK493611.pdf 

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., & Theodoridis, Y. (2006). R-Trees: Theory 
and Applications. Springer London. https://doi.org/10.1007/978-1-84628-293-5 

Mayo, M. (2017). The Practical Importance of Feature Selection. 
https://www.kdnuggets.com/2017/06/practical-importance-feature-selection.html 

McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings of the 9th 
Python in Science Conference, 1697900(Scipy), 51–56. 
http://conference.scipy.org/proceedings/scipy2010/mckinney.html 

Meinshausen, N. (2006). Quantile Regression Forests. Journal of Machine Learning Research, 7, 983–
999. https://doi.org/10.5555/1248547.1248582 

Mitchell, T. M. (1997). Machine Learning (1st ed.). McGraw-Hill Science/Engineering/Math. 

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press. 

Ofgem. (2017). DNO common network asset indices methodology. January, 198. 
https://www.ofgem.gov.uk/system/files/docs/2017/05/dno_common_network_asset_indices_
methodology_v1.1.pdf 

Omohundro, S. M. (1989). Five balltree construction algorithms. Science, 51(1), 1–22. 
https://doi.org/10.1016/S0092-8240(89)80047-3 

Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. Journal of Artificial 
Intelligence Research, 11, 169–198. https://doi.org/10.1613/jair.614 

Perry, M. T. (2015). Python affine transforms. https://www.perrygeo.com/python-affine-
transforms.html 

Rasterio developers. (2018). Windowed reading and writing. 
https://rasterio.readthedocs.io/en/latest/topics/windowed-rw.html 

Reuters. (2019). About EDP - Energias de Portugal SA. https://www.reuters.com/companies/EDP.LS 

Rocklin, M. (2015). Dask: Parallel Computation with Blocked algorithms and Task Scheduling. 
Proceedings of the 14th Python in Science Conference, Scipy, 126–132. 
https://doi.org/10.25080/majora-7b98e3ed-013 

Rowell, E. (2016). Big-O Cheat Sheet. Big-O Cheat Sheet 

Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach. 

Schneider, J. (1997). Cross Validation. Carnegie Mellon School of Computer Science. 
https://www.cs.cmu.edu/~schneide/tut5/node42.html 

Scikit-learn developers. (2020a). Decision Trees. https://scikit-learn.org/stable/modules/tree.html 

Scikit-learn developers. (2020b). Imputation of missing values. https://scikit-
learn.org/stable/modules/impute.html 



68 
 

Scikit-learn developers. (2020c). Permutation feature importance. https://scikit-
learn.org/stable/modules/permutation_importance.html 

Scikit-learn developers. (2020d). RandomForestClassifier. https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 

SciPy community. (2020). kd-tree for quick nearest-neighbor lookup. 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html 

Spiegel, S., Mueller, F., Weismann, D., & Bird, J. (2018). Cost-Sensitive Learning for Predictive 
Maintenance. 1–18. http://arxiv.org/abs/1809.10979 

Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics. 
https://doi.org/10.1016/j.aci.2018.08.003 

Tony Liu, F., Ming Ting, K., & Zhou, Z.-H. (2008). Isolation Forest. ICDM. 
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf%0Ahttps://cs.nju.edu.cn/zh
ouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest 

Tuv, E., Borisov, A., Runger, G., & Torkkola, K. (2009). Feature selection with ensembles, artificial 
variables, and redundancy elimination. Journal of Machine Learning Research, 10, 1341–1366. 

Unal, I. (2017). Defining an optimal cut-point value in ROC analysis: An alternative approach. 
Computational and Mathematical Methods in Medicine, 2017. 
https://doi.org/10.1155/2017/3762651 

Universidade EDP. (2019). Curso Gestão de Ativos. 

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array: A Structure for Efficient 
Numerical Computation. Computing in Science & Engineering, 13(2), 22–30. 
https://doi.org/10.1109/MCSE.2011.37 

Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model 
selection. BMC Bioinformatics, 7, 91. https://doi.org/10.1186/1471-2105-7-91 

Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., & Mueller, A. (2015). Scikit-learn. 
GetMobile: Mobile Computing and Communications, 19(1), 29–33. 
https://doi.org/10.1145/2786984.2786995 

Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining data with random forests: A survey and 
results of new tests. Pattern Recognition, 44(2), 330–349. 
https://doi.org/10.1016/j.patcog.2010.08.011 

Wikipedia contributors. (2020). R-tree. Wikipedia, The Free Encyclopedia. 
https://en.wikipedia.org/w/index.php?title=R-tree&oldid=977399328 

Wirth, R., & Hipp, J. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. 
Proceedings of the Fourth International Conference on the Practical Application of Knowledge 
Discovery and Data Mining, 24959, 29–39. 

Witten, I., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques (2nd 
(ed.)). 

XGBoost developers. (2020). Understand your dataset with XGBoost. 
https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html 



69 
 

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster computing 
with working sets. 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2010. 

Zhang, K., Zhang, Y., & Wang, M. (2012). A Unified Approach to Interpreting Model Predictions Scott. 
Nips, 16(3), 426–430. 

Zhang, Z., Mayer, G., Dauvilliers, Y., Plazzi, G., Pizza, F., Fronczek, R., Santamaria, J., Partinen, M., 
Overeem, S., Peraita-Adrados, R., da Silva, A. M., Sonka, K., Rio-Villegas, R. del, Heinzer, R., 
Wierzbicka, A., Young, P., Högl, B., Bassetti, C. L., Manconi, M., … Khatami, R. (2018). Exploring 
the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy 
Network database with machine learning. Scientific Reports, 8(1), 10628. 
https://doi.org/10.1038/s41598-018-28840-w 

Zheng, A., & Casari, A. (2018). Feature Engineering for Machine Learning: Principles and Techniques 
for Data Scientists (1st ed.). O’Reilly Media. 

 



Page | i  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




