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Abstract

Intuitively Generalization in Machine Learning can be understood as a models ability

to apply its trained or acquired knowledge to a previously unseen scenario. In the

recent years there has been an exponential growth in machine learning models both

efficiency and accuracy, yet the current research is still trying to understand and trust

how well models can perform on previously unseen data.

For this thesis we propose a study of machine learning’s theoretical background to

further expand the notion of generalization and it’s limitation’s, enabling us to derive

its commonly accepted approximation, definitions that we will use to present a new

generalization metric or score more consistent in detecting and providing understand-

ing of the occurrence of generalization.

Additionally a new loss function will be presented in order to mitigate generalization

error inherit to a noisy sample, where extensive tests suggest that our loss function has

a higher rate of convergence while producing statistically similar or even better results

when compared with classical loss functions.

Keywords: Generalization; Machine Learning; Loss Function; Metric; Noise;
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Resumo

Intuitivamente generalização em Aprendizagem Automática pode ser entendida como

a capacidade de um modelo em aplicar o seu conhecimento treinado ou adquirido a

um cenário nunca antes visto. Nos últimos anos, tem existido um crescimento exponen-

cial tanto na eficiência quanto na precisão dos modelos de Aprendizagem Automática,

no entanto a pesquisa atual ainda se debate bastante em como entender e confiar na

capacidade de execução dos modelos em dados nunca antes vistos.

Para esta tese, propomos um estudo dos fundamentos teóricos da Aprendizagem

Automática para expandir ainda mais a noção de generalização e suas limitações,

permitindo-nos derivar sua aproximação comummente aceita. Definições estas que

usaremos para apresentar uma nova métrica de generalização mais consistente na de-

tecção da ocorrência ou não de generalização.

Adicionalmente, uma nova função de perda será apresentada a fim de mitigar o erro

de generalização herdado de uma amostra ruidosa, onde testes extensivos sugerem

que nossa função de perda tem uma taxa de convergência significantemente mais alta

produzindo resultados estatisticamente semelhantes ou até melhores quando compa-

rada com as funções de perda clássicas.

Palavras-chave: Generalização; Aprendizagem Automática; Função de Perda; Métrica;

Ruido;
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1
Introduction

In the current scenario where machine learning models are increasingly more used

in our societal infrastructures the need to ensure they’ll perform as expected in all

possible situations is higher than ever. In the recent years there has been an exponen-

tial growth in machine learning models both efficiency and accuracy, yet the need to

understand and trust how well they will perform on previously unseen data is still a

highly debated topic, in other words how well does a model generalize it’s given problem?

1.1 Proposal Overview

For this thesis we purpose a study of the mathematical basis of supervised machine

learning in order to further understand the notion of generalization. The purpose is to

use said theory to arrive at the commonly accepted approximation of generalization,

which will enable us to to show the limitations inherent from a chosen model and

problem set separately, making the link between the results derived from theory with

the common tools that machine learning users commonly use.

Definitions required to later introduce a new more robust generalization metric called

generalization score that aims to offer more explainability than its predecessor.

All of these notions will later serve as inspiration to propose a new loss function

intended to improve a machine learning’s model generalization, where a broad study

of it’s statistical validity will be undergone.
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2
Generalization in Supervised Machine

Learning

Intuitively Generalization in Supervised Machine Learning (ML) can be seen as a

models ability to apply its acquired knowledge to a previously unseen scenario. In this

chapter we will go through the theoretical foundations of ML that led to the classical

definition of generalization which will serve as groundwork for the new proposed

metrics later in this work.

2.1 Statistical Learning Theory on PAC

Statistical learning theory (SLT) [Moh+12] can be understood as the formal background

of ML based on the mathematical fields of statistics, measure theory and functional

analysis [Lan93]. Probably approximately correct (PAC) [Evg+00] learning is a sub

field of computational learning theory focused on the conditions in which a function

can generalize a problem [Gol10].

2.1.1 Data and Probability Spaces

Any ML problem begins with a set of pairs (x,y) or dataset S from two spaces, the

inputs x ∈ X and the outputs y ∈ Y both obtained from a random sampling [Tah16] S,

i.e:

S := {(x1, y1), (x2, y2), ..., (xn, yn)} (2.1)

We assume that our random sampling S comes from an underlying probability distri-

bution on a probability space defined by the product space D = X×Y with a joint prob-

ability measure µ(x,y) = µ(d) on D [KBH19]. In other words, the pairs (x1, y1), ...(xn, yn)

3



CHAPTER 2. GENERALIZATION IN SUPERVISED MACHINE LEARNING

can be seen as independent and identically distributed (i.i.d.) [KBH19] samples from

D through µ.

For the next steps we will build our results solely on the definitions of X, Y and

our measure µ.

2.1.2 Hypothesis Space

The intended objective is to predict an outcome y from a target space Y of possible

outcomes from given a set of features x in X, in other words to infer a function f that

maps [BS51]:

fλ : X→ Y (2.2)

We define the hypothesis space F [Moh+12] as a space of all possible hypotheses or

functions for mapping the feature space into the target space, normally constrained

by a given structure.

The parameter λ in equation (2.2) can be understood as the variation between func-

tions in F, we will use it when in need to differentiate between different functions.

For example imagine we want to produce a polynomial to fit a given problem, the

λ parameter is the vector of the coefficients of the polynomial.

2.1.3 Loss Function

In order to evaluate how a function fλ(x) fits a pair (x,y) we define a loss function or

fitness function l as a mapping:

l : Y ×Y →R+ (2.3)

Intuitively it is used to verify how close two values in Y are, naturally l(f (x), y) = 0 is

equivalent to a perfect prediction of f on the pair (x,y).

2.1.4 Learning Algorithm

Given a random sampling S, an hypothesis space F and a loss function l, a learning

algorithm Λ is a function that maps:

Λ : S ×F→F (2.4)

Producing a new fλ∗ in order to minimize the loss function over the whole sample S.

Using our polynomial example, imagine we want to fit a polynomial to a given sample

S , we can use Newton’s Polynomial algorithm [CC12] to produce such an fλ.

4



2.1. STATISTICAL LEARNING THEORY ON PAC

2.1.5 Statistical Risk

Until this point we have only seen loss or error point wise, but remember the objective

of a learning algorithm is to produce a function f ∈ F that minimizes l in all of Y ,

there is a need to produce a global error for all pairs (x,y) ∈ S and if possible over all

pairs in D, given this setting the statistical risk or error of f over all the the underlying

space is defined as:

LD(f ) := Eµ[l(f (X),Y )] =
∫
D
l(f ) dµ (2.5)

Intuitively by integrating over D with respect to µ, in other words applying the ex-

pected value [KBH19], we average the error of all the pairs (x,y).

Naturally the learning algorithm’s objective is to produce an f such that:

f = argmin
fλ∈F

Eµ[l(fλ(X),Y )] (2.6)

For every x ∈ X, let µ(y|x) with respect to x be the conditional probability measure on

Y and µX be the marginal probability measure [KBH19] on X.

For most ML datasets it is safe to assume that X is a compact domain [Sem65] or

a manifold [Ghr14] in the euclidean space (e.g. X ⊂R
n) and Y bounded, requirements

needed for:

For every integrable function [Nel15] ϕ : X × Y → R+, Fubini’s Theorem [CS] states

that: ∫
X×Y

ϕ(x,y)dµ =
∫
X

(∫
Y
ϕ(x,y) dµ(y|x)

)
dµX (2.7)

Which means that by taking into consideration the composite function l◦f : X×Y →R+

we can:

Eµ[l(f )] =
∫
X

(∫
Y
l(f (x), y)) dµ(y|x)

)
dµX (2.8)

Intuitively we are separating (in the integral) the spaces X and Y so that we can look

at the domain D as the product of input domain X and target Y .

We then proceed to define fµ : X→ Y as:

fµ(x) =
∫
Y
y dµ(y|x) (2.9)

The function fµ is called the regression function [CS] of µ and from this construction it

can be understood as the true input-output function reflecting the underlying distri-

bution D.

5



CHAPTER 2. GENERALIZATION IN SUPERVISED MACHINE LEARNING

Fixing x ∈ X and considering the integrable composite function l◦f : X×Y →R+, then

to infer an optimum f it is sufficient to minimize our expected value solely on Y :

f = argmin
c∈F

∫
Y
l(c,y) dµ(y|x) (2.10)

Thus we’ll consider the average measurement of error or risk of f as:

LD(f ) =
∫
Y
l(f ,y) dµ(y|x) (2.11)

Note that while fµ and µ are most likely unknown, µ(y|x) is known in some situations,

more specifically remember the set S.

2.1.6 Bias Variance Trade off

Before going into a definition of generalization let’s first analyse the particular case

where the loss function is the mean square error (MSE) the expected value as in equa-

tion (2.7):

Eµ[l(f (X),Y )] =
∫
X

(∫
Y

(y − f (x))2 dµ(y|x)
)
dµX (2.12)

Calculations presented in section (A.0.1) of Appendix 1 lead to:

=
(∫

X
f (x)dµX −

(∫
Y
y dµ(y|x)

))2

+ σ2
f + σ2

Y (2.13)

Where,

σ2
f =

∫
X
f (x)2dµX −

(∫
X
f (x)dµX

)2

(2.14)

And,

σ2
Y =

∫
Y
y2 dµ(y|x)−

(∫
Y
y dµ(y|x)

)2

(2.15)

Remember the definition of regression function in equation (2.9), we can also write as:

=
(
EX[f ]− fµ

)2
+ σ2

f + σ2
Y (2.16)

Before we interpret term wise the above equation let’s first introduce the notion of

noise [Has+01] given by:

y = fµ(x) + e (2.17)

Under the assumption that the noise e ∼N(0,ε) and is independent. Intuitively this

6
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means that the sampling methods used have some interference or error leading to an

imperfect sampling.

Calculations presented in section (A.0.2) of Appendix 1 lead to:

Eµ[(fµ(X) + e − f (X))2] =
(
EX[f ]− fµ

)2
+ σ2

f + σ2
e (2.18)

As one can see the presence of noise only affects the last term of the equation (previ-

ously σ2
Y ) which is incredibly relevant as it does not necessarily affect the error associ-

ated with f maintaining the same type of relationship, so according to some papers

[Nea19][Nea+18] we can conceptually define:

EX[f ]− fµ︸      ︷︷      ︸
bias


2

+ σ2
f︸︷︷︸

variance

+ σ2
e︸︷︷︸

Irreducible error or Noise

(2.19)

1. Error due to Bias: The error due to bias is taken as the difference between the

expected (or average) prediction of our model and the correct value which we

are trying to predict. Take into consideration that although we are only trying to

produce a single model when referring expected or average prediction values we

are talking about the average on the hypothesis space, for example imagine you

could redo the learning algorithm more than once, each time you sample new

data and run a new optimizer and producing a new predictive function f , due

to variability in the underlying data, the resulting function will have a range of

predictions. Bias measures how "wrong"in general these models’ predictions are

from the correct value. What is the inherent error that you obtain from choosing

some hypothesis space even on the whole product space D? This is due to your

hypothesis space being "biased"to a particular kind of solution.

2. Error due to Variance: The error due to variance is taken as the variability of a

model prediction for a given pair (x,y). Again, imagine you can redo the learning

algorithm more than once, the variance is how much the predictions for a given

pair (x,y) vary between different functions in in hypothesis space. Captures

how much your predictive function alters if you use a different training sample,

in other words how ’over-specialized’ is the predictive function to a particular

random sampling..

7
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3. Error due to Noise or Irreducible error: How big is the data-intrinsic error induced

from bad sampling or pure "natural"noise? As the construction and name implies

there no way to reduce this error it is an aspect of the sample.

Ideally the final function should be error free in any given situation, but as we can see

in this section that is highly improbable, knowing that the error is most likely not null

for any fλ will play a big part in the next section.

2.2 Generalization Error

Now that we have gone through the basics of SLT we can now provide a solid definition

of the classical notion of generalization error.

Remember that S is a set of pairs (x,y) of features and targets respectively and ideally

our objective would be to find a function f , such that:

f : X→ Y (2.20)

Where f minimizes Eµ[l(f )] over X×Y , nevertheless due to the impossibility of know-

ing the underlying distribution in D, we cannot calculate its expected value of f with

respect to µ.

However from (2.11) we’ve seen that solving the expected value over Y also solves

this problem so we minimize:

f = argmin
c∈F

∫
Y
l(c,y) dµ(y|x) (2.21)

Although it is sufficient to minimize the problem over Y the measure dµ(y|x) is only

known for some pairs (x,y). From this we define the estimate empirical loss using our

sample S:

LS(f ) :=
1
n

n∑
k=1

l(f (xk), yk) (2.22)

Unlike before, by the error point wise we can calculate an empirical loss to infer a

function f such that:

f = argmin
c∈F

LS(c) (2.23)

Naturally since we are using an estimation we cannot guarantee that for every f we

have LS(f ) = LD(f ) .

Due to this issue, classically the generalization error G of f is defined as the differ-

ence between the empirical loss and the loss over the underlying distribution D.

G(f ) := LD(f )−LS(f ) (2.24)

8



2.3. LEARNING MODELS

An immediate problem arises since again, we have no way of calculating our loss over

D, again we rely on another random sample Stest of D of unseen pairs (x,y) for an

estimator loss called estimation error, so the calculable generalization error is given by:

Ĝ(f ) = LStest (f )−LStrain(f ) (2.25)

We’ve changed the denomination of S to Strain to facilitate the distinction between

both samples and also to align the names with the literature denominations.

2.3 Learning Models

In section (2.1.2) we’ve defined hypothesis space as usually being constrained to given

structure, in this next section we will go through a couple of well known ’constrains’

of hypothesis spaces, which we will call as learning models and some of their possible

learning algorithms.

2.3.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a model that tries to approximate the structure

and behaviour of the human brain cells. It is formed of connected artificial neurons,

also known as nodes which can be understood as a graph.

The structure is composed of artificial neurons, each one can have several inputs but

returns a single output which can be transmitted to other neurons. Neurons are sequen-

tially clustered together in layers, where neurons in the same layer are not connected

with each other, the cluster of inputs of the network is called Input Layer, while the

outputs of the final cluster of output neurons of the architecture is called Output Layer,

and all layers between the input and output layers are called Hidden Layers.

In particular each neuron takes the weighted sum of all of its inputs, in other words

each input has a particular weight or trainable variable associated to it. There can be

a bias term added to this sum. This weighted sum is then passed through a (usually

nonlinear) activation function [Nwa+18] to produce the single output.

As stated in the book "Information Theory, Inference, and Learning Algorithms"[Mac03],

in each time we describe a NN learning model we need to further specify at least two

things:

• Architecture. The architecture specifies the structure, what variables are in-

volved in the network and their topological relationships. In other words it

defines a hypothesis space where the λ parameter is the vector of all trainable

weights in the network.
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• Learning rule. The learning rule specifies in which way the neural network’s

weights change. To put it formally a learning rule is the learning algorithm

that chooses different weight configurations out of a fixed architecture. There

are several learning algorithms commonly used to optimize NN architectures

such as the gradient gradient descent [Mac03] based "sgd"[Zho+19] and "rm-

sprop"[Rud16].

As important remark is that the ANN model’s by themselves only define a constrained

set of possible hypothesis spaces (architectures), we define hyperparameters as the pa-

rameters that given a learning model define a hypothesis space (in this case an ar-

chitecture). Naturally these are user defined and are unchanged during the learning

algorithm which is often called optimizer.

Bellow is an example of an architecture:

Figure 2.1: Example of a NN architecture

Online Learning [Mac03] is the procedure in which we predict, evaluate a pair (x,y) ∈
Strain and proceed to apply the learning algorithm changing the weights vector.

Batch learning [Mac03], instead applying the learning algorithm for each pair’s (x,y) ∈
Strain evaluation, we cluster them with a fixed size (batch size), evaluate and only then

apply the learning algorithm over an average evaluation.

ANN’s are iterative, which means they execute their learning algorithm multiple times,

we define an epoch when either online or batch learning as gone over all pairs in the

training sample. So a common terminal condition is the number of epochs.
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2.3.2 Genetic Programming

Genetic Programming GP is a sub-field in Evolutionary Computation. Its purpose if to

evolve a set of individuals in a population-based procedure that follows the principles

of Darwin’s Theory of Evolution [Dar59].Each individual represents a program or tree-

based structure [Wil+97] as shown in figure 2.2 bellow.

Figure 2.2: Example of a tree-based representation of a GP individual

In the particular case (determined from the figure), an individual is a tree with terminals=

{X,Y } (inputs) and f unctions = {sum, difference, product, division, cosine, sum constant}.
So the hypothesis space is the set of all possible combinations of trees constrained by the

above defined terminals and functions. The parameter λ is the structure itself, where

the hyperparameter as defined in the section above is the set f unctions.

The procedure can be summarized by the following steps:

1. Create Initial population (Initialization);

2. Calculate Loss or Fitness of each individual;

3. Until some termination condition is met repeat:

• Select fitter individuals for reproduction (Competition);

• Recombine between individuals (reproduction);

• Variation of individuals (mutation);

• Reevaluate loss;

4. Return fittest individual in the population;

Each iterative step or generation in point 3. is the learning algorithm and in the

particular case of genetic programming has many variations and possibilities [CM19],

11
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but intuitively evolution of the population begins with a set of random individuals

from the hypothesis space. Then, by applying a selection operator we define the

’parent’ individuals, offspring is generated through a recombination of the parents

and after variation or mutation, transited to the next generation. This process iterates

until reaching certain terminal condition (commonly a given number of iterations or

generations).

2.4 Overfitting

If a learning model performs well on the training set LStrain(f ) ' 0 but generalizes badly

Ĝ(f ) >> 0, we say it is overfitting [Has+01]. A learning model might overfit if the train-

ing/test sets are not well sampled, in other words Strain and Stest do not fully represent

the same distribution. Another common reason is when a model only memorizes Strain,

which means that if the model’s number of trainable parameters (dimension of λ) is

higher than the number of pairs (x,y) in Strain then there is a possibility that it stores

the prediction values in those parameters instead of learning the problem, this partic-

ular issue is prone to happen if a learning model has a high number of iterations or

epochs.

In the next subsections we will go through some commonly used methods to avoid

overfitting.

2.4.1 Regularization

Regularization is a method to constrain our learning algorithm from producing an f

that is too complex [LR15], which may therefore overfit, according to [Information

Theory, Inference, and Learning Algorithms] it involves modifying the loss function

in such a way as to incorporate a bias [Mac03] against the sorts of solutions which are

undesirable.

Commonly complexity is associated with a large λ (for example a high sum of the

weights in a neural network).

Take the L1 and L2 regularizers, they use the L1 and L2 metrics [NM18] respectively

to enforce lower values of λ in the loss function, in particular using the MSE a L2

regularizer would alter the empirical error:

LS(f ) :=
1
n

 n∑
k=1

(yk − f (xk))
2 + δ

∑
b∈λ

b2

 (2.26)

Where δ is called the learning rate [LR15] and the b’s are the trainable parameters.

Another commonly used regularizer, for neural networks is the use of dropout [Sri+14]
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in a particular layer, which ignores a subset of neurons in that layer with a set proba-

bility. In a way it forces the model to expand reducing interdependent learning among

units, which may have led to overfitting.

2.4.2 Data Augmentation

The more pairs (x,y) the random sample Strain has, the higher the probability it fully

represents the underlying space D. Which naturally would help the learning algo-

rithm to better generalize [Won+16].

In some situations there is no possibility of gathering more data being constrained

to the random sample Strain, although it is more common for classification problems,

more in particular images, we can apply data augmentation to artificially increase

the size of our random sample. Using the image classification example, we can per-

form various image transformations to each image creating "new"ones (e.g., flipping,

rotating, re scaling, shifting).

2.4.3 Validation Set

Validation Set is a sub partition of the test set usually used to fine-tune the hyperpa-

rameters of a learning model (change the hypothesis set), there are some applications

that use this sub partition to either prevent or reduce overfitting, some of them are

presented bellow.

2.4.4 Early Stopping

In subsection (2.1.4) we stated that a learning algorithm has a terminal condition,

normally this terminal condition is given by a predefined value on the training loss

or due to computational limitation a certain number of iterations or epochs. In these

situation there is no control or knowledge about the models generalization error.

Early Stopping can be understood as method to act as a terminal condition or an over-

write of the previous existing terminal condition in a learning model according to

some particular measure (does not need to be the definition of generalization) over a

different random sampling commonly called as validation sample.

Naturally the early stopping method cannot base itself on the test sample, in order to

use the generalization error one of the requirements is a sample of unseen pairs which

would have been corrupted if used in this method. A common implementation is to

terminate training in cases where the training error is reducing while the validation’s

error increases (which suggests overfitting) with a given patience level to mitigate any

natural fluctuation of the errors [Car+00].

13
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2.4.5 Cross Validation

Cross-validation [Rod+10] is a widely used method to choose the value of a hyper-

parameter redefining an hypothesis space, that might be less prone to overfit. The

method splits the sample Strain into k sets (k-fold cross-validation), for each k-fold

each one of the sets will be the test sample while the others together make the train

sample. The result is an average error over all k-folds using all of sample S creating a

more robust model which should be less prone to overfitting, an immediate minus is

that it is k times more computationally expensive.

Regarding the hyperparameter tuning, according to [A Bias Correction for the Mini-

mum Error Rate in Cross-validation], by training and testing the model on separate

subsets of the sample S, we achieve a notion of the model’s prediction error as a func-

tion of the tuning parameter, a better method to choose a different parameter.
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3
Related Work

Throughout the years there have been several studies conducted to both grasp the

essence of what it means to have a generalized f and also also to improve the gen-

eralization of learning algorithms on existing hypothesis spaces. Although most of

the studies where based on classification problems, one can summarize them in the

sections outlined below.

3.1 Train Test Distribution Disparity

As some papers state [Chu+18], most machine learning (ML) learning models assume

that the random sampling for training has the same distribution as the test data in

which the generalization error will be calculated. However, due to sample selection

bias [LZ14] or, more broadly, covariate shift [IS15], there exist potential training exam-

ples that are completely unknown to the learning model. This discrepancy between

training and testing samples leads to a low generalization performance of the learning

algorithms and hence biased predictions (remember section 2.1.6).

3.2 Problem Complexity

Some studies [Ney+17] try to understand a models generalization capacity trough a

study of the models robustness [Zha+18] and sensitivity [Set15].

While others [Gó+14] define a measure (originally defined in a Boolean target space)

to quantify the complexity of data in relationship to the prediction accuracy that can

be expected when using a supervised classifier like a neural network.
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3.3 Over-parameterization Paradox

Both papers [Nov+18][BG18] explore the phenomenon, that in practice it is often

found that complex over-parameterized neural networks architectures have a lower

generalization error when compared with their smaller counterparts, an observation

that appears to conflict with classical notions of function complexity, which typically

favor smaller models.

16



C
h
a
p
t
e
r

4
A Generalization Metric

The initial conjecture in section (2.1.1) assumes that S is an i.i.d sample of an under-

lying distribution defined by D = X × Y , from that a definition of generalization is

constructed on the difference between the training sample’s with an unseen sample’s

Stest empirical loss.

Assuming that Stest was sampled from the same exact conditions as S is in many

situations is not true and raises two immediate problems:

1. Difficulty of interpretation, using the common examples of underfit and over-

fit in both states of poor generalization one cannot accurately understand the

difference in metric between them;

2. The above definition dissolves all the training information and does not capture

the relation between the sample used for training and the one used for testing.

If the distribution of both is sufficiently diverse, the model will always under

perform on Stest although this shouldn’t be seen as an error in generalization but

as a result of sub optimal sampling. Meaning Stest is not a good representation

of D.

These assumptions are both hindering, since an interpretable metric of a models gen-

eralization given its training is more than desirable, and also wrong, since more often

than not real world data is full of noise and wrong observations.

We propose that it is more reasonable to weight the empirical loss over Stest with

regard to the probability of each (xi , yi) ∈ Stest belonging to D. In other words, we

are not proposing a new loss function as defined in section 2.3, we are simply stating
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that the definition of generalization should not be the difference between the empirical

losses of two samples.

4.1 Probability Score

As stated in (chapter 2), µ or in this case p(x,y) cannot be known, but under the

assumption that a learning algorithm can also learn the underlying distribution of the

training set S [Kim+19] we can infer p based on a kernel density estimation (KDE)

[Weg18]. Thus for each (x,y) ∈ Stest we approximate p(x,y) by p∗(x,y):

p∗(x0, y0) =
∑

(x,y)∈S
exp

(
−
|l(f (x0), y0)− l(f (x), y)|

1 + ‖(x0, y0)− (x,y)‖

)
(4.1)

Note that basing this probability estimate on the assumption that a learning algorithm

can learn the underlying distribution of the training set denies the possibility of using

it during any learning step.

We define Probability Score as:

Pf (Stest) =
1
n

∑
(x,y)∈Stest

p∗(x0, y0) (4.2)

Through some initial empirical experiments we have reason to believe that this score

can be used as a learning algorithm’s stopping condition in order to prevent overfit.

4.2 Generalization Score

We define a new error over Stest as:

L∗Stest (f ) =
1
|Stest |

∑
(x,y)∈Stest

l(f (x), y)p∗(x,y) (4.3)

An immediate result that comes from (4.1) is the comparability it offers with the em-

pirical loss over S, ideally if Ltest was well sampled and f ’understood’ the underlying

distribution of Strain then:

∀(x,y) ∈ Stest : p∗(x,y) = 1 (4.4)

Where LStest (f ) becomes the classical empirical error over Stest. The new generalization

metric is:

G(f ) = LStrain(f )−L∗Stest (f ) (4.5)

Where LStrain(f ) is the usual empirical error of f over Strain

18



C
h
a
p
t
e
r

5
A New Loss Function

The construction of the new loss function l∗ is based on the assumption that given

some random sample of pairs (x,y) ∈ Strain that come from an underlying distribution

in D, it is always possible to fit a function f such that LStrain(f ) = 0.

But, in the presence of noise or bias we have:

y = f (x) + ε : (x,y) ∈ S ∧ ε ∈R (5.1)

Under the assumption that the noise e ∼N(0,ε) and is independent.

So a direct approximation metric, such as the mean absolute error (MAE) is not op-

timal as it would always have error induced by the existence of noise (section 2.1.6)

leading to a poor performance on unseen instances.

Intuitively the idea is that under the assumption that the set of ξ = {εi}i=1,..,n comes

from a underlying distribution independent to Y of expected value 0, by sub sampling

Strain we can infer for each pair (x,y) ∈ Strain a correction ratio in order to mitigate the

error induced be noise.

5.1 Nearest Neighbors

For each pair (x,y) ∈ Strain we use a k-nearest neighbors algorithm [AL16] a simple

method that returns the set of k closest pairs in Strain denoted as Nα(x,y) with respect

to the euclidean distance. So the only user defined parameter is the number of nearest

neighbors to use.
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Intuitively the set {(x,y),Nα(x,y)} defines a sub distribution centered around an unbi-

ased pair, remember that E(ξ) = 0 and is independent.

5.2 Density Centroids

A centroid is defined as the arithmetic mean of the points but can also be seen as a

minimizer of the average distance of a center object to a given collection of objects.

For each pair (x,y) ∈ Strain we find its respective set of α nearest neighbors. We then

proceed to calculate it’s centroid defined as:

centroidα(x,y) =
1
α

∑
(xk ,yk)∈Nα(x,y)

(xk , yk) (5.2)

Intuitively each pair (x,y) defines a ball centered around centroidα(x,y) with radius

‖(x,y)− centroidα(x,y)‖ [Xin+03] denoted as Bcentroidα(x,y)(x,y).

5.3 Correction Ratio

Now that we have a ball Bcentroidα(x,y)(x,y) for each (x,y) ∈ Strain given each prediction

f (x) there is the need to correct an unbiased position of the pair (x,f (x)).

We define the correction ratio as :

cr(x,y) =
‖(x,f (x))− centroidα(x,y)‖
‖(x,y)− centroidα(x,y)‖

(5.3)

Intuitively the closest the pair (x,f (x)) is to the centroid center the more unbiased it

will be, on the other hand it also accounts the proximity to the intended target.

5.4 Loss Function

The evaluation of f for each point (x,y) ∈ Strain will be it’s previous loss function (for

example the Mean Absolute Error) multiplied by the correction ratio:

l∗(f (x), y) = l(f (x), y)× cr(x,y) (5.4)

Intuitively we are correcting each loss values respectively in order to mitigate the effect

of noise in the training sample Strain .

Finally the empirical error of Strain is given by:

L∗Strain(f ) =
1

|Strain|

∑
(x,y)∈Strain

l∗(f (x), y) (5.5)
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5.5 An Example

Strain is the set of pairs (x,y) where x ∈X is a set of 100 points uniformly distributed

in [0,2π] and y = sin(x), we proceed to add some noise from a normal distribution

N(0,0.1).

Figure 5.1: True f and noisy points Figure 5.2: Visual Construction of the
loss function

As one can see in the figure predictions (x,f (x)) such that:

(x,f (x)) ∈ Bcentroidα(x,y)(x,y) (5.6)

Then,
‖(xk , f (xk))− centroidα(xk , yk)‖
‖(xk , yk)− centroidα(xk , yk)‖

< 1 (5.7)

Which means it will have a lower evaluation when compared with the absolute differ-

ence between y and f (x), analogy if the pair does not belong to said ball it will have

comparatively a higher evaluation.
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6
Methodology

The objective of this experiment is to understand if the use of the proposed loss func-

tion with a given number of nearest neighbors as introduced in the previous chapter,

increases generalization. In order to achieve fair results a broad benchmark on several

problems, with different learning models needs to be performed in comparison to a

standard or control loss function, naturally in the same conditions. Variation for sta-

tistical validation will be introduced through the repetition of benchmarks using 30

different seeds in the partition of the problem set into Train and Test.

6.1 Proposed Approach

6.1.1 Control

In supervised regression problems the standardly used loss function is either the (Mean

Square Error) or the Absolute Square Error (MAE) [WM05]. Taking into consideration

the definition of our custom loss function, we chose that the control loss function to

use as comparison should be the MAE. So for this study we will compare the use of

the loss functions bellow defined:

lcustom(f (x), y) = |y − f (x)| × cr(x,y) (6.1)

lcontrol(f (x), y) = |y − f (x)| (6.2)

6.1.2 Problem Set

For this experiment, nine real-life symbolic regression problems or datasets were used.

The Bioavailability, Plasma Protein Binding level (PPB), and Toxicity are problems

from the drug discovery area and their objective is to predict the value of a pharma-

cokinetic parameter, as a function of a set of molecular descriptors of potential new
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drugs. The Concrete datasets, objective is to predict the concrete strength as a function

of some observable characteristics of the material, the Energy dataset objective is to

predict the energy consumption in particular geographic areas and in particular days,

as a function of some observable features of those days, including meteorologic data,

the Istanbul dataset objective is to predict returns of the Istanbul Stock Exchange as

a function of seven other international indexes, the Park Motor dataset objective is to

predict the severity of the motor symptoms of Parkinson’s Disease patients, accord-

ing to the Unified Parkinson’s Disease Rating Scale assessment, the Park Total dataset

objective is to predict the severity of the general Parkinson’s Disease symptoms, ac-

cording to the Unified Parkinson’s Disease Rating Scale assessment and the Residential

Build Sale Price (Residential) dataset objective is to predict the sale price of a set of

residential buildings, using data that include construction cost, project variables, and

economic variables.

Table (6.1) reports, for each one of these problems, the number of features (variables)

and the number of data points (observations) in the respective datasets. The table also

reports a bibliographic reference for most of the datasets, where the reader can find a

more detailed description of these problems.

Dataset # Features # Data Points
Bioavailability [Arc+07] 241 206
Concrete [MCS13] 8 1029
Energy [MCP15] 8 768
Istanbul [OAB14] 7 536
Protein Plasma Binding Level (PPB) [Arc+07] 626 131
Park Motor 18 5875
RESID BUILD SALE PRICE (Residential) 107 372
Toxicity [Arc+07] 626 234
Park Total 18 5875

Table 6.1: Problem Set Description

6.1.3 Learning Models

Under the natural assumption that the proposed method should be learning model
agnostic we will produce results using two very different learning models:

1. Artificial Neural Networks for their complexity but also the highly analytical

learning algorithms that can be used.

2. Genetic Programming as a highly stochastic learning model it does not use in

any form gradient descent which might provide some fresh insights on comparison

with ANN’s.
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6.1.4 Evaluation Metrics

The objective of this experiment is to test how well our proposed loss function gener-

alizes in comparison with commonly used metrics. Due to the definition of the loss

function itself we cannot use the generally accept difference between train and test to

compare between the control and custom loss functions.

Having this in mind we will evaluate of both control and custom models, at each

generation or epoch the test samples using the standard Mean Absolute Error metric

on the Test or unseen sample:

MAEf (Stest) =
1
|S |

∑
(x,y)∈Stest

|y − f (x)| (6.3)

To compare results between the control and custom models.

6.2 Pipeline

In order to provide standard conditions for all benchmarks, we define the following

ordered pipeline. All of the benchmarks were coded in Python [VRD09].

6.2.1 Train Test Split

Naturally we only have one sample which is the problem set, a partition of the sample

into a Strain and Stest is required, bellow is the code that executes such partition with a

given random state or seed of the dataset:

1 from sklearn.model_selection import train_test_split

2 X_train, X_test, y_train, y_test =

3 train_test_split(X, y, test_size=0.3, random_state=seed)

We will be using the standard test size of 0.3, which represents a 70% to 30% ratio

between the two Train and Test samples. The random state or seed ensures that at each

run the random samples will be different, but reproducible.

6.2.2 Normalization

After the partition, even though it is common practice to normalize the data indepen-

dently, in our particular case it is absolutely necessary since our loss function is based

on distances, so we will be using the classical normalization N (S):

∀s ∈ S : N (s) =
s −E[S]
STD[S]

(6.4)
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Where,

E[S] =
1
|S |

∑
s∈S

s (6.5)

And,

STD[S] =

 1
|S |

∑
s∈S

(s −E[S])2


1
2

(6.6)

Below is the python code used to normalize both samples:

1 from sklearn.preprocessing import StandardScaler

2

3 X_train = StandardScaler().fit_transform(X_train)

4 y_train = StandardScaler().fit_transform(y_train.reshape(-1, 1))

5

6 X_test = StandardScaler().fit_transform(X_test)

7 y_test = StandardScaler().fit_transform(y_test.reshape(-1, 1))

6.2.3 Hypothesis Set Definition

6.2.3.1 Artificial Neural Networks using Keras Tensorflow

Keras [Cho+15] is a deep learning API written in Python, running on top of the ma-

chine learning platform TensorFlow.

As for the Hypothesis Set definition since Neural Networks architecture, learning

rules, etc... can vary a lot depending on the problem set, to provide several levels of

complexity we will use the following architectures to benchmark:

• Hypothesis Space 1 : Input layer will naturally depend on the problem set, as

for the hidden layers we’ll use 4 with 4 neurons each, with activation function

relu [Aga18] in all of them, the output layer is a single neuron with no activation

function (linear).

• Hypothesis Space 2 : Input layer will naturally depend on the problem set, as

for the hidden layers we’ll use 8 with 8 neurons each, with activation function

relu in all of them, the output layer is a single neuron with no activation function

(linear).

• Hypothesis Space 3 : Input layer will naturally depend on the problem set, as

for the hidden layers we’ll use 8 with 16 neurons each, with activation function

relu in all of them, the output layer is a single neuron with no activation function

(linear).

As for the learning rule or optimizer we will use the standard ’sgd’ [Zho+19], also with

a batch size [GG18] of 32 units for all of the spaces.
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6.2.3.2 Genetic Programming in Python

We will use the gplearn [Wwwa] python library SymbolicRegressor, the standard gp

function for regression problems.

For the hypothesis set definition or hyperarameterization we will use the default pa-

rameters of the function itself stated in the documentation.

6.2.4 Terminal Condition

As you might have noticed we have not defined any terminal condition or early stop-

ping yet. Overfitting can be understood as the degeneration of the test error, having

that in mind we’ll run each benchmark for 500 epochs on the ANN and 500 genera-

tions for the GP in order to evaluate the error progression or landscape as well.

6.3 Results Structure

For both control and custom loss functions, on each problem set, on each learning

model (Neural Networks define various Hypothesis Set) for 500 iterations with two

different numbers of nearest neighbors (20 and 40) on 30 different seeds or Train-Test

samplings each. For comparative purposes we will use the median over unseen data

(Test sampling) of each of the 30 seeds, later performing statistical validation tests.
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7
Experimental Results

7.1 Overview

In this section we will present the results obtained from the experimental pipeline

defined in the previous chapter.

7.1.1 Artificial Neural Networks Benchmarks

The obtained results from the Artificial Neural Networks benchmarks are presented

in Figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 (respectively for the Bioavailability,

Concrete, Energy and Istanbul, PPB, Park Motor, Residential, Toxicity and Park Total

datasets). Each one of the sub figures represents a different Hypothesis Space showing

the Mean Absolute Error of the test sample over all 500 epochs for the control loss

function and both custom loss functions with 20 and 40 nearest neighbors.

NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.1: Median Test Mae over 30 seeds on Bioavailability
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NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.2: Median Test Mae over 30 seeds on Concrete

NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.3: Median Test Mae over 30 seeds on Energy

NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.4: Median Test Mae over 30 seeds on Instanbul

NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.5: Median Test Mae over 30 seeds on PPB
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NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.6: Median Test Mae over 30 seeds on Park Motor

NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.7: Median Test Mae over 30 seeds on Residential

NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.8: Median Test Mae over 30 seeds on Toxicity

NN Hypothesis Space 1 NN Hypothesis Space 2 NN Hypothesis Space 3

Figure 7.9: Median Test Mae over 30 seeds on Park Total

7.1.2 Genetic Programming Benchmarks

The obtained results from the genetic programming benchmarks are presented in

Figures 7.10, 7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.17, 7.18 (respectively for the Bioavail-

ability, Concrete, Energy and Istanbul, PPB, Park Motor, Residential, Toxicity and Park
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Total datasets). Showing the Mean Absolute Error of the test sample over all 500 gen-

erations for the control loss function and both custom loss functions with 20 and 40

nearest neighbors.

Figure 7.10: GP Median Test Mae over 30
seeds on Bioavailability

Figure 7.11: GP Median Test Mae over 30
seeds on Concrete

Figure 7.12: GP Median Test Mae over 30
seeds on Energy

Figure 7.13: GP Median Test Mae over 30
seeds on Instanbul

Figure 7.14: GP Median Test Mae over 30
seeds on PPB

Figure 7.15: GP Median Test Mae over 30
seeds on Park Motor
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Figure 7.16: GP Median Test Mae over 30
seeds on Residential

Figure 7.17: GP Median Test Mae over 30
seeds on Toxicity

Figure 7.18: GP Median Test Mae over 30
seeds on Park Total

7.2 Statistical Validation

Since the intended purpose was analyse the behaviour of our custom loss function

over the training procedure we ended up not using any stopping condition besides

epochs or generation number, naturally to proceed with any statistical testing we need

to choose a particular iteration.

For the ANN benchmarks, as one can clearly see the main difference between cus-

tom and control seems to be its convergence rate (number of iterations required to

stabilize), with that in mind we’ll perform statistical tests for the epochs 50; 100; 150;

200; 500 in order to better understand their validity. Regarding the GP benchmarks

this trend is not so clear so we will only test for the last generation 500.

A Kolmogorov-Smirnov test [Kol] has shown that the results do not come from a

normal distribution and thus a rank-based statistic [RN11] has to be used. Bellow

there a tables showing the results of the Wilcoxon rank-sum test for pairwise data

[Wwwb] comparison under the null hypothesis that the medians between custom and
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control results are equal. In the tables below we show the difference in the median

MAE values of the test samples between custom and control where entries are in bold

if their respective p-values are below .05, in other words they reject the null hypothesis

with 95 % degree of confidence.

20 Nearest Neighbors 40 Nearest Neighbors
Dataset H. 1 H. 2 H. 3 H. 1 H. 2 H. 3
Bioavailability -0.0263 0.0023 -0.0146 -0.0017 -0.003 0.0035
Concrete -0.1297 -0.172 -0.0871 -0.1478 -0.1827 -0.1134
Energy -0.052 -0.1946 -0.0528 -0.0794 -0.1794 -0.0713
Instanbul -0.0692 -0.0835 -0.0229 -0.0528 -0.0856 -0.021
PPB -0.0013 0.0063 0.0055 0.005 0.001 0.0108
Park Motor -0.0888 -0.0918 -0.0696 -0.1126 -0.0848 -0.0655
Residential -0.0254 -0.0381 -0.0053 -0.0374 -0.0389 -0.0313
Toxicity -0.0019 0.0111 0.0105 0.0177 -0.004 0.0157
Park Total -0.0933 -0.1142 -0.1104 -0.0787 -0.1165 -0.1064

Table 7.1: Difference between Custom and Control Test MAE with Wilcox Rank-Sum
test p-values on ANN Results on Epoch 50

20 Nearest Neighbors 40 Nearest Neighbors
Dataset H. 1 H. 2 H. 3 H. 1 H. 2 H. 3
Bioavailability -0.0009 0.0112 0.0387 -0.0079 -0.005 0.0308
Concrete -0.0762 -0.0849 -0.0563 -0.0829 -0.0761 -0.0539
Energy -0.0256 -0.0348 -0.0091 -0.0448 -0.0302 -0.0141
Instanbul -0.0408 -0.029 0.01 -0.0404 -0.0293 0.0097
PPB -0.0081 -0.0241 0.0151 0.0094 -0.0272 0.0241
Park Motor -0.0488 -0.0601 -0.0438 -0.0458 -0.061 -0.0454
Residential 0.0237 -0.0679 0.008 -0.0078 -0.0229 -0.0077
Toxicity 0.0012 0.037 0.0675 0.0176 0.0252 0.0438
Park Total -0.0567 -0.0797 -0.0514 -0.0581 -0.0736 -0.0585

Table 7.2: Difference between Custom and Control Test MAE with Wilcox Rank-Sum
test p-values on ANN Results on Epoch 100
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20 Nearest Neighbors 40 Nearest Neighbors
Dataset H. 1 H. 2 H. 3 H. 1 H. 2 H. 3
Bioavailability 0.031 0.0293 -0.007 0.0051 -0.0043 0.0006
Concrete -0.0505 -0.0405 -0.0277 -0.05 -0.0241 -0.0171
Energy 0.0007 -0.005 -0.021 -0.0168 -0.0279 -0.0031
Instanbul -0.0225 -0.0136 0.0121 -0.0345 -0.0191 0.0107
PPB -0.0151 -0.0375 -0.0259 -0.0016 -0.0355 0.0083
Park Motor -0.0326 -0.0399 -0.0361 -0.0344 -0.0281 -0.0415
Residential 0.0516 -0.0099 0.0345 0.0387 -0.0393 0.0424
Toxicity 0.0134 0.0253 0.0655 0.0274 0.041 0.0582
Park Total -0.0521 -0.0571 -0.062 -0.0648 -0.0556 -0.0666

Table 7.3: Difference between Custom and Control Test MAE with Wilcox Rank-Sum
test p-values on ANN Results on Epoch 150

20 Nearest Neighbors 40 Nearest Neighbors
Dataset H. 1 H. 2 H. 3 H. 1 H. 2 H. 3
Bioavailability 0.0731 0.0219 0.0175 0.024 0.0106 0.0019
Concrete -0.0298 -0.0229 -0.0071 -0.0266 -0.0335 -0.0133
Energy 0.019 -0.0098 -0.0273 0.0043 -0.0164 -0.019
Instanbul -0.0086 -0.0032 0.0193 -0.0195 -0.0138 0.0095
PPB -0.007 -0.0416 0.0167 -0.0029 -0.0079 0.03
Park Motor 0.0002 -0.0274 -0.0445 -0.0082 -0.0291 -0.0435
Residential 0.0346 -0.0232 0.0044 0.0172 -0.017 0.0065
Toxicity -0.0034 0.0264 0.0509 0.0084 0.0429 0.0221
Park Total -0.044 -0.045 -0.0486 -0.0404 -0.0549 -0.046

Table 7.4: Difference between Custom and Control Test MAE with Wilcox Rank-Sum
test p-values on ANN Results on Epoch 200

20 Nearest Neighbors 40 Nearest Neighbors
Dataset H. 1 H. 2 H. 3 H. 1 H. 2 H. 3
Bioavailability 0.0425 -0.0404 0.0007 -1e-04 0.0038 0.0118
Concrete 0.0004 -0.013 -0.0114 0.0031 -0.0201 -0.0084
Energy 0.0129 -0.024 -0.0267 0.0058 -0.0273 -0.0562
Instanbul 0.0032 0.0089 0.0028 0.0074 0.0109 0.0089
PPB 0.0601 0.02 0.0489 0.0359 -0.0515 0.0353
Park Motor -0.0071 -0.0238 -0.0392 0.0005 -0.0044 -0.0396
Residential 0.0105 -0.0093 0.0163 0.0065 0.0199 -0.0071
Toxicity 0.0042 0.0269 0.0462 -0.0354 0.0077 0.0306
Park Total -0.0122 -0.0334 -0.035 -0.016 -0.0272 -0.0394

Table 7.5: Difference between Custom and Control Test MAE with Wilcox Rank-Sum
test p-values on ANN Results on Epoch 500

And now for the GP results:
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20 Nearest Neighbors 40 Nearest Neighbors
Dataset
Bioavailability 0.0015 0.0035
Concrete -0.0729 -0.0951
Energy -0.0132 -0.0174
Instanbul -0.0075 -0.0045
PPB -0.0427 -0.0297
Park Motor 0.0215 -0.0017
Residential 0.0 0.0
Toxicity 0.0124 0.0065
Park Total -0.0255 -0.0316

Table 7.6: Difference between Custom and Control Test MAE with Wilcox Rank-Sum
test p-values on GP Results on Epoch 500
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8
Discussion

8.1 Interpretation

The observed results are very satisfactory. Indeed both custom and control loss func-

tions generally converge to the same loss values, nevertheless the fact the custom loss

function converges much faster is by itself a significant victory in terms of generaliza-

tion.

Remember section (2.1.6), we can see a function’s error lower boundary solely de-

pendent on the chosen hypothesis space and the irreducible error separably. These

particular lower boundaries cannot be overcome by a new loss function, which means

that converging faster translates in a better generalization.

The following section provides an interpretation of the previously observed results

from chapter 7, in order to explain said results, we will analyse the main difference

between both learning models, their hypothesis sets as well as the difference between

using a different number of nearest neighbors for the custom loss function.

As one can see in figures (7.1), (7.5) and (7.8) the ANN model almost immediately

started to degenerate it’s test loss in the Bioavalability, PPB and Toxicity datasets for

all three hypothesis spaces where we can’t infer much about the degeneration itself.

Looking at the same datasets on the GP learning model, there is hardly any degenera-

tion but again we cannot infer anything about these benchmarks. Difficulty in learning

these datasets is no surprise, in table 6.1 one can see that they are the only problem

sets that have more features than instances naturally making the problem much harder

to solve.
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The ANN model on the Instanbul dataset on figure (7.4) provides a very good ex-

ample of the possible problems that can arise from increasing the complexity of a

hypothesis space, notice how changing to more complex spaces actually translates

in the models test error degeneration, nevertheless in the first two hypothesis spaces

both parameterizations of the custom loss function have much higher and statistically

significant convergence rate compared with control, regarding hypothesis space 3 we

have some very curious results, where if we were to align the three training procedures

test MAE minimum in the same epoch they would practically match in the remaining

of the training procedure, but again the custom loss is much faster. Regarding the GP

benchmark on Instanbul in figure (7.13) we can actually see some small differences

but they are not statistically significant.

In the remaining datasets (Concrete, Energy, Park Motor, Residual and Park Total)

the ANN model actually learned consistently, the results overall converged to similar

error comparatively, with the exception of the two ’Park’ datasets which curiously were

the ones that had a much higher instances by features ratio (5875 by 18) where a higher

complexity meant a even higher negative difference between terminal median values.

However in all of them there is a consistent and very significantly higher convergence

rate when compared to control where a higher complexity translated in a less accentu-

ated convergence rate.

Regarding the GP model there was only one statistically significant benchmark in

figure 7.11 on the Concrete Dataset, where the custom loss in both parameterizations

over performed against control by a wide margin. Regarding the remaining datasets

on GP we can see some differences but again not statistically significant.

The differences in parameterizations between loss functions with 20 and 40 nearest

neighbors were hardly ever noticeable but again only two were used.

8.2 Advantages and Shortcomings

As we have seen there are very strong evidences that this new loss function can actually

perform with a higher convergence ratio against a comparable control loss and in some

cases even outperform its convergence error, however the situations where it happens

are still unknown. Additionally due to its definition it is slightly more computationally

costly, although not much it has its effects.
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9
Conclusion

9.1 Summary

We started this thesis with the purpose of further understanding the notion of general-

ization in supervised machine learning, providing a better generalization metric and

a new loss function to improve generalization.

Going into the basic definitions of Statistical Learning Theory allowed us to under-

stand the formal background behind the classical definition of generalization error

which enabled us to define a generalization score based on an estimation of the un-

known underlying probability measure µ which given its definition is more suited to

quantify generalization in sub optimally sampled Strain and Stest samples.

All of these notions served as inspiration for a new loss function intended to better

perform given the underlying error induced by a noisy sampling of S, an error formally

defined in the Bias Variance Trade Off section (2.1.6).

The results are indeed very promising and confirms that this new loss function cor-

rection improves a learning model’s generalization in Artificial Neural Networks, in

certain conditions.

9.2 Limitations

Empirically proving that a new loss function improves generalization is very challeng-

ing, as it is expected that it will not succeed in every problem set and/or learning
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model. Although in the methodology we tried to cover a wide range of different prob-

lem sets and two learning models it is still insufficient to fully understand in which

scope should we use our correction, so a broader study should be made.

9.3 Future Work

This thesis highlights many opportunities for future work, which we outline below.

• Broader Scope : In this experiment we only used two different numbers for the

nearest neighbor parameter in the custom function, in the future a sensitivity

study should be done to verify how they affect the training of the learning mode;

In the particular case of the ANN model, try to understand if the use of different

optimizers lead or not to similar results and naturally, using different hypothesis

spaces or even alternative learning models.

• Correct a different Loss: We’ve chose to apply our correction loss function on

the MAE loss but a study on the MSE or others would also be very pertinent.

• Generalization Score In this thesis we only enunciated and gave some formal

background of the generalization score in chapter 4, nevertheless an experiment

should be constructed in order to verify if the definition is empirically well

founded.

• P Score Early Stopping: Also in chapter 4 we had some initial insights that the P

Score alone could be used as an indicator for an early stopping method, it would

be very interesting to conduct a study to verify if it the insights are valid valid.
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Appendix

A.0.1 Bias Variance Tradeoff Part 1

Continuation of calculus from section (2.1.6) equation (2.12):

=
∫
Y
f (x)2 − 2yf (x) + y2 dµ(y|x) (A.1)

=
∫
Y
f (x)2 dµ(y|x)− 2

∫
Y
yf (x) dµ(y|x) +

∫
Y
y2 dµ(y|x) (A.2)

=
(
f (x)−

∫
Y
y dµ(y|x)

)2

−
(∫

Y
y dµ(y|x)

)2

+
∫
Y
y2 dµ(y|x) (A.3)

=
(
f (x)−

∫
Y
y dµ(y|x)

)2

+
∫
Y
y2 dµ(y|x)−

(∫
Y
y dµ(y|x)

)2

(A.4)

The second and third term by definition are the variance [citar] of Y denoted as σ2
Y ,

which means: ∫
Y

(f (x)− y)2 dµ(y|x) =
(
f (x)−

∫
Y
y dµ(y|x)

)2

+ σ2
Y (A.5)

Now let us:∫
X

∫
Y

(f (x)− y)2 dµ(y|x)dµX =
∫
X

(f (x)−
∫
Y
y dµ(y|x)

)2

+ σ2
Y

dµX (A.6)

=
∫
X

(f (x)−
∫
Y
y dµ(y|x)

)2dµX + σ2
Y (A.7)

=
∫
X

f (x)2 − 2f (x)
(∫

Y
y dµ(y|x)

)
+
(∫

Y
y dµ(y|x)

)2dµX + σ2
Y (A.8)

47



APPENDIX A. APPENDIX

=
∫
X
f (x)2dµX − 2

∫
X

[
f (x)

(∫
Y
y dµ(y|x)

)]
dµX +

∫
X

(∫
Y
y dµ(y|x)

)2

dµX + σ2
Y (A.9)

=
∫
X
f (x)2dµX − 2

(∫
Y
y dµ(y|x)

)∫
X
f (x)dµX +

(∫
Y
y dµ(y|x)

)2

+ σ2
Y (A.10)

=
∫
X
f (x)2dµX +

(∫
X
f (x)dµX −

(∫
Y
y dµ(y|x)

))2

−
(∫

X
f (x)dµX

)2

+ σ2
Y (A.11)

=
∫
X
f (x)2dµX −

(∫
X
f (x)dµX

)2

+
(∫

X
f (x)dµX −

(∫
Y
y dµ(y|x)

))2

+ σ2
Y (A.12)

The first and second term by definition are the variance of f (x) denoted as σ2
f , which

means:

= σ2
f +

(∫
X
f (x)dµX −

(∫
Y
y dµ(y|x)

))2

+ σ2
Y

A.0.2 Bias Variance Tradeoff Part 2

Continuation of calculus from section (2.1.6) equation (2.16):

Consider the equation (2.7):

Eµ[l(f (X),Y )] =
∫
X×Y

l(f (x), y)dµ =
∫
X

(∫
Y
l(f (x), y) dµ(y|x)

)
dµX (A.13)

Assume l(f (x), y) = (f (x)− y)2 (MSE),∫
Y
l(f (x), y) dµ(y|x) =

∫
Y

(y − f (x))2 dµ(y|x) (A.14)

σ2
Y =

∫
Y
y2 dµ(y|x)−

(∫
Y
y dµ(y|x)

)2

(A.15)

=
∫
Y

(fµ(x) + e)2 dµ(y|x)−
(∫

Y
(fµ(x) + e) dµ(y|x)

)2

(A.16)

=
∫
Y

(fµ(x)2 + 2efµ(x) + e2) dµ(y|x)−
(∫

Y
fµ(x) dµ(y|x) +

∫
Y
e dµ(y|x)

)2

(A.17)

=
∫
Y
fµ(x)2 dµ(y|x) + 2

∫
Y
efµ(x) dµ(y|x) +

∫
Y
e2 dµ(y|x)−

(∫
Y
fµ(x) dµ(y|x)

)2

(A.18)

= fµ(x)2 + 2fµ(x)
∫
Y
e dµ(y|x) +

∫
Y
e2 dµ(y|x)− fµ(x)2 (A.19)

=
∫
Y
e2 dµ(y|x) = σ2

e (A.20)

Also when dealing with the Bias:
∫
X
f (x)dµX −

(∫
Y
y dµ(y|x)

)
︸                               ︷︷                               ︸

bias



2

=
(∫

X
f (x)dµX −

(∫
Y

(fµ(x) + e) dµ(y|x)
))2

(A.21)
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=
(∫

X
f (x)dµX −

(∫
Y

(fµ(x) dµ(y|x) +
∫
Y
e dµ(y|x)

))2

(A.22)

=
(∫

X
f (x)dµX − fµ(x)

)2

(A.23)
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